[go: up one dir, main page]

JP2008116314A - Device for measuring trace quantity liquid - Google Patents

Device for measuring trace quantity liquid Download PDF

Info

Publication number
JP2008116314A
JP2008116314A JP2006299564A JP2006299564A JP2008116314A JP 2008116314 A JP2008116314 A JP 2008116314A JP 2006299564 A JP2006299564 A JP 2006299564A JP 2006299564 A JP2006299564 A JP 2006299564A JP 2008116314 A JP2008116314 A JP 2008116314A
Authority
JP
Japan
Prior art keywords
pair
optical fiber
liquid
optical
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006299564A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kimura
吉孝 木村
Toshiaki Kuroba
敏明 黒羽
Hisayuki Sekine
悠超 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2006299564A priority Critical patent/JP2008116314A/en
Publication of JP2008116314A publication Critical patent/JP2008116314A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • G01N2021/035Supports for sample drops

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring trace quantity liquid which can analyze a high concentration liquid sample by an optical means, while improving the product yield, using a simpler structure than in the past. <P>SOLUTION: This device for measuring trace quantity liquid comprises at least a light source which emits measurement light for measuring the liquid sample, a first optical fiber which guides light emitted from the light source, a second optical fiber which is arranged on the same optical axis as the first optical fiber and arranged so as to oppose to the end face of the first optical fiber. The interval between the first optical fiber and the second optical fiber is such an interval that the liquid sample keeps a spherical shape due to surface tension, when dropping the liquid sample to be measured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微少量の液体試料の成分や濃度を測定するための微少量液体測定装置に関する。   The present invention relates to a minute amount liquid measuring apparatus for measuring components and concentrations of a minute amount of liquid sample.

従来より液体試料を光学的に分析、測定する液体試料測定装置として角型や円筒型の光学セルを用いた測定方法が一般的に知られている。この方法は、被測定試料(液体試料)を角型セルに注入して測定光をセルのある一の面から入射させて、この光が液体試料を通過して他のセル面から出力したところを受光素子で受光して、その光のスペクトルの変化や吸光度を測定することによって液体試料中の成分や濃度を測定するものである。   2. Description of the Related Art Conventionally, a measurement method using a rectangular or cylindrical optical cell is generally known as a liquid sample measuring apparatus for optically analyzing and measuring a liquid sample. In this method, a sample to be measured (liquid sample) is injected into a square cell, measurement light is incident from one surface of the cell, and this light passes through the liquid sample and is output from the other cell surface. Is received by a light receiving element, and the component and concentration in the liquid sample are measured by measuring the change in the spectrum of the light and the absorbance.

ところで、こうした液体試料の成分や濃度の分析において、近年は液滴程度の極微量の液体試料に含まれる成分や濃度についての分析の要求が高まっている。しかし従来の吸光光度分析器等に用いられる測定用のセルは一定量以上の試料を必要とするため、こうした液滴程度の極微量の試料を測定することが出来ないという問題がある。   By the way, in such analysis of components and concentrations of liquid samples, in recent years, there has been an increasing demand for analysis of components and concentrations contained in extremely small amounts of liquid samples such as droplets. However, a measurement cell used in a conventional absorptiometric analyzer or the like requires a sample of a certain amount or more, and there is a problem that it is impossible to measure such a very small amount of sample as a droplet.

本発明は、上記問題を鑑みてなされたもので、極微量の液体試料に含まれる成分や濃度の分析を簡便な方法で行うことのできる微少量の液体試料測定装置の提供を目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a minute amount liquid sample measuring apparatus capable of analyzing components and concentrations contained in an extremely small amount of liquid sample by a simple method. It is.

上記課題を解決するために、請求項1記載の本発明は、一対の光ファイバの端面を対向させて同軸上に固定配置するための一対のV溝と、一対のV溝間に微少量の液滴を保持するための円形の開口部とが設けられた液体試料ホルダと、一対のV溝間に設けられた円形の開口部を介して、端面を対向させて同軸上に固定配置された一対の光ファイバとを備え、光ファイバの一方の端面より前記円形の開口部に保持された液滴に測定光を入射させ、液滴を透過した光を光ファイバの他方の端面で受光して光学処理手段に送り、液滴の成分や濃度を測定することを要旨とする。
請求項2記載の本発明は、請求項1記載の微少量液体測定装置であって、一対のV溝間に設けられた円形の開口部が、貫通した円筒状の孔であることを要旨とする。
In order to solve the above-mentioned problem, the present invention as claimed in claim 1 is characterized in that a pair of V-grooves for fixing and arranging coaxially with the end faces of a pair of optical fibers facing each other, and a minute amount between the pair of V-grooves A liquid sample holder provided with a circular opening for holding a droplet and a circular opening provided between a pair of V-grooves were fixedly arranged coaxially with the end faces facing each other. A pair of optical fibers, the measurement light is incident on the droplet held in the circular opening from one end surface of the optical fiber, and the light transmitted through the droplet is received by the other end surface of the optical fiber. The gist is to send to the optical processing means and measure the component and concentration of the droplet.
The present invention described in claim 2 is the micro liquid measuring device according to claim 1, wherein the circular opening provided between the pair of V-grooves is a penetrating cylindrical hole. To do.

請求項3記載の本発明は、一対の光ファイバの光軸に対し、垂直方向から液滴の成分を励起するための励起光を出射する励起光出力手段を備え、励起光出力手段によって励起された光を一対の光ファイバで受光して光学処理手段に送り、液滴の成分や濃度を測定することを要旨する。   According to a third aspect of the present invention, there is provided excitation light output means for emitting excitation light for exciting a droplet component from a direction perpendicular to the optical axes of a pair of optical fibers, and the excitation light output means is excited by the excitation light output means. The gist is that the received light is received by a pair of optical fibers and sent to the optical processing means to measure the component and concentration of the droplet.

請求項4記載の本発明は、一対の光ファイバの端面を対向させて同軸上に固定配置するための一対のV溝と、一対のV溝間に液滴を保持することのできる程度の間隔を設けて、端面を対向させて同軸上に固定配置された一対の光ファイバとを備え、光ファイバの一方の端面より、一対のV溝間に端面を対向させて配置された一対の光ファイバの端面間に保持された液滴に測定光を入射させ、液滴を透過した光を光ファイバの他方の端面で受光して光学処理手段に送り、液滴の成分や濃度を測定することを要旨とする。   The present invention according to claim 4 is a pair of V grooves for fixing and coaxially arranging the end faces of a pair of optical fibers facing each other, and an interval at which droplets can be held between the pair of V grooves. And a pair of optical fibers fixedly arranged coaxially with the end faces facing each other, and a pair of optical fibers arranged with the end faces opposed to each other between the pair of V grooves from one end face of the optical fiber The measurement light is incident on the droplet held between the two end faces, and the light transmitted through the droplet is received by the other end face of the optical fiber and sent to the optical processing means to measure the component and concentration of the droplet. The gist.

本発明によれば、極微量の液滴程度の液体試料であっても、その液体中に含まれる成分や濃度を測定することができるので、生体試料のように多量の試料を採取することが困難な場合でもその成分や濃度を測定することができる。   According to the present invention, even a liquid sample having an extremely small amount of droplets can measure the components and concentration contained in the liquid, so that a large amount of sample such as a biological sample can be collected. Even in difficult cases, the components and concentration can be measured.

また、測定に必要な試料量が少なくてよいことから、測定後の試料の廃棄処理などにおいても問題を発生することが少ない。   In addition, since the amount of sample necessary for the measurement may be small, there are few problems in the disposal of the sample after the measurement.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明に係る微少量液体測定装置の全体構成図であり、図2は、微少量液体測定装置の測定経路に設けられる液体試料の測定部分を拡大した拡大透視図である。   FIG. 1 is an overall configuration diagram of a micro liquid measurement device according to the present invention, and FIG. 2 is an enlarged perspective view in which a measurement portion of a liquid sample provided in a measurement path of the micro liquid measurement device is enlarged.

図1に示すように、この微少量液体測定装置は、光源13と、光源13から出射された光を導光する第1光ファイバ10と、第1光ファイバ10と同一光軸上に設けられる第2光ファイバ11と、第2光ファイバ11の他端に接続される分光器14で少なくとも構成されている。   As shown in FIG. 1, the micro liquid measurement device is provided on the same optical axis as the light source 13, the first optical fiber 10 that guides the light emitted from the light source 13, and the first optical fiber 10. The second optical fiber 11 and at least a spectroscope 14 connected to the other end of the second optical fiber 11 are configured.

ここで光源13は、測定する液体試料の特性により適宜選択されるものであり、可視光又は近赤外を出力する光源を用いる。本実施の形態においては具体的に白色LEDを用いるが、ハロゲンランプ、広帯域レーザー、蛍光などの広帯域光源であれば適応できる。   Here, the light source 13 is appropriately selected depending on the characteristics of the liquid sample to be measured, and a light source that outputs visible light or near infrared light is used. In this embodiment, a white LED is specifically used, but any light source such as a halogen lamp, a broadband laser, and a fluorescent light source can be applied.

第1及び第2光ファイバ10及び11としては、石英系光ファイバやプラスチップ光ファイバなどが挙げられるが、本実施の形態においては可搬性や曲げ耐久性の高いプラスチッククラッド石英コアファイバを用いる。   Examples of the first and second optical fibers 10 and 11 include silica-based optical fibers and plus-chip optical fibers. In this embodiment, plastic clad quartz core fibers having high portability and high bending durability are used.

第1光ファイバ10と第2光ファイバ11の間は、測定すべき液体試料を滴下させたときに当該液体試料が表面張力により球状を保持する程度の間隔が設けられている。   An interval is provided between the first optical fiber 10 and the second optical fiber 11 such that when the liquid sample to be measured is dropped, the liquid sample retains a spherical shape due to surface tension.

分光器14は、光源13から出力されて液体試料を透過した光の波長をスペクトル分析する機能を備えているものを用いる。この分光器14は、分光機能の他にデータ蓄積機能、データ解析機能(プログラム)、解析結果表示機能(ディスプレイ)などを備えている。本実施の形態においては、透過光を検出する受光素子として測定波長範囲が350〜1050nmのCCDリニアセンサーと、このセンサーで検出した光を0.3〜10.0nmの波長分解能(この分解能は開口径に依存する)で処理することができる解析機能を備えたパーソナルコンピュータ(PC)を用いている。   The spectroscope 14 has a function of spectrally analyzing the wavelength of light output from the light source 13 and transmitted through the liquid sample. The spectroscope 14 includes a data storage function, a data analysis function (program), an analysis result display function (display), and the like in addition to the spectroscopic function. In this embodiment, a CCD linear sensor having a measurement wavelength range of 350 to 1050 nm as a light receiving element for detecting transmitted light, and a wavelength resolution of 0.3 to 10.0 nm (the resolution is opened). A personal computer (PC) equipped with an analysis function that can be processed with a caliber) is used.

このような構成を有する微少量液体測定装置で測定を行う場合は、まず第1光ファイバ10と第2光ファイバ11の間に液体試料をスポイト等で1滴分静かに滴下し、液体試料の表面張力により球状態で保持させる。この状態で光源13から測定光の出力を開始する。この光は第1光ファイバ内を導光し、液滴試料に達すると一部が吸収されて残りの光が第2光ファイバ内に入射してファイバ内を導光することで分光器14に到達する。分光器14で受光された光はデータ解析プログラムにより成分分析や濃度検出等の処理が施される。   When performing measurement with a micro liquid measuring device having such a configuration, first, a liquid sample is gently dropped with a dropper or the like between the first optical fiber 10 and the second optical fiber 11, and the liquid sample It is held in a spherical state by surface tension. In this state, output of measurement light from the light source 13 is started. This light is guided in the first optical fiber, and when it reaches the droplet sample, a part of the light is absorbed and the remaining light enters the second optical fiber and guides the inside of the fiber to the spectroscope 14. To reach. The light received by the spectroscope 14 is subjected to processing such as component analysis and concentration detection by a data analysis program.

図3は上記微少量液体測定装置の変形例である。この微少量液体測定装置は、(1)特定波長を吸収すると蛍光を発する液体試料を予め第1光ファイバと第2光ファイバの間に滴下により保持させておくこと、(2)この液滴に照射する励起光出力手段を設ける(図示せず)こと、(3)第1及び第2光ファイバの出力端に分光器14を接続することが、前述の図1及び2に示した微少量液体測定装置と構成が異なる。   FIG. 3 shows a modified example of the above-mentioned minute amount liquid measuring apparatus. This micro-volume liquid measuring device has (1) a liquid sample that emits fluorescence when absorbing a specific wavelength is held in advance between the first optical fiber and the second optical fiber, and (2) It is possible to provide excitation light output means for irradiation (not shown), and (3) to connect the spectroscope 14 to the output ends of the first and second optical fibers. The configuration is different from the measuring device.

この微少量液体測定装置で測定を行う場合は、第1光ファイバと第2光ファイバの間に液体試料を球形状で保持させた状態で、励起光出力手段から液体試料に対して励起光を照射し、この照射により発生した液体試料からの蛍光を第1及び第2光ファイバ10及び11内に導光させて分光器14に導き、分光器14で蛍光スペクトル解析を行うものである。   When performing measurement with this micro-volume liquid measuring device, excitation light is applied to the liquid sample from the excitation light output means with the liquid sample held in a spherical shape between the first optical fiber and the second optical fiber. Irradiation, fluorescence from the liquid sample generated by this irradiation is guided into the first and second optical fibers 10 and 11 and guided to the spectroscope 14, and the spectroscope 14 performs the fluorescence spectrum analysis.

ここで、上述した微少量液体測定装置の第1及び第2光ファイバ10及び11の間は、図4に示すように固定板12に固定するようにしても良い。この固定板12は予め光ファイバの移動を防止するためのV溝12aが設けられていると共に、液体試料を滴下したときに球形状を保持するための液留め部が設けられている。この固定板12に第1及び第2光ファイバ10及び11を固定させると図5に示すような構成となる。更に液体試料を滴下させると図6に示すような構成となる。このように固定板12を設けることにより第1及び第2光ファイバ10及び11を固定できるので測定精度を安定させることができ、また液留め12bを設けることで液体試料の球形状を維持させることができる。   Here, you may make it fix between the 1st and 2nd optical fibers 10 and 11 of the micro amount liquid measuring apparatus mentioned above to the fixing board 12 as shown in FIG. The fixing plate 12 is provided with a V-groove 12a for preventing the movement of the optical fiber in advance and a liquid retaining portion for retaining a spherical shape when a liquid sample is dropped. When the first and second optical fibers 10 and 11 are fixed to the fixing plate 12, a configuration as shown in FIG. 5 is obtained. When a liquid sample is further dropped, the configuration shown in FIG. 6 is obtained. Since the first and second optical fibers 10 and 11 can be fixed by providing the fixing plate 12 in this way, the measurement accuracy can be stabilized, and the spherical shape of the liquid sample can be maintained by providing the liquid retainer 12b. Can do.

次に図7に、対向配置された2本の光ファイバ間隔の変化に対する強度依存性を測定した結果を示す。この測定グラフにおいて横軸は距離(μm)を示し、縦軸は吸収強度を示している。なお、本測定においては、第1光ファイバ10と第2光ファイバ11として直径1mm(φ1mm)のプラスチップクラッド石英コアファイバを用いた。   Next, FIG. 7 shows the result of measuring the intensity dependency with respect to the change in the distance between two optical fibers arranged opposite to each other. In this measurement graph, the horizontal axis represents distance (μm), and the vertical axis represents absorption intensity. In this measurement, a positive chip clad quartz core fiber having a diameter of 1 mm (φ1 mm) was used as the first optical fiber 10 and the second optical fiber 11.

本測定では、何も滴下しない状態、すなわち空気の測定をリファレンスとし(▲印)、水を測定した結果(◆印)と比較した。その結果、水を測定した場合の方が全体的に強度が高くなることが示された。また強度は離間距離にあまり依存しないことが示された。そこで以下の測定では装置製造の作業性を考慮して離間距離を500μmとして実験を行った。   In this measurement, nothing was dripped, that is, the measurement of air was used as a reference (▲ mark) and compared with the result of water measurement (♦ mark). As a result, it was shown that the strength was higher overall when water was measured. It was also shown that the strength does not depend much on the separation distance. Therefore, in the following measurement, an experiment was performed with a separation distance of 500 μm in consideration of workability in manufacturing the apparatus.

図8に、液体試料としてローダミンを用い、光ファイバの離間距離に対する強度依存性を測定した結果を示す。本測定では、ローダミン0.04mmol(■印)、ローダミン0.1mmol(◆印)、ローダミン1mmol(▲印)、水(●印)を用いた。   FIG. 8 shows the results of measuring the strength dependence on the optical fiber separation distance using rhodamine as the liquid sample. In this measurement, rhodamine 0.04 mmol (■ mark), rhodamine 0.1 mmol (♦ mark), rhodamine 1 mmol (▲ mark), and water (● mark) were used.

その結果、離間間隔が大きくなるほど強度が低下することが示された。また図8の水の強度をリファレンスに取り上記各ローダミンの吸光度を測定したところ図9に示すような透過率が得られた。この結果から各溶液に相関関係があることが見出せる。   As a result, it was shown that the strength decreases as the separation interval increases. Further, when the absorbance of each of the above rhodamines was measured using the water intensity shown in FIG. 8 as a reference, the transmittance shown in FIG. 9 was obtained. From this result, it can be found that each solution has a correlation.

図1の微少量液体測定装置を用いてローダミン吸収測定を行った。その結果を図10に示す。この測定グラフにおいて、横軸は波長(nm)を示し、縦軸は吸収強度を示している。光源として白色LEDを用い、液体試料としては、ローダミン1mmolを用いた。また、比較例として空気と水の場合と同条件で測定を行った。また第1光ファイバ10と第2光ファイバ11として直径0.5mm(φ0.5mm)のプラスチック光ファイバを用いて測定を行った。   The rhodamine absorption measurement was performed using the minute amount liquid measuring apparatus of FIG. The result is shown in FIG. In this measurement graph, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the absorption intensity. A white LED was used as the light source, and 1 mmol of rhodamine was used as the liquid sample. As a comparative example, measurement was performed under the same conditions as in the case of air and water. Measurement was performed using a plastic optical fiber having a diameter of 0.5 mm (φ0.5 mm) as the first optical fiber 10 and the second optical fiber 11.

同図において、グラフ(1)は空気、グラフ(2)は水、グラフ(3)はローダミン1mmolの場合の結果を示したものである。グラフから分かるように、500〜600nmに大きな吸収があることが分かる。   In the same figure, graph (1) shows the results for air, graph (2) for water, and graph (3) for rhodamine 1 mmol. As can be seen from the graph, it can be seen that there is a large absorption at 500 to 600 nm.

次に図3の微少量液体測定装置を用いて液体試料を励起光を用いて励起させ、発生した蛍光スペクトルを測定する実験を行った。励起光源としてピーク波長が525nmの緑色LEDを用いて測定を行った。その結果を図11に示す。これによれば、525nm帯に小さなスペクトルの出現が確認できたが、それ以上に励起により発生した600nm帯のスペクトルが明確に確認できた。これにより図3に示した微少量液体測定装置を用いて蛍光スペクトルの測定が可能であることが示された。   Next, an experiment was performed in which a liquid sample was excited using excitation light and the generated fluorescence spectrum was measured using the micro-volume liquid measuring apparatus shown in FIG. Measurement was performed using a green LED having a peak wavelength of 525 nm as an excitation light source. The result is shown in FIG. According to this, the appearance of a small spectrum in the 525 nm band was confirmed, but the spectrum in the 600 nm band generated by excitation could be clearly confirmed. Thus, it was shown that the fluorescence spectrum can be measured using the micro-volume liquid measuring device shown in FIG.

次に、直径1.0mm(φ1.0mm)のプラスチック光ファイバを用いて、2本の光ファイバの離間距離を変化させた場合の強度依存性を測定した。図12は、測定に用いたローダミンの蛍光スペクトルを示したグラフであり、濃度1mmol、離間距離0.5mmで測定した場合の結果である。このローダミンを用いて離間距離を段階的に変化した実験結果を図13に示す。同図に示すように、離間距離が0.3mm以下では間隔が狭すぎるために励起光が液体試料全体に照射されず十分な蛍光強度が得られなかったが、離間距離が広くなるに従い強い蛍光が検出された。特に0.3mmから0.4mmに変化する位置で強度が急激に変化しており、0.4mm以降で励起光がほとんど検出されなくなっており、0.4mm以降で励起光は殆ど外部に放射され、蛍光のみが検出していることが示された。   Next, using a plastic optical fiber having a diameter of 1.0 mm (φ1.0 mm), the intensity dependency when the distance between the two optical fibers was changed was measured. FIG. 12 is a graph showing the fluorescence spectrum of rhodamine used in the measurement, and shows the results when measured at a concentration of 1 mmol and a separation distance of 0.5 mm. FIG. 13 shows the experimental results in which the separation distance was changed stepwise using this rhodamine. As shown in the figure, when the separation distance is 0.3 mm or less, the distance is too narrow and the excitation light is not applied to the entire liquid sample and sufficient fluorescence intensity cannot be obtained. Was detected. In particular, the intensity changes abruptly at a position changing from 0.3 mm to 0.4 mm, and excitation light is hardly detected after 0.4 mm, and excitation light is almost radiated to the outside after 0.4 mm. It was shown that only fluorescence was detected.

以上の結果から、本発明によれば、図1及び図3に示したような非常に簡単な構成で微少量の液体試料を測定することができることが示された。この構成によれば特に濃度の高い液体試料を測定する場合に有効である。   From the above results, according to the present invention, it was shown that a very small amount of liquid sample can be measured with a very simple configuration as shown in FIGS. This configuration is particularly effective when measuring a liquid sample having a high concentration.

また、上記の通り簡単な構成で且つ特殊加工を必要としないことから部品コスト及び製造コストを抑制することができるので、その結果、歩留まりを良くすることができる。   Moreover, since it is a simple structure and does not require special processing as described above, it is possible to suppress the component cost and the manufacturing cost, and as a result, the yield can be improved.

本発明の実施の形態に係る微少量液体測定装置の全体構成図である。It is a whole lineblock diagram of a micro quantity liquid measuring device concerning an embodiment of the invention. 微少量液体測定装置の測定経路に設けられる液体試料の測定部分を拡大した拡大透視図である。It is the expansion perspective drawing which expanded the measurement part of the liquid sample provided in the measurement path | route of a micro amount liquid measuring apparatus. 本発明の微少量液体測定装置の変形例を示す図である。It is a figure which shows the modification of the trace amount liquid measuring apparatus of this invention. 第1及び第2光ファイバを固定させる固定板12の構成を示す図である。It is a figure which shows the structure of the fixing plate 12 which fixes a 1st and 2nd optical fiber. 固定板12に第1及び第2光ファイバを配置させた状態を示す図である。It is a figure which shows the state which has arrange | positioned the 1st and 2nd optical fiber to the fixing plate. 第1及び第2光ファイバ間に液体試料を滴下させた状態を示す図である。It is a figure which shows the state which dripped the liquid sample between the 1st and 2nd optical fibers. 第1及び第2光ファイバ間の離間距離を変化させた場合の強度変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured the intensity change at the time of changing the separation distance between the 1st and 2nd optical fibers. 異なる濃度の液体試料(ローダミン)を用いて、第1及び第2光ファイバ間の離間距離を変化させた場合の強度変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured the intensity change at the time of changing the separation distance between the 1st and 2nd optical fibers using the liquid sample (rhodamine) of a different density | concentration. 図8の結果に基づいて算出した透過率の結果を示すグラフである。It is a graph which shows the result of the transmittance | permeability computed based on the result of FIG. 液体試料として水、空気、液体試料(ローダミン)を用い、波長に対する強度依存性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the intensity | strength dependence with respect to a wavelength, using water, air, and a liquid sample (rhodamine) as a liquid sample. プラスチック光ファイバ(直径0.5mm)を用い、波長に対する強度依存性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the intensity dependence with respect to a wavelength using a plastic optical fiber (diameter 0.5mm). 対向する光ファイバの離間距離を0.5mmと設定し、波長に対する強度依存性を測定した結果を示すグラフである。It is a graph which shows the result of having set the separation distance of the optical fiber which opposes to 0.5 mm, and measuring the intensity dependence with respect to a wavelength. 励起光として緑色LEDを用い、離間距離に対する強度依存性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the intensity | strength dependence with respect to a separation distance, using green LED as excitation light.

符号の説明Explanation of symbols

10…第1光ファイバ
11…第2光ファイバ
12…固定板
12a…V溝
12b…液留め
13…光源
14…分光器
DESCRIPTION OF SYMBOLS 10 ... 1st optical fiber 11 ... 2nd optical fiber 12 ... Fixed plate 12a ... V groove 12b ... Liquid retaining 13 ... Light source 14 ... Spectroscope

Claims (4)

一対の光ファイバの端面を対向させて同軸上に固定配置するための一対のV溝と、前記一対のV溝間に微少量の液滴を保持するための円形の開口部とが設けられた液体試料ホルダと、
前記一対のV溝間に設けられた前記円形の開口部を介して、端面を対向させて同軸上に固定配置された前記一対の光ファイバとを備え、
前記光ファイバの一方の端面より前記円形の開口部に保持された前記液滴に測定光を入射させ、前記液滴を透過した光を前記光ファイバの他方の端面で受光して光学処理手段に送り、前記液滴の成分や濃度を測定することを特徴とする微少量液体測定装置。
A pair of V-grooves are arranged to be coaxially fixed with the end faces of the pair of optical fibers facing each other, and a circular opening for holding a minute amount of liquid droplets is provided between the pair of V-grooves. A liquid sample holder;
Through the circular opening provided between the pair of V-grooves, the pair of optical fibers fixedly arranged coaxially with the end faces facing each other,
Measuring light is incident on the droplet held in the circular opening from one end surface of the optical fiber, and the light transmitted through the droplet is received by the other end surface of the optical fiber to the optical processing means. An apparatus for measuring a small amount of liquid, wherein the apparatus measures the composition and concentration of the droplets.
前記一対のV溝間に設けられた前記円形の開口部が、貫通した円筒状の孔であることを特徴とする請求項1記載の微少量液体測定装置。   2. The minute liquid measuring apparatus according to claim 1, wherein the circular opening provided between the pair of V-grooves is a penetrating cylindrical hole. 前記一対の光ファイバの光軸に対し、垂直方向から前記液滴の成分を励起するための励起光を出射する励起光出力手段を備え、
前記励起光出力手段によって励起された光を前記一対の光ファイバで受光して光学処理手段に送り、前記液滴の成分や濃度を測定することを特徴する微少量液体測定装置。
Excitation light output means for emitting excitation light for exciting the component of the droplet from a direction perpendicular to the optical axis of the pair of optical fibers,
An apparatus for measuring a small amount of liquid, wherein light excited by the excitation light output means is received by the pair of optical fibers and sent to an optical processing means to measure the component and concentration of the droplet.
一対の光ファイバの端面を対向させて同軸上に固定配置するための一対のV溝と、
前記一対のV溝間に液滴を保持することのできる程度の間隔を設けて、端面を対向させて同軸上に固定配置された前記一対の光ファイバとを備え、
前記光ファイバの一方の端面より、前記一対のV溝間に端面を対向させて配置された前記一対の光ファイバの端面間に保持された前記液滴に測定光を入射させ、前記液滴を透過した光を前記光ファイバの他方の端面で受光して光学処理手段に送り、前記液滴の成分や濃度を測定することを特徴とする微少量液体測定装置。
A pair of V-grooves for fixing and coaxially facing the end faces of the pair of optical fibers;
The pair of optical fibers provided with a space between the pair of V grooves so that droplets can be held, and having the end faces opposed to each other and fixed coaxially,
From one end surface of the optical fiber, measurement light is incident on the droplet held between the end surfaces of the pair of optical fibers disposed with the end surfaces facing each other between the pair of V grooves, A micro liquid measurement device characterized in that the transmitted light is received by the other end face of the optical fiber and sent to an optical processing means to measure the component and concentration of the droplet.
JP2006299564A 2006-11-02 2006-11-02 Device for measuring trace quantity liquid Pending JP2008116314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299564A JP2008116314A (en) 2006-11-02 2006-11-02 Device for measuring trace quantity liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299564A JP2008116314A (en) 2006-11-02 2006-11-02 Device for measuring trace quantity liquid

Publications (1)

Publication Number Publication Date
JP2008116314A true JP2008116314A (en) 2008-05-22

Family

ID=39502361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299564A Pending JP2008116314A (en) 2006-11-02 2006-11-02 Device for measuring trace quantity liquid

Country Status (1)

Country Link
JP (1) JP2008116314A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022065A (en) * 2009-07-17 2011-02-03 Imac Co Ltd Optical measurement instrument
JP2012504767A (en) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー Dual sample mode spectrophotometer
JP2012519839A (en) * 2009-03-04 2012-08-30 マルベルン インスツルメンツ リミテッド Measurement of particle characteristics
JP2013033035A (en) * 2011-06-28 2013-02-14 Imac Co Ltd Optical measuring device
WO2013079916A1 (en) * 2011-12-02 2013-06-06 Biochrom Limited Device for receiving small volume liquid samples
TWI447392B (en) * 2010-12-13 2014-08-01
JP2014521086A (en) * 2011-07-14 2014-08-25 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー Optical spectrometer with underfill optical fiber sample interface
GB2512527B (en) * 2011-12-02 2017-03-01 Biochrom Ltd Device for receiving small volume liquid samples
CN117388200A (en) * 2023-12-12 2024-01-12 赛默飞世尔(上海)仪器有限公司 Micro spectrophotometer for detecting sample and method for detecting sample

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504767A (en) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー Dual sample mode spectrophotometer
JP2012519839A (en) * 2009-03-04 2012-08-30 マルベルン インスツルメンツ リミテッド Measurement of particle characteristics
EP2404154B1 (en) * 2009-03-04 2020-11-11 Malvern Panalytical Limited Particle characterization
JP2011022065A (en) * 2009-07-17 2011-02-03 Imac Co Ltd Optical measurement instrument
TWI447392B (en) * 2010-12-13 2014-08-01
JP2013033035A (en) * 2011-06-28 2013-02-14 Imac Co Ltd Optical measuring device
JP2014521086A (en) * 2011-07-14 2014-08-25 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー Optical spectrometer with underfill optical fiber sample interface
WO2013079916A1 (en) * 2011-12-02 2013-06-06 Biochrom Limited Device for receiving small volume liquid samples
GB2512527B (en) * 2011-12-02 2017-03-01 Biochrom Ltd Device for receiving small volume liquid samples
US9683927B2 (en) 2011-12-02 2017-06-20 Biochrom Limited Device for receiving small volume liquid samples
CN117388200A (en) * 2023-12-12 2024-01-12 赛默飞世尔(上海)仪器有限公司 Micro spectrophotometer for detecting sample and method for detecting sample

Similar Documents

Publication Publication Date Title
JP2008116314A (en) Device for measuring trace quantity liquid
US9921164B2 (en) System and method for molecule sensing using evanescent light coupling approach
CN1961205B (en) Handheld device with a disposable element for chemical analysis of multiple analytes
US7595882B1 (en) Hollow-core waveguide-based raman systems and methods
US20190162659A1 (en) Method and device for near-infrared spectroscopy
IL266105B1 (en) Sample-holding element, analysis set, and method for analysis of a liquid, in particular of a cooling lubricant emulsion
US9297760B2 (en) Apparatus for analysing a small amount of liquid
US20090059225A1 (en) Instrument for making optical measurements on multiple samples retained by surface tension
EP3137861B1 (en) A disposable measurement tip and method for use thereof
KR20120035749A (en) Simultaneous measuring sensor system of lspr and sers signal based on optical fiber
US7574089B1 (en) Optofluidic devices and methods of using the same
Persichetti et al. Optofluidic jet waveguide enhanced Raman spectroscopy
CN102175645B (en) Polarized light detection-based highly-sensitive photonic crystal fiber refractive index sensor
JP3968425B2 (en) Method of introducing light into optical waveguide and optical waveguide spectrometer using the same
US7952772B2 (en) Photonic crystal fiber sensor
JP2008116313A (en) Device for measuring minute quantity liquid
KR20140103304A (en) Device for receiving small volume liquid samples
JP2006125919A (en) Spectral analyzer and spectral analysis method
JP2009103480A (en) Microplate reader
JP2006300564A (en) Analysis device and analysis apparatus
JP2003344323A (en) Photothermal conversion spectroscopic analysis method and photothermal conversion spectroscopic analyzer implementing the method
Alaruri et al. Development of LEDs-based microplate reader for bioanalytical assay measurements
JP2005331407A (en) Photothermal conversion spectral analyzing method and microchemical system for performing the same
Riesen et al. Graded-index fiber on-chip absorption spectroscopy
Belz Simple and sensitive protein detection system using UV LEDs and liquid core waveguides