[go: up one dir, main page]

JP2008091432A - Electronic component - Google Patents

Electronic component Download PDF

Info

Publication number
JP2008091432A
JP2008091432A JP2006268108A JP2006268108A JP2008091432A JP 2008091432 A JP2008091432 A JP 2008091432A JP 2006268108 A JP2006268108 A JP 2006268108A JP 2006268108 A JP2006268108 A JP 2006268108A JP 2008091432 A JP2008091432 A JP 2008091432A
Authority
JP
Japan
Prior art keywords
radiator
main surface
electronic component
electronic
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006268108A
Other languages
Japanese (ja)
Inventor
Setsu Iwai
節 岩井
Akira Okuno
晃 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Kodenshi Corp
Original Assignee
NEC Schott Components Corp
Kodenshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp, Kodenshi Corp filed Critical NEC Schott Components Corp
Priority to JP2006268108A priority Critical patent/JP2008091432A/en
Publication of JP2008091432A publication Critical patent/JP2008091432A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component having excellent heat radiating property even when a plurality of electronic elements are provided adjacently. <P>SOLUTION: In an electronic component 11 provided with: a heat radiating body 19 having one main surface; and electronic elements 18 such as a plurality of light emitting diodes arranged in the surface direction on the main surface of the heat radiating body 19, when a desired direction in the main surface of the heat radiating body 19 is defined as x direction, a direction perpendicular to the x direction on the main surface as a y direction, and a direction orthogonal to the same main surface as a z direction, the heat radiating body 19 is formed of a heat conductivity anisotropic carbon material or metal impregnated carbon material having relatively lower heat conductivity in the main surface direction and relatively higher heat conductivity in the z direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、LEDプリントヘッドや表示装置などのように狭い領域に配列した複数の電子素子を有する電子部品に関する。   The present invention relates to an electronic component having a plurality of electronic elements arranged in a narrow area such as an LED print head or a display device.

近年、各種光源用に発光素子として半導体発光ダイオード(LED)が広く利用されている。通常、電源供給用リードが設けられたLED用容器にLEDチップが搭載され、透明樹脂等の封着材で封止される。そして、発光効率を高めるためと高出力化のために発光素子を収容する容器に種々の放熱構造が提案されている。例えば、特許文献1は、複数の発光素子モジュールが設けられた基板に上面から下面に貫通した放熱用スルーホールを形成した光プリントヘッドを開示する。特許文献2および3は放熱体に利用される高熱伝導率・低熱膨張率の炭素基金属複合材に関する板状部材とその製法を開示する。特に、特許文献3では、溶融したアルミニウム、銅、銀などを加圧含浸させた板材成形体を開示する。更に、特許文献4は炭素基金属含浸板材の放熱体としての応用を提示し、特許文献5は具体的にLED用容器において金属含浸炭素材を放熱体として使用することを開示している。特許文献4に開示されたLED用容器は、板状の高熱伝導炭素材と、枠状の金属ベースとを備え、LEDチップが金属ベースの枠の内側に配置され、高熱伝導炭素材と直に接する状態で搭載されている。セラミック製容器に比べて放熱性が高められて、発光効率の向上が図られている。
特開平10−226107号公報 特開2000−203973号公報 特開2001−058255号公報 特開2001−118960号公報 特開2006−086391号公報
In recent years, semiconductor light emitting diodes (LEDs) have been widely used as light emitting elements for various light sources. Usually, an LED chip is mounted on an LED container provided with a power supply lead, and is sealed with a sealing material such as a transparent resin. Various heat dissipation structures have been proposed for containers for accommodating light emitting elements in order to increase luminous efficiency and increase output. For example, Patent Document 1 discloses an optical print head in which a heat dissipation through hole penetrating from the upper surface to the lower surface is formed on a substrate provided with a plurality of light emitting element modules. Patent Documents 2 and 3 disclose a plate-like member related to a carbon-based metal composite material having a high thermal conductivity and a low thermal expansion coefficient used for a heat radiating body, and a manufacturing method thereof. In particular, Patent Document 3 discloses a plate material molded body in which molten aluminum, copper, silver or the like is pressure-impregnated. Further, Patent Document 4 presents an application of a carbon-based metal-impregnated plate material as a heat radiator, and Patent Document 5 specifically discloses the use of a metal-impregnated carbon material as a heat radiator in an LED container. The LED container disclosed in Patent Document 4 includes a plate-like high thermal conductivity carbon material and a frame-shaped metal base, and the LED chip is disposed inside the metal base frame, and directly with the high thermal conductivity carbon material. It is mounted in contact. Compared with a ceramic container, heat dissipation is improved, and luminous efficiency is improved.
Japanese Patent Laid-Open No. 10-226107 JP 2000-202973 A JP 2001-058255 A JP 2001-118960 A JP 2006-086391 A

しかし、特許文献1に記載の構造では、発光素子に対応する位置にスルーホールを形成しなければならず、近年のように狭い領域に多数の電子素子が配列した電子部品においては限界に達している。一方、特許文献2−5には狭い領域に複数の電子素子が配列している場合の放熱対策を開示していない。そして、狭い領域に複数の電子素子が配列している場合は、電子素子間の熱干渉という、単独で収容されている電子素子には無い課題を有する。従って、一層優れた放熱構造が要請される。
それ故、この発明の課題は、互いに接近した複数の電子素子を有しているにも関わらず放熱性に優れた電子部品を提供することにある。
However, in the structure described in Patent Document 1, a through hole must be formed at a position corresponding to the light emitting element, and the limit is reached in an electronic component in which a large number of electronic elements are arranged in a narrow area as in recent years. Yes. On the other hand, Patent Document 2-5 does not disclose a heat dissipation measure when a plurality of electronic elements are arranged in a narrow region. When a plurality of electronic elements are arranged in a narrow region, there is a problem that an electronic element housed alone, called thermal interference between the electronic elements. Therefore, a more excellent heat dissipation structure is required.
Therefore, an object of the present invention is to provide an electronic component having excellent heat dissipation despite having a plurality of electronic elements close to each other.

その課題を解決するために、この発明の電子部品は、
一主面を有する放熱体と、放熱体の主面上に面方向に配列するように搭載された複数の電子素子とを備える電子部品において、放熱体の主面における任意の一方向をx方向、同主面上でx方向と垂直な方向をy方向、同主面に直交する方向をz方向とするとき、
前記放熱体が、前記主面方向に相対的に低い熱伝導率、z方向に相対的に高い熱伝導率を有する熱伝導異方性の炭素材又は金属含浸炭素材からなることを特徴とする。
この発明の電子部品においては、放熱体が、電子素子の配列する主面方向に低い熱伝導率を有し、同主面に直交する方向に高い熱伝導率を有するので、電子素子の発する熱は隣の電子素子にはほとんど伝わらず、放熱体の裏面方向に伝導する。そして、裏面側で放熱される。金属含浸炭素材に含浸される金属としては、アルミニウム、銅または銀が挙げられる。
In order to solve the problem, the electronic component of the present invention is
An electronic component comprising a radiator having a main surface and a plurality of electronic elements mounted so as to be arranged in a plane direction on the main surface of the radiator, wherein an arbitrary direction on the main surface of the radiator is an x direction When the direction perpendicular to the x direction on the same principal surface is the y direction and the direction perpendicular to the principal surface is the z direction,
The radiator is made of a heat conductive anisotropic carbon material or a metal-impregnated carbon material having a relatively low thermal conductivity in the principal surface direction and a relatively high thermal conductivity in the z direction. .
In the electronic component of the present invention, the heat radiator has a low thermal conductivity in the direction of the main surface where the electronic elements are arranged, and has a high thermal conductivity in the direction orthogonal to the main surface. Is hardly transmitted to the adjacent electronic element, but is conducted in the direction of the back surface of the radiator. And it is radiated at the back side. Examples of the metal impregnated in the metal-impregnated carbon material include aluminum, copper, and silver.

前記電子素子がx方向に一次元的に配列しているときは、前記放熱体の主面方向の熱伝導率はx方向において最も低いのが好ましい。これにより電子素子間の熱干渉が最も効率よく防がれるからである。また、前記電子素子がx方向及びy方向に二次元的に配列しているときは、前記放熱体の主面方向の熱伝導率はy方向において最も低く、前記放熱体内のx方向における電子素子間に溝が形成されているのが好ましい。y方向においては放熱体自体の低熱伝導性により、x方向においては溝の断熱作用により、隣り合う電子素子間の熱干渉が防がれるからである。溝に、前記炭素材及び金属含浸炭素材よりも低い熱伝導率を有する断熱部材が配置されていると更に良い。溝は、前記放熱体の主面及び裏面のいずれに形成されていてもよい。   When the electronic elements are arranged one-dimensionally in the x direction, it is preferable that the heat conductivity in the main surface direction of the radiator is lowest in the x direction. This is because thermal interference between electronic elements is most effectively prevented. Further, when the electronic elements are two-dimensionally arranged in the x direction and the y direction, the heat conductivity in the main surface direction of the radiator is the lowest in the y direction, and the electronic elements in the x direction in the radiator are It is preferable that a groove is formed between them. This is because thermal interference between adjacent electronic elements is prevented by the low thermal conductivity of the radiator itself in the y direction and by the heat insulating action of the grooves in the x direction. More preferably, a heat insulating member having a lower thermal conductivity than the carbon material and the metal-impregnated carbon material is disposed in the groove. The groove may be formed on either the main surface or the back surface of the radiator.

前記放熱体の裏面に、凸部が形成されているか、又は前記炭素材及び金属含浸炭素材よりも高い熱伝導率を有する放熱部材が間欠的に固着されていてもよい。これにより、放熱面積が増すからである。
放熱体は、実施形態に応じて表面がNiなどでメッキされていてもよいし、電気絶縁性の膜で被覆されていてもよい。
A convex portion may be formed on the back surface of the heat radiating body, or a heat radiating member having a higher thermal conductivity than the carbon material and the metal-impregnated carbon material may be intermittently fixed. This is because the heat dissipation area increases.
Depending on the embodiment, the surface of the radiator may be plated with Ni or the like, or may be covered with an electrically insulating film.

前記の通り、電子素子の発する熱は隣の電子素子にはほとんど伝わらず、放熱体の裏面方向に伝導することから、この発明の電子部品は、互いに接近した複数の電子素子を有しているにも関わらず放熱性に優れる。従って、電子素子を半導体素子とするときは、素子をマトリックス状に配列して素子アレイとすることにより、小型で高出力化を図ることができる。また、前記電子素子をLEDプリントヘッドにおける発光素子として、この発光素子を収容する絶縁容器を放熱体と一体化するときは、両者の熱膨張量差が小さくなり、絶縁容器の反りを防ぐことができる。その結果、印字精度が向上する。   As described above, the heat generated by the electronic element is hardly transmitted to the adjacent electronic element, but is conducted in the direction of the back surface of the heat radiating body. Therefore, the electronic component of the present invention has a plurality of electronic elements close to each other. Nevertheless, it has excellent heat dissipation. Therefore, when the electronic element is a semiconductor element, it is possible to achieve a small size and high output by arranging the elements in a matrix to form an element array. Further, when the electronic element is used as a light emitting element in an LED print head and an insulating container that houses the light emitting element is integrated with a heat radiating body, the difference in thermal expansion between the two becomes small, preventing warping of the insulating container. it can. As a result, the printing accuracy is improved.

−実施形態1−
この発明の第1の実施形態に係る電子部品について、図1及び図2を参照しつつ説明する。この電子部品11は、板状の放熱体19、絶縁容器14、及び発光ダイオードからなる電子素子18を備える。絶縁容器14は、いずれも絶縁セラミック製で面方向(x方向)に一列に形成された多数の貫通孔を有する下基板12および上基板13からなる。下基板12は放熱体19の主面上に固着され、上基板13はその上に積層されている。上基板13の孔は、下基板12のそれよりも大きく、上基板13の孔の内周面と下基板12のそれとの間に環状の段差を有する。上下の基板12、13は、各々公知のシート成形法により成形された後、配線パターン(図示省略)が印刷され、互いに積層され、焼成されることにより、一体化されている。得られた絶縁容器14に放熱体19が接合されることにより、電子素子18の搭載スペースが形成される。
Embodiment 1
An electronic component according to a first embodiment of the present invention will be described with reference to FIGS. The electronic component 11 includes a plate-like heat radiator 19, an insulating container 14, and an electronic element 18 made up of a light emitting diode. The insulating container 14 is composed of a lower substrate 12 and an upper substrate 13 each having a large number of through-holes made of insulating ceramic and formed in a line in the surface direction (x direction). The lower substrate 12 is fixed on the main surface of the radiator 19, and the upper substrate 13 is laminated thereon. The hole of the upper substrate 13 is larger than that of the lower substrate 12, and has an annular step between the inner peripheral surface of the hole of the upper substrate 13 and that of the lower substrate 12. The upper and lower substrates 12 and 13 are each formed by a known sheet forming method, and then a wiring pattern (not shown) is printed, stacked on each other, and baked to be integrated. A mounting space for the electronic element 18 is formed by joining the heat radiating body 19 to the obtained insulating container 14.

電子素子18は、放熱体18の主面上に発光面が上向きとなるように前記孔と同じピッチで配列して搭載されており、上下の基板12、13の孔の内周面に個別に囲まれている。電子素子18の表面にはワイヤ17の一端がボンディングされ、他端が前記環状の段差に露出した図略の内部パッドにボンディングされることにより、電子素子18が外部回路と電気的に接続可能にされている。搭載された電子素子18は、放熱体19と上下の基板12、13の孔とで囲まれる残部空間に透光性樹脂封止材16が充填されることにより、密閉されると同時に封着される。   The electronic elements 18 are mounted on the main surface of the heat dissipating body 18 with the same pitch as the holes so that the light emitting surface faces upward, and individually on the inner peripheral surfaces of the holes of the upper and lower substrates 12 and 13. being surrounded. One end of the wire 17 is bonded to the surface of the electronic element 18 and the other end is bonded to an unillustrated internal pad exposed at the annular step so that the electronic element 18 can be electrically connected to an external circuit. Has been. The mounted electronic element 18 is sealed and simultaneously sealed by filling the remaining space surrounded by the heat radiator 19 and the holes of the upper and lower substrates 12 and 13 with the translucent resin sealing material 16. The

放熱体19は熱伝導異方性の炭素材又は金属含浸炭素材からなり、最も高い熱伝導率を有する方向が上下の基板12、13に対する垂直(z軸)方向と一致し、最も低い熱伝導率を有する方向がx軸方向と一致するように装着されている。金属含浸炭素材は、例えば炭素粉末あるいは炭素繊維を成形して焼成し、Ag、Cu、A1等の金属を含浸させて得られたものである。熱伝導率は方向により異なり、炭素の二次元結晶面の格子振動で伝わる方向(z軸方向)において最も高い540W/(m・K)であり、x軸方向において140W/(m・K)、y軸方向において450W/(m・K)である。この種の高熱伝導炭素材は焼成方法や含浸金属の違いにより若干の相違があるが、熱膨張係数は6〜10ppm/℃でセラミックやSi、GaAs等の半導体の熱膨張係数と非常に近く、ヤング率が低く、そのため電子素子18や絶縁容器14と良好に結合する。   The heat dissipating body 19 is made of a carbon material having a heat conduction anisotropy or a metal-impregnated carbon material, and the direction having the highest thermal conductivity coincides with the vertical (z-axis) direction with respect to the upper and lower substrates 12 and 13 and the lowest heat conduction. It is mounted so that the direction having the rate coincides with the x-axis direction. The metal-impregnated carbon material is obtained, for example, by molding and firing carbon powder or carbon fiber and impregnating a metal such as Ag, Cu, or A1. The thermal conductivity differs depending on the direction, and is 540 W / (m · K), which is the highest in the direction (z-axis direction) transmitted by the lattice vibration of the two-dimensional crystal plane of carbon, and 140 W / (m · K) in the x-axis direction. 450 W / (m · K) in the y-axis direction. This type of high thermal conductive carbon material has some differences depending on the firing method and the difference of impregnated metal, but the thermal expansion coefficient is 6-10 ppm / ° C., which is very close to the thermal expansion coefficient of a semiconductor such as ceramic, Si, GaAs, The Young's modulus is low, so that it is well bonded to the electronic element 18 and the insulating container 14.

電子部品11によれば、電子素子18が配列するx軸方向において放熱体19の熱伝導率が最も低く、z軸方向において最も高いので、電子素子の発する熱は隣り合う電子素子18間では伝わりにくく、電子素子18の裏面から放熱体19の裏面に向かって優先的に且つ速やかに伝達される。   According to the electronic component 11, since the heat conductivity of the radiator 19 is the lowest in the x-axis direction in which the electronic elements 18 are arranged and the highest in the z-axis direction, the heat generated by the electronic elements is transmitted between the adjacent electronic elements 18. It is difficult to transmit from the back surface of the electronic element 18 to the back surface of the radiator 19 preferentially and promptly.

−実施形態2−
第2の実施形態の電子部品31は、図3に斜視図として、図4及び図5に各々図3のXX線断面図及びYY線断面図として示されるように、板状の放熱体39、絶縁容器34、及び発光ダイオードからなる電子素子38を備える。絶縁容器34は、実施形態1におけると同じくいずれも絶縁セラミック製の下基板12および上基板13からなる。以下、実施形態1と相違する点のみを詳述する。まず、実施形態1において電子素子18を収容する孔が一方向に配列して形成されていたのと異なり、この実施形態では下基板12および上基板13に平面視縦横にマトリックス状に孔が形成され、それらの孔と放熱体39とで囲まれる各搭載スペースに電子素子38が個別に収容されている。
Embodiment 2
As shown in FIG. 3 as a perspective view, and FIGS. 4 and 5 as an XX sectional view and a YY sectional view of FIG. An insulating container 34 and an electronic element 38 made of a light emitting diode are provided. As in the first embodiment, the insulating container 34 includes the lower substrate 12 and the upper substrate 13 made of insulating ceramic. Only the differences from the first embodiment will be described in detail below. First, unlike the first embodiment in which the holes for accommodating the electronic elements 18 are arranged in one direction, in this embodiment, the lower substrate 12 and the upper substrate 13 are formed in a matrix in the vertical and horizontal directions in plan view. The electronic elements 38 are individually accommodated in the mounting spaces surrounded by the holes and the radiator 39.

放熱体39は、実施形態1におけるものと同質の熱伝導異方性の炭素材又は金属含浸炭素材であってよいが、熱伝導率がy軸方向に最も低く、z軸方向に最も高いとするとき、x軸方向における隣り合う電子素子38間の境界部分に切り欠き等の溝40が形成されている。溝40は開口部が下基板32で閉じられており、その内部は、炭素よりも更に熱伝導率の低い空気からなることから、x軸方向の熱伝達の抵抗となって断熱している。従って、電子素子の発する熱は隣り合う電子素子38間ではy軸方向には放熱体39自身の相対的な低熱伝導性により、またx軸方向には溝40の断熱作用によりいずれも伝わりにくく、電子素子38の裏面から放熱体39の裏面に向かって優先的に且つ速やかに伝達される。発光ダイオードの温度上昇に伴なう発光効率低下が抑止され、かつ多数の発光ダイオードを集約的に配置して高出力化を実現する。   The heat dissipating body 39 may be a carbon material or metal-impregnated carbon material having the same thermal conductivity as that in the first embodiment, but the heat conductivity is lowest in the y-axis direction and highest in the z-axis direction. In this case, a groove 40 such as a notch is formed at a boundary portion between adjacent electronic elements 38 in the x-axis direction. The opening of the groove 40 is closed by the lower substrate 32. The inside of the groove 40 is made of air having a lower thermal conductivity than that of carbon, so that it is insulated as a heat transfer resistance in the x-axis direction. Therefore, the heat generated by the electronic elements is not easily transmitted between the adjacent electronic elements 38 due to the relatively low thermal conductivity of the radiator 39 itself in the y-axis direction, and due to the heat insulating action of the groove 40 in the x-axis direction. It is transmitted preferentially and promptly from the back surface of the electronic element 38 toward the back surface of the radiator 39. A reduction in luminous efficiency due to the temperature rise of the light emitting diode is suppressed, and a large number of light emitting diodes are collectively arranged to achieve high output.

尚、溝40に代えて図6に示すように放熱体39の裏面側に開口した溝50を設けても良い。この場合、x軸方向の熱抵抗は溝40に比べて若干弱くなるが、表面積が増して放熱性が向上することにより、相殺される。また、図7に示すように、放熱体39の裏面における電子素子38と対応する位置に凸部60を一体的に設けて放熱面積を増やしても良い。凸部60は、放熱体39と別体成形したものを固着してもよい。   Instead of the groove 40, a groove 50 opened on the back surface side of the radiator 39 may be provided as shown in FIG. In this case, the thermal resistance in the x-axis direction is slightly weaker than that of the groove 40, but is offset by increasing the surface area and improving heat dissipation. Further, as shown in FIG. 7, the heat radiation area may be increased by integrally providing a convex portion 60 at a position corresponding to the electronic element 38 on the back surface of the heat radiator 39. The convex portion 60 may be fixedly formed separately from the radiator 39.

放熱体として炭素材に銅を含浸させた10×10×1mmの板を準備した。比重は2.7g/ccで、曲げ強度、ヤング率、熱伝導率、熱膨張係数及び電気抵抗率は、炭素の二次元結晶面の方向において各々80MPa、25GPa、450−540W/mK、0.1ppm/℃、及び200μΩ・cmであり、それと垂直方向において各々13MPa、7GPa、140W/mK、10ppm/℃、及び600μΩ・cmであった。放熱体の表面にはNi電解メッキを施した。別途、配線パターンを形成したセラミック絶縁体を準備した。
この放熱体の主面上にセラミック絶縁体を接合するとともに、1mm角の2個の青色LED素子を互いに約3.5mmの間隔を開けて銀ペーストにて搭載した。そして、LED素子とセラミック絶縁体上の配線パターンとを金ワイヤにて結線することにより、実施例の電子部品を作成した。
比較のために、前記銅含浸炭素材に代えて銅板の表面にNi電解メッキを施したものを放熱体として用いた以外は実施例の電子部品と同一条件で比較例の電子部品を作成した。
A 10 × 10 × 1 mm plate in which a carbon material was impregnated with copper was prepared as a radiator. The specific gravity is 2.7 g / cc, and the bending strength, Young's modulus, thermal conductivity, thermal expansion coefficient, and electrical resistivity are 80 MPa, 25 GPa, 450-540 W / mK, and 0.2, respectively, in the direction of the two-dimensional crystal plane of carbon. They were 1 ppm / ° C. and 200 μΩ · cm, respectively, 13 MPa, 7 GPa, 140 W / mK, 10 ppm / ° C., and 600 μΩ · cm in the vertical direction. Ni electrolytic plating was applied to the surface of the radiator. Separately, a ceramic insulator formed with a wiring pattern was prepared.
A ceramic insulator was bonded onto the main surface of the heat radiating body, and two 1 mm square two blue LED elements were mounted with a silver paste at an interval of about 3.5 mm. And the electronic component of the Example was created by connecting the LED element and the wiring pattern on a ceramic insulator with a gold wire.
For comparison, an electronic component of a comparative example was created under the same conditions as the electronic component of the example except that a surface of a copper plate subjected to Ni electrolytic plating was used as a heat radiator instead of the copper-impregnated carbon material.

これらの電子部品に通電し、通電電流を0−350mAの間で変化させながらLED素子表面の温度を測定したところ、いずれも表面温度が電流値とともに同様に高くなった。また、通電電流を350mAに固定し、LED素子及び放熱体の表面温度の経時変化を測定したところ、実施例と比較例との間に差は認められなかった。次に、2個のLED素子の一方に通電したときの他方のLED素子の温度を測定したところ、図8に示すように実施例の方が比較例よりも隣接素子に与える熱影響が少なかった。   When these electronic components were energized and the temperature of the LED element surface was measured while changing the energization current between 0-350 mA, the surface temperature increased similarly to the current value. Further, when the energization current was fixed at 350 mA and the time-dependent changes in the surface temperature of the LED element and the radiator were measured, no difference was found between the example and the comparative example. Next, when the temperature of the other LED element was measured when one of the two LED elements was energized, the thermal effect of the example on the adjacent element was less than that of the comparative example as shown in FIG. .

本発明に係る実施形態1の電子部品の主要部分を示す断面図である。It is sectional drawing which shows the principal part of the electronic component of Embodiment 1 which concerns on this invention. 同電子部品を示す主要部で封止材による封着前の状態の斜視図である。It is a perspective view of the state before sealing with a sealing material in the principal part which shows the electronic component. 実施形態2の電子部品を示す斜視図である。6 is a perspective view showing an electronic component of Embodiment 2. FIG. 同じく図3の電子部品のX−X線に沿った断面図である。FIG. 4 is a cross-sectional view of the electronic component of FIG. 3 taken along line XX. 同じく図3の電子部品のY−Y線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line YY of the electronic component of FIG. 3. 実施形態2の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the second embodiment. 実施形態2のもう一つの変形例を示す断面図である。10 is a cross-sectional view showing another modification of the second embodiment. FIG. 隣り合う2個のLED素子の一方に通電したときの他方の温度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the other temperature when it supplies with electricity to one of two adjacent LED elements.

符号の説明Explanation of symbols

11,31;電子部品
12,32;下基板
13,33;上基板
17,37;ワイヤ
19,39;放熱体
14,34;絶縁容器
16,36;封止材
18,38;電子素子
40、50;溝
60;凸部
11, 31; electronic parts 12, 32; lower substrates 13, 33; upper substrates 17, 37; wires 19, 39; radiators 14, 34; insulating containers 16, 36; 50; groove 60; convex portion

Claims (6)

一主面を有する放熱体と、放熱体の主面上に面方向に配列するように搭載された複数の電子素子とを備える電子部品において、放熱体の主面における任意の一方向をx方向、同主面上でx方向と垂直な方向をy方向、同主面に直交する方向をz方向とするとき、
前記放熱体が、前記主面方向に相対的に低い熱伝導率、z方向に相対的に高い熱伝導率を有する熱伝導異方性の炭素材又は金属含浸炭素材からなることを特徴とする電子部品。
An electronic component comprising a radiator having a main surface and a plurality of electronic elements mounted so as to be arranged in a plane direction on the main surface of the radiator, wherein an arbitrary direction on the main surface of the radiator is an x direction When the direction perpendicular to the x direction on the same principal surface is the y direction and the direction perpendicular to the principal surface is the z direction,
The radiator is made of a heat conductive anisotropic carbon material or a metal-impregnated carbon material having a relatively low thermal conductivity in the principal surface direction and a relatively high thermal conductivity in the z direction. Electronic components.
前記電子素子がx方向に一次元的に配列しており、前記放熱体の主面方向の熱伝導率はx方向において最も低い請求項1に記載の電子部品。   The electronic component according to claim 1, wherein the electronic elements are arranged one-dimensionally in the x direction, and the thermal conductivity in the main surface direction of the heat radiating body is lowest in the x direction. 前記電子素子がx方向及びy方向に二次元的に配列しており、前記放熱体の主面方向の熱伝導率はy方向において最も低く、前記放熱体内のx方向における電子素子間に溝が形成されている請求項1に記載の電子部品。   The electronic elements are two-dimensionally arranged in the x direction and the y direction, the thermal conductivity in the main surface direction of the radiator is the lowest in the y direction, and a groove is formed between the electronic elements in the x direction in the radiator. The electronic component according to claim 1, wherein the electronic component is formed. 前記溝に、前記炭素材及び金属含浸炭素材よりも低い熱伝導率を有する断熱部材が配置されている請求項2に記載の電子部品。   The electronic component according to claim 2, wherein a heat insulating member having a lower thermal conductivity than the carbon material and the metal-impregnated carbon material is disposed in the groove. 前記溝は、前記放熱体の主面又は裏面に形成されている請求項3又は4に記載の電子部品。   5. The electronic component according to claim 3, wherein the groove is formed on a main surface or a back surface of the radiator. 前記放熱体の裏面に、凸部が形成されているか、又は前記炭素材及び金属含浸炭素材よりも高い熱伝導率を有する放熱部材が間欠的に固着されている請求項1〜5のいずれかに記載の電子部品。   6. A convex portion is formed on the back surface of the heat radiating body, or a heat radiating member having a higher thermal conductivity than the carbon material and the metal-impregnated carbon material is intermittently fixed. Electronic components described in
JP2006268108A 2006-09-29 2006-09-29 Electronic component Withdrawn JP2008091432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268108A JP2008091432A (en) 2006-09-29 2006-09-29 Electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268108A JP2008091432A (en) 2006-09-29 2006-09-29 Electronic component

Publications (1)

Publication Number Publication Date
JP2008091432A true JP2008091432A (en) 2008-04-17

Family

ID=39375319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268108A Withdrawn JP2008091432A (en) 2006-09-29 2006-09-29 Electronic component

Country Status (1)

Country Link
JP (1) JP2008091432A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272363A (en) * 2008-05-01 2009-11-19 Rohm Co Ltd Led lamp
JP2010153596A (en) * 2008-12-25 2010-07-08 Kyocera Corp Light-emitting device
JP2011100780A (en) * 2009-11-04 2011-05-19 Showa Denko Kk Inspection device, inspection substrate, and method of manufacturing light emitting element
WO2011068301A1 (en) * 2009-12-02 2011-06-09 주식회사 아이오지 Substrate for a graphite-based light-emitting diode, and light-emitting diode using same
JP5223677B2 (en) * 2006-11-02 2013-06-26 日本電気株式会社 Semiconductor device
EP2226862A3 (en) * 2009-03-02 2014-09-10 Everlight Electronics Co., Ltd. Heat dissipation module for a light emitting diode device and LED device having the same
CN111971788A (en) * 2018-03-28 2020-11-20 京瓷株式会社 Substrate for mounting electronic component, electronic device, and electronic module
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223677B2 (en) * 2006-11-02 2013-06-26 日本電気株式会社 Semiconductor device
US8476756B2 (en) 2006-11-02 2013-07-02 Nec Corporation Semiconductor device and heat sink with 3-dimensional thermal conductivity
JP2009272363A (en) * 2008-05-01 2009-11-19 Rohm Co Ltd Led lamp
JP2010153596A (en) * 2008-12-25 2010-07-08 Kyocera Corp Light-emitting device
EP2226862A3 (en) * 2009-03-02 2014-09-10 Everlight Electronics Co., Ltd. Heat dissipation module for a light emitting diode device and LED device having the same
JP2011100780A (en) * 2009-11-04 2011-05-19 Showa Denko Kk Inspection device, inspection substrate, and method of manufacturing light emitting element
WO2011068301A1 (en) * 2009-12-02 2011-06-09 주식회사 아이오지 Substrate for a graphite-based light-emitting diode, and light-emitting diode using same
CN111971788A (en) * 2018-03-28 2020-11-20 京瓷株式会社 Substrate for mounting electronic component, electronic device, and electronic module
CN111971788B (en) * 2018-03-28 2024-03-05 京瓷株式会社 Substrates for mounting electronic components, electronic devices and electronic modules
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member

Similar Documents

Publication Publication Date Title
JP4241658B2 (en) Light emitting diode light source unit and light emitting diode light source formed using the same
CN100391019C (en) Semiconductor light emitting device and manufacturing method thereof
US20160003436A1 (en) Optoelectronic Lighting Module, Optoelectronic Lighting Apparatus and Vehicle Headlamp
JP2008091432A (en) Electronic component
JP5288642B2 (en) Light emitting element
JP2008270609A (en) Electronic component heat dissipation device
JP2011518436A (en) Thermally conductive mounting elements for mounting printed circuit boards to heat sinks
JP3150052U (en) Luminescent structure
KR20150015900A (en) Led chip-on-board type rigid flexible pcb and rigid flexible heat spreader sheet pad and heat-sink structure using the same
JP2010153803A (en) Electronic component mounting module and electrical apparatus
US20100301359A1 (en) Light Emitting Diode Package Structure
US10236429B2 (en) Mounting assembly and lighting device
JP2005116990A (en) Light emitting device
JP2007214472A (en) Edge light and manufacturing method thereof
JP2010283253A (en) Light-emitting device and substrate for light-emitting device
JP3161788U (en) Ceramic heat sink structure
JP2010186907A (en) Radiator plate, module, and method of manufacturing module
WO2017188237A1 (en) Led light source device
JP2011096416A (en) Led lighting fixture
JP2009147258A (en) LED package and light emitting module
JP2009021384A (en) Electronic component and light emitting device
JP2010021410A (en) Thermo-module
JP2006086391A (en) Led package
WO2012017725A1 (en) Substrate module for having heat generating source mounted thereon, and lighting device
JP2008066360A (en) Heat dissipating wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201