[go: up one dir, main page]

JP2008085261A - Solid electrolytic capacitor and method of manufacturing same - Google Patents

Solid electrolytic capacitor and method of manufacturing same Download PDF

Info

Publication number
JP2008085261A
JP2008085261A JP2006266486A JP2006266486A JP2008085261A JP 2008085261 A JP2008085261 A JP 2008085261A JP 2006266486 A JP2006266486 A JP 2006266486A JP 2006266486 A JP2006266486 A JP 2006266486A JP 2008085261 A JP2008085261 A JP 2008085261A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
oxide film
gas
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006266486A
Other languages
Japanese (ja)
Other versions
JP4876827B2 (en
Inventor
Atsushi Tanaka
淳視 田中
Tomoichi Hasebe
朝一 長谷部
Shoji Ono
昭二 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2006266486A priority Critical patent/JP4876827B2/en
Publication of JP2008085261A publication Critical patent/JP2008085261A/en
Application granted granted Critical
Publication of JP4876827B2 publication Critical patent/JP4876827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid electrolytic capacitor having a high voltage withstanding characteristic. <P>SOLUTION: On the top surface of an oxide coating layer formed on the surface of an anode foil, an evaporation film of inorganic oxide, such as silicon oxide, is formed using an organic silicon compound etc. as an evaporation raw material and an inert gas, such as an argon gas and a helium gas, as a carrier gas, and further using an oxidizing gas, such as an ozone gas, and using a thermochemical vapor phase epitaxy method. In this manner, a capacitor element is formed by winding the anode foil and cathode foil, on the top surface of oxide coating layer of which a non-insulating oxide film is formed, via a separator, and the capacitor element is subjected to recovery formation. The capacitor element is immersed in a mixed liquid of polymerized monomer and oxidant, a polymerization reaction of conductive polymer is caused to occur in the capacity element and a solid electrolytic layer is formed. This capacitor element is accommodated in an outer packaging case, its opening end is sealed using sealing rubber, and thus a solid electrolytic capacitor is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性高分子化合物を固体電解質とする固体電解コンデンサに係り、特に、耐電圧特性の向上を図るべく改良を施した固体電解コンデンサ及びその製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte, and more particularly to a solid electrolytic capacitor improved to improve withstand voltage characteristics and a method for manufacturing the same.

アルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極電極としての弁作用金属をエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as aluminum can obtain a small size and a large capacity by expanding the surface of the dielectric by making the valve action metal as an anode electrode into the shape of an etching foil or the like. It is widely used because it can. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization and high functionality of electronic equipment.

固体電解コンデンサに用いられる固体電解質としては、電導度が高く、陽極電極の酸化皮膜層との密着性に優れた導電性ポリマーが固体電解質として用いられている。この導電性ポリマーとしては、例えば、ポリアニリン、ポリチオフェン、ポリエチレンジオキシチオフェン 等が知られている。   As the solid electrolyte used for the solid electrolytic capacitor, a conductive polymer having high conductivity and excellent adhesion to the oxide film layer of the anode electrode is used as the solid electrolyte. As this conductive polymer, for example, polyaniline, polythiophene, polyethylenedioxythiophene and the like are known.

なかでも、酸化皮膜の厚さに対して耐電圧を高くとることができるという理由から、高耐圧化が図れる導電性ポリマーとして、ポリエチレンジオキシチオフェン(以下、PEDOTと記す)が注目されている。このPEDOTを用いるコンデンサにおいては、化学酸化重合が用いられ、以下のようにして作製される。   Among these, polyethylenedioxythiophene (hereinafter referred to as PEDOT) has attracted attention as a conductive polymer that can achieve a high breakdown voltage because the withstand voltage can be increased with respect to the thickness of the oxide film. In the capacitor using PEDOT, chemical oxidative polymerization is used, and it is manufactured as follows.

すなわち、陽極箔と陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子にEDOT及び酸化剤溶液を含浸し、加熱して、両電極間にPEDOTポリマー層を形成し、固体電解コンデンサを形成する(特許文献1参照)。   That is, an anode foil and a cathode foil are wound through a separator to form a capacitor element, this capacitor element is impregnated with EDOT and an oxidant solution, and heated to form a PEDOT polymer layer between both electrodes. A solid electrolytic capacitor is formed (see Patent Document 1).

このような固体電解コンデンサは、車載用途、インバータ用途に用いられるが、使用電圧は20WVから35WVへと上昇し、これらに対応すべくコンデンサ素子内にビニル基を有する化合物とホウ酸化合物とからなる結合体を含有させることによって耐電圧を上昇させることが開示されている(特許文献2参照)。
特開平9−293639号公報 特開2003−100560号公報
Such a solid electrolytic capacitor is used for in-vehicle use and inverter use, but the working voltage increases from 20 WV to 35 WV, and in order to cope with these, the capacitor element is composed of a compound having a vinyl group and a boric acid compound. It is disclosed that the withstand voltage is increased by containing a conjugate (see Patent Document 2).
Japanese Patent Laid-Open No. 9-293639 JP 2003-100560 A

しかしながら、このような技術をもってしても、高耐電圧化は十分ではなく、さらなる高耐電圧特性を有する固体電解コンデンサの開発が切望されていた。   However, even with such a technique, a high withstand voltage is not sufficient, and the development of a solid electrolytic capacitor having further high withstand voltage characteristics has been desired.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、高耐電圧特性を有する固体電解コンデンサ及びその製造方法を提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and an object thereof is to provide a solid electrolytic capacitor having a high withstand voltage characteristic and a method for manufacturing the same.

本発明者等は、上記課題を解決すべく、高耐電圧特性を有する固体電解コンデンサについて鋭意検討を重ね、誘電体酸化皮膜の上面に種々の保護皮膜を形成することを試み、その効果について調べた結果、非絶縁性の酸化物膜を形成することにより良好な結果が得られることが判明したものである。   In order to solve the above-mentioned problems, the present inventors have repeatedly studied solid electrolytic capacitors having high withstand voltage characteristics, tried to form various protective films on the top surface of the dielectric oxide film, and investigated the effects. As a result, it has been found that good results can be obtained by forming a non-insulating oxide film.

本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、陽極箔の表面に形成された酸化皮膜層の上面に、有機ケイ素化合物等を蒸着用原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、さらに、オゾンガス等の酸化性ガスを使用して、熱化学気相成長法等を用いて酸化ケイ素等の無機酸化物の蒸着膜を形成する。このようにして酸化皮膜層の上面に非絶縁性の酸化物膜を形成した陽極箔と陰極箔を、セパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に修復化成を施す。   The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, on the upper surface of the oxide film layer formed on the surface of the anode foil, an organic silicon compound or the like is used as a deposition material, an inert gas such as argon gas or helium gas is used as a carrier gas, and ozone gas or the like is further used. Using an oxidizing gas, a vapor deposition film of an inorganic oxide such as silicon oxide is formed using a thermal chemical vapor deposition method or the like. The capacitor element is formed by winding the anode foil and the cathode foil having the non-insulating oxide film formed on the upper surface of the oxide film layer through the separator in this manner, and this capacitor element is subjected to restoration conversion.

続いて、このコンデンサ素子を、重合性モノマーと酸化剤の混合液に浸漬し、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに収納し、開口端部を封ロゴムで封止し、固体電解コンデンサを形成する。   Subsequently, the capacitor element is immersed in a mixed solution of a polymerizable monomer and an oxidizing agent to cause a polymerization reaction of the conductive polymer in the capacitor element, thereby forming a solid electrolyte layer. And this capacitor | condenser element is accommodated in an exterior case, an opening edge part is sealed with sealing rubber | gum, and a solid electrolytic capacitor is formed.

なお、コンデンサ素子に重合性モノマーと酸化剤を含浸する方法としては、モノマーと酸化剤の混合溶液にコンデンサ素子を浸漬する方法、モノマー溶液にコンデンサ素子を浸漬した後、酸化剤溶液に浸漬する方法、コンデンサ素子にモノマー溶液を吐出した後、酸化剤溶液を吐出する方法等を用いることができる。   The capacitor element is impregnated with a polymerizable monomer and an oxidizing agent. The capacitor element is immersed in a mixed solution of the monomer and the oxidizing agent. The capacitor element is immersed in the monomer solution and then immersed in the oxidizing agent solution. A method of discharging the oxidant solution after discharging the monomer solution to the capacitor element can be used.

本発明に係る平板型の固体電解コンデンサの製造方法は以下の通りである。すなわち、エッチング等によって粗面化した帯状アルミニウム箔の表面に陽極酸化皮膜層を形成し、この酸化皮膜層の上面に、有機ケイ素化合物等を蒸着用原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、さらに、オゾンガス等の酸化性ガスを使用して、熱化学気相成長法等を用いて酸化ケイ素等の無機酸化物の蒸着膜を形成する。   The manufacturing method of the flat type solid electrolytic capacitor according to the present invention is as follows. That is, an anodic oxide film layer is formed on the surface of a strip-shaped aluminum foil roughened by etching or the like, and an organic silicon compound or the like is used as a raw material for vapor deposition on the upper surface of the oxide film layer. A vapor deposition film of an inorganic oxide such as silicon oxide is formed using a thermal chemical vapor deposition method or the like using an inert gas such as ozone gas and an oxidizing gas such as ozone gas.

その後、所定の部分に陽極引出し部と陰極部とを区分するための絶縁性樹脂帯を形成した後、所定の部分に導電性高分子化合物膜を形成し、該導電性高分子膜上にグラファイト層、銀ペースト層を順次形成して、陰極引出し部を構成する。その後、陰極引出し部と外部陰極端子とを銀ペーストで接続する。   Then, after forming an insulating resin band for separating the anode lead portion and the cathode portion in a predetermined portion, a conductive polymer compound film is formed in the predetermined portion, and graphite is formed on the conductive polymer film. Layers and silver paste layers are sequentially formed to constitute the cathode lead portion. Thereafter, the cathode lead portion and the external cathode terminal are connected with a silver paste.

なお、前記絶縁性樹脂帯で区分された所定の陽極引出し部は、はんだ付けが不可能なアルミニウム箔であるため、はんだ付け可能な金属板を超音波溶着、電気抵抗溶着、レーザー溶接等により、電気的接続を行う。   In addition, since the predetermined anode lead portion divided by the insulating resin band is an aluminum foil that cannot be soldered, a solderable metal plate is subjected to ultrasonic welding, electrical resistance welding, laser welding, etc. Make electrical connections.

(非絶縁性の酸化物膜)
誘電体酸化皮膜の上に形成する非絶縁性の酸化物膜としては、酸化ケイ素、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化ジルコニウム、酸化チタン等から成る酸化物膜を挙げることができるが、なかでも酸化ケイ素から成る酸化物膜がより好ましい。これらの酸化物膜の絶縁性は低く、誘電体酸化皮膜の電気的特性にほとんど影響を与えない。
(Non-insulating oxide film)
Examples of the non-insulating oxide film formed on the dielectric oxide film include oxide films made of silicon oxide, tantalum oxide, niobium oxide, hafnium oxide, zirconium oxide, titanium oxide, and the like. However, an oxide film made of silicon oxide is more preferable. These oxide films have low insulating properties and have little influence on the electrical characteristics of the dielectric oxide film.

また、これらの非絶縁性の酸化物膜の比抵抗は、108〜1011Ω・cm、好ましくは109〜5×1010Ω・cmである。この範囲未満では漏れ電流特性が低下し、この範囲を越えると静電容量、ESR特性が低下する。また、単位厚さ当たりの耐電圧は、0.01〜0.001V/nmが好ましい。 The specific resistance of these non-insulating oxide films is 10 8 to 10 11 Ω · cm, preferably 10 9 to 5 × 10 10 Ω · cm. If it is less than this range, the leakage current characteristics deteriorate, and if it exceeds this range, the capacitance and ESR characteristics deteriorate. The withstand voltage per unit thickness is preferably 0.01 to 0.001 V / nm.

なお、非絶縁性の酸化物膜の比抵抗及び耐電圧を上記の範囲にするには、成膜温度を適宜調整することにより行う。具体的には、200〜600℃で成膜を行うことが好ましい。   Note that, in order to set the specific resistance and the withstand voltage of the non-insulating oxide film within the above ranges, the film forming temperature is appropriately adjusted. Specifically, the film formation is preferably performed at 200 to 600 ° C.

ここで、上述したような酸化物膜の絶縁性が低い理由について説明する。例えば、酸化ケイ素から成る非絶縁性の酸化物膜においては、図1に示したフーリエ変換赤外分光光度計(FT−IR)による分析結果から明らかなように、その膜内にSi−OHが存在する。   Here, the reason why the insulating property of the oxide film as described above is low will be described. For example, in a non-insulating oxide film made of silicon oxide, Si-OH is not contained in the film, as is apparent from the analysis result by the Fourier transform infrared spectrophotometer (FT-IR) shown in FIG. Exists.

また、酸化ケイ素から成る非絶縁性の酸化物膜についてのグロー放電発光分光分析法(GD−OES)による分析結果によれば、図2(A)に示したように、非絶縁性の原因と思われる炭素(C)が、該酸化物膜の表層部以外の内層部に存在する。これに対して、図2(B)に示したように、絶縁性膜では表層部以外の内層部に炭素(C)は存在しない。これらのことから、酸化ケイ素から成る非絶縁性の酸化物膜においては、Si−OH及び炭素(C)の存在により絶縁性が低くなると考えられる。   Further, according to the analysis result by glow discharge emission spectroscopy (GD-OES) of the non-insulating oxide film made of silicon oxide, as shown in FIG. Possible carbon (C) is present in the inner layer portion other than the surface layer portion of the oxide film. On the other hand, as shown in FIG. 2B, in the insulating film, carbon (C) does not exist in the inner layer portion other than the surface layer portion. From these facts, it is considered that the non-insulating oxide film made of silicon oxide has low insulating properties due to the presence of Si—OH and carbon (C).

また、先に例示した酸化ケイ素以外の酸化物からなる酸化物膜においても、同様にグロー放電発光分光分析法(GD−OES)による分析を行ったところ、非絶縁性の原因と思われる炭素(C)が、該酸化物膜の表層部以外の内層部に存在することが分かった。   In addition, when the oxide film made of oxide other than silicon oxide exemplified above was similarly analyzed by glow discharge emission spectroscopy (GD-OES), carbon (which is considered to cause non-insulation) It was found that C) was present in the inner layer portion other than the surface layer portion of the oxide film.

(非絶縁性の酸化物膜の製造方法)
本発明に係る非絶縁性の酸化物膜は、例えば、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いて形成することができる。
(Method for producing non-insulating oxide film)
The non-insulating oxide film according to the present invention includes, for example, a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, and a photochemical vapor deposition method. Etc. can be used.

具体的には、誘電体酸化皮膜の表面に、以下に列挙するような有機ケイ素化合物等を蒸着用原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、さらに、オゾンガス等の酸化性ガスを使用し、熱化学気相成長法を用いて酸化ケイ素等の無機酸化物の蒸着膜を形成することができる。   Specifically, on the surface of the dielectric oxide film, an organic silicon compound or the like listed below is used as a deposition material, an inert gas such as argon gas or helium gas is used as a carrier gas, and ozone gas is further used. A vapor-deposited film of an inorganic oxide such as silicon oxide can be formed using a thermal chemical vapor deposition method using an oxidizing gas such as.

また、オゾンを用いることなく、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法によって形成することもできる。低温プラズマ発生装置としては、例えば、高周波プラズマ、パルス波プラズマ、マイクロ波プラズマ等の発生装置を使用することができる。   Moreover, it can also form by the low temperature plasma chemical vapor deposition method using a low temperature plasma generator etc., without using ozone. As a low temperature plasma generator, generators, such as high frequency plasma, pulse wave plasma, and microwave plasma, can be used, for example.

原料として用いる有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラプロポキシシラン、テトラプトキシシラン、トリメトキシシラン(TMS)、トリエトキシシラン(TES)、トリエトキシフルオロシラン、ヘキサメチルジシロキサン(HMDS)、オクタメチルトリシロキサン(OMTS)、ヘキサメチルシクロトリシロキサン(HMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、テトラメチルシクロテトラシロキサン(TMCTS)等を用いることができる。なかでも、テトラエトキシシラン(TEOS)が成膜性の点から最も好ましい。   Organic silicon compounds used as raw materials include tetramethoxysilane, tetraethoxysilane (TEOS), tetrapropoxysilane, tetraptoxysilane, trimethoxysilane (TMS), triethoxysilane (TES), triethoxyfluorosilane, hexamethyl Disiloxane (HMDS), octamethyltrisiloxane (OMTS), hexamethylcyclotrisiloxane (HMCTS), octamethylcyclotetrasiloxane (OMCTS), tetramethylcyclotetrasiloxane (TMCTS), or the like can be used. Of these, tetraethoxysilane (TEOS) is most preferable from the viewpoint of film formability.

(重合性モノマー)
重合性モノマーとして3,4−エチレンジオキシチオフェン(以下、EDOTという)を用いた場合、コンデンサ素子基材に含浸するEDOTとしては、EDOTモノマーを用いることができるが、EDOTと揮発性溶媒とを混合したモノマー溶液を用いることもできる。
(Polymerizable monomer)
When 3,4-ethylenedioxythiophene (hereinafter referred to as EDOT) is used as the polymerizable monomer, an EDOT monomer can be used as the EDOT impregnated in the capacitor element substrate. A mixed monomer solution can also be used.

前記揮発性溶媒としては、ペンタン、ヘキサン等の炭化水素類、テトラヒドロフラン、ジプロピルエーテル等のエーテル類、ギ酸エチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、プロパノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。   Examples of the volatile solvent include hydrocarbons such as pentane and hexane, ethers such as tetrahydrofuran and dipropyl ether, esters such as ethyl formate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, methanol, ethanol, and propanol. Alcohols, nitrogen compounds such as acetonitrile can be used, and methanol, ethanol, acetone and the like are particularly preferable.

(酸化剤)
酸化剤としては、パラトルエンスルホン酸第二鉄などの有機スルホン酸金属塩や、過ヨウ素酸もしくはヨウ素酸を用いることができる。
(Oxidant)
As the oxidizing agent, an organic sulfonic acid metal salt such as ferric paratoluene sulfonate, periodic acid or iodic acid can be used.

(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDOTの他に、EDOT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the EDOT, a thiophene derivative other than EDOT, aniline, pyrrole, furan, acetylene, or a derivative thereof, which is oxidized and polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.

(作用・効果)
本発明の作用機作は、以下の通りであると考えられる。
従来の固体電解コンデンサにおいては、重合反応に用いる酸化剤の酸化作用によって誘電体酸化皮膜が損傷を受け、この酸化皮膜の耐電圧特性が低下するという問題点があった。
(Action / Effect)
The working mechanism of the present invention is considered as follows.
The conventional solid electrolytic capacitor has a problem that the dielectric oxide film is damaged by the oxidizing action of the oxidizing agent used for the polymerization reaction, and the withstand voltage characteristic of the oxide film is lowered.

これに対して、本発明においては、誘電体酸化皮膜の上面に非絶縁性の酸化物膜を形成することにより、重合反応に用いる酸化剤の酸化作用によって誘電体酸化皮膜が損傷を受けることを防止できるので、固体電解コンデンサの特性、静電容量、ESRが向上し、酸化物膜の耐酸化性によって、漏れ電流特性が向上するものと考えられる。   In contrast, in the present invention, by forming a non-insulating oxide film on the top surface of the dielectric oxide film, the dielectric oxide film is damaged by the oxidizing action of the oxidizing agent used in the polymerization reaction. Therefore, it is considered that the characteristics, capacitance, and ESR of the solid electrolytic capacitor are improved, and the leakage current characteristics are improved by the oxidation resistance of the oxide film.

本発明によれば、高耐電圧特性を有する固体電解コンデンサ及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solid electrolytic capacitor which has a high withstand voltage characteristic, and its manufacturing method can be provided.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、各実施例及び比較例の試料は、それぞれ以下のようにして作製した。   Hereinafter, the present invention will be described in more detail based on examples. In addition, the sample of each Example and the comparative example was produced as follows, respectively.

[試験例−1]
以下のようにして実施例1及び比較例2の試料を作製し、電気的特性を評価した。
[Test Example 1]
Samples of Example 1 and Comparative Example 2 were prepared as described below, and electrical characteristics were evaluated.

(実施例1)
(a)基材作製
4V相当のAl酸化皮膜を有するACエッチド箔を、一本の分岐を有する1cm2の円形に打ち抜いた。この基材をアジピン酸アンモニウム、リン酸二水素アンモニウム、および、水(7.5g:0.05g:100g)から成る水溶液(30℃)に浸漬させた。電流密度200μA・cm-2で、所定の電圧まで立ち上げ、10分間保持し、打ち抜き後の基材エッジ部に、4V相当のAl酸化皮膜を形成させた。その後、この基材を水で十分に洗浄し、自然乾燥させた。
(Example 1)
(A) Substrate preparation An AC etched foil having an Al oxide film equivalent to 4 V was punched into a 1 cm 2 circle having one branch. This base material was immersed in an aqueous solution (30 ° C.) composed of ammonium adipate, ammonium dihydrogen phosphate, and water (7.5 g: 0.05 g: 100 g). At a current density of 200 μA · cm −2 , the voltage was raised to a predetermined voltage, held for 10 minutes, and an Al oxide film corresponding to 4 V was formed on the substrate edge after punching. Thereafter, the substrate was thoroughly washed with water and naturally dried.

(b)保護皮膜形成
有機ケイ素化合物であるテトラエトキシシランを用いた化学気相成長法により、Al酸化皮膜上にシロキサン結合を有する保護皮膜(本発明の非絶縁性の酸化物膜)を形成させた。
(B) Formation of protective film A protective film having a siloxane bond (non-insulating oxide film of the present invention) is formed on an Al oxide film by chemical vapor deposition using tetraethoxysilane, which is an organosilicon compound. It was.

(c)PEDOT形成
モノマーおよび酸化剤として、3,4−エチレンジオキシチオフェン(Baytron商標登録MV2)、および54wt%のp−トルエンスルホン酸第三鉄の1−ブタノール溶液(Baytron商標登録C−B54)をそれぞれ使用した。
(C) PEDOT formation As monomer and oxidant, 3,4-ethylenedioxythiophene (Baytron ™ registered MV2) and 54 wt% 1-butanol solution of ferric p-toluenesulfonate (Baytron ™ registered C-B54) ) Were used.

モノマーと酸化剤を体積比で1:3に混合し、この混合液を基材上に滴下した。滴下後、5秒間500rpmでスピンコートさせた。なお、1cm2の円形部を測定部とするため、この円形部以外をポリイミドテープでマスキングした。これらの重合は、60℃で30分、さらに、150℃で60分続けて実施した。PEDOT膜と銅箔の間にカーボン/Agペーストを介して電気的に接続した。 The monomer and the oxidizing agent were mixed at a volume ratio of 1: 3, and this mixed solution was dropped onto the substrate. After the dropping, spin coating was performed at 500 rpm for 5 seconds. In addition, in order to make a 1 cm < 2 > circular part into a measurement part, other than this circular part was masked with the polyimide tape. These polymerizations were carried out at 60 ° C. for 30 minutes and further at 150 ° C. for 60 minutes. Electrical connection was made between the PEDOT film and the copper foil via a carbon / Ag paste.

(比較例1)
比較例1の試料は、上記実施例1の試料の製造方法のうち、(b)保護皮膜形成の工程を経ずに作製した。その他の工程は上記実施例1と同様であるので、説明は省略する。
(Comparative Example 1)
The sample of the comparative example 1 was produced without passing through the process of (b) protective film formation among the manufacturing methods of the sample of the said Example 1. Since other steps are the same as those in the first embodiment, description thereof will be omitted.

(評価方法)
上記のようにして作製した実施例1及び比較例1の各試料について、以下のようにして電気的特性を評価した。
(Evaluation methods)
The electrical characteristics of the samples of Example 1 and Comparative Example 1 manufactured as described above were evaluated as follows.

ドライエアーを流しつづけている容器内に、この試料を設置した。この容器内の露点は−20℃〜−18℃に維持した。1〜2日間放置した後、電気的特性を測定したところ、表1に示すような結果が得られた。   This sample was placed in a container in which dry air was kept flowing. The dew point in this container was maintained at -20 ° C to -18 ° C. When the electrical characteristics were measured after standing for 1 to 2 days, the results shown in Table 1 were obtained.

なお、表1は、Cap(容量)、ESR(等価直列抵抗)、LC(リーク電流値)の比較を示す。Capはf=120Hzの値、LCは2.5V印加時1分後の値、ESRは1kHzの値である。また、Cap(Wet)はPEDOT陰極対向ではなく、150g/リットル アジピン酸アンモニウム水溶液中にて、測定した値である。
Table 1 shows a comparison of Cap (capacitance), ESR (equivalent series resistance), and LC (leakage current value). Cap is a value of f = 120 Hz, LC is a value after 1 minute when 2.5 V is applied, and ESR is a value of 1 kHz. Cap (Wet) is a value measured in an aqueous solution of 150 g / liter ammonium adipate, not facing the PEDOT cathode.

表1に示すように、保護皮膜を有する実施例1は、保護皮膜のない比較例1より漏れ電流が格段に低く、耐電圧特性が向上しており、本願の効果がわかる。さらに、本願の非絶縁性の酸化物膜の効果により、酸化皮膜の損傷を抑制しているので、静電容量、ESRともに比較例より良好である。   As shown in Table 1, Example 1 having a protective film has a significantly lower leakage current and improved withstand voltage characteristics than Comparative Example 1 having no protective film, and the effect of the present application can be seen. Furthermore, since the damage of the oxide film is suppressed by the effect of the non-insulating oxide film of the present application, both the capacitance and ESR are better than those of the comparative example.

[試験例−2]
上記実施例1の試料と同様の方法で、保護皮膜を形成させたAl化成箔を作製し、実施例2の試料とした。また、比較例2の試料としては保護皮膜を形成しないAl化成箔を作製した。このようにして作製したAl化成箔について、以下のようにして耐酸性を評価した。
[Test Example-2]
An Al conversion foil having a protective film formed thereon was produced in the same manner as in the sample of Example 1, and used as the sample of Example 2. Moreover, as a sample of Comparative Example 2, an Al chemical conversion foil that does not form a protective film was prepared. The acid resistance of the thus formed Al chemical conversion foil was evaluated as follows.

この基材を0.1mol/リットルのp−トルエンスルホン酸水溶液(60℃)に30分間浸漬させた。その後、基材を水で十分に洗浄し、自然乾燥させた。耐酸性評価は、150g/リットルのアジピン酸アンモニウム水溶液(30℃)を用い、電流密度200μA・cm-2で定電流測定を行った。表2に測定時間と到達電圧を示す。
This base material was immersed in a 0.1 mol / liter p-toluenesulfonic acid aqueous solution (60 ° C.) for 30 minutes. Thereafter, the substrate was thoroughly washed with water and allowed to dry naturally. For the acid resistance evaluation, a 150 g / liter ammonium adipate aqueous solution (30 ° C.) was used, and constant current measurement was performed at a current density of 200 μA · cm −2 . Table 2 shows measurement time and ultimate voltage.

表2に示すように、比較例2においては、酸性溶液に浸漬した後では電圧印加によっても電圧の立ち上がりがなく、皮膜の損傷が著しい。これに比べて、実施例2の皮膜は1〜3秒で電圧が立ち上がり、皮膜の損傷が少なく、耐酸性に優れていることが分かった。   As shown in Table 2, in Comparative Example 2, after being immersed in an acidic solution, the voltage does not rise even when a voltage is applied, and the film is significantly damaged. Compared with this, it turned out that the film | membrane of Example 2 rises in 1-3 second, there is little damage of a film | membrane, and it is excellent in acid resistance.

[試験例−3]
以下のようにして実施例3及び比較例3の試料を作製し、耐水和性、耐アルカリ性を評価した。
[Test Example-3]
Samples of Example 3 and Comparative Example 3 were prepared as described below, and hydration resistance and alkali resistance were evaluated.

(基材作製、および、保護皮膜形成)
558V相当のAl酸化皮膜を有するDCエッチド箔を一本の分岐を有する1cm2の円形に打ち抜いた。この基材を70g/リットルのホウ酸水溶液(85℃)に浸漬させた。電流密度200μA・cm-2で、所定の電圧まで立ち上げ、10分間保持し、打ち抜き後の基材エッジ部に558V相当のAl酸化皮膜を形成させた。その後、この基材を水で十分に洗浄し、自然乾燥させ、これを実施例3とした。なお、保護皮膜の形成条件は、実施例1と同様である。また、比較例3は、保護皮膜を形成しない点以外は、実施例3と同様にして作製した。
(Base material production and protective film formation)
A DC etched foil having an Al oxide film equivalent to 558 V was punched into a 1 cm 2 circle having one branch. This substrate was immersed in a 70 g / liter boric acid aqueous solution (85 ° C.). At a current density of 200 μA · cm −2 , the voltage was raised to a predetermined voltage, held for 10 minutes, and an Al oxide film corresponding to 558 V was formed on the substrate edge after punching. Then, this base material was sufficiently washed with water and naturally dried. The formation conditions of the protective film are the same as in Example 1. Comparative Example 3 was produced in the same manner as Example 3 except that no protective film was formed.

(耐水和性の評価)
この基材を沸騰水に120分間浸漬させ、その後、自然乾燥させた。耐水和性の評価は、70g/リットル ホウ酸水溶液(85℃)を用い、電流密度200μA・cm-2で定電流測定を行った。表3に測定時間と到達電圧を示す。
(Evaluation of hydration resistance)
This base material was immersed in boiling water for 120 minutes, and then naturally dried. The evaluation of hydration resistance was carried out using a 70 g / liter boric acid aqueous solution (85 ° C.) and a constant current measurement at a current density of 200 μA · cm −2 . Table 3 shows measurement time and ultimate voltage.

表3から明らかなように、保護皮膜を形成した実施例3は、比較例3と比べて耐水和性に優れていることがわかる。   As can be seen from Table 3, Example 3 in which the protective film was formed is superior in hydration resistance compared to Comparative Example 3.

(耐アルカリ性の評価)
この基材を0.05mol/リットル 水酸化ナトリウム水溶液(室温)に30分間浸漬させた。その後、基材を水で十分に洗浄し、自然乾燥させた。耐アルカリ性評価は、70g/リットル ホウ酸水溶液(85℃)を用い、電流密度200μA・cm-2で定電流測定を行った。表4に測定時間と到達電圧を示す。
(Evaluation of alkali resistance)
This base material was immersed in a 0.05 mol / liter sodium hydroxide aqueous solution (room temperature) for 30 minutes. Thereafter, the substrate was thoroughly washed with water and allowed to dry naturally. For the evaluation of alkali resistance, a constant current measurement was performed using a 70 g / liter boric acid aqueous solution (85 ° C.) at a current density of 200 μA · cm −2 . Table 4 shows measurement time and ultimate voltage.

表4から明らかなように、保護皮膜を形成した実施例3は、比較例3と比べて耐アルカリ性にも優れていることがわかる。   As is apparent from Table 4, it can be seen that Example 3 in which the protective film was formed was superior in alkali resistance as compared with Comparative Example 3.

フーリエ変換赤外分光光度計(FT−IR)による分析結果を示す図。The figure which shows the analysis result by a Fourier-transform infrared spectrophotometer (FT-IR). グロー放電発光分光分析法(GD−OES)による分析結果を示す図であり、(A)は、酸化ケイ素から成る非絶縁性の酸化物膜についての分析結果、(B)は、絶縁性膜についての分析結果。It is a figure which shows the analysis result by glow discharge emission spectroscopy (GD-OES), (A) is the analysis result about the non-insulating oxide film which consists of silicon oxide, (B) is about an insulating film. Analysis results.

Claims (7)

誘電体酸化皮膜上に非絶縁性の酸化物膜を形成し、この上に酸化重合性の導電性ポリマーからなる固体電解質層を形成したことを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor, wherein a non-insulating oxide film is formed on a dielectric oxide film, and a solid electrolyte layer made of an oxidatively polymerizable conductive polymer is formed thereon. 前記非絶縁性の酸化物膜の比抵抗が、108〜1011Ω・cmであることを特徴とする請求項1に記載の固体電解コンデンサ。 2. The solid electrolytic capacitor according to claim 1, wherein a specific resistance of the non-insulating oxide film is 10 8 to 10 11 Ω · cm. 前記非絶縁性の酸化物膜が、酸化ケイ素からなることを特徴とする請求項1又は請求項2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the non-insulating oxide film is made of silicon oxide. 前記固体電解コンデンサが、巻回型であることを特徴とする請求項1乃至請求項3のいずれか一に記載の固体電解コンデンサ。   The said solid electrolytic capacitor is a winding type, The solid electrolytic capacitor as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記固体電解コンデンサが、箔または板状の拡面化した弁金属の表面に陽極酸化皮膜層を形成し、その上に導電性ポリマーからなる固体電解質層を形成し、その上にグラファイト層、銀ペースト層を順次形成して陰極部を形成する平板型であることを特徴とする請求項1乃至請求項3のいずれか一に記載の固体電解コンデンサ。   In the solid electrolytic capacitor, an anodic oxide film layer is formed on the surface of a foil or plate-shaped valve metal, and a solid electrolyte layer made of a conductive polymer is formed thereon. A graphite layer, silver The solid electrolytic capacitor according to any one of claims 1 to 3, wherein the solid electrolytic capacitor is a flat plate type in which paste layers are sequentially formed to form a cathode portion. 前記導電性ポリマーからなる固体電解質層が、ポリ3、4−エチレンジオキシチオフェンであることを特徴とする請求項1乃至請求項5のいずれか一に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to any one of claims 1 to 5, wherein the solid electrolyte layer made of the conductive polymer is poly 3,4-ethylenedioxythiophene. 有機ケイ素化合物を用い、化学蒸着法によって、誘電体酸化皮膜上に非絶縁性の酸化物膜を形成することを特徴とする固体電解コンデンサの製造方法。   A method for producing a solid electrolytic capacitor, wherein an organic silicon compound is used to form a non-insulating oxide film on a dielectric oxide film by chemical vapor deposition.
JP2006266486A 2006-09-29 2006-09-29 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP4876827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266486A JP4876827B2 (en) 2006-09-29 2006-09-29 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266486A JP4876827B2 (en) 2006-09-29 2006-09-29 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008085261A true JP2008085261A (en) 2008-04-10
JP4876827B2 JP4876827B2 (en) 2012-02-15

Family

ID=39355751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266486A Expired - Fee Related JP4876827B2 (en) 2006-09-29 2006-09-29 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4876827B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285636A (en) * 1989-04-26 1990-11-22 Kojundo Chem Lab Co Ltd Manufacture of oxide film in semiconductor device
JPH03228305A (en) * 1990-02-02 1991-10-09 Japan Carlit Co Ltd:The Manufacture of aluminum solid electrolytic capacitor
JPH08213288A (en) * 1995-02-03 1996-08-20 Mitsubishi Shindoh Co Ltd Anode foil for electrolytic capacitor and method of manufacturing the same
JP2001006982A (en) * 1999-06-22 2001-01-12 Showa Denko Kk Electrolytic capacitor, electrode therefor, and their manufacture
JP2001060536A (en) * 1999-08-20 2001-03-06 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2003158044A (en) * 2001-06-15 2003-05-30 Showa Denko Kk Chemically converted substrate for solid electrolytic capacitor and method of manufacturing the same, and solid electrolytic capacitor
JP2003297672A (en) * 2002-03-29 2003-10-17 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP2004128035A (en) * 2002-09-30 2004-04-22 Nippon Chemicon Corp Method of manufacturing solid-state electrolytic capacitor
JP2005294426A (en) * 2004-03-31 2005-10-20 Tdk Corp Electrochemical device and electronic device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285636A (en) * 1989-04-26 1990-11-22 Kojundo Chem Lab Co Ltd Manufacture of oxide film in semiconductor device
JPH03228305A (en) * 1990-02-02 1991-10-09 Japan Carlit Co Ltd:The Manufacture of aluminum solid electrolytic capacitor
JPH08213288A (en) * 1995-02-03 1996-08-20 Mitsubishi Shindoh Co Ltd Anode foil for electrolytic capacitor and method of manufacturing the same
JP2001006982A (en) * 1999-06-22 2001-01-12 Showa Denko Kk Electrolytic capacitor, electrode therefor, and their manufacture
JP2001060536A (en) * 1999-08-20 2001-03-06 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2003158044A (en) * 2001-06-15 2003-05-30 Showa Denko Kk Chemically converted substrate for solid electrolytic capacitor and method of manufacturing the same, and solid electrolytic capacitor
JP2003297672A (en) * 2002-03-29 2003-10-17 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP2004128035A (en) * 2002-09-30 2004-04-22 Nippon Chemicon Corp Method of manufacturing solid-state electrolytic capacitor
JP2005294426A (en) * 2004-03-31 2005-10-20 Tdk Corp Electrochemical device and electronic device using the same

Also Published As

Publication number Publication date
JP4876827B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
CN111763305B (en) Process for preparing functionalized polythiophenes
TWI492253B (en) Method for manufacturing solid electrolytic capacitor
TW201023220A (en) Method of manufacturing solid electrolytic capacitor
US20050162815A1 (en) Solid electrolytic capacitor, fabrication method thereof, and coupling agent utilized in the same
JP4547730B2 (en) Electrode for electrolytic capacitor, electrolytic capacitor and manufacturing method thereof
JP4876827B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5645152B2 (en) Solid electrolytic capacitor and manufacturing method thereof
TW202314756A (en) Process for producing polymer capacitors for high reliability applications
CN118043920A (en) Solid electrolytic capacitor and method for manufacturing the same
JP5023940B2 (en) Solid electrolytic capacitor
Liu et al. Electrical Performance Enhancement of 400 V Level Aluminum Solid Electrolytic Capacitors with Interface Modulation through Intervention of PVA
JP4462506B2 (en) Solid electrolytic capacitor
US20250140484A1 (en) Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion
JP2012033644A (en) Solid electrolytic capacitor manufacturing method
JP4462507B2 (en) Solid electrolytic capacitor
JP2013138145A (en) Manufacturing method of solid state electrolytic capacitor
JP4462505B2 (en) Solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2001250747A (en) Solid electrolytic capacitor
WO2025023099A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP2025050430A (en) Solid electrolytic capacitor and manufacturing method
WO2025033381A1 (en) Solid electrolytic capacitor and production method
JP2009212447A (en) Wound type solid electrolytic capacitor and method of manufacturing the same
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees