JP2008083073A - 立体表示装置および駆動方法 - Google Patents
立体表示装置および駆動方法 Download PDFInfo
- Publication number
- JP2008083073A JP2008083073A JP2006259508A JP2006259508A JP2008083073A JP 2008083073 A JP2008083073 A JP 2008083073A JP 2006259508 A JP2006259508 A JP 2006259508A JP 2006259508 A JP2006259508 A JP 2006259508A JP 2008083073 A JP2008083073 A JP 2008083073A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- display unit
- shutter
- display device
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
【課題】従来の時分割の立体表示装置においてフィールドごとのクロストーク対策が可能となり、立体表示としての高画質化、低コスト化が可能となる立体表示装置の提供。
【解決手段】表示部101と、レンズアレイ112と、シャッタ手段113と、を有し、表示部101は列ごとに線順次駆動し、レンチキュラレンズ112のピッチ方向に走査して画像を表示する表示駆動部と、表示部の画像が走査書換えされるのに同期して、シャッタを開閉する駆動するシャッタ電極駆動部と、を有する。
【選択図】図2
【解決手段】表示部101と、レンズアレイ112と、シャッタ手段113と、を有し、表示部101は列ごとに線順次駆動し、レンチキュラレンズ112のピッチ方向に走査して画像を表示する表示駆動部と、表示部の画像が走査書換えされるのに同期して、シャッタを開閉する駆動するシャッタ電極駆動部と、を有する。
【選択図】図2
Description
本発明は立体表示装置に関し、特に時分割で立体表示する表示装置および駆動方法に関する。
2次元平面表示装置を用いて立体画像を表示する手法として、多視点型の立体画像表示装置が提案されている(例えば、非特許文献1)。これは、多数の視線方向からの画像を画像表示面に合成表示し、観測者の視点位置に応じて対応する画像を選択的に視認させる光学的画像選択手段を設けている。この表示手法は、眼鏡を用いない立体表示方式という点で優れている。
観測者の視点位置に応じて対応する画像を選択的に視認させる原理は、スリット開口部あるいはレンチキュラレンズからなる光学的画像選択手段を用いて、観測者の視点位置方向から視認できる画素を限定することによる。このような立体表示は、いわゆるインテグラルフォトグラフィ法、光線再生法、あるいは、多眼式、超多眼式、などと呼ばれる方式である。これらは基本構成は類似しており、立体像を形成する原理も類似していると言えるが、光線再生法は立体像を連続的に視点の位置に寄らずに表示できるので好ましい。いずれにしても、視線数を増やし、レンズピッチを細かくすることにより、立体像の光線再生が実際に立体からの光線に近づき、現実に存在するものと光学的に等価になっていき、立体像の表示性能が向上する。
2次元画像から、立体像の各点からの光線を再生する角度に変換する上で、立体表示が見える角度範囲と、光線数(視差数)と、表示ピッチがパラメータとなり、立体表示が所定の範囲で所定の解像度で得られるが、これらのパラメータは表示部の画素ピッチが一定である中で、トレードオフの関係がある。
レンズピッチに対応する表示部の画像はレンズピッチ内の画素ピッチが光線数(視差数)となり、立体表示の解像度につながる角度分解能は、光線数を再生する角度範囲で割った値となるためである。
角度範囲を広げるために、レンズを時分割で切替えて、表示部の表示領域を広げる方法が特許文献1、2に提案されている。
J. Opt. Soc. Am. A Vol.15 p.2059 (1998). 特開平10−206795号公報
特開2003−177355公報
J. Opt. Soc. Am. A Vol.15 p.2059 (1998).
しかしながら、特許文献1、2に記載の技術は、レンズとシャッタを設けてレンズを切替えて対応する表示画像を表示部に形成するものであるが、画像が切り替わる時の立体像の乱れ、クロストークについての対策が不十分である問題がある。特に液晶による表示部、シャッタでは光学的応答が理想的ではないため、高速に切替える時分割表示では十分考慮する必要があるが、前述の文献の例では対策が得られていない。
さらに、立体表示を改善するために、表示部の画素ピッチを細かくして画素数を増やしながら、加えて時分割のための高速表示を行うには、書換え時間を短縮する必要があるが、従来の表示部では性能が低下し、その結果立体表示の総合性能は向上できないという問題があった
そこで、本発明は、従来の時分割の立体表示装置においてフィールドごとのクロストーク対策が可能となり、立体表示としての高画質化、低コスト化が可能となる立体表示装置を提供することを目的とする。
そこで、本発明は、従来の時分割の立体表示装置においてフィールドごとのクロストーク対策が可能となり、立体表示としての高画質化、低コスト化が可能となる立体表示装置を提供することを目的とする。
本発明に係る立体表示装置は、複数の画素を行列に配列し、列に沿って配置する走査線と、行に沿って配置する信号線と、を有する表示部と、前記表示部上に設けられ、前記画素からの光を所定の角度に該揃えて光線を射出する光学制御手段であって、レンチキュラレンズ要素の長軸の主成分を前記表示部の列に沿って配置し、前記レンズ要素を平行に複数配列したレンズアレイと、前記レンズアレイの長軸方向に沿ってレンズ要素ごとに設けた電極を備え、当該電極を一括に開閉することにより、前記表示部からのレンズ透過光の通過の有無を制御するシャッタ手段と、表示部は列ごとに線順次駆動し、レンチキュラレンズのピッチ方向に走査して画像を表示する表示駆動部と、表示部の画像が走査書換えされるのに同期して、前記シャッタ手段を駆動するシャッタ駆動部と、を有することを特徴とする。
本発明に係る立体表示装置の駆動方法は、複数の画素を行列に配列し、列ごとに画素を選択し走査する走査線と、行ごとに画像信号を供給する信号線と、を有する表示部と、前記表示部上に設けられ、前記画素からの光を所定の角度に該揃えて光線を射出する光学制御手段であって、レンチキュラレンズ要素の長軸を前記表示部の列に主成分を有して配置し、該レンズを一定のピッチで平行に複数配列したレンズアレイと、表示部からのレンズ透過光をレンズ長軸方向に沿ってレンズごとに設けた電極群を有し、電極群は画素列に該平行なブロック内で所定のピッチで電気的接続された電極により一括に開閉するシャッタ手段と、を有する立体表示装置において、表示部の画像に対応して、レンズピッチの1より大きい整数倍のレンズを透過させるとともに、間のレンズの光は閉止して表示に寄与しないようにして1フィールドを表示し、表示部の画像が別のフィールドへ列ごとに変化するに対応してレンズを順次入れ替えてnフィールドで元のレンズに戻るように、シャッタを駆動し、表示部は列ごとに線順次駆動し、所定のレンズから射出される光線を再生する1フィールド画面を表示し、次のフィールドでは別のレンズから射出される光線を再生するフィールド画面を表示し、nフィールドで元のレンズに戻る表示をするように駆動するとともに、線順次で書き換えられる表示部の画素列が新たなフィールドとして表示開始される時から、光学的に応答するまでの間の該期間で、対応するレンズのシャッタを閉止することを特徴とする。
本発明によれば、従来の時分割の立体表示装置においてフィールドごとのクロストーク対策が可能となり、立体表示としての高画質化、低コスト化が可能となる立体表示装置が提供される。
以下、本発明の実施の形態について図面を参照して詳細に説明する。以下の図面の記載において、同一の部分には同一の符号を付し、重複する記載は省略する。また、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものと異なる。更に、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
(第1の実施形態)
図1に第1の実施形態に係る立体表示装置の部分斜視図を示す。
図1に第1の実施形態に係る立体表示装置の部分斜視図を示す。
図1に示すように、本実施形態に係る立体表示装置は、表示部101と、表示部101の前面に設けられた光学制御手段111とで構成されている。
表示部101は、画素102と、走査線104と、信号線105とを備える。
走査線104は、各々が列方向(紙面縦方向、以下同様)に伸びており、列方向と交差する行方向(紙面横方向、以下同様)に複数配列されている。
信号線105は、それぞれが複数の走査線104と交差して行方向に伸びており、行方向と交差する列方向に複数配列されている。
画素102は、走査線104と、信号線105との交差部に対応して、行列方向に複数配列されており、走査線104から供給される走査信号によってスイッチ動作が制御される図示しない画素スイッチと、画素スイッチを介して信号線105に接続された図示しない画素電極とで構成されている。
図1中103は、マトリクス駆動を行う上での走査線の走査方向(駆動方向)である。本実施形態では図1中、左から右への方向で列毎(1列毎及び複数列毎両方を含む)に書き換えられていく。この書き換え方法は後述する。
光学制御手段111は、レンチキュラレンズ(以下、単にレンズという)112と、シャッタ手段113とを備える。
レンズ112は、表示部101の前面に設けられ、表示部101からの光線が入射する入射面(平面)112aと、入射した光線が出射する出射面(凸面)112bとを備え、レンチキュラレンズ112の長軸が表示部101の列方向に、短軸が表示部101の行方向に伸びており、この短軸方向(行方向)に沿ってレンズ112が複数配列されている。このレンズ112は、表示部101からの光線の方向を制御し、像を拡大させる機能を備えている。
シャッタ手段113は、レンズ112の出射面(凸面)112bの前面に設けられ、レンズ112に対応して表示部101の列方向に伸びており、更に、レンズ112に対応して行方向に複数配列されている。すなわち、シャッタ手段113は、レンズ112のレンズ要素に開口部を合わせて、レンズ112の長軸方向に一括で開閉できるように、行方向に複数配置されている。シャッタ手段113は、レンズ112を通過する光を遮断、透過する複数のシャッタ要素114と、シャッタ要素114の間に設けられ、シャッタ要素114間の光漏れを防止するブラックマトリックス(遮光部)115とで構成されている。
シャッタ要素114は、安定的に高速性を得るために液晶を用いることが有効である。液晶を用いる場合は、液晶の配列を制御する透明電極を設けて、透明電極に電圧を印加することで、通過する光の偏光性を制御する。なお、本実施形態に係るシャッタ要素114は上述した液晶シャッタ以外でも、他の光学素子やマイクロマシンなどの技術を応用したものでも適用することができる。なお、本発明の図面において、シャッタ要素においてシャッタが閉まっている状態を複数の点のハッチで示している。以後においても同様である。
ブラックマトリクス115は、シャッタ動作のコントラスト(閉止時の黒レベルと透過時の白レベルの比)を向上させることができる。さらにレンズ112間の境界で発生する散乱、屈折により、表示部101からの光のうち、斜めからあるいは導光性によりやや遠方から来る光が前面に放出されて不適切な光となり、結果として立体画像の画質、特にコントランストを低下させることを防止することにも有効である。また、環境からの外光が当たってレンズ境界での反射により、コントラストを低下させることの低減、防止にも有効である。
シャッタ手段113は、図1に示すように、表示部101の画素102からの光がレンズ112を透過後に通過するように配置すると、レンズ112で広がった光を見ることになるので、どの角度の光もシャッタ開口部から角度を得て出光しているように見えることになるため、位置精度が上がり、解像感が増加する。しかしながら、シャッタ手段113を表示部101とレンズ112との間、すなわち、表示部101とレンズ112の入射面112aとの間に設けられた構成を備えても良い。
図2に、本実施形態に係る立体表示装置の駆動系を含めたシステムのブロック図を示す。
表示部101は、図1に示す画素、走査線及び信号線などから構成される表示領域201と、走査線を駆動する走査線駆動回路202と、信号線を駆動する信号線駆動回路203と、これら駆動回路を制御し、画像信号を供給する表示部制御回路204で構成されている。光学制御部111は、シャッタ電極211と、シャッタ電極211を駆動するシャッタ駆動回路212と、シャッタ駆動回路212を制御し、シャッタの開閉パターンを生成し供給するシャッタ制御回路213で構成されている。表示部制御回路204とシャッタ制御回路213の駆動は相互に同期させる同期信号が供給されている。シャッタ電極211が前述したシャッタ要素114に相当する。
走査線駆動回路202は主にシフトレジスタと出力電圧変換バッファで構成され、信号線駆動回路203はシフトレジスタと信号サンプリング回路、信号線電圧(電流)出力バッファなどで構成されている。走査線の走査方向は走査線駆動回路202のシフトレジスタの走査方向で定めることができる。シャッタ駆動回路212もシフトレジスタと駆動電圧出力バッファから構成されている。
表示部101の駆動は、この走査線駆動回路202を列毎(1列毎のほか、複数列毎も含む)に駆動させて、列方向(図1中103)に書き換えていく。シャッタ電極211の駆動は、このシャッタ駆動回路212をレンチキュラレンズ112のレンズ要素毎に一括で駆動させる。このため、シャッタ駆動回路212は、1次元で構成されていればよい。また、シャッタ駆動回路212は、走査線の走査方向と同一の方向(紙面左から右)に後述のタイミングで駆動すればよい。
図3は本実施形態に係る立体表示装置の立体表示のための光線再生方法を示す模式的な断面図であり、シャッタが一定のピッチで開口した表示画像の状態を表している。開口位置を変えて表示すれば視差表示が全域に渡って得られるのであるが、表示部101が液晶表示装置などでは書換えに一定の時間が必要なため、書換えを行いながら表示をする必要がある。
図3に示すように、表示部101の画素102からの光線は、レンズ112に入射される。レンズ112の焦点距離は画素面にほぼ合せるのが望ましい。シャッタ113が開口している開口部301は、画素上の1点からの光線がほぼ平行の光線302となって射出され、別の画素の光は角度がわずかに変化した光線303となって射出され、これらの光で視差を表現する。インテグラルフォトグラフィ法、光線再生法ではこれらの光線が立体像のある箇所からの光と等価となるように表示していくことで見る側からは立体像として見ることができる。
本実施形態に係る立体表示装置は、開口部301に対応するレンズ112を通って光線を再生する表示部の表示領域304はシャッタにより間のレンズへの光を遮断しているため、レンズ要素のレンズ幅よりも大きく割り当てることができる。このため、視差数、角度分解能、視野角において拡大が得られることができる。本実施形態に係る立体表示装置は、図3に示したように、例えば、書換え後のシャッタのピッチをレンズピッチ単位で4つ毎としている。従って同じ視野角では角度分解能および視差数が4倍に改善できる。シャッタの開口を変えて1フィールドを、例えば1/240秒間隔で表示すれば、全体は60Hzで表示するので、ちらつきはなくすべてのシャッタが開口しているように見えて立体視が得られる。
図4は本実施形態に係る立体表示装置をより詳細に示した断面図である。
表示部101は、基板305と、基板305上に設けられた画素102と、走査線及び信号線(図4では図示しない)とを備える。光学制御部111は、具体的には、偏光板325、336との間に一体化されて形成されている。すなわち、光学制御部111は、偏光板325と、偏光板325と接する透明基板327と、透明基板327の偏光板325が設けられた面に対向する面に設けられたレンズ112と、レンズ112の凸面側に設けられた平坦膜328と、平坦膜328上に設けられたシャッタ電極329と、シャッタ電極329上に設けられた液晶層330と、液晶層330を介してシャッタ電極329に対向する対向電極331と、対向電極331を保持する対向基板332と、対向基板332の対向電極331が設けられた面に対向する面に設けられた偏光板336とを備える。すなわち、前述したシャッタ手段113は、平坦膜328上に設けられたシャッタ電極329と、液晶層330と、対向基板332上に設けられた対向電極331とで構成された液晶シャッタである。画素102からの光線は、偏光板325によって偏光になり、レンズ112、液晶層330を通って、偏光面が変化して、偏光板336で透過或いは遮断となり、シャッタ動作となる。
次に、本実施形態に係る駆動機構を説明する。図5から図8は、本実施形態に係る立体表示装置の駆動機構を説明するための断面図である。図5は、図3と同様な状態であるが、シャッタ113の開口箇所404に対応した表示部101の表示領域を401、シャッタ113の開口箇所405に対応した表示部101の表示領域を402、シャッタの開口箇所406に対応した表示部101の表示領域を403でそれぞれ示す。
表示部101の走査方向を図5において紙面上、左から右とすると、最初に、新たに画像を切替えるための切替領域420が左から右に走査していき、表示領域401の表示を消去させると共に、切替領域420の後に新たに書き換えられた新たな表示領域411が左から右に向かって表示されていく(図6)。この切替領域420では過渡的な表示状態の画素もある。シャッタの開口箇所404は、表示の書き換えが始まる前、すなわち、切替領域420が表示領域401内に走査する前に、図6に示すように閉止状態となる。これにより書き換え前の画像と、書き換え後の画像が共存したり、書き換え過渡領域の画素の表示からの光で不適当な構成が見えなくなるため、立体表示の乱れ(クロストーク)を防止することができる。
引き続き、切替領域420が紙面上、左から右に走査していき、表示領域402内に走査する前に、シャッタの開口箇所405は、閉止状態となる。その後、表示領域402は、新たな表示領域413に左から右に書き換えられていき、新たに書き換えられた表示領域413の画像が安定して得られた時期に次の開口箇所となる開口箇所415が開口して表示領域413を表示する(図7)。
引き続き、切替領域420が紙面上、左から右に走査していき、表示領域403内に走査する前に、シャッタの開口箇所406は、閉止状態となる。その後、表示領域403は、新たな表示領域417に左から右に書き換えられていき、新たに書き換えられた表示領域417の画像が安定して得られた時期に次の開口箇所となる開口箇所419が開口して表示領域417を表示する(図8)。
図9は図5から図8のシャッタの光学応答及び表示領域の光学応答波形を示す。図9で横軸は時間を表す。縦軸は透過率あるいは輝度などの光学応答を表す。図9は、シャッタ404、415及び表示領域のある画素102(表示領域401と表示領域413で両者に属するある画素)の光学応答をそれぞれ示している。図6、図9に示すように、書換えが開始される前にシャッタ404は閉止し、書換えが終わった時点で、図7、図9に示すように、シャッタ415が開口する。この結果、画素102付近のシャッタは504で示す期間(以下、シャッタ停止期間という)が設けられることになる。この期間の存在によりクロストークが防止される。
このシャッタ停止期間504を適切に設定することは、シャッタの駆動が1次元であり、開口箇所の選択とシャッタの開口期間のANDを取って駆動すれば自由に設定することができる。すなわち、シャッタ駆動のシフトレジスタのクロック周波数を上げることなく、消費電力、回路コストの負荷がなく、またシャッタ駆動電圧などを十分に確保しながら駆動できる。
このように本発明の駆動方法では、タイミングの制御も負荷なくできるため、クロストーク対策に最適となる。駆動回路から直接電圧を供給してシャッタを駆動できるから、例えば液晶シャッタではオン電圧を安定して供給でき、オフ電圧との差も十分大きくできるのでコントラストを高くできる。また、マトリクス駆動に比べて駆動電圧を高くできるので光学応答の高速性が得られて時分割駆動には好適である。また、回路が簡単になり、低コスト化にも有効である。
表示部は応答速度が高くなるように表示モードをOCBなどとしたり、また、オーバードライブ駆動を用いるなどとするとよい。
なお、シャッタを開口するタイミングは画素の光学応答が完全に書き換わった後ではなく、シャッタの開口の応答速度を考慮してやや早めに開口を開始して画素の応答が書き換わる頃に開口の透過率が高まるようにしてもよい。これによりシャッタ開口時間が増加して輝度向上にも効果がある。
図10は、図5から図8で説明したシャッタの光学応答及び表示領域の光学応答を斜め方向から示した斜視図である。
シャッタ603、604に対応する表示領域601、602が書き換えられて、新たな表示領域606、607となり、書き換えられた表示領域606、607に対応するシャッタ605が開口する。本実施形態では、書き換え前のシャッタのピッチはレンズピッチ単位で4つ毎であり、図10(a)から図6(b)に示すように、次のシャッタの開口する箇所はその中間の位置となっている。
図11はシャッタの開口の位置の変化の1周期を示した断面図である。第1段階では、シャッタ701とシャッタ705が開口(図11(a))し、次の段階ではシャッタ703が開口(図11(b))し、次の段階ではシャッタ702が開口(図11(c))し、次の段階ではシャッタ704が開口(図11(d))していき、元の位置(図11(a))が開口する。このように間を取りながら選択することにより、時分割で立体視を得る際に、通常の目の動きではちらつきが見えないフィールド周波数でも、眼球が左から右へと視線を高速に動かした時に開口位置が視線の動きの方向と合う瞬間と逆の瞬間を混ぜることができて、シャッタの動きを視認されることを防止できる。この効果を得るには、シャッタ選択のシーケンスで方向を逆にする状態を少なくとも1つ有するとよい。さらに少なくとも全体の半分の状態で行うとよい。開口部の移動距離が小さい方向を選択の方向と考えるとよい。図11では(a)から(b)には選択方向が右とすると(b)から(c)へは左になり、(c)から(d)へ右となり、(d)から(a)へは右となり、左右の方向が逆になる状態が2回以上含まれる。また、n個ごとのレンズの選択であるが、繰返しはn×mフィールドで行い、n×mの中でiを変えて逆向きを加えてもよい。また、図7などに示したように、相互に中間の位置を選択していくと方向とその大きさで、1方向への規則性が低減されてよい。
なお、この現象を低減するためにフィールド周波数を上げることも効果がある。その場合には、隣のシャッタを順次一方向で選択しても視認されず、適当な速度で許容して使用することは考えられる。
(第2の実施形態)
第2の実施形態に係る立体表示装置は、第1の実施形態で説明した立体表示装置の表示部101の構成に特徴を有する。図12は、第2の実施形態に係る表示部101のレンチキュラレンズ112の短軸方向に対応する回路構成図である。
第2の実施形態に係る立体表示装置は、第1の実施形態で説明した立体表示装置の表示部101の構成に特徴を有する。図12は、第2の実施形態に係る表示部101のレンチキュラレンズ112の短軸方向に対応する回路構成図である。
本実施形態に係る立体表示装置は、アクティブマトリクス型の表示装置であり、画素電極801、802を共通の走査線803により選択し、それぞれの画素電極801、802に対して、それぞれ信号線804、805からの画素信号が供給される。走査線803、803’と、信号線804、805との交差部に対応して、薄膜トランジスタ(TFT)807、808が設けられており、各々のTFTは、ゲートが走査線803に、ソースが信号線804、805に、ドレインが画素電極801、802にそれぞれ接続されている。さらに、画素電圧を保持するための蓄積容量809、810がそれぞれの画素電極801、802に接続され、その他端は蓄積容量線806、806’にそれぞれ接続されている。なお、本実施形態に係る立体表示装置は、第1の実施形態と同様に表示部の画素に対してレンチキュラレンズ112、シャッタ要素114が走査線に沿ってレンズの長軸が配置している。
以上に示すように、本実施形態では、走査線の走査方向に隣接した画素が1対で構成され、対の画素ブロックの間に蓄積容量線を配置している。この結果、走査線本数に対して2倍の画素列が実現し、蓄積容量線も効率的に配置できるため、走査線配列方向に高精細な表示部を得ることができ、立体表示の解像度、画質が向上できる。信号線からの画像信号を2画素同時に送るので、走査時間を2倍に延ばすことができ、時分割表示での書き込み時間を確保することができる。
走査線配列方向の画素ピッチが信号線配列方向の画素ピッチよりも極めて小さいアスペクト比の大きい画素の場合、電気的および光学変調(発光)部の特性を介して隣接画素間の相互の影響が大きくなる。画素ピッチの小さい方向に隣接する画素が間に設けられた走査線で駆動されることで相互の影響を軽減できて表示部のムラ、画質不良がなく、結果、立体表示の高画質化が得られる。
また、本実施形態に係る立体表示装置は、レンズに対応する表示領域を走査線が共通となる走査線配列方向に隣接する画素をブロックとして設定するのが適切である。これにより、立体表示における光線再生の均質化、高画質化が得られる。
図14に図12に示す回路を用いた場合の表示部におけるレイアウト図を示す。また、図13は、図14のA−A’における断面図である。図12、図14の下2桁の数値はそれぞれの対応する構成に対応させている。
透明電極からなる画素電極901、902はコンタクトホール920、920’を介してトランジスタ907、908と接続されている。画素電極の周辺は走査線903、903’、蓄積容量線906、906’で左右方向の端、信号線1504(または905)で上下方向の端が重なっており、画素電極間の光漏れを防ぐブラックマトリクスを兼ねている。本実施例では画素は横方向(走査線配列方向)12μmピッチ、縦方向(信号線配列方向)80μmピッチとした。寸法はこれらに限定されないが、縦方向が横方向よりも長くすることができる。
これはレンズによる光学制御では主に横方向に対して光線角度制御を行う上で横方向の画素ピッチを小さく、解像度を高めることが立体再生性能に有効であるためである。その結果、図14に示すように縦長の画素となるが、走査線、蓄積容量線が縦方向に配置されているので、選択期間での画素電極とのカップリングによる突き抜け電圧変動というノイズを十分考慮すれば、画像への影響を少なくできる。一方、信号線904、905は短辺方向に配置されており、画素電極とのカップリング容量値は小さい。信号線側は他の画素の書込みのために選択前後においても他の画素のための信号変動が常に発生しており、その影響が画素電極に及んでクロストークの原因となるが、本実施例の配置により、そのカップリングは信号線を2重に形成したとしても小さくでき、画質特に高速応答の動的画質の向上につながる。なお、信号線905との重なりと信号線1504(904)との重なりをバランスさせてさらに影響を補正するには、破線で示した(921)のような信号線905上に画素電極の開口を設けることでさらに改善できる。同時に、走査線配列方向にレンチキュラレンズの長軸の主成分を合せることができるので、画面書換え中はシャッタを一括にオフし、書換え応答後にオンしてクロストークを防止することができる。なお、蓄積容量線は省略して隣接画素での共通走査線のみにすることも可能である。
前述のように本実施例では画素縦方向(信号線配列方向)80μm、画素横方向(走査線配列方向)12μmとした。縦横比は12:80≒1:6.67である。カラー配置は縦方向にRGBを配置する。レンズピッチ240μmにすれば、縦方向は240μmでRGBが表示される。所定の角度から見ると1画素が横方向レンズ面で横に広がって見えるのでRGB単位で正方画素にすることができる。
このように走査線配列方向に対して信号線配列方向の画素ピッチが大きいと、隣接する画素間の影響が大きくなり、画素内の信号線配列方向にムラが発生する要因となる。電気的なカップリングの他、液晶などの光学変調部分への電界により、影響を受ける。液晶ではディスクリネーションが境界に発生して透過領域に出ることでコントラストの低下や焼き付きのように見える応答不良が発生する。特に時分割駆動の高速動作では過渡応答としてより顕著になる。しかし、本実施例のように隣接画素を境界に走査線を設けて駆動することで、その影響が緩和されて、縦方向に長い画素においても表示部の画質が向上し、立体再生の性能も向上できる。
ペアブロックの境界は蓄積容量線として定常あるいは容量線同士で一定の電位にでき、ブロック境界での相互影響による画質劣化が低減できるので、間に蓄積容量線を配置することで、さらに相互影響を低減する効果が得られる。
さらに、同一走査の隣接画素を同色とすると、駆動信号の連続性が高まり、ムラの低減につながるのでさらによい。横方向にRGBがすべて同一となるストライプ状はカラー配列の境界が縦方向のみでよいので製造上のメリットがあり、光線再生の色連続性にも効果がある。前記走査線共通の隣接画素ごとで同色にして横方向でRGB配列を変えてもよいし、縦横比が同程度になるように4〜10画素毎やレンズピッチの1/3〜1倍程度での色配列変化を施してもよい。
走査線配列方向と信号線配列方向の画素ピッチの比が1:4以上になり、時分割駆動の高速で、立体表示の視差数を向上した微細画素において、前述のように画素間の相互影響および配線と画素間の影響で長いピッチの方で画素表示に不良が発生する影響が大きくなる。さらに1:6以上で1:15までにすることは視差数拡大において実現性が高い中で、このようなアスペクトの大きな画素の範囲で表示の有効面積(開口率)を得て、相互の影響を防ぐには走査線を共通にして隣接画素の境界となす本実施例は最適である。
TFTとしてレーザーアニール再結晶化などを行った低温ポリシリコンTFTを用いるのが高移動度であるため時分割駆動の短時間選択にとって好適である。図14でガラス基板1030にアンダーコート層1031を形成し、Si膜を成膜し、レーザーアニールで結晶化してからパターニングしてSiOxのゲート絶縁膜1035を形成する。MoWなどでゲート電極1036、走査線、蓄積容量1010の上部電極1037、容量線1006’を成膜、パターニングする。電極をマスクにイオンドーピングなどで不純物を導入し、チャネル1032、ソース1033、ドレイン1034を形成してTFT1008が構成される。層間絶縁層1036を介して信号線1004、1005、ソース、ドレイン電極および接続電極1039を形成する。蓄積容量1010はSi層の下部電極1043とゲート絶縁膜1035、上部電極1037、を主に、層間絶縁層による電極1039との間の容量も活用できる。アクリル樹脂などで平坦化絶縁層1038を形成し、コンタクトホール1020’を介してITOなどからなる画素電極1002を形成して、表示部のアレイ基板が形成される。絶縁層1038は着色してカラーフィルタとしてもよい。
ガラスなどの対向基板1040に対向電極1041を形成し、アレイ基板とそれぞれにPIなどの配向膜(図示せず)を形成、ラビングなどの配向処理をした後に、適当なセルギャップで組合せ、間に液晶1042を注入して液晶セルが完成する。
図14に示すように、トップゲートのプレーナ型にできるので、ゲート電極1036と同層に走査線、蓄積容量線1006’を設けてあり、その上の層間絶縁膜に信号線を形成すると、走査線と画素電極との間は、信号線と画素電極の間よりも絶縁層数が多く、厚くできるため、カップリング容量が小さくなり、走査線の電位変動が画素電極に及ぶノイズが低減できる。
(第3の実施形態)
第3の実施形態に係る立体表示装置は、第2の実施形態で説明した立体表示装置の表示部の構成の変形例である。図15は、第3の実施形態に係る表示部101のレンチキュラレンズ112の短軸方向に対応する回路構成図、図16は、図15に示す回路を用いた場合の表示部におけるレイアウト図である。番号の下2桁は図15、16で対応している。
第3の実施形態に係る立体表示装置は、第2の実施形態で説明した立体表示装置の表示部の構成の変形例である。図15は、第3の実施形態に係る表示部101のレンチキュラレンズ112の短軸方向に対応する回路構成図、図16は、図15に示す回路を用いた場合の表示部におけるレイアウト図である。番号の下2桁は図15、16で対応している。
本実施形態では、画素内のトランジスタ位置、蓄積容量の位置が隣接する画素間でほぼ点対称となっていること、信号線1104、1204と1105、1205が画素の上下に分かれていること、が異なっている。液晶表示装置であるが、図16に示すように、画素電極1201、1202で主開口部が縦方向でずれるようにできる。この結果、繰返しによるモアレパターンの発生を緩和することができるとともに、画素ピッチの縦横比が大きい場合の緩和で斜め成分を含められるため、液晶配向膜のラビング方向が斜め45度のようにするには、より効果が得られる。
なお、図16では、1画素の薄膜トランジスタは2つの直列接続にすることができる。トランジスタの接続中間点1250、1251を隣接画素側に持ってくることで横方向の画素ピッチが小さい状態で直列化し、開口率も大きく取ることができている。直列化すると一方のトランジスタのオフ電流が大きいなどの不良があっても表示不良にならない、すなわち歩留り向上につながる。なお、この直列トランジスタの配列は、隣接画素に中間点を持っていくことが特徴であり、点対称のレイアウトだけでなく、トランジスタ位置を隣接画素でずらす場合でも適用できる。加工精度が一定の条件の中で走査線配列方向の画素ピッチを小さくし、性能を得るために有効な構成となる。
また、隣接画素が斜めに配置されるので、レンチキュラレンズで画素が横方向に広がって射出されるとき、縦方向の非発光(非透過)部が連続して黒い帯をなすことがなくなり、太いブラックマトリクスに見えるといった妨害感がなくなった良好な画質を得ることができる。また、垂直方向の解像度を増加させる効果がある。すなわち、第2の実施例の効果に加えて、立体表示の新たな高画質化が得られるといえる。
(第4の実施形態)
第4の実施形態に係る立体表示装置は、第1の実施形態で説明した立体表示装置のレンチキュラレンズが表示部の画素配列に斜めに配置した場合である。モアレ対策および通常の縦ストライプのカラー配列の場合に視差を得るために斜めにレンズを配置することは知られている。この場合でも本願の基本的な考え方を適用することはできる。
第4の実施形態に係る立体表示装置は、第1の実施形態で説明した立体表示装置のレンチキュラレンズが表示部の画素配列に斜めに配置した場合である。モアレ対策および通常の縦ストライプのカラー配列の場合に視差を得るために斜めにレンズを配置することは知られている。この場合でも本願の基本的な考え方を適用することはできる。
図17は、第4の実施形態に係る立体表示装置の部分斜視図であり、図18は、第4の実施形態に係る立体表示装置の画素とレンズおよびシャッタの投影配置図を、図19は、第4の実施形態に係る立体表示装置の駆動系を含めたシステムのブロック図をそれぞれ示す。
光学制御手段1301でレンチキュラレンズ1302は表示部画素102の配列について斜めに配置される。角度はarctan(1/4)≒14度とした。シャッタ手段1303で開閉を制御されるシャッタ1304は、液晶シャッタの場合は、シャッタ電極と同等と言えるが、レンズの長軸に沿って配置する。レンズ長軸の主成分が表示部の走査線と合せることで、走査方向103に合せて第1の実施形態と同様に書換え期間に合せて開口期間を制御することでクロストークのない表示が得られる。図19には駆動のダイヤグラムを示すが、シャッタ電極1501が斜めに配置されている点が異なるが、駆動は第1の実施形態と同様な回路でよい。
駆動では、画面の上下方向でシャッタの開口位置が表示部と異なるから、上側が書き換わり始めるタイミングでシャッタをオフし、下側が書き変わってからオンするようにすればよい。この結果、上下の位置の差に対応して開口期間が短くなり、やや明るさが低下するが、クロストークは防止でき、回路も負荷が少ない。表示部が横長のワイド画面は立体表示においても視野を広げる上で有効であるが、横長であれば開口期間の低下も小さくなるので望ましい。
(第5の実施形態)
第5の実施形態に係る立体表示装置は、第4の実施形態で説明した立体表示装置の表示部の構成の変形例である。図20は、第5の実施形態に係る立体表示装置の駆動系を含めたシステムのブロック図である。
第5の実施形態に係る立体表示装置は、第4の実施形態で説明した立体表示装置の表示部の構成の変形例である。図20は、第5の実施形態に係る立体表示装置の駆動系を含めたシステムのブロック図である。
シャッタ駆動において、1つのレンズ要素に対応するシャッタ電極を画面の上下で分割し、上側電極1611、下側電極1612とする。駆動回路1613、1614を上下に配置してそれぞれの電極を駆動する。駆動では、表示領域が左から右へ走査していくなかで、上側電極の範囲が書き換われば、同じレンズの下側電極1612をオフしたまま、上側電極1611をオンさせることができる。下側電極の対応する表示領域が書き変われば、下側電極1612もオンさせる。このようにすれば、斜めのシャッタ配置における開口時間の低下分を約半分にすることができ、明るさを高めることができる。さらに、液晶表示装置を表示部に用いる場合に、応答がレンズの上側と下側で違うことで上下の応答差が見えることも防止でき、立体像の再生を高画質化できる。
(第6の実施形態)
第6の実施形態に係る立体表示装置は、第5の実施形態で説明した立体表示装置の変形例であり、第5の実施形態ではシャッタ駆動回路を上下に2つ設けたが、電極配置を工夫することで一方だけにしても表示部の走査ブロックとレンズの開口を同様に制御することができる。
第6の実施形態に係る立体表示装置は、第5の実施形態で説明した立体表示装置の変形例であり、第5の実施形態ではシャッタ駆動回路を上下に2つ設けたが、電極配置を工夫することで一方だけにしても表示部の走査ブロックとレンズの開口を同様に制御することができる。
図21は、第6の実施形態に係る立体表示装置のシャッタ要素を説明するための部分斜視図である。図21では、シャッタ電極をレンズ要素ごとにいくつかに分割した電極群を構成し、この電極群で、表示部の走査で同時期に表示されるブロックに分けられるように、レンズの選択ピッチ(図では4つごと)で次のピッチのレンズ、図では4つ離れたレンズの電極群と電気的に接続1703を取るようにする。1701と1702はレンズピッチがずれているが、これを同時に駆動できるようにすることで、画素領域の書換えではタイミングの差が低減できる。接続境界では書換えの瞬間だけ、上下で表示領域の境界が発生する。レンチキュラレンズと表示部の距離が本願のように視野角を拡大すると広がるため、視差が発生して適切なレンズを通らず見ると表示乱れとなるが、その期間はシャッタを全体で閉止できるので視認されないようにできるから、本実施例のような構成にすることの効果がある。
境界位置ではすべての電極で斜めに接続を取ることで、1層だけでも電極を相互に接続することができる。
さらに、シャッタ電極と絶縁した配線層を設けるようにすれば、配線1803を適当に配置して接続することができる。図22では細線を用いて接続を行った例であるが、視認されないようにレンズ境界や配置を分散させることで接続配線間のショートを防止しながら電極間の接続を得ることもできる。
(第7の実施形態)
第7の実施形態に係る立体表示装置は、光学制御部の構成を詳細にしたものである。図23は第7の実施形態に係る立体表示装置の光学制御部を説明するための断面図である。
第7の実施形態に係る立体表示装置は、光学制御部の構成を詳細にしたものである。図23は第7の実施形態に係る立体表示装置の光学制御部を説明するための断面図である。
表示部1901はアクティブマトリクス液晶表示装置で、基板1902にアクティブマトリクス層1903と画素電極1904を形成したアレイ基板と、対向電極1906を形成した対向基板1907とを対向させて表示部液晶層1905を挟む。詳細は図14で説明したものと同等である。表示部としてはバックライト1910があり、裏面偏光板1908と前面偏光板1909により、液晶によって偏光を制御された光が透過光量の変化となって表示される。液晶としてはOCBモードや強誘電性液晶が高速応答に適している。TNでも狭ギャップセルにすることで応答速度を高めたものも用途によっては利用できる。MVAやIPSなどの方式でもよい。液晶の視野角特性を改善するために偏光板は位相差フィルムを含めてもよい。
光学制御部1930は、透明基板1920の上にシリンドリカルな曲面を持つレンズ1921をプレス成型などで形成する。図23のように凸面を上側に向けて屈折率n1の透明樹脂やガラス材料で形成する。レンズは偏光を乱さない材料を用いるとよい。アクリル樹脂などがよいが、屈折率の高い材料で偏光を乱さないものはさらに好適である。レンズ面に屈折率n2の平坦化層1922を形成して平坦面にする。図の場合、n1>n2とすれば凸レンズとして機能する。焦点距離が表示画素面に該合うように曲率および屈折率を調整する。
この上にブラックマトリクス1923、コート層1924を形成し、透明電極1925をレンズにあわせたパターンで矩形状に形成する。ブラックマトリクスの位置はこれに限らないが、本実施例では液晶層のベンド転移を加速する電位を与えられる導電材料でブラックマトリクスを形成しており、OCB液晶の利用に好適な配置である。
対向基板1928に対向電極1927を形成して、それぞれの電極面に配向膜(図示せず)および配向処理をして、3〜5μm程度の所定のギャップを保つスペーサを含めて液晶1926を注入する。液晶シャッタの偏光板として表示部の偏光板1909と共通とし、上面偏光板1929と一緒にして光のオンオフを制御する。位相差フィルムを含めてもよく、中間偏光板1909は多層にすることも構わない。
このように光学制御部をレンズ機能とシャッタ機能を基板を同一にして作成することで精密なアライメントができ、温度変化によって相互にずれることがなく耐環境性も大幅に向上する。また、シャッタ動作の主体となる液晶層、これを制御する電極とレンズ機能の主面との距離gs 1931を十分近づけることができるので、レンズピッチPlの小さい高精細な立体像を得る上で、開口率(As/Pl)の大きい、すなわち明るい立体像が得られる。
図23のようにレンズより前面に配置したシャッタの場合、シャッタ有効開口長Asは、シャッタ−レンズ有効距離gs、最大視野角θ、とすると、シャッタ−レンズ間の屈折率が1と考えられる(近似できる)場合には、
As≦Pl−2・gs・tan(θ/2)
が開口部が角度で変化しない条件となり、gsが小さいことが重要であることが分かる。
As≦Pl−2・gs・tan(θ/2)
が開口部が角度で変化しない条件となり、gsが小さいことが重要であることが分かる。
また、シャッタ−レンズ間の材料が屈折率nsの場合には、
As≦Pl−2・gs・((1-k)tan(θ/2)+k・tan(φ/2))
ここで、 k=d/gs, sin(φ/2)=sin(θ/2)/ns
となる。同様にこの条件を満たすことが開口部が角度で変化せず、輝度変調が起こらないので良好な画像が得られる。ns>1では開口率が増大するので有効である。
As≦Pl−2・gs・((1-k)tan(θ/2)+k・tan(φ/2))
ここで、 k=d/gs, sin(φ/2)=sin(θ/2)/ns
となる。同様にこの条件を満たすことが開口部が角度で変化せず、輝度変調が起こらないので良好な画像が得られる。ns>1では開口率が増大するので有効である。
本実施形態のようにレンズ−シャッタ一体化はこの条件を得る上で好適である。
本実施形態では表示部を液晶としたが、有機ELなどでもよい。光学制御部に主なる特徴があるので、偏光層1909を設けて、アクティブマトリクス有機EL表示装置と組み合わせて表示することができる。
また、本実施例は他の実施例と組合せてよく、特に斜めにレンズ、シャッタを配置するものとの組合せは有効である。
本実施例のように、シャッタはレンズの前におき、レンズ焦点距離が表示面にほぼ一致する条件では、角度変換された光線幅はレンズピッチと同等となり、BMで隠した領域は光線幅の一部となるため、シャッタ開口部全面からの光線として再生することができる。その結果、見る角度が変化しても実質の光線位置(開口部)が移動することなく、均質な画像となる効果がある。
なお、シャッタはレンズの前に設置することも可能である。特に、レンズ部材質が偏光を乱す場合、表示部が液晶とすると表示部からの光が偏光であるため、レンズを通ることで偏光が乱れ、シャッタの液晶のオンオフのコントラストが低下する問題が見られるが、シャッタの後にレンズを設けることでコントラストの高いシャッタが得られ、クロストークのない時分割表示が得られるので望ましい。図24に第7の実施形態に係る立体表示装置の光学制御部の多の形態を説明するための断面図を示す。図23と番号を基本的に対応させているが、シャッタの上部偏光板2329の後にレンズを設けている。レンズとシャッタの距離gs2331を近づけるためにシャッタの基板2328を薄くするのが望ましい。
(第8の実施形態)
第8の実施形態に係る立体表示装置は、表示部がOCBモードの液晶表示装置である。
第8の実施形態に係る立体表示装置は、表示部がOCBモードの液晶表示装置である。
図25は第8の実施形態に係る立体表示装置の光学制御部の表示部におけるレイアウト図を、図26は、第8の実施形態に係る立体表示装置のベンド転移を加速する駆動の概要を示す断面図をそれぞれ示す。
回路としては第2の実施形態と同様であり、共通の走査線2003にトランジスタ2007、2008が接続されて、信号線2004、2005の信号が画素電極2001、2002に書き込まれる。蓄積容量2009、2010をそれぞれ有し、蓄積容量線2006、2006’が隣接画素によるブロック境界に配置される。
画素電極2001の端部領域2030は、信号線2004、2005の上で上下の画素との間でギャップを有し、そのパターンが信号線2004、2005上で異なっている。図26の断面図では、信号線2105上で画素電極2101と上下隣接画素2162のギャップがあり、信号線2105と画素電極との間の電界が液晶層2142の中に及ぶようになっている。対向電極2141の電位も加えて横電界を適当に制御することで、液晶のスプレー−ベンド転移が開始される。ここで、信号線2105は画素電極2101とトランジスタを介して接続していない方であり、このベンド転移を行う際には、信号線2104の電位で加えた画素電極2101電位と、独立制御できる信号線2105の電位によって横電界を大きく、適切に制御できることが本実施例の特徴である。この初期駆動では、まず2101(2001)の画素電極に転移を発生させ、次に信号線の電位を入替えて、2002の画素電極側で転移させるようにすればよい。
電極パターンは図25のように平面的に角を有することで3次元的に電界集中、制御ができるので望ましい。このパターンは図25に限ることはないが、隣接画素の信号線電位を用いることが特徴となる。信号線を用いることで、転移発生用のパターンを画素ピッチの細かい方の端部領域に形成でき、立体表示に適した高精細画素での高開口率化が得られる。
また、図25では画素境界2030、2031を2つの信号線2004、2005の両者に設けたが一方のみに設けることもできる。その場合は、画素電極を駆動する信号線(トランジスタを介して接続される信号線)とは別の信号線に境界を設けるのが望ましい。これにより、ベンド転移の起点となる初期駆動の電位を別の信号線電位によって掛けることが可能となる。
なお、図25のパターンでは信号線間にわずかに画素電極のない領域ができるが、対向基板上のブラックマトリクスや、カラーフィルタ層の重ね合わせなどで遮光部2032を形成すればコントラスト低下を防止できる。
また、本実施形態は他の実施形態と組合せてよく、特に斜めにレンズ、シャッタを配置するものとの組合せは有効である。
(第9の実施形態)
第9の実施形態に係る立体表示装置は、駆動ブロックを分ける場合の構成である。
第9の実施形態に係る立体表示装置は、駆動ブロックを分ける場合の構成である。
図27は第9の実施形態に係る立体表示装置の駆動系を含めたシステムのブロックである。表示部の画素領域2201は2つのブロック2203、2204に分かれている。表示部の前面に配置した光学制御部2202は、レンズ2217とシャッタ電極2208からなり、やはり2つのブロック2205、2206に分かれている。レンズの長軸の主成分は走査線に沿って配置する点は他の実施例と同様である。ブロックはほぼ同程度の領域に対応させるが、完全には一致しなくてもよく、また本発明においては両者が一致しない点を考慮するものである。表示部の画素2207はブロック2203、2204によらず、均一に多数配置してあるが、走査線駆動回路2213と2214の2つに分かれ、図27の左右方向の2辺に配置した信号線駆動回路2218、2219でそれぞれのブロックを同時に駆動できる。すなわち、表示部の1フィールドの画面書換えで、1走査線の選択時間は2倍にすることができ、時分割駆動での表示高速書換えに適している。シャッタ電極の駆動回路も2215と2216で2つに分かれて、それぞれ同時に駆動することができる。各駆動回路は、シャッタ制御回路2221、表示部駆動制御およびシャッタとの同期回路2220で連携して駆動される。フレームメモリなどを有する点は省略している。
さて、このようなブロックに分けた場合に、走査方向を2209、2210のようにする。走査の起点、あるいは終点がブロック境界になるように駆動するものである。図27では走査の終点が境界になるように駆動している。シャッタ側も2211、2212で示すように、表示部の走査方向と合わせて、ブロック境界が始点あるいは終点になるように走査、駆動する。このようにすることで、ブロック境界は左右から同程度の時期に駆動されるので、レンズを通る画素の対応表示領域が時分割表示でずれても、ほぼ同時期に書換えられるから、シャッタ開閉のタイミングもそれに合わせることができ、クロストークのない、明るい表示が得られる。
選択されるシャッタが黒になる期間やタイミングは、ブロック境界付近のレンズに対応する表示領域で最も遅くなる(黒が長くなる)ものに揃えて設定すれば、時分割駆動のフィールド間の明るさの変動がなく、ブロック駆動を行っていることが全く視認されなくできるので好適である。
なお、走査方向は逆にしてもよく、フィールドごとに方向を変えてもよい。レンズが斜めの配列の場合でも同様なブロック分けと走査方向の設定ができる。
101 表示部
102 画素
103 走査方向
104 走査線
105 信号線
111 光学制御手段
112 レンチキュラレンズ
112a 入射面
112b 出射面
113 シャッタ手段
114 シャッタ要素
115 ブラックマトリクス
201 表示領域
202 走査線駆動回路
203 信号線駆動回路
204 表示部制御回路
211 シャッタ電極
212 シャッタ駆動回路
213 シャッタ制御回路
301 開口部
302 光線
303 光線
304 表示領域
305 基板
325 偏光板
327 透明基板
328 平坦膜
329 シャッタ電極
330 液晶層
331 対向電極
332 対向基板
336 偏光板
401 表示領域
402 表示領域
403 表示領域
404 開口箇所
405 開口箇所
406 開口箇所
411 表示領域
413 表示領域
415 開口箇所
417 表示領域
420 切替領域
504 シャッタ停止期間
601 表示領域
602 表示領域
603 シャッタ
604 シャッタ
605 シャッタ
607 表示領域
608 表示領域
102 画素
103 走査方向
104 走査線
105 信号線
111 光学制御手段
112 レンチキュラレンズ
112a 入射面
112b 出射面
113 シャッタ手段
114 シャッタ要素
115 ブラックマトリクス
201 表示領域
202 走査線駆動回路
203 信号線駆動回路
204 表示部制御回路
211 シャッタ電極
212 シャッタ駆動回路
213 シャッタ制御回路
301 開口部
302 光線
303 光線
304 表示領域
305 基板
325 偏光板
327 透明基板
328 平坦膜
329 シャッタ電極
330 液晶層
331 対向電極
332 対向基板
336 偏光板
401 表示領域
402 表示領域
403 表示領域
404 開口箇所
405 開口箇所
406 開口箇所
411 表示領域
413 表示領域
415 開口箇所
417 表示領域
420 切替領域
504 シャッタ停止期間
601 表示領域
602 表示領域
603 シャッタ
604 シャッタ
605 シャッタ
607 表示領域
608 表示領域
Claims (14)
- 複数の画素を行列に配列し、列に沿って配置する走査線と、行に沿って配置する信号線と、を有する表示部と、前記表示部上に設けられ、前記画素からの光を所定の角度に該揃えて光線を射出する光学制御手段であって、
レンチキュラレンズ要素の長軸の主成分を前記表示部の列に沿って配置し、前記レンズ要素を平行に複数配列したレンズアレイと、
前記レンズアレイの長軸方向に沿ってレンズ要素ごとに設けた電極を備え、当該電極を一括に開閉することにより、前記表示部からのレンズ透過光の通過の有無を制御するシャッタ手段と、
表示部は列ごとに線順次駆動し、レンチキュラレンズのピッチ方向に走査して画像を表示する表示駆動部と、
表示部の画像が走査書換えされるのに同期して、前記シャッタ手段を駆動するシャッタ駆動部と、
を有することを特徴とする立体表示装置。 - 複数の画素を行列に配列し、列に沿って配置する走査線と、行に沿って配置する信号線と、を有する表示部と、
前記表示部上に設けられ、前記画素からの光を所定の角度に該揃えて光線を射出する光学制御手段であって、レンチキュラレンズ要素の長軸を前記表示部の列に主成分を有して配置し、前記要素を平行に複数配列したレンズアレイと、表示部からのレンズ透過光をレンズ長軸方向に沿ってレンズごとに設けた電極群を有し、電極群は画素列に該平行なブロック内で所定のピッチで電気的接続された電極により一括に開閉するシャッタ手段と、
表示部は列ごとに線順次駆動し、レンチキュラレンズのピッチ方向に走査して画像を表示する表示駆動部と、
表示部の画像が走査書換えされるのに同期して、シャッタを開閉する駆動するシャッタ電極駆動部と、
を有することを特徴とする立体表示装置。 - 表示部は、隣接した画素列に共通の走査線を有し、走査線配列方向に隣接した画素を同時に選択し、画素行ごとに複数の信号線を有し、該隣接した画素へ同時に信号を供給することを特徴とする請求項1ないし2記載の立体表示装置。
- 表示部画素のピッチが、走査線配列方向に対して信号線配列方向に1:4以上であることを特徴とする請求項3記載の立体表示装置。
- 表示部は、隣接した1対の画素列の間に1つの共通走査線を有し、対の画素列の間に補助容量線を有することを特徴とする請求項3〜4記載の立体表示装置。
- 表示部は、アクティブマトリクス液晶表示装置であることを特徴とする請求項1〜5記載の立体表示装置。
- 光学制御手段は、表示部に面した基板と、基板上に形成したレンズアレイと、レンズ面を平坦化した平坦化層と、平坦化層より上にレンズごとに分離して形成したシャッタ電極と、対向電極を形成した対向基板と、対向電極と透明電極の間に配置した液晶層と、を有することを特徴とする請求項1〜6記載の立体表示装置。
- 表示部は、OCBモードの液晶表示装置であり、光学制御部のシャッタはOCBモードの液晶を有することを特徴とする請求項1〜7記載の立体表示装置。
- 画素行ごとに有する複数の信号線と、走査線が共通し該複数の信号線により駆動される隣接する画素の画素電極と、画素電極の境界が該隣接画素でそれぞれ別の信号線上に設ける、ないし別の信号線上での境界の形状が異なる、ことを特徴とする請求項3〜8記載の立体表示装置。
- 複数の画素を行列に配列し、列ごとに画素を選択し走査する走査線と、行ごとに画像信号を供給する信号線と、を有する表示部と、
前記表示部上に設けられ、前記画素からの光を所定の角度に該揃えて光線を射出する光学制御手段であって、レンチキュラレンズ要素の長軸を前記表示部の列に主成分を有して配置し、該レンズを一定のピッチで平行に複数配列したレンズアレイと、表示部からのレンズ透過光をレンズ長軸方向に沿ってレンズごとに設けた電極群を有し、電極群は画素列に該平行なブロック内で所定のピッチで電気的接続された電極により一括に開閉するシャッタ手段と、を有する立体表示装置において、
表示部の画像に対応して、レンズピッチの1より大きい整数倍のレンズを透過させるとともに、間のレンズの光は閉止して表示に寄与しないようにして1フィールドを表示し、表示部の画像が別のフィールドへ列ごとに変化するに対応してレンズを順次入れ替えてnフィールドで元のレンズに戻るように、シャッタを駆動し、
表示部は列ごとに線順次駆動し、所定のレンズから射出される光線を再生する1フィールド画面を表示し、次のフィールドでは別のレンズから射出される光線を再生するフィールド画面を表示し、nフィールドで元のレンズに戻る表示をするように駆動するとともに、線順次で書き換えられる表示部の画素列が新たなフィールドとして表示開始される時から、光学的に応答するまでの間の該期間で、対応するレンズのシャッタを閉止することを特徴とする立体表示装置の駆動方法。 - 表示部は列に対して2つ以上のブロックに分かれて駆動され、それぞれのブロックで同時に複数の走査線で画素を選択、駆動する際に、ブロックの境界でそれぞれのブロックの走査の起点あるいは終点がほぼ同時となし、かつシャッタの開閉駆動も表示領域のブロックに該合せて分割し、開閉変更の走査方向を表示部の走査方向と合せることを特徴とする請求項10記載の立体表示装置の駆動方法。
- 表示部の走査ブロック境界でnフィールドのいずれの表示に対しても近傍の選択するレンズのシャッタ開口期間が、対応する表示が該安定した期間となるようにし、他のシャッタの開口期間も前記期間と同等とすることを特徴とする請求項11記載の立体表示装置の駆動方法。
- 複数の画素を行列に配列し、列ごとに画素を選択し走査する走査線と、行ごとに画像信号を供給する信号線と、を有する表示部と、
前記表示部上に設けられ、前記画素からの光を所定の角度に該揃えて光線を射出する光学制御手段であって、レンチキュラレンズ要素の長軸を前記表示部の列に主成分を有して配置し、該レンズを一定のピッチで平行に複数配列したレンズアレイと、表示部からのレンズ透過光をレンズ長軸方向に沿ってレンズごとに設けた電極群を有し、電極群は画素列に該平行に所定のピッチで開閉するシャッタ手段と、
該シャッタ電極を駆動する駆動部であって、表示部の画像に対応して、レンズピッチの1より大きい整数倍のレンズを透過させるとともに、間のレンズの光は閉止して表示に寄与しないようにして1フィールドを表示し、表示部の画像が別のフィールドへ列ごとに変化するに対応してレンズを順次入替えてnフィールドで元のレンズに戻る、シャッタ駆動部と、
表示部は列ごとに線順次駆動し、所定のレンズから射出される光線を再生する1フィールド画面を表示し、次のフィールドでは別のレンズから射出される光線を再生するフィールド画面を表示し、nフィールドで元のレンズに戻る表示をする表示部駆動部と、
を有する立体表示装置で、
nフィールドで選択するn個のレンズ群に対して、nは3より大きく、i番目のフィールドの選択レンズ位置とi+1番目のフィールドの選択レンズ位置の方向と、i+1番目とi+2番目のレンズ位置の方向が逆であるiが少なくとも1つあることを特徴とする立体表示装置の駆動方法。 - iの範囲が1〜n×mでmが自然数であることを特徴とする請求項13記載の立体表示装置の駆動方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006259508A JP2008083073A (ja) | 2006-09-25 | 2006-09-25 | 立体表示装置および駆動方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006259508A JP2008083073A (ja) | 2006-09-25 | 2006-09-25 | 立体表示装置および駆動方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008083073A true JP2008083073A (ja) | 2008-04-10 |
Family
ID=39354053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006259508A Pending JP2008083073A (ja) | 2006-09-25 | 2006-09-25 | 立体表示装置および駆動方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008083073A (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736243A (zh) * | 2011-03-31 | 2012-10-17 | 三星电子株式会社 | 微结构透镜单元和二维/三维可切换的自动立体显示装置 |
JP2013047764A (ja) * | 2011-08-29 | 2013-03-07 | Toshiba Corp | 3次元映像表示装置 |
JP2013510460A (ja) * | 2009-11-03 | 2013-03-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | オートステレオスコピックディスプレイ装置 |
US8520963B2 (en) | 2010-01-25 | 2013-08-27 | Sony Corporation | Image processing apparatus, image processing method, and program for processing content based on user viewing situation |
US8531441B2 (en) | 2010-01-21 | 2013-09-10 | Samsung Display Co., Ltd. | Method for displaying stereo-scopic image and display apparatus for performing the same |
CN103885228A (zh) * | 2013-12-17 | 2014-06-25 | 友达光电股份有限公司 | 立体触控显示器 |
JP2014115464A (ja) * | 2012-12-10 | 2014-06-26 | Dainippon Printing Co Ltd | 表示装置 |
WO2014196125A1 (ja) * | 2013-06-05 | 2014-12-11 | パナソニックIpマネジメント株式会社 | 画像表示装置及び液晶レンズ |
JP2016514389A (ja) * | 2013-02-20 | 2016-05-19 | 京東方科技集團股▲ふん▼有限公司 | 3d表示制御方法および3d表示制御装置 |
JP2017055374A (ja) * | 2015-09-11 | 2017-03-16 | 佐藤 正志 | 裸眼3d映像伝送ディスプレーシステム |
JP2018004990A (ja) * | 2016-07-04 | 2018-01-11 | エドワード・パクチャン | Memsディスプレイ |
US10127850B2 (en) | 2015-05-29 | 2018-11-13 | Boe Technology Group Co., Ltd. | Field sequential display panel, field sequential display device and driving method using an organic light emitting diode (OLED) light source |
KR20210086341A (ko) * | 2019-12-31 | 2021-07-08 | 엘지디스플레이 주식회사 | 렌티큘러 렌즈들을 포함하는 입체 영상 표시 장치 |
CN113130562A (zh) * | 2019-12-30 | 2021-07-16 | 乐金显示有限公司 | 具有双凸透镜的3d显示装置 |
-
2006
- 2006-09-25 JP JP2006259508A patent/JP2008083073A/ja active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013510460A (ja) * | 2009-11-03 | 2013-03-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | オートステレオスコピックディスプレイ装置 |
US8531441B2 (en) | 2010-01-21 | 2013-09-10 | Samsung Display Co., Ltd. | Method for displaying stereo-scopic image and display apparatus for performing the same |
US8948531B2 (en) | 2010-01-25 | 2015-02-03 | Sony Corporation | Image processing apparatus, image processing method, and program |
US8520963B2 (en) | 2010-01-25 | 2013-08-27 | Sony Corporation | Image processing apparatus, image processing method, and program for processing content based on user viewing situation |
CN102736243A (zh) * | 2011-03-31 | 2012-10-17 | 三星电子株式会社 | 微结构透镜单元和二维/三维可切换的自动立体显示装置 |
US9377629B2 (en) | 2011-03-31 | 2016-06-28 | Samsung Display Co., Ltd. | Lenticular unit for two-dimensional/three-dimensional auto-stereoscopic display |
JP2013047764A (ja) * | 2011-08-29 | 2013-03-07 | Toshiba Corp | 3次元映像表示装置 |
TWI454743B (zh) * | 2011-08-29 | 2014-10-01 | Toshiba Kk | Three - dimensional image display device |
JP2014115464A (ja) * | 2012-12-10 | 2014-06-26 | Dainippon Printing Co Ltd | 表示装置 |
EP2961163A4 (en) * | 2013-02-20 | 2016-10-26 | Boe Technology Group Co Ltd | 3D DISPLAY CONTROL METHOD AND 3D DISPLAY CONTROL DEVICE |
US9521404B2 (en) | 2013-02-20 | 2016-12-13 | Boe Technology Group Co., Ltd. | Three-dimensional display control method and 3D display control device |
JP2016514389A (ja) * | 2013-02-20 | 2016-05-19 | 京東方科技集團股▲ふん▼有限公司 | 3d表示制御方法および3d表示制御装置 |
WO2014196125A1 (ja) * | 2013-06-05 | 2014-12-11 | パナソニックIpマネジメント株式会社 | 画像表示装置及び液晶レンズ |
JPWO2014196125A1 (ja) * | 2013-06-05 | 2017-02-23 | パナソニックIpマネジメント株式会社 | 画像表示装置及び液晶レンズ |
CN103885228A (zh) * | 2013-12-17 | 2014-06-25 | 友达光电股份有限公司 | 立体触控显示器 |
US10127850B2 (en) | 2015-05-29 | 2018-11-13 | Boe Technology Group Co., Ltd. | Field sequential display panel, field sequential display device and driving method using an organic light emitting diode (OLED) light source |
JP2017055374A (ja) * | 2015-09-11 | 2017-03-16 | 佐藤 正志 | 裸眼3d映像伝送ディスプレーシステム |
JP2018004990A (ja) * | 2016-07-04 | 2018-01-11 | エドワード・パクチャン | Memsディスプレイ |
JP7015104B2 (ja) | 2016-07-04 | 2022-02-15 | エドワード・パクチャン | Memsディスプレイ |
CN113130562A (zh) * | 2019-12-30 | 2021-07-16 | 乐金显示有限公司 | 具有双凸透镜的3d显示装置 |
CN113130562B (zh) * | 2019-12-30 | 2024-06-11 | 乐金显示有限公司 | 具有双凸透镜的3d显示装置 |
KR20210086341A (ko) * | 2019-12-31 | 2021-07-08 | 엘지디스플레이 주식회사 | 렌티큘러 렌즈들을 포함하는 입체 영상 표시 장치 |
CN113126316A (zh) * | 2019-12-31 | 2021-07-16 | 乐金显示有限公司 | 具有柱状透镜的3d显示设备 |
KR102749578B1 (ko) | 2019-12-31 | 2025-01-02 | 엘지디스플레이 주식회사 | 렌티큘러 렌즈들을 포함하는 입체 영상 표시 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008083073A (ja) | 立体表示装置および駆動方法 | |
JP5215261B2 (ja) | 映像表示装置 | |
JP2939826B2 (ja) | 投影表示装置 | |
JP6345909B2 (ja) | 表示装置の駆動方法 | |
US9076360B2 (en) | Display apparatus for displaying an image in a 2D mode and a 3D mode using a patterned retarder | |
KR101291799B1 (ko) | 입체영상 표시장치 | |
US20120268671A1 (en) | Display device | |
US20110304601A1 (en) | Image display device, driving method of image display device and terminal device | |
WO2012063830A1 (ja) | 液晶表示装置、表示装置およびゲート信号線駆動方法 | |
CN102034449A (zh) | 三维图像显示装置 | |
US9049436B2 (en) | Three dimensional image display device using binocular parallax | |
KR20100129670A (ko) | 3차원 디스플레이 | |
CN102707450B (zh) | 显示装置及其控制方法 | |
KR101002660B1 (ko) | 전자 영상 기기 및 그 구동 방법 | |
JP2012226161A (ja) | 表示装置 | |
JP2017138498A (ja) | 表示装置 | |
KR20120102003A (ko) | 표시장치 및 그 구동 방법, 및 배리어 장치 및 그 제조 방법 | |
US10061136B2 (en) | Display device and method for controlling the same | |
JP2012226104A (ja) | 表示装置 | |
JP6173591B2 (ja) | 2dと3d表示モードを兼備する液晶表示パネル及び表示方法 | |
KR20120014869A (ko) | 입체 표시 장치 및 액정 배리어 장치 | |
KR20160120199A (ko) | 디스플레이 장치 및 그 제어방법 | |
CN104754318A (zh) | 立体图像显示装置 | |
KR102098151B1 (ko) | 입체영상 표시장치 | |
US20130063332A1 (en) | Display device, display method, and electronic apparatus |