[go: up one dir, main page]

JP2008080327A - Small solution purification device - Google Patents

Small solution purification device Download PDF

Info

Publication number
JP2008080327A
JP2008080327A JP2007217988A JP2007217988A JP2008080327A JP 2008080327 A JP2008080327 A JP 2008080327A JP 2007217988 A JP2007217988 A JP 2007217988A JP 2007217988 A JP2007217988 A JP 2007217988A JP 2008080327 A JP2008080327 A JP 2008080327A
Authority
JP
Japan
Prior art keywords
solution
photocatalyst
small
container
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007217988A
Other languages
Japanese (ja)
Inventor
Yasuaki Hara
康明 原
Ayako Soga
綾香 曽我
Makoto Yoshida
吉田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP2007217988A priority Critical patent/JP2008080327A/en
Publication of JP2008080327A publication Critical patent/JP2008080327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small solution purification device effectively demonstrating photocatalytic activity for a purifying object solution, with simple and small structure, particularly suited to sterilization of cut flower dipping liquid and decomposition of organic matter. <P>SOLUTION: Non-woven fabric carrying a photocatalyst, titanium oxide in particular, or a metallic mesh type photocatalyst carrier and an ultraviolet light emitting diode are faced to be juxtaposed, a solution passage allowing the purifying object solution to flow is formed therebetween, and these are contained in one vessel to form the small solution purification device, particularly suited to sterilization of cut flower dipping liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線と光触媒を用いて溶液を浄化する小型の浄化装置に関し、特に、比較的小容量の容器内の切り花浸け液の殺菌等に用いて好適な小型溶液浄化装置に関する。   The present invention relates to a small purification device for purifying a solution using ultraviolet rays and a photocatalyst, and more particularly to a small solution purification device suitable for use in sterilization of cut flower immersion liquid in a relatively small capacity container.

従来の、切り花浸け液中の微生物繁殖抑制に用いられている抗菌剤は、環境への影響やコストの面で問題が残されている。また、粉末状の光触媒を使った場合も光触媒自体は使い捨てとなるため、コストや廃水処理の問題があり、添加量の調整等の手間や光触媒粉末の植物体への影響等が問題である。   Conventional antibacterial agents used to suppress microbial growth in cut flower soaking solution still have problems in terms of environmental impact and cost. In addition, when a powdery photocatalyst is used, the photocatalyst itself is disposable, so there are problems of cost and wastewater treatment, troubles such as adjustment of the addition amount, and the influence of the photocatalyst powder on the plant.

特許文献1には、切り花等の延命効果を得るために、透明な花瓶容器の内表面に、光触媒粒子を含有する実質的に透明な層を設けた花瓶が開示されている。また、特許文献2には、水中に含まれる菌を殺菌し、切り花の延命と水耕栽培の促成効果を得るために、花瓶の底面よりも若干上方の位置に、植物飼育用の抗菌フィルタを設けた植物飼育器が開示されており、この抗菌フィルタは、網目材からなる保持体内に粒子状の光触媒材を充填して構成されている。
特開平10−225351号公報 特開平10−146509号公報
Patent Document 1 discloses a vase in which a substantially transparent layer containing photocatalyst particles is provided on the inner surface of a transparent vase container in order to obtain a life extension effect such as cut flowers. Patent Document 2 discloses an antibacterial filter for raising plants at a position slightly above the bottom of the vase in order to sterilize bacteria contained in water and to obtain the effect of extending the life of cut flowers and hydroponics. A plant breeder provided is disclosed, and this antibacterial filter is configured by filling a particulate photocatalyst material into a holding body made of a mesh material.
JP-A-10-225351 JP-A-10-146509

しかし、切り花浸け液等に対する、従来の光触媒を用いた浄化装置では、溶液の殺菌効果や含有有機物分解効果が未だ不十分であるという問題がある。また、構造が複雑であったり、光触媒添加量の調整が困難であったり、小型の装置に構成されておらず各種の溶液浄化用途に汎用的に使用することが困難である、等の問題がある。   However, a conventional purification device using a photocatalyst against a cut flower soaking solution has a problem that the sterilizing effect of the solution and the effect of decomposing the contained organic matter are still insufficient. In addition, the structure is complicated, the adjustment of the amount of photocatalyst is difficult to adjust, and it is not configured in a small device, and it is difficult to use it for various solution purification purposes. is there.

そこで本発明の課題は、浄化対象溶液に対し効率よくかつ効果的に光触媒活性を発揮させることができ、構造が簡単でかつ小型であり、種々の用途に広範にかつ容易に適用でき、とくに切り花浸け液の殺菌および有機物分解に好適な、小型溶液浄化装置を提供することにある。   Accordingly, the problem of the present invention is that the photocatalytic activity can be efficiently and effectively exerted on the solution to be purified, the structure is simple and small, and it can be widely and easily applied to various uses. An object of the present invention is to provide a small-sized solution purification device suitable for sterilization of immersion liquid and decomposition of organic substances.

上記課題を解決するために、本発明に係る小型溶液浄化装置は、光触媒を担持した光触媒担持体と紫外線発光ダイオードとを対向させて併設し、両者間に浄化対象溶液が流通可能な溶液路を形成するとともに、これらを一つの容器内に収納したことを特徴とする小型の溶液浄化装置からなる。とくに一つの容器内に光触媒担持体と紫外線発光ダイオードをそれぞれ最適な位置にコンパクトに配置できるようにしているので、全体を小型の装置に構成しつつ、両者間の溶液路を流通される浄化対象溶液を、効率よくかつ効果的に浄化することが可能になる。   In order to solve the above-mentioned problems, a small solution purification apparatus according to the present invention has a photocatalyst carrier carrying a photocatalyst and an ultraviolet light emitting diode facing each other, and a solution path through which a solution to be purified can flow is provided between the two. A compact solution purifying device is characterized in that these are formed and housed in one container. In particular, since the photocatalyst carrier and the ultraviolet light emitting diode can be compactly arranged at optimal positions in a single container, the entire product is constructed as a small device, and the purification target is distributed through the solution path between the two. It becomes possible to purify the solution efficiently and effectively.

この小型溶液浄化装置においては、上記光触媒担持体としては、不織布に光触媒を担持したものが好ましい。このような形態とすることで、種々の形状を有する容器であっても、かつ、小型の容器であっても、容易に不織布光触媒担持体を容器内に所定の状態で収納することが可能になる。   In this small solution purification apparatus, the photocatalyst carrier is preferably a nonwoven fabric carrying a photocatalyst. By adopting such a form, it is possible to easily store the nonwoven fabric photocatalyst carrier in a predetermined state in a container, whether it is a container having various shapes or a small container. Become.

あるいは、上記光触媒担持体として、金属メッシュに光触媒を担持したものも好ましい。このような形態とすることで、比較的厚みの薄い金属メッシュ(例えば、厚み0.5mm程度の金属メッシュ)に光触媒を担持させることにより、担持された光触媒全体に紫外線発光ダイオードからの紫外線を容易にかつ効率よく照射することができるようになり、所望の光触媒活性を容易にかつ効果的に発揮させることができるようになる。   Alternatively, as the photocatalyst carrier, a metal mesh carrying a photocatalyst is also preferable. By adopting such a configuration, the photocatalyst is supported on a relatively thin metal mesh (for example, a metal mesh having a thickness of about 0.5 mm), so that UV light from the ultraviolet light emitting diode can be easily applied to the entire supported photocatalyst. In addition, it becomes possible to irradiate efficiently and efficiently, and the desired photocatalytic activity can be easily and effectively exhibited.

また、上記光触媒担持体が、紫外線発光ダイオードの少なくとも両側に配置されている形態とすることができる。これにより、紫外線発光ダイオードからの紫外線が広い面積にわたって光触媒担持体に照射され、該紫外線発光ダイオードからの紫外線を効率よく光触媒活性の発現に使用できるようになる。   Further, the photocatalyst carrier may be arranged on at least both sides of the ultraviolet light emitting diode. As a result, the ultraviolet light from the ultraviolet light emitting diode is irradiated onto the photocatalyst support over a wide area, and the ultraviolet light from the ultraviolet light emitting diode can be used efficiently to develop the photocatalytic activity.

あるいは、上記光触媒担持体が、上記容器内の上記紫外線発光ダイオードに対向する複数の面のうちの特定の面のみに(例えば、容器内の底面のみに)配置されており、残りの対向面は上記光触媒担持体が配置されていない面とされている形態とすることもできる。すなわち、紫外線発光ダイオードからの紫外線のみによる殺菌効果の及ぶ範囲をできるだけ広く確保して、紫外線のみによる殺菌効果を広い範囲にわたって効率よく作用させ、加えて、紫外線発光ダイオードからの紫外線を特定の面に配置された光触媒担持体にも照射することにより、光触媒活性を発現させて該光触媒活性による溶液の殺菌および有機物分解作用を併せて発現させ、紫外線による殺菌と紫外線および光触媒による殺菌および有機物分解との相乗効果を狙ったものである。   Alternatively, the photocatalyst carrier is disposed only on a specific surface (for example, only on the bottom surface in the container) of the plurality of surfaces facing the ultraviolet light-emitting diode in the container, and the remaining facing surfaces are It can also be set as the form made into the surface where the said photocatalyst carrier is not arrange | positioned. In other words, the sterilization effect of only ultraviolet rays from the ultraviolet light emitting diodes is ensured as wide as possible, and the sterilization effect of only ultraviolet rays works efficiently over a wide range, and in addition, the ultraviolet rays from the ultraviolet light emitting diodes are applied to a specific surface. By irradiating the arranged photocatalyst carrier, the photocatalytic activity is expressed, and the sterilization of the solution and the organic matter decomposing action by the photocatalytic activity are exhibited together. It is aimed at a synergistic effect.

光触媒としては、代表的には酸化チタンを使用できるが、所定の光触媒活性を発現可能なものであれば、その他の光触媒も使用可能である。   As the photocatalyst, titanium oxide can be typically used, but other photocatalysts can be used as long as they can exhibit a predetermined photocatalytic activity.

上記容器としては、容器内と容器外とを連通する連通路を、容器の下部側(例えば、底壁)と上部側(例えば、上蓋)とに有するものが好ましい。このように構成すれば、本発明に係る小型溶液浄化装置としての上記容器を、浄化対象溶液が収容されている容器(本発明に係る小型溶液浄化装置より大型の容器)中に単に浸漬させるだけで、上記容器内に容易に浄化対象溶液の流路を確保できるようになる。   As said container, what has the communicating path which connects the inside of a container and the exterior of a container in the lower part side (for example, bottom wall) and upper part side (for example, upper cover) is preferable. If comprised in this way, the said container as a small solution purification apparatus which concerns on this invention is only immersed in the container (container larger than the small solution purification apparatus which concerns on this invention) in which the purification object solution is accommodated. Thus, the flow path of the solution to be purified can be easily secured in the container.

また、上記容器が、外側容器と、その内部に収納される内側容器とからなり、内側容器内に上記紫外線発光ダイオードが、内側容器と外側容器との間の少なくとも一部位に(例えば、外側容器の底壁内面に)上記光触媒担持体が、それぞれ収納されている形態とすることが好ましい。内側容器は、紫外線が透過できるよう、実質的に透明容器であることが好ましい。このように構成すれば、溶液路が容易に形成されるとともに、紫外線発光ダイオードからの紫外線が、その周囲に位置する光触媒担持体に効率よく当てられ、望ましい光触媒活性が発現される。また、紫外線発光ダイオードからの紫外線を、殺菌作用を発揮し、光触媒担持体には照射されない方向に出射される紫外線と、光触媒担持体に照射される方向に出射される紫外線とに分けるような形態を採ることも可能である。   The container includes an outer container and an inner container accommodated therein, and the ultraviolet light emitting diode is disposed at least partially between the inner container and the outer container (for example, the outer container). It is preferable that the photocatalyst carrier is housed on the inner surface of the bottom wall. The inner container is preferably a substantially transparent container so that ultraviolet rays can be transmitted. If comprised in this way, while a solution path | route will be formed easily, the ultraviolet-ray from an ultraviolet light emitting diode will be efficiently applied to the photocatalyst support body located in the circumference | surroundings, and desired photocatalytic activity will be expressed. Further, the ultraviolet rays from the ultraviolet light emitting diodes are divided into an ultraviolet ray that exhibits a bactericidal action and is emitted in a direction not irradiated on the photocatalyst carrier and an ultraviolet ray emitted in the direction irradiated on the photocatalyst carrier. It is also possible to adopt.

また、上記溶液路は、上下方向に延びる流路に形成されていることが好ましい。紫外線発光ダイオードの起動により多かれ少なかれ発熱が生じるので、この発熱に伴う溶液の対流が期待できる。溶液路に対流が生じると、浄化対象溶液が自然に効率よく入れ替えられることになるので、浄化が促進される。   Further, the solution path is preferably formed in a flow path extending in the vertical direction. Since more or less heat is generated by starting the ultraviolet light emitting diode, convection of the solution accompanying this heat generation can be expected. When convection occurs in the solution path, the purification target solution is naturally and efficiently replaced, and thus purification is promoted.

本発明に係る小型溶液浄化装置は、小型でかつ、溶液の殺菌や含有有機物の分解が求められる、あらゆる用途に使用可能であり、とくに、浄化対象溶液が切り花浸け液からなる場合に好適なものである。   The small solution purification apparatus according to the present invention is small and can be used for any application where sterilization of the solution or decomposition of contained organic substances is required, and is particularly suitable when the solution to be purified is composed of a cut flower soaking solution. It is.

本発明に係る小型溶液浄化装置は、小容量の容器内の溶液の殺菌および有機物の分解に適しており、光触媒担持体と紫外線発光ダイオードを極めて簡単かつコンパクトな構造で高効率に作用するように組み込んでいるので、メンテナンスが容易で繰り返し使用が可能な、小型で安価な装置として構成できる。   The small-sized solution purification apparatus according to the present invention is suitable for sterilization of solutions in small-capacity containers and decomposition of organic substances so that the photocatalyst support and the ultraviolet light-emitting diode can operate with high efficiency with an extremely simple and compact structure. Since it is incorporated, it can be configured as a small and inexpensive device that is easy to maintain and can be used repeatedly.

このように、本発明に係る小型溶液浄化装置は、小型で低消費電力、少発熱量で簡単な構造であるという特徴を持っており、小規模な容器内の溶液中の有機物や微生物の分解に好適に使用できる。したがって、直売所や家庭等のにおける切り花の品質保持に利用が可能であると共に、同様の作用が要求される他の用途へも適用可能である。   As described above, the small solution purification apparatus according to the present invention has a small size, low power consumption, a small calorific value, and a simple structure, and decomposes organic matter and microorganisms in the solution in a small container. Can be suitably used. Therefore, it can be used for maintaining the quality of cut flowers in direct sales offices, homes, etc., and can also be applied to other uses that require similar actions.

以下に、本発明の望ましい実施の形態について、実際に行った実験に基づき、図面を参照しながら説明する。次に示すような実験により、試作機による有機物分解能力、抗菌機能を検証した。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings based on experiments actually performed. The following experiments verified the ability to decompose organic substances and the antibacterial function of the prototype.

I.実験−1
1.実験方法
(1)試作機の構造
図1、図2に、本発明の一実施態様に係る小型溶液浄化装置として製作した第1の試作機1を示す。試作機1は、溶液が流通するための穴を開けた外側容器2内に、光触媒担持体としての不織布タイプの酸化チタン担持体3と、外側容器2の蓋体4に取り付けられ、紫外線発光ダイオード5(SDL-5N3CUV-A)を封入した内側容器としてのサンプル瓶6とを収納して組み込んだ構造に構成した。長方形に裁断した担持体3は、その幅方向中心部が紫外線発光ダイオード5の照射方向に位置するように、発光部としての上記サンプル瓶6をU字型に包み込む形で外側容器2内に収めた。したがって、紫外線発光ダイオード5の両側に不織布タイプ酸化チタン担持体3が位置している。発光部(酸化チタン担持体3を収納した内側容器としてのサンプル瓶6)と担持体3の間には浄化対象溶液が流通する溶液路が形成され、かつ紫外線が担持体に効率良く照射される隙間を設定してある。この隙間を外側容器2の底壁の中心に設置したしたビス7によって担持体3を底から支えることにより保持する構造とした。外側容器2には、蓋体にあたる上面側と底面側のみに、あるいはそれらに実質的に対応する位置(つまり、外側容器2の上部側と下部側)に、溶液の流通孔8、9を設け、外側容器2内に設置された紫外線発光ダイオード5が発する微量の熱に起因する溶液の対流により、効率良く外側容器2の底面側から溶液が流入し、浄化された溶液が上面側から流出される構造とした。外側容器2の底面には、上記のビス7と共に、4本のビス10を錘として設置し、本装置が溶液の入っている容器の底部に設置される際、正しい姿勢に設置され、効果が最大限に発揮される構造とした。紫外線発光ダイオード5は、三端子レギュレータ及び電流制限用抵抗器(図示略)により制御した。
I. Experiment-1
1. Experimental Method (1) Structure of Prototype Machine FIGS. 1 and 2 show a first prototype machine 1 manufactured as a small solution purification apparatus according to an embodiment of the present invention. The prototype 1 is attached to a non-woven type titanium oxide carrier 3 as a photocatalyst carrier and a lid 4 of the outer vessel 2 in an outer vessel 2 having a hole through which a solution flows. 5 (SDL-5N3CUV-A) was enclosed in a sample bottle 6 as an inner container. The carrier 3 cut into a rectangular shape is housed in the outer container 2 so as to wrap the sample bottle 6 as a light emitting part in a U shape so that the center in the width direction is located in the irradiation direction of the ultraviolet light emitting diode 5. It was. Therefore, the nonwoven fabric type titanium oxide carrier 3 is located on both sides of the ultraviolet light emitting diode 5. A solution path through which the solution to be purified flows is formed between the light emitting part (sample bottle 6 as an inner container containing the titanium oxide carrier 3) and the carrier 3, and ultraviolet rays are efficiently irradiated to the carrier. A gap is set. This gap was held by supporting the carrier 3 from the bottom with a screw 7 installed at the center of the bottom wall of the outer container 2. The outer container 2 is provided with solution circulation holes 8 and 9 only on the upper surface side and the bottom surface side corresponding to the lid or at positions substantially corresponding thereto (that is, the upper side and the lower side of the outer container 2). The solution efficiently flows from the bottom surface side of the outer container 2 and the purified solution flows out from the upper surface side by the convection of the solution caused by a small amount of heat generated by the ultraviolet light emitting diode 5 installed in the outer container 2. The structure is as follows. On the bottom surface of the outer container 2, four screws 10 are installed as weights together with the above-described screws 7, and when the apparatus is installed at the bottom of the container containing the solution, it is installed in a correct posture and has an effect. The structure is maximized. The ultraviolet light emitting diode 5 was controlled by a three-terminal regulator and a current limiting resistor (not shown).

(2)有機物分解能力試験
光触媒として利用する酸化チタンの抗菌(殺菌)機能は、光(紫外線)により励起された酸化チタンの酸化分解能力により隣接する有機物を分解することによっている。そこで、抗菌機能を測定する前に、上記試作機1の能力を確認するため、メチレンブルーに対する分解能力を測定することとした。1000mlの純水にメチレンブルーを3滴投入攪拌後、2つの500mlビーカーに同量づつ移した。図3に示すように、一方のビーカー11に試作機1を投入し(以降、試験区1とする。)、もう一方のビーカー12に試作機から紫外線発光ダイオードを除いたもの(以降、対照区1とする。)を投入した。これを図4に示すように遮光用のダンボール箱13の中に設置し、試験区1の紫外線発光ダイオードに通電した。一定時間おきに各区の液を攪拌後採取し、島津製作所社製UVmini-1240により波長665nmの吸光度を測定した。
(2) Organic substance decomposing ability test The antibacterial (sterilizing) function of titanium oxide used as a photocatalyst is based on decomposing adjacent organic substances by the oxidative decomposing ability of titanium oxide excited by light (ultraviolet rays). Therefore, in order to confirm the ability of the prototype 1 before measuring the antibacterial function, the decomposition ability against methylene blue was measured. After adding 3 drops of methylene blue to 1000 ml of pure water and stirring, the same amount was transferred to two 500 ml beakers. As shown in FIG. 3, the prototype 1 is loaded into one beaker 11 (hereinafter referred to as test group 1), and the other beaker 12 is obtained by removing the ultraviolet light emitting diode from the prototype (hereinafter referred to as the control group). 1). As shown in FIG. 4, this was installed in a light-shielding cardboard box 13, and the ultraviolet light-emitting diodes in the test section 1 were energized. The liquid in each section was collected after stirring at regular intervals, and the absorbance at a wavelength of 665 nm was measured using UVmini-1240 manufactured by Shimadzu Corporation.

(3)切り花浸け液内の微生物増殖抑制および花持ちの試験
図5に示すように、純水を500mlづつ入れた2つの500ml三角フラスコのうち、一方の三角フラスコ21に試作機1を投入し(以降、試験区2とする。)、もう一方の三角フラスコ22に試作機1から紫外線発光ダイオードを除いたもの(以降、対照区2とする。)を投入した。各区に切り花としてのヒマワリ23(品種名:ハイブリッドサンフラワー)を5本づつを投入し、一定時間ごとに浸け液を採取し、ペトリフィルム(3M社製、AC6400)により25℃で24時間培養した後、発生したコロニーを計数した。同時に切り花の状態も確認した。
(3) Inhibition of microbial growth in the cut flower soaking solution and test of flower holding As shown in FIG. 5, the prototype 1 is put into one Erlenmeyer flask 21 out of two 500 ml Erlenmeyer flasks each containing 500 ml of pure water. (Hereinafter referred to as test group 2), the other Erlenmeyer flask 22 from which the ultraviolet light emitting diode was removed from the prototype 1 (hereinafter referred to as control group 2) was charged. In each zone, 5 sunflowers 23 (variety name: hybrid sunflower) as cut flowers were put in, and the immersion liquid was collected at regular intervals and cultured at 25 ° C for 24 hours with Petrifilm (3M, AC6400). Thereafter, the generated colonies were counted. At the same time, the state of cut flowers was also confirmed.

2.実験結果
(1)有機物分解能力試験
試験開始前における波長665nmの吸光度は0.202absであった。試験開始後の吸光度変化は図6に示すようになり、対照区1(TiO2(Cont.))と比較して、紫外線発光ダイオード(UV-LED)と光触媒としての酸化チタンの担持体とを組み合わせた試験区1(紫外線+酸化チタン(UV+TiO2) )の吸光度の低下が大きかった。また、対照区1においても若干の吸光度の低下が認められた。
2. Experimental results (1) Organic matter decomposition ability test Absorbance at a wavelength of 665 nm before the start of the test was 0.202 abs. The change in absorbance after the start of the test is as shown in FIG. 6. Compared with the control group 1 (TiO 2 (Cont.)), The ultraviolet light emitting diode (UV-LED) and the support of titanium oxide as the photocatalyst were used. The decrease in absorbance of test group 1 (ultraviolet + titanium oxide (UV + TiO 2 )) combined was large. In the control group 1, a slight decrease in absorbance was also observed.

(2)切り花浸け液内の微生物増殖抑制および花持ちの試験
ペトリフィルム上のコロニー数の変化は図7に示すとおりであった。試験開始1日後では対照区2が56コロニーであったのに対して試験区2は3コロニー、試験開始2日後では対照区2が85コロニーであったのに対して試験区2は6コロニーとなり、試験区2では微生物の増殖が抑制されているものと考えられる。試験区2と対照区2の浸け液の温度差は試験区2が対照区2に対し0.2〜0.3℃高くなった。花持ちに関しては、試験区の方が若干良好であったが大きな差は認められなかった。
(2) Microbial growth inhibition and cut flower test in cut flower soaking solution The change in the number of colonies on the Petri film was as shown in FIG. One day after the start of the test, control group 2 had 56 colonies, whereas test group 2 had 3 colonies, and 2 days after the start of the test, control group 2 had 85 colonies, whereas test group 2 had 6 colonies. In Test Zone 2, it is considered that the growth of microorganisms is suppressed. The temperature difference of the immersion liquid between the test group 2 and the control group 2 was 0.2 to 0.3 ° C. higher in the test group 2 than in the control group 2. As for the longevity, the test area was slightly better, but no significant difference was observed.

3.考察
(1)有機物分解能力試験
試験区1で対照区1より吸光度の低下が大きかったのは、試験区1において光触媒によりメチレンブルーが分解され濃度が低下したものと考えられる。また、対照区1においても若干の吸光度の低下が認められたのは、光触媒担持体の吸着効果によるものと考えられる。したがって、今回の担持体を使用した場合は、担持体がメチレンブルーを吸着し、それが後分解されているものと考えられる。
3. Consideration (1) Organic matter decomposing ability test It was considered that the decrease in absorbance in test group 1 was larger than that in control group 1 because methylene blue was decomposed by the photocatalyst in test group 1 and the concentration decreased. Further, the slight decrease in absorbance was also observed in the control group 1 because of the adsorption effect of the photocatalyst carrier. Therefore, when the present support is used, it is considered that the support adsorbs methylene blue and is later decomposed.

(2)切り花浸け液内の微生物増殖抑制および花持ちの試験
試験区2で対照区2よりコロニー数が少なかったのは、試験区2において光触媒により微生物が分解され菌密度が低下したものと考えられる。また、試験区2の浸け液の温度が対照区2に対し0.2〜0.3℃高くなったのは発光ダイオードの発熱によるものと考えられる。切り花の品質に悪影響を及ぼすほどではなく、光源の発熱量がこの程度であるのは紫外線源として発光ダイオードを使った場合の利点と考えられる。さらに、この微量の発熱は容器内の浸け液に対流を発生させ、装置内への浸け液の循環に貢献しているものと考えられる。
(2) Inhibition of microbial growth in cut flower soaking solution and test of flower retention The number of colonies in test group 2 was smaller than that in control group 2 because the microorganisms were decomposed by photocatalyst in test group 2 and the bacterial density decreased. It is done. Moreover, it is considered that the temperature of the immersion liquid in the test group 2 was 0.2 to 0.3 ° C. higher than that in the control group 2 due to heat generation of the light emitting diode. The amount of heat generated by the light source, which does not adversely affect the quality of cut flowers, is considered to be an advantage when a light emitting diode is used as the ultraviolet light source. Further, it is considered that this small amount of heat generation causes convection in the immersion liquid in the container and contributes to the circulation of the immersion liquid in the apparatus.

花持ちに関して大きな差が認められなかったのは、ヒマワリの切り花の花持ちが5日程度と短く、浸け液中の微生物の影響を受けにくいことや、直売現場に比べ清浄な条件下で試験を実施したためと考えられる。   There was no significant difference in the longevity of flowers. The longevity of cut flowers of sunflowers was as short as about 5 days, and they were less susceptible to the effects of microorganisms in the soaking solution. It is thought that it was implemented.

このように、上記試験により、本発明に係る小型溶液浄化装置の、優れた殺菌性能、有機物分解性能を確認することができた。   As described above, the above-described tests confirmed the excellent sterilization performance and organic matter decomposition performance of the small solution purification apparatus according to the present invention.

II.実験−2
(1)試作機の構造
図8〜図10に、本発明の別の実施態様に係る小型溶液浄化装置として製作した第2の試作機31を示す。この第2の試作機31においては、第1の試作機1に比べ、厚さ約0.5mmの金属メッシュに光触媒(酸化チタン)を担持させた光触媒担持体32(酸化チタン担持体、図10参照)を使用し、それを外側容器33の底壁の内面にのみ配置した。外側容器33の底壁に、第1の試作機1と同様に容器全体を正しい姿勢で液中に沈ませるための錘としてのビス34を、その頭部側が外側容器33の底壁の内面側となるように設け(図9参照)、そのビス34の頭部上に光触媒担持体32を配置し(図10参照)、光触媒担持体32と紫外線発光ダイオード38(図9参照)とが所定の間隔となるように設定されている。溶液が流通するための孔35は、外側容器33の底部近くの側壁に開け、外側容器33の蓋体36には上部側の溶液流通用の孔37を設けた。この外側容器33の蓋体36に、第1の試作機1同様、紫外線発光ダイオード38を封入した内側容器としてのサンプル瓶39を取り付け、サンプル瓶39を外側容器33内に組み付けて第2の試作機31を構成した。この第2の試作機31では、紫外線発光ダイオード38からの紫外線が、内側容器としてのサンプル瓶39と外側容器33との間の溶液路を流通する浄化対象溶液に照射されて紫外線のみによる殺菌効果が発現されるとともに、溶液路の一部(外側容器33の底壁の内面)に配置された光触媒担持体32に紫外線発光ダイオード38からの紫外線が照射されて光触媒活性による殺菌および有機物分解効果が発現され、相乗的な効果が得られるようにされている。なお、紫外線発光ダイオード38にはSL382AAUEを使用し、5Vの直流安定化電源のプラス側に82Ωの電流制限用抵抗器を挿入し、紫外線発光ダイオード38を約3.2V、16mAで駆動した。
II. Experiment-2
(1) Structure of prototype machine FIGS. 8-10 shows the 2nd prototype 31 manufactured as a small solution purification apparatus which concerns on another embodiment of this invention. In this second prototype 31, compared to the first prototype 1, a photocatalyst carrier 32 (titanium oxide carrier, see FIG. 10) in which a photocatalyst (titanium oxide) is carried on a metal mesh having a thickness of about 0.5 mm. ) Was placed only on the inner surface of the bottom wall of the outer container 33. On the bottom wall of the outer container 33, as in the first prototype 1, screws 34 as weights for immersing the entire container in the liquid in the correct posture are arranged, and the head side is the inner surface side of the bottom wall of the outer container 33. (See FIG. 9), a photocatalyst carrier 32 is disposed on the head of the screw 34 (see FIG. 10), and the photocatalyst carrier 32 and the ultraviolet light emitting diode 38 (see FIG. 9) It is set to be an interval. A hole 35 through which the solution flows was formed in a side wall near the bottom of the outer container 33, and an upper solution circulation hole 37 was provided in the lid 36 of the outer container 33. Similar to the first prototype 1, a sample bottle 39 as an inner container in which an ultraviolet light emitting diode 38 is enclosed is attached to the lid 36 of the outer container 33, and the sample bottle 39 is assembled in the outer container 33 to form a second prototype. Machine 31 was configured. In the second prototype 31, the ultraviolet light from the ultraviolet light emitting diode 38 is applied to the solution to be purified flowing through the solution path between the sample bottle 39 as the inner container and the outer container 33, and the sterilizing effect by only the ultraviolet light. And the photocatalyst carrier 32 disposed in a part of the solution path (the inner surface of the bottom wall of the outer container 33) is irradiated with ultraviolet rays from the ultraviolet light emitting diode 38, and has the effect of sterilization and organic matter decomposition by the photocatalytic activity. It is expressed and a synergistic effect is obtained. In addition, SL382AAUE was used for the ultraviolet light emitting diode 38, an 82Ω current limiting resistor was inserted on the positive side of the 5V DC stabilized power supply, and the ultraviolet light emitting diode 38 was driven at about 3.2V, 16mA.

(2)有機物分解能力試験
第2の試作機31の有機物に対する分解能力を確認するために、第1の試作機1と同様の方法によりメチレンブルーに対する分解能力を測定した。試験区は紫外線発光ダイオード+光触媒担持体区(以降試験区3とする)、光触媒担持体のみの区(以降対照区3とする)、紫外線発光ダイオードのみの区(以降対照区4とする)の3区とした。実験は、図11に示すように、北側窓にブラインドを降ろした条件下に上記3区の三角フラスコ41を置いて実施した。
(2) Organic matter decomposition ability test In order to confirm the ability of the second prototype 31 to decompose organic matter, the ability to decompose methylene blue was measured by the same method as the first prototype 1. The test groups are the ultraviolet light emitting diode + photocatalyst carrier group (hereinafter referred to as test group 3), the photocatalyst carrier only group (hereinafter referred to as control group 3), and the ultraviolet light emitting diode only group (hereinafter referred to as control group 4). It was set as 3 wards. As shown in FIG. 11, the experiment was performed by placing the above-mentioned 3-section Erlenmeyer flask 41 under the condition that the blind was lowered on the north side window.

実験の結果、図12に示すように、試験区3の吸光度が最も大きく低下した。これは、メチレンブルーが光触媒により分解され濃度が低下したものと考えられる。対照区3は試験区3についで吸光度の低下が認められた。これは、自然光に含まれるの紫外線が光触媒担持体に作用した結果と考えられる。   As a result of the experiment, as shown in FIG. This is considered that the density | concentration fell because methylene blue was decomposed | disassembled by the photocatalyst. In the control group 3, a decrease in absorbance was observed following the test group 3. This is considered to be a result of the ultraviolet rays contained in natural light acting on the photocatalyst support.

(3)切り花における花持ち試験
第1の試作機1と同様の方法により、ヒマワリ切り花42の花持ちの試験を実施した(図13、図14)。装置および試験区の構成は有機物分解能力試験の同様とした。図13に試験開始時、図14に5日後の結果を示すように、花持ちの良さは、試験区3(TiO2+UV) >対照区4(UV)>対照区3(TiO2)となった。これは、試験区2では紫外線による殺菌効果と光触媒による殺菌および有機物分解効果が相乗的に作用し、対照区4では紫外線による殺菌効果のみが予想以上に効果的に作用した結果と考えられる。
(3) Endurance test for cut flowers The endurance test for sunflower cut flowers 42 was carried out in the same manner as in the first prototype 1 (FIGS. 13 and 14). The configuration of the apparatus and test section was the same as in the organic matter decomposition ability test. As shown in FIG. 13 at the start of the test and in FIG. 14 the results after 5 days, the goodness of the flowers is: test group 3 (TiO 2 + UV)> control group 4 (UV)> control group 3 (TiO 2 ). became. This is considered to be a result of the sterilization effect by ultraviolet rays, the sterilization effect by the photocatalyst and the organic matter decomposition effect synergistically in the test group 2, and only the sterilization effect by ultraviolet rays more effectively than expected in the control group 4.

このように、第2の試作機31における、薄い金属メッシュに光触媒を担持させた構造、および、溶液路に部分的に光触媒担持体を配置し、それに紫外線発光ダイオードからの紫外線を照射した殺菌効果および有機物分解効果が得られるように構成するとともに、光触媒担持体を配置していない部位に対しては単に紫外線発光ダイオードからの紫外線を照射して殺菌効果が得られるように構成した構造により、効率のよい溶液浄化を行うことができることが確認された。   Thus, in the second prototype 31, the structure in which the photocatalyst is supported on the thin metal mesh, and the sterilization effect in which the photocatalyst support is partially disposed in the solution path and irradiated with the ultraviolet light from the ultraviolet light emitting diode. In addition, it is structured so that the organic substance decomposition effect can be obtained, and the structure in which the sterilizing effect is obtained by simply irradiating the ultraviolet ray from the ultraviolet light emitting diode to the part where the photocatalyst carrier is not arranged is effective. It was confirmed that good solution purification can be performed.

本発明に係る小型溶液浄化装置は、上記試験で確認したように、切り花浸け液の浄化にとくに有効であるが、その他、小型でかつ溶液の浄化が求められる種々の分野への適用が可能である。   As confirmed in the above test, the small solution purification apparatus according to the present invention is particularly effective for the purification of cut flower soaking liquid, but can be applied to various other fields that are small and require purification of the solution. is there.

本発明の一実施態様に係る小型溶液浄化装置として製作した第1の試作機の分解斜視図である。It is a disassembled perspective view of the 1st prototype manufactured as a small solution purification apparatus concerning one embodiment of the present invention. 図1の試作機を別の角度から見た分解斜視図である。It is the disassembled perspective view which looked at the prototype of FIG. 1 from another angle. 試験において図1の試作機をビーカー内の溶液中に浸漬した状態を示す斜視図である。It is a perspective view which shows the state which immersed the prototype of FIG. 1 in the solution in a beaker in a test. 試験において図1の試作機を浸漬したビーカーと試作機から紫外線発光ダイオードを除いたビーカーとを遮光用のダンボール箱の中に設置した状態を示す斜視図である。It is a perspective view which shows the state which installed the beaker which immersed the prototype of FIG. 1 in the test, and the beaker which removed the ultraviolet light emitting diode from the prototype in the cardboard box for light shielding. 試験において試作機を投入した三角フラスコと試作機から紫外線発光ダイオードを除いたものを投入した三角フラスコとにヒマワリを投入した状態を示す斜視図である。It is a perspective view which shows the state which injected the sunflower into the Erlenmeyer flask which supplied the prototype in the test, and the Erlenmeyer flask which introduced what removed the ultraviolet light emitting diode from the prototype. 試験区1と対照区1におけるメチレンブルーの吸光度の変化を示す特性図である。It is a characteristic view which shows the change of the light absorbency of the methylene blue in the test group 1 and the control group 1. FIG. 試験区2と対照区2におけるコロニー数の変化を示す特性図である。It is a characteristic view which shows the change of the number of colonies in the test group 2 and the control group 2. FIG. 本発明の別の実施態様に係る小型溶液浄化装置として製作した第2の試作機の分解斜視図である。It is a disassembled perspective view of the 2nd prototype manufactured as a small solution purification apparatus which concerns on another embodiment of this invention. 図8の試作機の外側容器の底壁内面の平面図である(光触媒担持体配置前)。It is a top view of the bottom wall inner surface of the outer side container of the prototype of FIG. 8 (before photocatalyst carrier arrangement | positioning). 図8の試作機の外側容器の底壁内面の平面図である(光触媒担持体配置後)。FIG. 9 is a plan view of the inner surface of the bottom wall of the outer container of the prototype of FIG. 8 (after arrangement of the photocatalyst carrier). 第2の試作機の有機物分解能力試験試験の様子を示す斜視図である。It is a perspective view which shows the mode of the organic matter decomposition | disassembly capability test test of a 2nd prototype. 試験区3と対照区3、4におけるメチレンブルーの吸光度の変化を示す特性図である。FIG. 6 is a characteristic diagram showing changes in absorbance of methylene blue in test group 3 and control groups 3 and 4; 試験区3と対照区3、4における三角フラスコにヒマワリを投入した試験開始時の状態を示す斜視図である。It is a perspective view which shows the state at the time of the test start which put the sunflower into the conical flask in the test group 3 and the control groups 3 and 4. FIG. 試験区3と対照区3、4における三角フラスコにヒマワリを投入した試験開始後5日経過時の状態を示す斜視図である。It is a perspective view which shows the state at the time of five-day progress after the test start which injected the sunflower into the conical flask in the test group 3 and the control groups 3 and 4. FIG.

符号の説明Explanation of symbols

1 小型溶液浄化装置として製作した第1の試作機
2 外側容器
3 光触媒担持体としての不織布タイプ酸化チタン担持体
4 蓋体
5 紫外線発光ダイオード
6 内側容器としてのサンプル瓶
7、10 ビス
8、9 溶液の流通孔
11、12 ビーカー
13 遮光用のダンボール箱
21、22 三角フラスコ
23 切り花としてのヒマワリ
31 小型溶液浄化装置として製作した第2の試作機
32 光触媒担持体としての金属メッシュ酸化チタン担持体
33 外側容器
34 ビス
35、37 溶液の流通孔
36 蓋体
38 紫外線発光ダイオード
39 内側容器としてのサンプル瓶
41 三角フラスコ
42 切り花としてのヒマワリ
DESCRIPTION OF SYMBOLS 1 1st prototype machine produced as a small solution purification apparatus 2 Outer container 3 Nonwoven fabric type titanium oxide support body 4 as a photocatalyst support body 4 Cover body 5 Ultraviolet light emitting diode 6 Sample bottle 7, 10 Bis 8, 9 solution as an inner container Distribution holes 11 and 12 Beaker 13 Light-shielding cardboard boxes 21 and 22 Erlenmeyer flask 23 Sunflower 31 as cut flower Second prototype 32 manufactured as a small solution purification device Metal mesh titanium oxide support 33 as photocatalyst support Outside Container 34 Screws 35 and 37 Solution flow hole 36 Lid 38 UV light emitting diode 39 Sample bottle 41 as inner container Erlenmeyer flask 42 Sunflower as cut flower

Claims (10)

光触媒を担持した光触媒担持体と紫外線発光ダイオードとを対向させて併設し、両者間に浄化対象溶液が流通可能な溶液路を形成するとともに、これらを一つの容器内に収納したことを特徴とする小型溶液浄化装置。   The photocatalyst carrying body carrying the photocatalyst and the ultraviolet light emitting diode are arranged opposite to each other, and a solution path through which the solution to be purified can flow is formed between them, and these are housed in one container. Small solution purification device. 前記光触媒担持体が、不織布に光触媒を担持したものからなる、請求項1に記載の小型溶液浄化装置。   The small-sized solution purification apparatus of Claim 1 which consists of what the said photocatalyst support body carry | supported the photocatalyst on the nonwoven fabric. 前記光触媒担持体が、金属メッシュに光触媒を担持したものからなる、請求項1に記載の小型溶液浄化装置。   The small-sized solution purifying apparatus according to claim 1, wherein the photocatalyst carrier comprises a metal mesh carrying a photocatalyst. 前記光触媒担持体が、前記紫外線発光ダイオードの少なくとも両側に配置されている、請求項1〜3のいずれかに記載の小型溶液浄化装置。   The small-sized solution purification apparatus in any one of Claims 1-3 with which the said photocatalyst carrier is arrange | positioned at least on both sides of the said ultraviolet light emitting diode. 前記光触媒担持体が、前記容器内の前記紫外線発光ダイオードに対向する複数の面のうちの特定の面のみに配置されており、残りの対向面は前記光触媒担持体が配置されていない面とされている、請求項1〜3のいずれかに記載の小型溶液浄化装置。   The photocatalyst carrier is disposed only on a specific surface of the plurality of surfaces facing the ultraviolet light emitting diode in the container, and the remaining facing surface is a surface on which the photocatalyst carrier is not disposed. The small solution purification apparatus in any one of Claims 1-3. 前記光触媒が酸化チタンからなる、請求項1〜5のいずれかに記載の小型溶液浄化装置。   The small solution purification apparatus according to any one of claims 1 to 5, wherein the photocatalyst is made of titanium oxide. 前記容器が、容器内と容器外とを連通する連通路を、容器の下部側と上部側とに有するものからなる、請求項1〜6のいずれかに記載の小型溶液浄化装置。   The small solution purification apparatus according to any one of claims 1 to 6, wherein the container includes a communication path that communicates the inside and outside of the container on a lower side and an upper side of the container. 前記容器が、外側容器と、その内部に収納される内側容器とからなり、内側容器内に前記紫外線発光ダイオードが、内側容器と外側容器との間の少なくとも一部位に前記光触媒担持体が、それぞれ配置されている、請求項1〜7のいずれかに記載の小型溶液浄化装置。   The container comprises an outer container and an inner container accommodated therein, the ultraviolet light emitting diode in the inner container, and the photocatalyst carrier in at least a portion between the inner container and the outer container, The small solution purification apparatus in any one of Claims 1-7 arrange | positioned. 前記溶液路が、上下方向に延びる流路に形成されている、請求項1〜8のいずれかに記載の小型溶液浄化装置。   The small solution purification apparatus in any one of Claims 1-8 in which the said solution path is formed in the flow path extended in an up-down direction. 前記浄化対象溶液が切り花浸け液からなる、請求項1〜9のいずれかに記載の小型溶液浄化装置。   The small solution purification apparatus in any one of Claims 1-9 in which the said purification object solution consists of cut flower immersion liquid.
JP2007217988A 2006-09-01 2007-08-24 Small solution purification device Pending JP2008080327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217988A JP2008080327A (en) 2006-09-01 2007-08-24 Small solution purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006237469 2006-09-01
JP2007217988A JP2008080327A (en) 2006-09-01 2007-08-24 Small solution purification device

Publications (1)

Publication Number Publication Date
JP2008080327A true JP2008080327A (en) 2008-04-10

Family

ID=39351707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217988A Pending JP2008080327A (en) 2006-09-01 2007-08-24 Small solution purification device

Country Status (1)

Country Link
JP (1) JP2008080327A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100632U (en) * 1990-02-02 1991-10-21
JPH0889083A (en) * 1994-09-27 1996-04-09 Matsushita Electric Ind Co Ltd Flower arrangement
JPH09940A (en) * 1995-06-19 1997-01-07 Toyoda Gosei Co Ltd Photocatalytst device and its application device
JPH10146509A (en) * 1996-09-09 1998-06-02 Toto Ltd Antibacterial filter for growing plant and plant growing device equipped therewith
JP2006231150A (en) * 2005-02-23 2006-09-07 Ebara Corp Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same
JP2006320282A (en) * 2005-05-20 2006-11-30 Tokushima Ken Culture fluid circulation supply device, culture fluid circulation supply sterilizer, and culture fluid circulation supply method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100632U (en) * 1990-02-02 1991-10-21
JPH0889083A (en) * 1994-09-27 1996-04-09 Matsushita Electric Ind Co Ltd Flower arrangement
JPH09940A (en) * 1995-06-19 1997-01-07 Toyoda Gosei Co Ltd Photocatalytst device and its application device
JPH10146509A (en) * 1996-09-09 1998-06-02 Toto Ltd Antibacterial filter for growing plant and plant growing device equipped therewith
JP2006231150A (en) * 2005-02-23 2006-09-07 Ebara Corp Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same
JP2006320282A (en) * 2005-05-20 2006-11-30 Tokushima Ken Culture fluid circulation supply device, culture fluid circulation supply sterilizer, and culture fluid circulation supply method

Similar Documents

Publication Publication Date Title
JP3145848U (en) Air purifier using plants
JP5371060B2 (en) Water for expressing a pathogenic resistance gene (PR gene group) encoding a plant immunostimulatory protein, a method for preventing plant diseases using the water, and a device for producing the water
WO2013073564A1 (en) Purification device and purification method
JP4754512B2 (en) Sanitizable hydroponics apparatus and hydroponics method
GB2049380A (en) Method of purifying water in fish keeping water tank
JP2006110470A (en) Water cleaning agent
JP7406776B1 (en) aquaponics system
JP3125696B2 (en) Fluid purification device
KR20150050022A (en) Apparatus for maintaining freshness in refrigerator
JP2008080327A (en) Small solution purification device
KR101323258B1 (en) plasma sterilization method
KR100810996B1 (en) Fish tank with water purifier
JP5378262B2 (en) Hydroponics equipment
JP2008141986A (en) Apparatus for treating tank water for fish, and method for treating tank water for fish
JP2001136849A (en) Hydroponic / aerial cultivation method and apparatus
US20110305603A1 (en) Embedded Photocatalyst for Hydrogen Perioxide Protection
JP6089526B2 (en) Ozonizer, liquid purification apparatus using the same, and treatment method
JP3171466U (en) Hydroponics box
JP2016063758A (en) Hydroponics system
KR102641860B1 (en) Activated gas supply device for hydroponics
KR101337419B1 (en) Self-Purified Aquarium using rare earth element
JPH0488923A (en) Cultivation of japanese horseradish
KR101323248B1 (en) plasma sterilization device
JPH09163895A (en) Apparatus for raising
Edward et al. Water quality requirements for Recirculatory Aquaculture Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227