[go: up one dir, main page]

JP2008078148A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2008078148A
JP2008078148A JP2007275910A JP2007275910A JP2008078148A JP 2008078148 A JP2008078148 A JP 2008078148A JP 2007275910 A JP2007275910 A JP 2007275910A JP 2007275910 A JP2007275910 A JP 2007275910A JP 2008078148 A JP2008078148 A JP 2008078148A
Authority
JP
Japan
Prior art keywords
fuel cell
stack
linear expansion
stacking direction
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007275910A
Other languages
Japanese (ja)
Inventor
Shogo Goto
荘吾 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007275910A priority Critical patent/JP2008078148A/en
Publication of JP2008078148A publication Critical patent/JP2008078148A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 燃料電池の環境温度が変化してもスタックの締結荷重の変化を抑制できる燃料電池の提供。
【解決手段】 膜−電極アッセンブリとセパレータ18の積層体からなるモジュール19の積層方向両端にターミナル20、インシュレータ21、エンドプレート22を配置して構成したスタック23を、スタック23の外側で前記積層方向に延びるテンションプレート24にて締結した燃料電池10において、スタック23の前記積層方向の線膨張係数αs と、テンションプレート24の前記積層方向の線膨張係数αc とを同じかまたはほぼ同じにした燃料電池10。
【選択図】 図3
PROBLEM TO BE SOLVED: To provide a fuel cell capable of suppressing a change in a fastening load of a stack even if an environmental temperature of the fuel cell changes.
SOLUTION: A stack 23 in which a terminal 20, an insulator 21, and an end plate 22 are arranged at both ends in a stacking direction of a module 19 composed of a stacked body of a membrane-electrode assembly and a separator 18 is disposed outside the stack 23 in the stacking direction. In the fuel cell 10 that is fastened by the tension plate 24 extending in the direction, the linear expansion coefficient α s of the stack 23 in the stacking direction and the linear expansion coefficient α c of the tension plate 24 in the stacking direction are the same or substantially the same. Fuel cell 10.
[Selection] Figure 3

Description

本発明は、燃料電池に関し、とくに環境温度の変化にかかわらず燃料電池スタックの締結荷重がほぼ一定とされた燃料電池に関する。   The present invention relates to a fuel cell, and more particularly to a fuel cell in which a fastening load of a fuel cell stack is substantially constant regardless of changes in environmental temperature.

固体高分子電解質型燃料電池は、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層および拡散層からなる電極(アノード、燃料極)および電解質膜の他面に配置された触媒層および拡散層からなる電極(カソード、空気極)とからなる膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )と、アノード、カソードに燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体通路を形成するセパレータとを、交互に配置し、これらMEAとセパレータの積層体からなるモジュール群の積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置して構成したスタックを、外側で積層体積層方向に延びる締結部材(タイロッド、テンションプレート等)にて締め付けたものからなる。
固体高分子電解質型燃料電池では、アノード側では、水素を水素イオンと電子にする反応が行われ、水素イオンは電解質膜11中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる)から水を生成する反応が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
カソードでの水生成反応では熱が出るので、セパレータ間には、各MEA毎にあるいは複数個のMEA毎に、冷却媒体(通常は冷却水)が流れる流路が形成されており、燃料電池を冷却している。燃料電池の環境温度は、運転停止時の周囲温度(たとえば、20℃)と運転時の冷却媒体温度(約80℃)との間に変化する。また、上記の化学電気反応が正常に行われるには、スタックの締め付け荷重が大きく変動しないことが望ましく、そのために、従来は、エンドプレートとインシュレータ間にばね機構を入れて、スタックと締結部材との熱膨張差等による荷重変化を軽減するようにしてある。
上記はつぎの特許文献1−4等に開示されている。
実願昭56−127957号(実開昭58−034362号)のマイクロフィルム 特開昭58−014472号公報 実願平02−106290号(実開平04−063563号)のマイクロフィルム 特開昭58−119171号公報
The solid polymer electrolyte fuel cell is arranged on the other side of the electrolyte membrane, which is an electrolyte membrane made of an ion exchange membrane, an electrode (anode, fuel electrode) made of a catalyst layer and a diffusion layer arranged on one side of the electrolyte membrane, and the electrolyte membrane. Membrane-Electrode Assembly (MEA) consisting of an electrode (cathode, air electrode) consisting of a catalyst layer and a diffusion layer, and fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) at the anode and cathode Separators that form fluid passages for supplying gas, and a stack constituted by arranging terminals, insulators, and end plates at both ends in the stacking direction of a module group composed of a stack of these MEAs and separators. It is composed of one that is fastened by a fastening member (tie rod, tension plate, etc.) that extends in the laminate lamination direction on the outside.
In the solid polymer electrolyte fuel cell, a reaction for converting hydrogen into hydrogen ions and electrons is performed on the anode side, the hydrogen ions move through the electrolyte membrane 11 to the cathode side, and oxygen, hydrogen ions and electrons (on the cathode side). The reaction of generating water from the electrons generated at the anode of the adjacent MEA passes through the separator).
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O
Since heat is generated in the water generation reaction at the cathode, a flow path through which a cooling medium (usually cooling water) flows is formed between the separators for each MEA or for each MEA. It is cooling. The environmental temperature of the fuel cell changes between the ambient temperature when the operation is stopped (for example, 20 ° C.) and the coolant temperature during the operation (about 80 ° C.). In addition, in order for the above-described chemoelectric reaction to be performed normally, it is desirable that the stack tightening load does not fluctuate greatly.For this reason, conventionally, a spring mechanism is inserted between the end plate and the insulator, The change in load due to the difference in thermal expansion is reduced.
The above is disclosed in the following Patent Documents 1-4 and the like.
Microfilm of Japanese Utility Model No. 56-127957 (Japanese Utility Model Publication No. 58-034362) JP 58-014472 A Microfilm of Japanese Utility Model Application No. 02-106290 (Japanese Utility Model Application Publication No. 04-066353) JP 58-119171 A

しかし、従来の燃料電池でエンドプレートとインシュレータ間にばね機構を入れないと、環境温度の変化に伴って燃料電池スタックの締結荷重が大きく変化する。そして、締結荷重が変化すると、燃料電池出力が低下したり、最悪の場合はガス(水素、エア)リークが生じる。
また、エンドプレートとインシュレータ間にばね機構を入れて締結荷重の変化を軽減する場合、燃料電池スタックの積層方向の寸法が増え、車両搭載に際しスペースの問題を生じる。
本発明の目的は、燃料電池の環境温度が変化しても燃料電池スタックの締結荷重の変化を抑制できる燃料電池を提供することにある。
However, if a spring mechanism is not inserted between the end plate and the insulator in the conventional fuel cell, the fastening load of the fuel cell stack greatly changes as the environmental temperature changes. When the fastening load changes, the fuel cell output decreases or, in the worst case, gas (hydrogen, air) leak occurs.
Further, when a spring mechanism is inserted between the end plate and the insulator to reduce the change in the fastening load, the dimension in the stacking direction of the fuel cell stack increases, resulting in a space problem when mounted on the vehicle.
An object of the present invention is to provide a fuel cell that can suppress a change in the fastening load of the fuel cell stack even if the environmental temperature of the fuel cell changes.

上記目的を達成する本発明はつぎの通りである。
膜−電極アッセンブリとセパレータの積層体からなるモジュールの積層方向両端にターミナル、インシュレータ、エンドプレートを配置して構成したスタックを、スタックの外側で前記積層方向に延びる締結部材にて締結した燃料電池において、スタックの前記積層方向の線膨張係数と、締結部材の前記積層方向の線膨張係数とを同じかまたはほぼ同じにしたことを特徴とする燃料電池。
The present invention for achieving the above object is as follows.
In a fuel cell in which a stack composed of terminals, insulators, and end plates arranged at both ends in a stacking direction of a module composed of a laminate of a membrane-electrode assembly and a separator is fastened by a fastening member extending in the stacking direction outside the stack. The fuel cell characterized in that the linear expansion coefficient of the stack in the stacking direction and the linear expansion coefficient of the fastening member in the stacking direction are the same or substantially the same.

上記本発明の燃料電池では、中側のスタックと外側の締結部材の線膨張係数を同一かほぼ同一としたので、環境温度が変化しても、同じ量だけ膨張し、締結荷重の変化がないか、または締結荷重の変化があっても小さい。その結果、燃料電池の出力がほぼ一定であり、反応ガス(水素、エア)のリークも生じない。   In the fuel cell according to the present invention, the linear expansion coefficients of the inner stack and the outer fastening member are the same or substantially the same, so that even if the environmental temperature changes, the same amount expands and the fastening load does not change. Even if there is a change in the fastening load, it is small. As a result, the output of the fuel cell is almost constant, and no leakage of reaction gas (hydrogen, air) occurs.

以下に、本発明の燃料電池を、図1〜図3を参照して、説明する。
本発明の燃料電池は固体高分子電解質型燃料電池10である。本発明の燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
固体高分子電解質型燃料電池10は、図1、図2に示すように、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置された触媒層12および拡散層13からなる電極14(アノード、燃料極)および電解質膜11の他面に配置された触媒層15および拡散層16からなる電極(カソード、空気極)とからなる膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )と、電極14、17に燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体通路を形成するセパレータ18とを、交互に配置してモジュール19(たとえば、2セルモジュール)を作成し、モジュールを19を積層した積層体(モジュール群)の積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置して構成したスタック23を、スタック23の外側で積層体積層方向に延びる締結部材(テンションプレート、タイロッド、スルーボルト等)24にて積層方向に締め付けたものからなる。
Below, the fuel cell of this invention is demonstrated with reference to FIGS. 1-3.
The fuel cell of the present invention is a solid polymer electrolyte fuel cell 10. The fuel cell 10 of the present invention is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIGS. 1 and 2, the solid polymer electrolyte fuel cell 10 includes an electrolyte membrane 11 made of an ion exchange membrane, and an electrode 14 made up of a catalyst layer 12 and a diffusion layer 13 disposed on one surface of the electrolyte membrane 11. A membrane-electrode assembly (MEA) composed of (anode, fuel electrode) and an electrode (cathode, air electrode) composed of a catalyst layer 15 and a diffusion layer 16 disposed on the other surface of the electrolyte membrane 11; Separators 18 forming fluid passages for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the electrodes 14 and 17 are alternately arranged to form a module 19 (for example, a two-cell module). The terminal 20, the insulator 21, and the end plate 22 are arranged at both ends in the stacking direction of the stack (module group) in which the modules 19 are stacked. The formed stack 23 is formed by fastening the stack 23 in the stacking direction with fastening members (tension plates, tie rods, through bolts, etc.) 24 extending in the stack stacking direction outside the stack 23.

締結部材24の積層体積層方向の線膨張係数とスタック23(エンドプレート22+インシュレータ21+ターミナル20+モジュール19)の積層体積層方向の線膨張係数とは、同一かほぼ同一とされている。ここで、ほぼ同一とは、たとえ線膨張係数差があってもその線膨張係数差によるスタックの締結荷重の変動が、従来のばね機構をスタック端部に配置した場合に線膨張係数差によって生じていたスタックの締結荷重の変動と同等以内にあることをいうものとする。   The linear expansion coefficient of the fastening member 24 in the stacked body stacking direction and the linear expansion coefficient of the stack 23 (end plate 22 + insulator 21 + terminal 20 + module 19) in the stacked body stacking direction are the same or substantially the same. Here, “substantially the same” means that even if there is a difference in coefficient of linear expansion, the change in the stack fastening load due to the difference in coefficient of linear expansion is caused by the difference in coefficient of linear expansion when the conventional spring mechanism is arranged at the end of the stack. It shall be within the same range as the change in the stack fastening load.

ここで、モジュール19群の線膨張係数は、電極部19aと定寸部19bとシール部19cのそれぞれの線膨張係数があるが、締結部材24の線膨張係数とほぼ同一とされるべきものは、電極部19aの積層体積層方向の線膨張係数であり、望ましくは定寸部19bとシール部19cのそれぞれの積層体積層方向の線膨張係数も締結部材24の線膨張係数とほぼ同一とされる。定寸部19bでは、セパレータ18間に電解質膜11、接着剤25、絶縁ビーズ26が挟まれ、シール部19cでは、セパレータ18間に電解質膜11、接着剤25、絶縁ビーズ26が挟まれるとともに、冷却媒体が流れるセパレータ間にはシール材としてのビード27が挟まれる。
上記で、積層体の積層方向の線膨張係数は、
Σ(各層の線膨張係数×その層の厚み)/Σ(各層の厚み)
で求められる。
燃料電池の各構成部材の材料とその線膨張係数は、表1の通りである。
Here, the linear expansion coefficient of the module 19 group has the respective linear expansion coefficients of the electrode portion 19a, the sizing portion 19b, and the seal portion 19c, but the linear expansion coefficient of the fastening member 24 should be substantially the same. The linear expansion coefficient of the electrode portion 19a in the stacking direction of the laminate, and preferably the linear expansion coefficient in the stacking direction of each of the sizing portion 19b and the seal portion 19c is substantially the same as the linear expansion coefficient of the fastening member 24. The In the fixed dimension portion 19b, the electrolyte membrane 11, the adhesive 25, and the insulating beads 26 are sandwiched between the separators 18, and in the seal portion 19c, the electrolyte membrane 11, the adhesive 25, and the insulating beads 26 are sandwiched between the separators 18, A bead 27 as a sealing material is sandwiched between separators through which the cooling medium flows.
In the above, the linear expansion coefficient in the stacking direction of the stack is
Σ (linear expansion coefficient of each layer × thickness of the layer) / Σ (thickness of each layer)
Is required.
Table 1 shows the material of each component of the fuel cell and its linear expansion coefficient.

Figure 2008078148
Figure 2008078148

通常、セパレータ18はカーボンであり、締結部材24(通常、金属)の線膨張係数の方が大きい、このため、セパレータ18間の部材の材質に、カーボンより線膨張係数の大きい材質を用いることによって、スタック23全体の線膨張係数を締結部材24の線膨張係数に近づけることができる。 そして、燃料電池の各構成部材の材質、厚さ、厚さ割合(たとえば、セパレータと拡散層の厚さ割合)等を変えることによって、締結部材24の積層体積層方向の線膨張係数とスタック23の電極部19aの積層体積層方向の線膨張係数とをほぼ合わせることができる。   Usually, the separator 18 is carbon, and the fastening member 24 (usually metal) has a larger linear expansion coefficient. Therefore, by using a material having a larger linear expansion coefficient than carbon as the material of the member between the separators 18. The linear expansion coefficient of the entire stack 23 can be made closer to the linear expansion coefficient of the fastening member 24. Then, by changing the material, thickness, thickness ratio (for example, the thickness ratio of the separator and the diffusion layer) of each component of the fuel cell, etc., the linear expansion coefficient of the fastening member 24 in the stacking direction and the stack 23 The linear expansion coefficient in the stacking direction of the electrode body 19a can be substantially matched.

概算を行ってみるとつぎのようになる。たとえば、締結部材24をSUS304とし、セパレータ18をカーボンとした場合、スタック23のエンドプレート22をSUS304とし、ターミナル20を銅の金メッキとすると、エンドプレート22とターミナル20の各々の線膨張係数は締結部材24の線膨張係数とほぼ同じとなって、その部分以外で線膨張係数を合わせればよくなる。そして、触媒層(C+Pt)12、15の薄層が両面に形成された電解質膜11の厚さを30μm、拡散層(カーボンクロス)13、16の厚さをそれぞれ150μm、セパレータ18の厚さをtμmとすると、1つの単電池あたりで線膨張係数をほぼ合わせると、
300×96+30×46+t×6=(t+330)×14.8
t=2875μm
となり、セパレータ18の厚さを約2.9mmにすると、締結部材24の積層体積層方向の線膨張係数とスタック23の電極部19aの積層体積層方向の線膨張係数とは、ほぼ同一となる。ただし、実際には、スタック23の全長と締結部材24の全長で線膨張係数を合わせる。
The rough calculation is as follows. For example, if the fastening member 24 is made of SUS304 and the separator 18 is made of carbon, the end plate 22 of the stack 23 is made of SUS304, and the terminal 20 is made of gold plating of copper. It becomes almost the same as the linear expansion coefficient of the member 24, and it is sufficient to match the linear expansion coefficient except for the portion. The thickness of the electrolyte membrane 11 in which the thin layers of the catalyst layers (C + Pt) 12 and 15 are formed on both surfaces is 30 μm, the thickness of the diffusion layers (carbon cloth) 13 and 16 is 150 μm, and the thickness of the separator 18 is Assuming that tμm is almost the same as the linear expansion coefficient per unit cell,
300 × 96 + 30 × 46 + t × 6 = (t + 330) × 14.8
t = 2875 μm
Thus, when the thickness of the separator 18 is about 2.9 mm, the linear expansion coefficient of the fastening member 24 in the stacked body stacking direction and the linear expansion coefficient of the electrode portion 19a of the stack 23 in the stacked body stacking direction are substantially the same. . However, in practice, the linear expansion coefficient is matched between the total length of the stack 23 and the total length of the fastening member 24.

定寸部19b、シール部19cもこれに準じて線膨張係数を合わせることができる。定寸部19bの場合は、接着剤25や絶縁ビーズ26の材質、厚さ、粒径、厚さ割合(たとえば、接着剤25とセパレータ18の厚さ割合)を選定することによって合わせることができる。シール部19cの場合は、ビード27の材質、厚さ、厚さ割合(たとえば、ビード27とセパレータ18の厚さ割合)を選定することによって合わせることができる。なお、通常は、接着剤層の厚さは約100μm、絶縁ビーズ26の径は約50μm、ビード27の高さは約500μmである。   The linear expansion coefficient can be adjusted in accordance with the fixed dimension portion 19b and the seal portion 19c. In the case of the sizing portion 19b, it can be adjusted by selecting the material, thickness, particle size, and thickness ratio of the adhesive 25 and insulating beads 26 (for example, the thickness ratio of the adhesive 25 and the separator 18). . In the case of the seal part 19c, it can match | combine by selecting the material of the bead 27, thickness, and thickness ratio (for example, thickness ratio of the bead 27 and the separator 18). Usually, the thickness of the adhesive layer is about 100 μm, the diameter of the insulating beads 26 is about 50 μm, and the height of the beads 27 is about 500 μm.

つぎに、上記のように線膨張係数が合わされた燃料電池の作用を説明する。
図3は、スタック23の線膨張係数をαs 、締結部材24の線膨張係数をαc で表した場合、αs とαc との大小で、環境温度によるスタックの締結荷重がどのように変化するかを示している。ここで、環境温度は外気温(−30℃〜30℃)〜燃料電池作動温度(約80℃)にわたって変化し、運転停止〜運転のサイクルによって繰り返し変動する。
スタック23のセパレータ18がカーボンで、締結部材24が金属(たとえば、ステンレス)である場合(従来は、この場合に属する)は、αs <αc であるから、室温で適正締め付け荷重とされた燃料電池は、スタック23と締結部材24の熱膨張差で燃料電池作動温度で締結荷重が低減し、セパレータ18と電極面(拡散層)間の接触荷重の低下等により燃料電池出力が低下するとともに、最悪の場合はガス漏れが生じるおそれがある。
これと逆でαs >αc の場合は、寒冷地などの起動時など燃料電池が十分に温まっていない時に燃料電池出力の低下が予想される。
また、通常運転時に締付け荷重が上がりすぎてセパレータが拡散層(ペーパの場合)の座屈、膜の破れ等、内部の破損をもたらす危険がある。
Next, the operation of the fuel cell in which the linear expansion coefficients are combined as described above will be described.
3, the linear expansion coefficient of the stack 23 alpha s, when expressed the linear expansion coefficient of the fastening member 24 in alpha c, the magnitude of alpha s and alpha c, how fastening load of the stack due to the environmental temperature Shows how it will change. Here, the environmental temperature varies from the outside air temperature (−30 ° C. to 30 ° C.) to the fuel cell operating temperature (about 80 ° C.), and repeatedly varies depending on the cycle of operation stop to operation.
When the separator 18 of the stack 23 is carbon and the fastening member 24 is a metal (for example, stainless steel) (conventionally belongs to this case), since α sc , the proper tightening load is set at room temperature. In the fuel cell, the fastening load is reduced at the fuel cell operating temperature due to the difference in thermal expansion between the stack 23 and the fastening member 24, and the output of the fuel cell is lowered due to a decrease in the contact load between the separator 18 and the electrode surface (diffusion layer). In the worst case, gas leakage may occur.
On the other hand, when α s > α c , the fuel cell output is expected to decrease when the fuel cell is not sufficiently warmed, such as when starting up in a cold region.
In addition, the tightening load increases excessively during normal operation, and there is a risk that the separator may cause internal damage such as buckling of the diffusion layer (in the case of paper) and film breakage.

これに対し、本発明の場合はαs =αc 、またはαs とαc とはほぼ同一であるから、環境温度が変化した時に、スタック23と締結部材24とは同じ量だけ熱伸縮し、したがって、燃料電池の締結荷重は変化しない。その結果、始めに適正荷重で締結しておいた燃料電池は、その締結荷重を維持し、締結荷重の変化によって生じる燃料電池出力低下やガス漏れは生じない。なお、熱伸縮では、膜の膨潤による寸法増も考慮すれば、さらに望ましい。
そのため、従来必要であった、締結荷重変動低減用の、エンドプレートとインシュレータ間に配置されていたばね機構を除去することができ(ただし、ばね機構は配置しておいてもよい)、ばね機構を除去した場合は、ばね機構が占めていた分だけスタック長さを低減でき、車両への搭載上有利となる他、機構の重量低減、コスト低減となる。
On the other hand, in the case of the present invention, α s = α c , or α s and α c are almost the same, so that when the environmental temperature changes, the stack 23 and the fastening member 24 thermally expand and contract by the same amount. Therefore, the fastening load of the fuel cell does not change. As a result, the fuel cell that is initially fastened with an appropriate load maintains the fastening load, and does not cause a decrease in fuel cell output or gas leakage caused by a change in the fastening load. The thermal expansion and contraction is more desirable in consideration of the increase in size due to the swelling of the film.
Therefore, it is possible to remove the spring mechanism arranged between the end plate and the insulator for reducing the fastening load fluctuation, which has been necessary in the past (however, the spring mechanism may be arranged). When it is removed, the stack length can be reduced by the amount occupied by the spring mechanism, which is advantageous for mounting on a vehicle, and also reduces the weight of the mechanism and the cost.

請求項1の燃料電池によれば、スタックと締結部材の線膨張係数を同一かほぼ同一としたので、環境温度が変化しても、燃料電池積層体と締結部材は同じ量だけ伸縮し、締結荷重の変化がないか、または締結荷重の変化があっても小さい。その結果、燃料電池の出力がほぼ一定であり、反応ガス(水素、エア)のリークも生じない。   According to the fuel cell of claim 1, since the linear expansion coefficients of the stack and the fastening member are the same or substantially the same, even if the environmental temperature changes, the fuel cell stack and the fastening member expand and contract by the same amount and are fastened. There is no change in load or even a change in fastening load is small. As a result, the output of the fuel cell is almost constant, and no leakage of reaction gas (hydrogen, air) occurs.

本発明実施例の燃料電池の一部拡大断面図である。It is a partially expanded sectional view of the fuel cell of the Example of this invention. 本発明実施例の燃料電池の全体断面図である。1 is an overall cross-sectional view of a fuel cell according to an embodiment of the present invention. 本発明実施例の燃料電池と従来燃料電池の、環境温度と締結荷重との関係を示すグラフである。It is a graph which shows the relationship between environmental temperature and fastening load of the fuel cell of this invention Example, and a conventional fuel cell.

符号の説明Explanation of symbols

10 (固体高分子電解質型)燃料電池
11 電解質膜
12 触媒層
13 拡散層
14 電極(アノード、燃料極)
15 触媒層
16 拡散層
17 電極(カソード、空気極)
18 セパレータ
19 モジュール
19a 電極部
19b 定寸部
19c シール部
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 締結部材
25 接着剤
26 絶縁ビーズ
27 ビード
αs スタックの線膨張係数
αc 締結部材の線膨張係数
10 (solid polymer electrolyte type) fuel cell 11 electrolyte membrane 12 catalyst layer 13 diffusion layer 14 electrode (anode, fuel electrode)
15 Catalyst layer 16 Diffusion layer 17 Electrode (cathode, air electrode)
18 linear expansion coefficient of the separator 19 modules 19a electrode portion 19b sizing portion 19c seal portion 20 Terminal 21 insulator 22 end plate 23 stack 24 fastening member 25 coefficient of linear expansion of the adhesive 26 insulating beads 27 bead alpha s stack alpha c fastening member

Claims (1)

膜−電極アッセンブリとセパレータの積層体からなるモジュールの積層方向両端にターミナル、インシュレータ、エンドプレートを配置して構成したスタックを、スタックの外側で前記積層方向に延びる締結部材にて締結した燃料電池において、スタックの前記積層方向の線膨張係数と、締結部材の前記積層方向の線膨張係数とを同じかまたはほぼ同じにしたことを特徴とする燃料電池。   In a fuel cell in which a stack composed of terminals, insulators, and end plates arranged at both ends in a stacking direction of a module composed of a laminate of a membrane-electrode assembly and a separator is fastened by a fastening member extending in the stacking direction outside the stack. The fuel cell characterized in that the linear expansion coefficient of the stack in the stacking direction and the linear expansion coefficient of the fastening member in the stacking direction are the same or substantially the same.
JP2007275910A 2007-10-24 2007-10-24 Fuel cell Withdrawn JP2008078148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275910A JP2008078148A (en) 2007-10-24 2007-10-24 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275910A JP2008078148A (en) 2007-10-24 2007-10-24 Fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000235112A Division JP4447133B2 (en) 2000-08-03 2000-08-03 Fuel cell

Publications (1)

Publication Number Publication Date
JP2008078148A true JP2008078148A (en) 2008-04-03

Family

ID=39349956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275910A Withdrawn JP2008078148A (en) 2007-10-24 2007-10-24 Fuel cell

Country Status (1)

Country Link
JP (1) JP2008078148A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047321A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Fuel cell stack
CN103794741A (en) * 2014-01-26 2014-05-14 新源动力股份有限公司 A Highly Integrated Fuel Cell Structure with Compensation Capability
JP2016091840A (en) * 2014-11-06 2016-05-23 トヨタ自動車株式会社 Fuel cell device
JP2016225078A (en) * 2015-05-28 2016-12-28 日本特殊陶業株式会社 Fuel cell structure
JP2020525979A (en) * 2017-06-26 2020-08-27 セレス インテレクチュアル プロパティー カンパニー リミテッド Fuel cell stack assembly

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814472A (en) * 1981-07-17 1983-01-27 Hitachi Ltd Fuel cell
JPS5834362A (en) * 1981-08-24 1983-02-28 Otsuka Pharmaceut Co Ltd Preparation of tsg antibody
JPS58119171A (en) * 1982-01-08 1983-07-15 Toshiba Corp Fuel cell device
JPS5996669A (en) * 1982-11-26 1984-06-04 Agency Of Ind Science & Technol Fused-carbonate fuel cell
JPH0463563A (en) * 1990-07-03 1992-02-28 Terumo Corp Antiobese food and production thereof
JPH06302331A (en) * 1991-10-11 1994-10-28 Nkk Corp Fuel cell
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Sealing structure for polymer electrolyte fuel cell and manufacturing method thereof
JPH1055813A (en) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd Assembly structure of fuel cell
JPH117967A (en) * 1997-06-19 1999-01-12 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell separator
WO1999026304A1 (en) * 1997-11-14 1999-05-27 Mitsubishi Heavy Industries, Ltd. Solid electrolyte fuel cell
JP2000048835A (en) * 1998-07-27 2000-02-18 Nok Corp Gasket for fuel cell
JP2000182639A (en) * 1998-12-16 2000-06-30 Toyota Motor Corp Seal member and fuel cell using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814472A (en) * 1981-07-17 1983-01-27 Hitachi Ltd Fuel cell
JPS5834362A (en) * 1981-08-24 1983-02-28 Otsuka Pharmaceut Co Ltd Preparation of tsg antibody
JPS58119171A (en) * 1982-01-08 1983-07-15 Toshiba Corp Fuel cell device
JPS5996669A (en) * 1982-11-26 1984-06-04 Agency Of Ind Science & Technol Fused-carbonate fuel cell
JPH0463563A (en) * 1990-07-03 1992-02-28 Terumo Corp Antiobese food and production thereof
JPH06302331A (en) * 1991-10-11 1994-10-28 Nkk Corp Fuel cell
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Sealing structure for polymer electrolyte fuel cell and manufacturing method thereof
JPH1055813A (en) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd Assembly structure of fuel cell
JPH117967A (en) * 1997-06-19 1999-01-12 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell separator
WO1999026304A1 (en) * 1997-11-14 1999-05-27 Mitsubishi Heavy Industries, Ltd. Solid electrolyte fuel cell
JP2000048835A (en) * 1998-07-27 2000-02-18 Nok Corp Gasket for fuel cell
JP2000182639A (en) * 1998-12-16 2000-06-30 Toyota Motor Corp Seal member and fuel cell using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047321A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Fuel cell stack
CN103794741A (en) * 2014-01-26 2014-05-14 新源动力股份有限公司 A Highly Integrated Fuel Cell Structure with Compensation Capability
JP2016091840A (en) * 2014-11-06 2016-05-23 トヨタ自動車株式会社 Fuel cell device
JP2016225078A (en) * 2015-05-28 2016-12-28 日本特殊陶業株式会社 Fuel cell structure
JP2020525979A (en) * 2017-06-26 2020-08-27 セレス インテレクチュアル プロパティー カンパニー リミテッド Fuel cell stack assembly
JP7053684B2 (en) 2017-06-26 2022-04-12 セレス インテレクチュアル プロパティー カンパニー リミテッド Fuel cell stack assembly
US11777129B2 (en) 2017-06-26 2023-10-03 Ceres Intellectual Property Company Limited Fuel cell stack assembly
US12119528B2 (en) 2017-06-26 2024-10-15 Ceres Intellectual Property Company Limited Fuel cell stack assembly

Similar Documents

Publication Publication Date Title
US8012648B2 (en) Side spring compression retention system
US7070872B2 (en) Fuel cell stack
US10497949B2 (en) Electro-chemical reaction unit and fuel cell stack
JP5320927B2 (en) Fuel cell stack and fuel cell separator
JP2002367665A (en) Fuel cell stack and pressurization holding method thereof
US7232582B2 (en) Fuel cell
JPH0696783A (en) Fuel cell
JP5263927B2 (en) End plate for fuel cell stack and manufacturing method thereof
JP2008078148A (en) Fuel cell
JP4447133B2 (en) Fuel cell
JP2008171598A (en) Fuel cell
JP5151270B2 (en) Fuel cell components
JP4899869B2 (en) Insulated cell for fuel cell and method for producing the same
EP3664202B1 (en) Cell unit
JP2007059187A (en) Fuel cell
JP2008177089A (en) Fuel cell
JP5181572B2 (en) Fuel cell separator, separator manufacturing method, and fuel cell manufacturing method
JP5011724B2 (en) Fuel cell
JP2007242373A (en) Fuel cell and manufacturing method thereof
JP2009224042A (en) Fuel cell
JP2009004308A (en) Fuel cell
JPH06333581A (en) Solid polymer electrolyte fuel cell
JP2004296199A (en) Fuel cell separator, fuel cell using this fuel cell separator, fuel cell vehicle equipped with this fuel cell, and method of manufacturing fuel cell separator
JP2007115510A (en) Fuel cell
JP2006209977A (en) Fuel cell, fuel cell stack and fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110809

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110907