[go: up one dir, main page]

JP2008076239A - Electromagnetic wave physical quantity measuring instrument - Google Patents

Electromagnetic wave physical quantity measuring instrument Download PDF

Info

Publication number
JP2008076239A
JP2008076239A JP2006255991A JP2006255991A JP2008076239A JP 2008076239 A JP2008076239 A JP 2008076239A JP 2006255991 A JP2006255991 A JP 2006255991A JP 2006255991 A JP2006255991 A JP 2006255991A JP 2008076239 A JP2008076239 A JP 2008076239A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
antenna
physical quantity
substance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255991A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
一弘 渡邉
Tatsuya Kimura
達也 木村
Yoshitomi Sameda
芳富 鮫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006255991A priority Critical patent/JP2008076239A/en
Publication of JP2008076239A publication Critical patent/JP2008076239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave physical quantity measuring instrument capable of easily, inexpensively and simply performing the manufacture and assembling of an antenna. <P>SOLUTION: In the electromagnetic wave physical quantity measuring instrument constituted so that transmission and detection antennae are arranged in opposed relationship in a form holding piping or a container for allowing a substance to be measured containing a measuring target to flow and the difference between propagation times or phase delays is operated by comparing the first propagation time or first phase delay of the electromagnetic wave thrown into the substance to be measured to be detected with the second propagation time or second phase delay of the electromagnetic wave thrown into the substance to be measured to be detected to measure the physical quantity of the measuring target present in the substance to be measured, at least one of the transmission and detection antennae is set to a reverse F antenna having a linear radiation conductor 10a having a length of the 1/2 wavelength of the electromagnetic wave, the earth conductor 20a arranged in opposed relation to the radiation conductor 10a so as to leave the interval of the 1/4 wavelength of the electromagnetic wave, a shortcircuit part 12a for connecting the radiation conductor 10a and the earth conductor 20a and a power supply part 14a for supplying power to the radiation conductor 10a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被測定物質である種々の懸濁物質や溶解性物質に含まれる測定対象の物理量を電磁波を用いて測定する電磁波物理量測定装置に係り、特にアンテナを製作容易な構成とすることによって従来よりも安価なアンテナを有する電磁波物理量測定装置に関する。   The present invention relates to an electromagnetic wave physical quantity measuring apparatus for measuring a physical quantity of a measurement target contained in various suspended substances and soluble substances, which are substances to be measured, using electromagnetic waves, and in particular, by making an antenna easy to manufacture. The present invention relates to an electromagnetic physical quantity measuring apparatus having an antenna that is less expensive than the conventional one.

従来、液体中の懸濁物質などの濃度を測定するものとして、超音波の減衰率を測定して濃度を求める超音波式濃度計や、光を用いて透過光減衰率または散乱光増加率を測定して濃度を求める光学式濃度計が多く用いられている。   Conventionally, to measure the concentration of suspended substances in liquids, an ultrasonic densitometer that determines the concentration by measuring the attenuation rate of ultrasonic waves, and the transmitted light attenuation rate or scattered light increase rate using light An optical densitometer that obtains a concentration by measurement is often used.

ところが、超音波式濃度計の場合、仮に液体中に気泡が混入してくると、その影響を大きく受けて測定誤差が大きくなる。また、光学式濃度計の場合、光の入射あるいは受光用の光学窓に汚れなどが付着すると、その影響を大きく受けて測定誤差が大きくなる。そこで、最近になってこれら液体中の気泡や光学窓の汚れなどの影響を受けにくい濃度計としてマイクロ波式濃度測定装置が考えられ、実用化されるようになっている。   However, in the case of an ultrasonic densitometer, if bubbles are mixed into the liquid, the measurement error increases due to the large influence. Further, in the case of an optical densitometer, if dirt or the like adheres to the light incident or light receiving optical window, the measurement error becomes large due to the influence. Therefore, recently, a microwave concentration measuring device has been considered as a concentration meter that is not easily affected by bubbles in these liquids and dirt on the optical window, and has come into practical use.

図7は、このようなマイクロ波式濃度計の概略構成を示す。被測定液体が通過する配管1の側壁に、マイクロ波送信用アンテナ2とマイクロ波受信用アンテナ3を対向して配置する。マイクロ波発振器4は、マイクロ波をパワースプリッタ5を介してマイクロ波送信用アンテナ2に入力する。マイクロ波送信用アンテナ2は、マイクロ波を送信して配管1中の被測定液体を伝搬させる。マイクロ波受信用アンテナ3は、送信されたマイクロ波を受信した後、位相差測定回路6に入力する。一方、マイクロ波発振器4は、マイクロ波をパワースプリッタ5を介して直接位相差測定回路6に入力する。   FIG. 7 shows a schematic configuration of such a microwave densitometer. On the side wall of the pipe 1 through which the liquid to be measured passes, the microwave transmitting antenna 2 and the microwave receiving antenna 3 are arranged to face each other. The microwave oscillator 4 inputs the microwave to the microwave transmission antenna 2 via the power splitter 5. The microwave transmitting antenna 2 transmits a microwave to propagate the liquid to be measured in the pipe 1. The microwave receiving antenna 3 receives the transmitted microwave and inputs it to the phase difference measuring circuit 6. On the other hand, the microwave oscillator 4 inputs the microwave directly to the phase difference measurement circuit 6 via the power splitter 5.

位相差測定回路6は、マイクロ波発振器4からパワースプリッタ5を通して直接受信するマイクロ波に対する配管1中の被測定液体を伝搬してくるマイクロ波の位相遅れθ2を求める。さらに、この位相遅れθ2と予め配管1中に基準液体(例えば濃度零とみなせる水道水)を充填して被測定液体と同じ状態で基準液体中を伝搬してくるマイクロ波を測定したときの位相遅れθ1とを比較し、その位相差Δθ=(θ2−θ1)から図8に示すような検量線を用いて被測定液体の濃度Xを求める。具体的には、この濃度Xは、被測定液体の種類ごとに対応する検量線X=aΔθ+bに基づいて求められる。ここで、aは検量線の傾き、bは検量線の切片で通常はb=0である。   The phase difference measuring circuit 6 obtains the phase delay θ2 of the microwave propagating through the liquid to be measured in the pipe 1 with respect to the microwave directly received from the microwave oscillator 4 through the power splitter 5. Further, the phase delay θ2 and the phase when the pipe 1 is previously filled with a reference liquid (for example, tap water that can be regarded as having a zero concentration) and the microwave propagating through the reference liquid in the same state as the liquid to be measured are measured. The delay θ1 is compared, and the concentration X of the liquid to be measured is obtained from the phase difference Δθ = (θ2−θ1) using a calibration curve as shown in FIG. Specifically, the concentration X is obtained based on a calibration curve X = aΔθ + b corresponding to each type of liquid to be measured. Here, a is the slope of the calibration curve, b is the intercept of the calibration curve, and normally b = 0.

特許文献1は、検出用管体または検出用容器にマイクロ波の送信系および受信系を対抗配置し、検出用管体内または検出用容器内の基準となる流体中にマイクロ波を伝搬させて得られる第1の位相遅れと、検出用管体内または検出用容器内の被測定物質を含む被測定流体中にマイクロ波を伝搬させて得られる第2の位相遅れとを比較してその位相差を求め、当該位相差から被測定流体の濃度を測定する濃度計に関する発明である。   Patent Document 1 is obtained by arranging a microwave transmission system and a reception system in a detection tube or a detection container and propagating the microwave into a reference fluid in the detection tube or the detection container. The phase difference between the first phase lag and the second phase lag obtained by propagating the microwave in the fluid to be measured including the substance to be measured in the detection tube or in the detection container is calculated. The invention relates to a concentration meter that obtains and measures the concentration of a fluid to be measured from the phase difference.

この発明は、濃度計の具体的な構成を示す。まず、検出用管体または検出用容器の管軸を挟んで相対向する位置にそれぞれマイクロ波送信および受信用の開口窓部を形成し、この開口窓部に気密用シールパッキンを介してアンテナ取り付け用板が設けられている。さらにこのアンテナ取り付け用板にそれぞれ個別に送信アンテナおよび受信アンテナを取り付け、この送信アンテナおよび受信アンテナの開口部に誘電体を充填することによって、上記マイクロ波の送信系および受信系を構成している。上記マイクロ波の送信系および受信系は、マイクロ波として1.7GHz〜2.0GHzの周波数範囲のマイクロ波を用いて第1の位相遅れおよび第2の位相遅れを求め、当該各位相遅れから位相差を測定する。   The present invention shows a specific configuration of the densitometer. First, an opening window for microwave transmission and reception is formed at positions facing each other across the tube axis of the detection tube or the detection container, and an antenna is attached to the opening window via an airtight seal packing A board is provided. Further, the transmitting antenna and the receiving antenna are individually attached to the antenna mounting plate, and the microwave transmitting system and the receiving system are configured by filling the openings of the transmitting antenna and the receiving antenna with a dielectric. . The microwave transmission system and the reception system obtain a first phase lag and a second phase lag using a microwave having a frequency range of 1.7 GHz to 2.0 GHz as a microwave, and determine the position from each phase lag. Measure the phase difference.

図9は、送信アンテナ又は受信アンテナの構成を示す図である。送信アンテナ及び受信アンテナは、ともに同軸導波管変換器7を利用しており、共振周波数を調整するために内部に誘電率20程度の誘電体8を挿入した構成となっている。この誘電体8を充填する構成をとることにより、アンテナを小型化するとともに、インピーダンス整合を容易に行うことができる。
特開平11−83758号公報
FIG. 9 is a diagram illustrating a configuration of a transmission antenna or a reception antenna. Both the transmitting antenna and the receiving antenna use the coaxial waveguide converter 7 and have a configuration in which a dielectric 8 having a dielectric constant of about 20 is inserted therein in order to adjust the resonance frequency. By adopting a configuration in which the dielectric 8 is filled, the antenna can be miniaturized and impedance matching can be easily performed.
Japanese Patent Laid-Open No. 11-83758

しかしながら、図9に示すアンテナを構成する同軸導波管変換器7及びその内部に充填される高誘電率誘電体8は非常に高価なものとなる。また、両者の組立に手間がかかるという問題点がある。   However, the coaxial waveguide converter 7 constituting the antenna shown in FIG. 9 and the high dielectric constant dielectric 8 filled therein are very expensive. In addition, there is a problem that it takes time to assemble both.

本発明は上述した従来技術の問題点を解決するもので、アンテナを線状のアンテナまたはパッチアンテナで構成することで、製作容易で安価なものとし、組み立ても簡単に行い得る電磁波物理量測定装置を提供することを課題とする。   The present invention solves the above-mentioned problems of the prior art. An electromagnetic physical quantity measuring device that can be manufactured easily and inexpensively and can be easily assembled by configuring the antenna with a linear antenna or a patch antenna. The issue is to provide.

本発明に係る電磁波物理量測定装置は、上記課題を解決するために、請求項1記載の発明は、測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、前記送信側アンテナと前記受信側アンテナとの少なくとも一方は、前記電磁波の2分の1波長の長さを有する線状の放射導体と、前記放射導体と前記電磁波の4分の1波長の間隔を隔てて対向して配置された接地導体と、前記放射導体と前記接地導体とを接続する短絡手段と、前記放射導体を給電する給電手段とを有する逆Fアンテナであることを特徴とする。   In order to solve the above-described problems, an electromagnetic wave physical quantity measuring apparatus according to the present invention is characterized in that the transmission side antenna and the reception side antenna are sandwiched between a pipe or a container through which a substance to be measured including a measurement target flows. The first propagation time or the first phase lag of the electromagnetic wave received by the receiving antenna, and the fluid serving as a reference from the transmitting antenna, which are arranged to face each other, enter the electromagnetic wave from the transmitting antenna into the substance to be measured. An electromagnetic wave is incident on the inside, and the difference between the propagation time or the phase delay is calculated by comparing the second propagation time or the second phase delay of the electromagnetic wave received by the receiving antenna, and is present in the measured substance. In the electromagnetic wave physical quantity measuring device that measures the physical quantity of the measurement target, at least one of the transmitting antenna and the receiving antenna has a length of a half wavelength of the electromagnetic wave. A linear radiating conductor, a grounding conductor disposed opposite to the radiating conductor with an interval of a quarter wavelength of the electromagnetic wave, and a short-circuit means for connecting the radiating conductor and the grounding conductor; It is an inverted F antenna which has a feeding means for feeding the radiation conductor.

請求項2記載の発明は、測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、前記送信側アンテナと前記受信側アンテナとの少な

Figure 2008076239
前記誘電体の他方の表面に配置された接地導体と、前記放射導体と前記接地導体とを接続する短絡手段と、前記放射導体を給電する給電手段とを有する逆Fアンテナであることを特徴とする。 According to the second aspect of the present invention, a transmitting antenna and a receiving antenna are arranged opposite to each other so as to sandwich a pipe or container through which a substance to be measured including a measurement target is sandwiched, and electromagnetic waves are incident from the transmitting antenna into the substance to be measured. The first propagation time or the first phase delay of the electromagnetic wave received by the receiving antenna and the electromagnetic wave incident on the reference fluid from the transmitting antenna and the first electromagnetic wave received by the receiving antenna. In the electromagnetic wave physical quantity measuring apparatus for measuring the physical quantity of the measurement target existing in the substance to be measured by calculating a difference between the propagation time or the phase delay by comparing the two propagation times or the second phase delay, There are few antennas and the receiving antenna.
Figure 2008076239
It is an inverted-F antenna having a ground conductor disposed on the other surface of the dielectric, a short-circuit means for connecting the radiation conductor and the ground conductor, and a power supply means for feeding the radiation conductor. To do.

請求項3記載の発明は、測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、前記送信側アンテナと前記受信側アンテナとの少な

Figure 2008076239
方形の放射導体と、前記誘電体の他方の表面に配置された接地導体と、前記放射導体を給電する第1給電部とを有する正方形パッチアンテナであることを特徴とする。 According to a third aspect of the present invention, a transmitting antenna and a receiving antenna are arranged opposite to each other so as to sandwich a pipe or a container through which a substance to be measured including a measurement target flows, and an electromagnetic wave is incident from the transmitting antenna into the substance to be measured. The first propagation time or the first phase delay of the electromagnetic wave received by the receiving antenna and the electromagnetic wave incident on the reference fluid from the transmitting antenna and the first electromagnetic wave received by the receiving antenna. In the electromagnetic wave physical quantity measuring apparatus for measuring the physical quantity of the measurement object existing in the substance to be measured by calculating a difference between the propagation time or the phase delay by comparing the two propagation times or the second phase delay, There are few antennas and the receiving antenna.
Figure 2008076239
It is a square patch antenna having a rectangular radiating conductor, a ground conductor disposed on the other surface of the dielectric, and a first feeding portion that feeds the radiating conductor.

請求項4記載の発明は、測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、前記送信側アンテナと前記受信側アンテナとの少な

Figure 2008076239
導体と、前記誘電体の他方の表面に配置された接地導体と、前記放射導体を給電する第1給電部とを有する円形パッチアンテナであることを特徴とする。 According to a fourth aspect of the present invention, a transmitting antenna and a receiving antenna are arranged opposite to each other so as to sandwich a pipe or a container through which a substance to be measured including a measurement target is sandwiched, and electromagnetic waves are incident from the transmitting antenna into the substance to be measured. The first propagation time or the first phase delay of the electromagnetic wave received by the receiving antenna and the electromagnetic wave incident on the reference fluid from the transmitting antenna and the first electromagnetic wave received by the receiving antenna. In the electromagnetic wave physical quantity measuring apparatus for measuring the physical quantity of the measurement target existing in the substance to be measured by calculating a difference between the propagation time or the phase delay by comparing the two propagation times or the second phase delay, There are few antennas and the receiving antenna.
Figure 2008076239
It is a circular patch antenna having a conductor, a grounding conductor disposed on the other surface of the dielectric, and a first feeding portion that feeds the radiation conductor.

請求項5記載の発明は、請求項3又は請求項4において、前記正方形放射導体又は前記円形放射導体上の前記第1給電部とは異なる位置に給電する第2給電部と、前記第1給電部と前記第2給電部との少なくとも一方の位相を調整する位相器とを備え、前記放射導体上における前記第1給電部の給電点及び前記第2給電部の給電点のいずれもが前記放射導体上の中心から等距離であるとともに各給電点と前記中心とを結ぶ直線が互いに直角又は略直角に交わり、前記位相器は、各給電点での信号位相を90度互いにずらすことを特徴とする。   According to a fifth aspect of the present invention, in the third or fourth aspect, the second power feeding unit that feeds power to a position different from the first power feeding unit on the square radiation conductor or the circular radiation conductor, and the first power feeding. And a phase shifter that adjusts the phase of at least one of the second power feeding unit, and the power feeding point of the first power feeding unit and the power feeding point of the second power feeding unit on the radiation conductor are both radiated. It is equidistant from the center on the conductor, and straight lines connecting each feeding point and the center intersect each other at right angles or substantially right angles, and the phase shifter shifts the signal phase at each feeding point by 90 degrees from each other. To do.

請求項6記載の発明は、測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、前記送信側アンテナと前記受信側アンテナとの少なくとも一方は、螺旋状に巻回され、前記電磁波の波長をλとした場合に、螺旋軸の長さをλ/4以下で螺旋の直径をλ/πとする螺旋状の放射導体と、前記放射導体の螺旋軸と垂直に配置された接地導体とを有するヘリカルアンテナであることを特徴とする。   In a sixth aspect of the present invention, a transmitting antenna and a receiving antenna are arranged opposite to each other so as to sandwich a pipe or a container through which a substance to be measured including a measurement target is sandwiched, and electromagnetic waves are incident on the substance to be measured from the transmitting antenna. The first propagation time or the first phase delay of the electromagnetic wave received by the receiving antenna and the electromagnetic wave incident on the reference fluid from the transmitting antenna and the first electromagnetic wave received by the receiving antenna. In the electromagnetic wave physical quantity measuring apparatus for measuring the physical quantity of the measurement target existing in the substance to be measured by calculating a difference between the propagation time or the phase delay by comparing the two propagation times or the second phase delay, At least one of the antenna and the receiving antenna is spirally wound, and when the wavelength of the electromagnetic wave is λ, the length of the spiral axis is λ / 4 or less and the diameter of the spiral is λ / π A spiral radiating conductors, wherein the a helical antenna having a helical axis and vertically disposed ground conductor of the radiating conductor.

請求項7記載の発明は、請求項1乃至請求項6のいずれか1項において、前記接地導体の表面形状は、前記接地導体に対する前記放射導体の投影形状を包含することを特徴とする。   A seventh aspect of the invention is characterized in that, in any one of the first to sixth aspects, the surface shape of the ground conductor includes a projected shape of the radiation conductor on the ground conductor.

本発明の請求項1記載の発明によれば、線状の金属のみで構成できるため、製作容易で安価なものとし、組立も簡単に行うことができる。   According to the invention described in claim 1 of the present invention, since it can be composed of only a linear metal, it is easy to manufacture and inexpensive, and can be easily assembled.

本発明の請求項2乃至請求項4記載の発明によれば、請求項1記載の発明の効果に加え、パッチアンテナで構成することにより、大幅に安価となる。また比誘電率の大きな誘電体を用いることで、厚みの薄いアンテナを構成することができる。   According to the invention described in claims 2 to 4 of the present invention, in addition to the effect of the invention described in claim 1, the use of the patch antenna greatly reduces the cost. In addition, by using a dielectric having a large relative dielectric constant, a thin antenna can be formed.

本発明の請求項5記載の発明によれば、送受信される電磁波が円偏波となるため、配管内が非満水状態となった場合等においても、水面からの反射波が逆回転の円偏波となり受信されないので、誤差要因が減り正確な測定を行うことができる。   According to the fifth aspect of the present invention, since the electromagnetic waves to be transmitted and received are circularly polarized waves, the reflected waves from the water surface are reversely rotated circularly even when the inside of the pipe is not full. Since it is not received as a wave, the error factor is reduced and an accurate measurement can be performed.

本発明の請求項6記載の発明によれば、線状の金属のみで構成できるため、製作容易で安価なものであるとともに、送受信される電磁波が円偏波となるため、請求項5記載の発明と同様、正確な測定を行うことができる。   According to the invention described in claim 6 of the present invention, since it can be composed only of a linear metal, it is easy to manufacture and inexpensive, and the electromagnetic wave transmitted and received is circularly polarized. As with the invention, accurate measurements can be made.

以下、本発明の電磁波物理量測定装置の実施の形態を、図面に基づいて詳細に説明する。   Embodiments of an electromagnetic wave physical quantity measuring apparatus according to the present invention will be described below in detail with reference to the drawings.

以下、本発明の実施例について図面を参照しながら説明する。図1は、本発明の実施例1の電磁波物理量測定装置のアンテナの構成を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 is a diagram illustrating a configuration of an antenna of an electromagnetic wave physical quantity measuring apparatus according to a first embodiment of the present invention.

まず、本実施の形態の構成を説明すると、本実施の形態に係る電磁波物理量測定装置は、全体として図7に示す従来の構成と変わらない。測定対象を含む被測定物質を流す配管1をはさむ形で送信側アンテナ2及び受信側アンテナ3を対向配置し、送信側アンテナ2から被測定物質内へ電磁波を入射し、受信側アンテナ3により受信された電磁波の第1伝播時間又は第1位相遅れと、送信側アンテナ2から基準となる流体中へ電磁波を入射し、受信側アンテナ3により受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、被測定物質中に存在する測定対象の物理量を測定する。   First, the configuration of the present embodiment will be described. The electromagnetic wave physical quantity measuring apparatus according to the present embodiment is the same as the conventional configuration shown in FIG. 7 as a whole. A transmitting antenna 2 and a receiving antenna 3 are arranged opposite each other so as to sandwich a pipe 1 through which a substance to be measured including a measuring object is sandwiched, and an electromagnetic wave is incident on the measuring substance from the transmitting antenna 2 and is received by the receiving antenna 3. The first propagation time or the first phase delay of the received electromagnetic wave, and the second propagation time or the second phase delay of the electromagnetic wave incident on the reference fluid from the transmitting antenna 2 and received by the receiving antenna 3 And the difference in propagation time or phase delay is calculated, and the physical quantity of the measurement target existing in the substance to be measured is measured.

本実施において、送信側アンテナ2及び受信側アンテナ3の構成は、図1に示すように、放射導体10a、短絡部12a、給電部14a、及び接地導体20aで構成されている。   In the present embodiment, the configuration of the transmitting antenna 2 and the receiving antenna 3 includes a radiating conductor 10a, a short-circuit portion 12a, a power feeding portion 14a, and a ground conductor 20a as shown in FIG.

放射導体10aは、所望の周波数の電磁波の2分の1波長の長さを有する。放射導体10aの材質は、例えば導電率の高い銀、金、銅等の金属が挙げられる。短絡部12aは、本発明の短絡手段に対応し、放射導体10aと接地導体20aとを接続する。給電部14aは、本発明の給電手段に対応し、マイクロ波発振器4に接続され、放射導体10aを給電する。接地導体20aは、放射導体10aと所望の周波数の電磁波の4分の1波長の間隔を隔てて対向して配置されている。   The radiation conductor 10a has a length of a half wavelength of an electromagnetic wave having a desired frequency. Examples of the material of the radiation conductor 10a include metals such as silver, gold, and copper having high conductivity. The short-circuit portion 12a corresponds to the short-circuit means of the present invention, and connects the radiation conductor 10a and the ground conductor 20a. The power feeding unit 14a corresponds to the power feeding means of the present invention, is connected to the microwave oscillator 4, and feeds the radiation conductor 10a. The ground conductor 20a is disposed opposite to the radiation conductor 10a with an interval of a quarter wavelength of the electromagnetic wave having a desired frequency.

例えば給電部14aに同軸ケーブルを用いた場合、同軸ケーブルのシールド線は接地導体20aに接続されるとともに、給電線は接地導体20aに非接触の状態で接地導体20aを貫通して放射導体10aに接続されている。   For example, when a coaxial cable is used for the power feeding part 14a, the shield wire of the coaxial cable is connected to the ground conductor 20a, and the power feed line penetrates the ground conductor 20a in a non-contact state with the ground conductor 20a to the radiation conductor 10a. It is connected.

短絡部12aは、放射導体10aの端部に直角に接続されている。給電部14aは、短絡部12aと概略平行に放射導体10aの途中に接続されている。したがって、このアンテナは全体として逆F字状の逆Fアンテナとなる。   The short circuit part 12a is connected to the end part of the radiation conductor 10a at a right angle. The power feeding part 14a is connected in the middle of the radiation conductor 10a substantially parallel to the short circuit part 12a. Therefore, this antenna is an inverted F-shaped inverted F antenna as a whole.

接地導体20aの表面形状は、接地導体20aに対する放射導体10aの投影形状を包含する。図1において、接地導体20aは円状に描かれているが、放射導体10aの投影形状、すなわち2分の1波長の長さの直線を包含する形状であればどのようなものであっても良い。   The surface shape of the ground conductor 20a includes the projected shape of the radiation conductor 10a on the ground conductor 20a. In FIG. 1, the ground conductor 20a is drawn in a circular shape, but any projection shape of the radiation conductor 10a, that is, any shape that includes a straight line having a length of a half wavelength is applicable. good.

次に、上述のように構成された本実施の形態の作用を説明する。電磁波物理量測定装置全体の作用は、図7を用いて説明した従来技術と同様のものであるため、説明を省略する。送信側アンテナ及び受信側アンテナとして図9に示すような同軸導波管変換器を用いる代わりに、上述した逆Fアンテナを用いる。逆Fアンテナは、モノポールアンテナを途中で折り曲げて低姿勢化した逆L型アンテナのインピーダンス整合をとりやすくするために、給電点付近に短絡部を設けたものである。   Next, the operation of the present embodiment configured as described above will be described. Since the operation of the entire electromagnetic wave physical quantity measuring apparatus is the same as that of the prior art described with reference to FIG. Instead of using the coaxial waveguide converter as shown in FIG. 9 as the transmitting side antenna and the receiving side antenna, the above-described inverted F antenna is used. The inverted-F antenna is provided with a short-circuit portion near the feeding point in order to facilitate impedance matching of an inverted L-type antenna obtained by bending a monopole antenna in the middle to lower the posture.

マイクロ波発振器4は、給電部14aを介して放射導体10aに給電する。その結果、配管内の被測定物質内へ電磁波が入射される。短絡部12aの長さ、すなわち放射導体10aと接地導体20aとの間の長さが4分の1波長の長さであることにより、電磁波は的確に配管に向けて送信される。   The microwave oscillator 4 supplies power to the radiation conductor 10a through the power supply unit 14a. As a result, electromagnetic waves are incident on the substance to be measured in the pipe. Since the length of the short-circuit portion 12a, that is, the length between the radiating conductor 10a and the ground conductor 20a is a quarter wavelength, the electromagnetic wave is accurately transmitted toward the pipe.

上述のとおり、本発明の実施例1の形態に係る電磁波物理量測定装置によれば、図7に示す送信側アンテナ2又は受信側アンテナ3を線状の金属のみで構成できるため、図9に示すような同軸導波管変換器を用いた従来のアンテナに比較して安価となり、大幅なコスト削減を実現することができる。また製作が容易で組立に手間がかからないという利点もある。   As described above, according to the electromagnetic wave physical quantity measuring device according to the first embodiment of the present invention, the transmission-side antenna 2 or the reception-side antenna 3 shown in FIG. Compared to a conventional antenna using such a coaxial waveguide converter, the cost is low and a significant cost reduction can be realized. In addition, there is an advantage that it is easy to manufacture and does not require assembling.

さらに、放射導体10aと接地導体20aとの間の長さを4分の1波長の長さとすることにより、電磁波は的確に配管内の被測定物質に向けて送信される。また、接地導体20aの表面形状は、接地導体20aに対する放射導体10aの投影形状を包含する大きさを有するので、良好な指向特性を得ることができる。   Furthermore, by setting the length between the radiating conductor 10a and the ground conductor 20a to a quarter wavelength, the electromagnetic wave is accurately transmitted toward the substance to be measured in the pipe. Further, since the surface shape of the ground conductor 20a has a size including the projected shape of the radiation conductor 10a with respect to the ground conductor 20a, good directivity characteristics can be obtained.

また電磁波を放射するにあたり、放射先との電気的インピーダンスを合わせるいわゆる整合が必要であるが、逆Fアンテナの特性として放射導体10a上の給電点の位置を変化させることによりインピーダンスを調整することができる。   In addition, when radiating electromagnetic waves, so-called matching is required to match the electrical impedance with the radiation destination. As a characteristic of the inverted F antenna, it is possible to adjust the impedance by changing the position of the feeding point on the radiation conductor 10a. it can.

図2は、本発明の実施例2の電磁波物理量測定装置のアンテナの構成を示す図である。まず、本実施の形態の構成を説明する。本実施の形態に係る電磁波物理量測定装置は、全体として図7に示す従来の構成と変わらない点は実施例1と同様である。   FIG. 2 is a diagram illustrating the configuration of the antenna of the electromagnetic wave physical quantity measuring apparatus according to the second embodiment of the present invention. First, the configuration of the present embodiment will be described. The electromagnetic wave physical quantity measuring apparatus according to the present embodiment is the same as that of the first embodiment in that it is not different from the conventional configuration shown in FIG.

本実施において、送信側アンテナ2及び受信側アンテナ3の構成は、図2に示すように、放射導体10b、短絡部12b、給電部14b、接地導体20b、及び誘電体30aで構成されている。   In this embodiment, as shown in FIG. 2, the transmitting antenna 2 and the receiving antenna 3 are configured by a radiating conductor 10b, a short-circuit portion 12b, a power feeding portion 14b, a ground conductor 20b, and a dielectric 30a.

Figure 2008076239
短絡部12bは、本発明の短絡手段に対応し、誘電体30aを貫通して放射導体10bと接地導体20bとを接続する。
Figure 2008076239
The short-circuit portion 12b corresponds to the short-circuit means of the present invention, and connects the radiation conductor 10b and the ground conductor 20b through the dielectric 30a.

給電部14bは、接地導体20bの一部をはがした微少部分から誘電体30aを貫通して放射導体10bとマイクロ波発振器4とを接続するとともに、放射導体10bを給電する。この給電部14bは、接地導体20bには非接触である。   The power feeding unit 14b penetrates the dielectric 30a from a minute portion from which a part of the ground conductor 20b is peeled off, connects the radiation conductor 10b and the microwave oscillator 4, and feeds the radiation conductor 10b. The power feeding portion 14b is not in contact with the ground conductor 20b.

すなわち、誘電体30aを加えた点及び放射導体10bの長さや放射導体10bと接地導体20bとの間の長さが異なる点以外は実施例1と同様の構成をとる。   That is, the configuration is the same as that of the first embodiment except that the dielectric 30a is added and the length of the radiation conductor 10b and the length between the radiation conductor 10b and the ground conductor 20b are different.

次に、上述のように構成された本実施の形態の作用は、実施例1とほぼ同様になる。送信側アンテナ及び受信側アンテナとして、上述したパッチアンテナを用いる。   Next, the operation of the present embodiment configured as described above is substantially the same as that of the first embodiment. The above-described patch antenna is used as the transmitting antenna and the receiving antenna.

上述のとおり、本発明の実施例2の形態に係る電磁波物理量測定装置によれば、図7に示す送信側アンテナ2又は受信側アンテナ3を、高周波回路基板をベースにエッチング等の処理で構成できるとともに、印刷技術によって大量に安価に製作することができる。   As described above, according to the electromagnetic wave physical quantity measuring device according to the second embodiment of the present invention, the transmission-side antenna 2 or the reception-side antenna 3 shown in FIG. 7 can be configured by a process such as etching based on the high-frequency circuit board. At the same time, it can be manufactured in large quantities at low cost by printing technology.

さらに、誘電体中の波長短縮率は、実効比誘電率の平方根の逆数であるため、誘電体30aの比誘電率を大きくすることにより、誘電体30aの厚さ及び放射導体10bの長さを小さくすることができ、アンテナの小型化が可能となる。   Furthermore, since the wavelength shortening rate in the dielectric is the reciprocal of the square root of the effective relative permittivity, the thickness of the dielectric 30a and the length of the radiation conductor 10b are increased by increasing the relative permittivity of the dielectric 30a. Thus, the antenna can be reduced in size.

その他、実施例1と同様の効果を得ることができる。   In addition, the same effects as those of the first embodiment can be obtained.

図3は、本発明の実施例3の電磁波物理量測定装置のアンテナの構成を示す図である。まず、本実施の形態の構成を説明する。本実施の形態に係る電磁波物理量測定装置は、全体として図7に示す従来の構成と変わらない点は実施例1と同様である。   FIG. 3 is a diagram illustrating the configuration of the antenna of the electromagnetic wave physical quantity measuring apparatus according to the third embodiment of the present invention. First, the configuration of the present embodiment will be described. The electromagnetic wave physical quantity measuring apparatus according to the present embodiment is the same as that of the first embodiment in that it is not different from the conventional configuration shown in FIG.

本実施において、送信側アンテナ2及び受信側アンテナ3の構成は、図3に示すように、放射導体40a、給電部14c、接地導体20c、及び誘電体30bで構成されている。   In this embodiment, the configuration of the transmitting antenna 2 and the receiving antenna 3 includes a radiating conductor 40a, a power feeding portion 14c, a ground conductor 20c, and a dielectric 30b as shown in FIG.

Figure 2008076239
給電部14cは、本発明の第1給電部に対応し、接地導体20cの一部をはがした微少部分から誘電体30bを貫通して放射導体40aとマイクロ波発振器4とを接続するとともに、放射導体40aを給電する。この給電部14cは、接地導体20cには非接触である。
Figure 2008076239
The power feeding unit 14c corresponds to the first power feeding unit of the present invention, and connects the radiation conductor 40a and the microwave oscillator 4 through the dielectric 30b from a minute portion where a part of the ground conductor 20c is peeled off, Power is supplied to the radiation conductor 40a. The power feeding portion 14c is not in contact with the ground conductor 20c.

接地導体20cの表面形状は、実施例1と同様、接地導体20cに対する放射導体40bの投影形状を包含するが、この投影形状の最も外側の部分よりもさらに0.3λ以上の長さの余裕を有する表面形状が理想的である。   The surface shape of the ground conductor 20c includes the projection shape of the radiating conductor 40b on the ground conductor 20c, as in the first embodiment, but has a margin of 0.3λ or more than the outermost portion of the projection shape. The surface shape it has is ideal.

次に、上述のように構成された本実施の形態の作用は、実施例2とほぼ同様になる。送信側アンテナ及び受信側アンテナとして、上述した正方形パッチアンテナを用いる。   Next, the operation of the present embodiment configured as described above is substantially the same as that of the second embodiment. The square patch antenna described above is used as the transmitting antenna and the receiving antenna.

上述のとおり、本発明の実施例3の形態に係る電磁波物理量測定装置によれば、実施例2の電磁波物理量測定装置と同様の効果を得ることができる。   As described above, according to the electromagnetic physical quantity measuring device according to the embodiment 3 of the present invention, the same effect as that of the electromagnetic physical quantity measuring device of the second embodiment can be obtained.

図4は、本発明の実施例4の電磁波物理量測定装置のアンテナの構成を示す図である。まず、本実施の形態の構成を説明する。実施例3と異なる点は、放射導体40bの形状が正方形ではなく、円形である点である。   FIG. 4 is a diagram illustrating the configuration of the antenna of the electromagnetic wave physical quantity measuring apparatus according to the fourth embodiment of the present invention. First, the configuration of the present embodiment will be described. The difference from the third embodiment is that the shape of the radiation conductor 40b is not square but circular.

本実施において、送信側アンテナ2及び受信側アンテナ3の構成は、図4に示すように、放射導体40b、給電部14d、接地導体20d、及び誘電体30cで構成されている。   In this embodiment, the configuration of the transmitting antenna 2 and the receiving antenna 3 includes a radiating conductor 40b, a feeding portion 14d, a grounding conductor 20d, and a dielectric 30c as shown in FIG.

Figure 2008076239
その他の構成は、実施例3と同じであるため、説明を省略する。
Figure 2008076239
Other configurations are the same as those of the third embodiment, and thus the description thereof is omitted.

次に、上述のように構成された本実施の形態の作用は、実施例3とほぼ同様になる。送信側アンテナ及び受信側アンテナとして、上述した円形パッチアンテナを用いる。   Next, the operation of the present embodiment configured as described above is substantially the same as that of the third embodiment. The circular patch antenna described above is used as the transmitting antenna and the receiving antenna.

上述のとおり、本発明の実施例4の形態に係る電磁波物理量測定装置によれば、実施例3の電磁波物理量測定装置と同様の効果を得ることができる。さらに、円形パッチアンテナによる電磁波のモードは円形導波管と同様である。また、配管の開口窓部を円形とした場合に当該開口窓部を円形導波管と見立てることが可能であるため、円形パッチアンテナから配管に向けて電磁波を送信する際、同じ電磁波のモードで整合がとれ、反射が少なく、伝搬効率良く送信することができる。   As described above, according to the electromagnetic physical quantity measurement device according to Embodiment 4 of the present invention, the same effect as that of the electromagnetic wave physical quantity measurement device according to Embodiment 3 can be obtained. Furthermore, the electromagnetic wave mode by the circular patch antenna is the same as that of the circular waveguide. Moreover, when the opening window of the pipe is circular, the opening window can be regarded as a circular waveguide, so when transmitting electromagnetic waves from the circular patch antenna toward the pipe, the same electromagnetic wave mode is used. Matching is achieved, reflection is small, and transmission can be performed with good propagation efficiency.

ここで、配管の開口窓部を円形とするのは、加工がしやすいという利点があるためである。   Here, the reason why the opening window portion of the pipe is circular is that there is an advantage that it is easy to process.

図5は、本発明の実施例5の電磁波物理量測定装置のアンテナの構成を示す図である。まず、本実施の形態の構成を図5(a)を用いて説明する。本実施の形態に係る電磁波物理量測定装置は、全体として図7に示す従来の構成と変わらない点は実施例1と同様である。   FIG. 5 is a diagram illustrating the configuration of the antenna of the electromagnetic wave physical quantity measuring apparatus according to the fifth embodiment of the present invention. First, the configuration of the present embodiment will be described with reference to FIG. The electromagnetic wave physical quantity measuring apparatus according to the present embodiment is the same as that of the first embodiment in that it is not different from the conventional configuration shown in FIG.

本実施において、送信側アンテナ2及び受信側アンテナ3の構成は、図5(a)に示すように、放射導体40c、第1給電部14e、第2給電部14f、接地導体20e、誘電体30d、及び位相器50で構成されている。   In the present embodiment, as shown in FIG. 5A, the configuration of the transmitting antenna 2 and the receiving antenna 3 includes a radiating conductor 40c, a first feeding unit 14e, a second feeding unit 14f, a grounding conductor 20e, and a dielectric 30d. , And a phase shifter 50.

実施例3と異なる点は、給電部が2つ存在する点である。第2給電部14fは、正方形の放射導体40c上の第1給電部14eとは異なる位置に給電する。また位相器50は、第1給電部14eと第2給電部との少なくとも一方の位相を調整するとともに、各給電点での信号位相を90度互いにずらす。さらに放射導体40c上における第1給電部14eの給電点及び第2給電部14fの給電点のいずれもが放射導体40c上の中心から等距離であるとともに、各給電点と放射導体40c上の中心とを結ぶ直線が互いに直角又は略直角に交わる。   The difference from the third embodiment is that there are two power feeding units. The second power feeding unit 14f feeds power to a position different from the first power feeding unit 14e on the square radiation conductor 40c. The phase shifter 50 adjusts the phase of at least one of the first power feeding unit 14e and the second power feeding unit, and shifts the signal phase at each power feeding point by 90 degrees. Further, both the feeding point of the first feeding part 14e and the feeding point of the second feeding part 14f on the radiation conductor 40c are equidistant from the center on the radiation conductor 40c, and each feeding point and the center on the radiation conductor 40c. Are perpendicular to each other or substantially perpendicular to each other.

寸法等は実施例3において説明した図3に示す正方形パッチアンテナと同じである。また、その他の構成は、実施例3と同じであるため、説明を省略する。   The dimensions and the like are the same as those of the square patch antenna shown in FIG. Other configurations are the same as those of the third embodiment, and thus description thereof is omitted.

また図5(b)は、図5(a)に示すアンテナの正方形の放射導体40cを円形の放射導体40dに変えたアンテナの構成を示す。放射導体40dの直径や誘電体30eの厚みの寸法は実施例4にて説明した図4に示す円形パッチアンテナと同じである。実施例4と異なる点は、給電部が2つ存在する点であり、図5(a)の図3に対する関係と同じであるため、重複した説明を省略する。   FIG. 5B shows an antenna configuration in which the square radiation conductor 40c of the antenna shown in FIG. 5A is replaced with a circular radiation conductor 40d. The diameter of the radiation conductor 40d and the thickness of the dielectric 30e are the same as those of the circular patch antenna shown in FIG. The difference from the fourth embodiment is that there are two power feeding units, and the relationship is the same as that in FIG. 3 in FIG.

次に、上述のように構成された本実施の形態の作用は、実施例3及び実施例4とほぼ同様であるが、さらに放射される電磁波が円偏波となる。円偏波は、時間と共に偏波面が回転する偏波である。円偏波で到来した電磁波を受信するときには同じ方向に偏波面が回転する同旋偏波のアンテナが必要であり、逆回転の偏波面(逆旋偏波)では受信できないという特徴がある。   Next, the operation of the present embodiment configured as described above is substantially the same as that of Example 3 and Example 4, but the radiated electromagnetic wave is circularly polarized. Circular polarization is polarization in which the plane of polarization rotates with time. When receiving electromagnetic waves arriving with circularly polarized waves, a co-polarized antenna whose plane of polarization rotates in the same direction is required, and reception is not possible with a reversely polarized plane of polarization (reversely polarized).

上述のとおり、本発明の実施例5の形態に係る電磁波物理量測定装置によれば、実施例3の電磁波物理量測定装置と同様の効果を得ることができる。さらに、送受信される電磁波が円偏波となるため、例えば配管内が非満水状態となった場合には水面からの反射波は逆回転の円偏波となり受信されなくなる。したがって、誤差要因が減り、正確な測定を行うことができる。また、測定対象の沈降物による堆積面からの反射波や被測定物質内の気泡等による反射も受信しないため、同様の効果を生じる。   As described above, according to the electromagnetic physical quantity measurement device according to Embodiment 5 of the present invention, the same effect as that of the electromagnetic wave physical quantity measurement device according to Embodiment 3 can be obtained. Furthermore, since the electromagnetic waves to be transmitted and received are circularly polarized waves, for example, when the inside of the pipe is not full, the reflected wave from the water surface becomes reversely circularly polarized waves and is not received. Therefore, the error factor is reduced and accurate measurement can be performed. In addition, since the reflected wave from the deposition surface by the sediment to be measured and the reflection by the bubbles in the substance to be measured are not received, the same effect is produced.

さらに図5(b)に示すような円形パッチアンテナを用いることにより、実施例4と同様、伝搬効率よく電磁波を送信することができる。   Furthermore, by using a circular patch antenna as shown in FIG. 5B, it is possible to transmit electromagnetic waves with high propagation efficiency as in the fourth embodiment.

図6は、本発明の実施例6の電磁波物理量測定装置のアンテナの構成を示す図である。まず、本実施の形態の構成を説明する。本実施の形態に係る電磁波物理量測定装置は、全体として図7に示す従来の構成と変わらない点は実施例1と同様である。   FIG. 6 is a diagram illustrating the configuration of the antenna of the electromagnetic wave physical quantity measuring apparatus according to the sixth embodiment of the present invention. First, the configuration of the present embodiment will be described. The electromagnetic wave physical quantity measuring apparatus according to the present embodiment is the same as that of the first embodiment in that it is not different from the conventional configuration shown in FIG.

本実施において、送信側アンテナ2及び受信側アンテナ3の構成は、図6に示すように、放射導体60、給電部14i、及び接地導体20gで構成されている。   In this embodiment, the configuration of the transmitting antenna 2 and the receiving antenna 3 includes a radiating conductor 60, a feeding portion 14i, and a ground conductor 20g as shown in FIG.

放射導体60は、螺旋状に巻回され、送受信される電磁波の波長をλとした場合に、螺旋軸の長さをλ/4以下、螺旋の直径をλ/πとする金属からなる。   The radiating conductor 60 is made of a metal that is wound in a spiral and has a helical axis length of λ / 4 or less and a helical diameter of λ / π, where λ is the wavelength of electromagnetic waves to be transmitted and received.

給電部14iは、接地導体20gの一部をはがした微少部分から接地導体20gを貫通して放射導体60とマイクロ波発振器4とを接続するとともに、放射導体60を給電する。この給電部14iは、接地導体20gには非接触である。   The power feeding unit 14 i penetrates the ground conductor 20 g from a minute portion where a part of the ground conductor 20 g is peeled off, connects the radiation conductor 60 and the microwave oscillator 4, and feeds the radiation conductor 60. The power feeding portion 14i is not in contact with the ground conductor 20g.

次に、上述のように構成された本実施の形態の作用を説明する。電磁波物理量測定装置全体の作用は、図7を用いて説明した従来技術と同様のものであるため、説明を省略する。   Next, the operation of the present embodiment configured as described above will be described. Since the operation of the entire electromagnetic wave physical quantity measuring apparatus is the same as that of the prior art described with reference to FIG.

マイクロ波発振器4は、給電部14iを介して放射導体60に給電する。その結果、配管内の被測定物質内へ電磁波が入射される。その際、ヘリカルアンテナである螺旋状の放射導体は、円偏波の電磁波を放射する。螺旋軸の長さを4分の1波長以下とすることにより、電磁波は螺旋軸方向、すなわち配管に向けて的確に送信される。   The microwave oscillator 4 supplies power to the radiation conductor 60 via the power supply unit 14i. As a result, electromagnetic waves are incident on the substance to be measured in the pipe. At that time, the helical radiation conductor, which is a helical antenna, radiates circularly polarized electromagnetic waves. By setting the length of the spiral axis to a quarter wavelength or less, the electromagnetic wave is accurately transmitted in the direction of the spiral axis, that is, toward the pipe.

上述のとおり、本発明の実施例6の形態に係る電磁波物理量測定装置によれば、線状の金属のみで構成されるため、実施例1と同様の効果を得ることができる。さらに実施例2乃至実施例5のように誘電体を必要としないため、安価に製作することができる。   As described above, according to the electromagnetic wave physical quantity measuring device according to the sixth embodiment of the present invention, the same effect as that of the first embodiment can be obtained because it is composed of only a linear metal. Further, unlike the second to fifth embodiments, a dielectric is not required, so that it can be manufactured at low cost.

さらに、送受信される電磁波が円偏波となるため、実施例5と同様に誤差要因が減り、正確に測定を行うことができる。   Furthermore, since the electromagnetic waves transmitted and received are circularly polarized waves, the error factor is reduced as in the fifth embodiment, and the measurement can be performed accurately.

本発明に係る電磁波物理量測定装置は、配管内を流れる液体内の対象物理量を測定することができる濃度計等の電磁波物理量測定装置に利用可能である。   The electromagnetic physical quantity measuring apparatus according to the present invention can be used for an electromagnetic physical quantity measuring apparatus such as a concentration meter capable of measuring a target physical quantity in a liquid flowing in a pipe.

本発明の実施例1の形態の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmission side antenna of the electromagnetic wave physical quantity measuring device of the form of Example 1 of this invention, and a receiving side antenna. 本発明の実施例2の形態の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmitting side antenna and receiving side antenna of the electromagnetic wave physical quantity measuring device of the form of Example 2 of this invention. 本発明の実施例3の形態の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmission side antenna of the electromagnetic wave physical quantity measuring device of the form of Example 3 of this invention, and a receiving side antenna. 本発明の実施例4の形態の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmission side antenna of the electromagnetic wave physical quantity measuring device of the form of Example 4 of this invention, and a receiving side antenna. 本発明の実施例5の形態の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmission side antenna of the electromagnetic wave physical quantity measuring device of the form of Example 5 of this invention, and a receiving side antenna. 本発明の実施例6の形態の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmitting side antenna and receiving side antenna of the electromagnetic wave physical quantity measuring device of the form of Example 6 of this invention. 従来の電磁波濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional electromagnetic wave concentration measuring apparatus. 電磁波の伝搬時間又は位相遅れと物質量との関係を示す図である。It is a figure which shows the relationship between the propagation time or phase delay of electromagnetic waves, and a substance amount. 従来の電磁波物理量測定装置の送信側アンテナ及び受信側アンテナの構成を示す図である。It is a figure which shows the structure of the transmission side antenna of a conventional electromagnetic wave physical quantity measuring device, and a reception side antenna.

符号の説明Explanation of symbols

1 配管
2 送信側アンテナ
3 受信側アンテナ
4 マイクロ波発振器
5 パワースプリッタ
6 位相差測定回路
7 同軸導波管変換器
8 高誘電率誘電体
10a、10b、10c 放射導体
12a、12b、 短絡部
14a、14b、14c、14d、14i 給電部
14e、14g 第1給電部
14f、14h 第2給電部
20a、20b、20c、20d、20e、20f、20g 接地導体
30a、30b、30c、30d、30e 誘電体
40a、40b、40c、40d 放射導体
50 位相器
60 放射導体
DESCRIPTION OF SYMBOLS 1 Piping 2 Transmission side antenna 3 Reception side antenna 4 Microwave oscillator 5 Power splitter 6 Phase difference measurement circuit 7 Coaxial waveguide converter 8 High dielectric constant dielectric 10a, 10b, 10c Radiation conductor 12a, 12b, Short-circuit part 14a, 14b, 14c, 14d, 14i Power feeding unit 14e, 14g First power feeding unit 14f, 14h Second power feeding unit 20a, 20b, 20c, 20d, 20e, 20f, 20g Grounding conductors 30a, 30b, 30c, 30d, 30e Dielectric 40a , 40b, 40c, 40d Radiation conductor 50 Phase shifter 60 Radiation conductor

Claims (7)

測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、
前記送信側アンテナと前記受信側アンテナとの少なくとも一方は、
前記電磁波の2分の1波長の長さを有する線状の放射導体と、
前記放射導体と前記電磁波の4分の1波長の間隔を隔てて対向して配置された接地導体と、
前記放射導体と前記接地導体とを接続する短絡手段と、
前記放射導体を給電する給電手段とを有する逆Fアンテナであることを特徴とする電磁波物理量測定装置。
A transmitting antenna and a receiving antenna are arranged opposite each other so as to sandwich a pipe or container through which a substance to be measured including a measurement target is sandwiched, and an electromagnetic wave is incident on the substance to be measured from the transmitting antenna and is received by the receiving antenna. The first propagation time or the first phase delay of the received electromagnetic wave and the second propagation time or the second phase delay of the electromagnetic wave incident on the reference fluid from the transmitting antenna and received by the receiving antenna In the electromagnetic wave physical quantity measuring apparatus for calculating the physical quantity of the measurement object present in the substance to be measured by calculating the difference in propagation time or phase delay in comparison with
At least one of the transmitting antenna and the receiving antenna is
A linear radiation conductor having a length of a half wavelength of the electromagnetic wave;
A grounding conductor disposed opposite to the radiation conductor and spaced by a quarter wavelength of the electromagnetic wave;
Short-circuit means for connecting the radiation conductor and the ground conductor;
An electromagnetic wave physical quantity measuring device comprising an inverted F antenna having a power feeding means for feeding the radiation conductor.
測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、
Figure 2008076239
前記誘電体の他方の表面に配置された接地導体と、
前記放射導体と前記接地導体とを接続する短絡手段と、
前記放射導体を給電する給電手段とを有する逆Fアンテナであることを特徴とする電磁波物理量測定装置。
A transmitting antenna and a receiving antenna are arranged opposite each other so as to sandwich a pipe or container through which a substance to be measured including a measurement target is sandwiched, and an electromagnetic wave is incident on the substance to be measured from the transmitting antenna and is received by the receiving antenna. The first propagation time or the first phase delay of the received electromagnetic wave and the second propagation time or the second phase delay of the electromagnetic wave incident on the reference fluid from the transmitting antenna and received by the receiving antenna In the electromagnetic wave physical quantity measuring apparatus for calculating the physical quantity of the measurement object present in the substance to be measured by calculating the difference in propagation time or phase delay in comparison with
Figure 2008076239
A ground conductor disposed on the other surface of the dielectric;
Short-circuit means for connecting the radiation conductor and the ground conductor;
An electromagnetic wave physical quantity measuring device comprising an inverted F antenna having a power feeding means for feeding the radiation conductor.
測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、
Figure 2008076239
前記誘電体の他方の表面に配置された接地導体と、
前記放射導体を給電する第1給電部とを有する正方形パッチアンテナであることを特徴とする電磁波物理量測定装置。
A transmitting antenna and a receiving antenna are arranged opposite each other so as to sandwich a pipe or container through which a substance to be measured including a measurement target is sandwiched, and an electromagnetic wave is incident on the substance to be measured from the transmitting antenna and is received by the receiving antenna. The first propagation time or the first phase delay of the received electromagnetic wave and the second propagation time or the second phase delay of the electromagnetic wave incident on the reference fluid from the transmitting antenna and received by the receiving antenna In the electromagnetic wave physical quantity measuring apparatus for calculating the physical quantity of the measurement object present in the substance to be measured by calculating the difference in propagation time or phase delay in comparison with
Figure 2008076239
A ground conductor disposed on the other surface of the dielectric;
An electromagnetic wave physical quantity measuring apparatus, comprising: a square patch antenna having a first power feeding unit that feeds the radiation conductor.
測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、
Figure 2008076239
前記誘電体の他方の表面に配置された接地導体と、
前記放射導体を給電する第1給電部とを有する円形パッチアンテナであることを特徴とする電磁波物理量測定装置。
A transmitting antenna and a receiving antenna are arranged opposite each other so as to sandwich a pipe or container through which a substance to be measured including a measurement target is sandwiched, and an electromagnetic wave is incident on the substance to be measured from the transmitting antenna and is received by the receiving antenna. The first propagation time or the first phase delay of the received electromagnetic wave and the second propagation time or the second phase delay of the electromagnetic wave incident on the reference fluid from the transmitting antenna and received by the receiving antenna In the electromagnetic wave physical quantity measuring apparatus for calculating the physical quantity of the measurement object present in the substance to be measured by calculating the difference in propagation time or phase delay in comparison with
Figure 2008076239
A ground conductor disposed on the other surface of the dielectric;
An electromagnetic wave physical quantity measuring apparatus, comprising: a circular patch antenna having a first power feeding unit that feeds the radiation conductor.
前記正方形放射導体又は前記円形放射導体上の前記第1給電部とは異なる位置に給電する第2給電部と、
前記第1給電部と前記第2給電部との少なくとも一方の位相を調整する位相器とを備え、
前記放射導体上における前記第1給電部の給電点及び前記第2給電部の給電点のいずれもが前記放射導体上の中心から等距離であるとともに各給電点と前記中心とを結ぶ直線が互いに直角又は略直角に交わり、
前記位相器は、各給電点での信号位相を90度互いにずらすことを特徴とする請求項3又は請求項4記載の電磁波物理量測定装置。
A second power feeding part for feeding power to a position different from the first power feeding part on the square radiation conductor or the circular radiation conductor;
A phase shifter for adjusting a phase of at least one of the first power feeding unit and the second power feeding unit;
Both the feeding point of the first feeding part and the feeding point of the second feeding part on the radiation conductor are equidistant from the center on the radiation conductor, and straight lines connecting the feeding point and the center are mutually connected. Intersect at right angles or almost right angles,
The electromagnetic wave physical quantity measuring device according to claim 3 or 4, wherein the phase shifter shifts the signal phase at each feeding point by 90 degrees from each other.
測定対象を含む被測定物質を流す配管又は容器をはさむ形で送信側アンテナ及び受信側アンテナを対向配置し、前記送信側アンテナから前記被測定物質内へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第1伝播時間又は第1位相遅れと、前記送信側アンテナから基準となる流体中へ電磁波を入射し、前記受信側アンテナにより受信された電磁波の第2伝播時間又は第2位相遅れとを比較して伝播時間又は位相遅れの差を演算して、前記被測定物質中に存在する前記測定対象の物理量を測定する電磁波物理量測定装置において、
前記送信側アンテナと前記受信側アンテナとの少なくとも一方は、
螺旋状に巻回され、前記電磁波の波長をλとした場合に、螺旋軸の長さをλ/4以下で螺旋の直径をλ/πとする螺旋状の放射導体と、
前記放射導体の螺旋軸と垂直に配置された接地導体とを有するヘリカルアンテナであることを特徴とする電磁波物理量測定装置。
A transmitting antenna and a receiving antenna are arranged opposite each other so as to sandwich a pipe or container through which a substance to be measured including a measurement target is sandwiched, and an electromagnetic wave is incident on the substance to be measured from the transmitting antenna and is received by the receiving antenna. The first propagation time or the first phase delay of the received electromagnetic wave and the second propagation time or the second phase delay of the electromagnetic wave incident on the reference fluid from the transmitting antenna and received by the receiving antenna In the electromagnetic wave physical quantity measuring apparatus for calculating the physical quantity of the measurement object present in the substance to be measured by calculating the difference in propagation time or phase delay in comparison with
At least one of the transmitting antenna and the receiving antenna is
A spiral radiating conductor wound in a spiral shape, where the wavelength of the electromagnetic wave is λ, and the length of the spiral axis is λ / 4 or less and the diameter of the spiral is λ / π;
2. An electromagnetic wave physical quantity measuring apparatus comprising: a helical antenna having a ground conductor disposed perpendicular to a spiral axis of the radiation conductor.
前記接地導体の表面形状は、前記接地導体に対する前記放射導体の投影形状を包含することを特徴とする請求項1乃至請求項6のいずれか1項記載の電磁波物理量測定装置。   The electromagnetic wave physical quantity measuring device according to any one of claims 1 to 6, wherein the surface shape of the ground conductor includes a projected shape of the radiation conductor with respect to the ground conductor.
JP2006255991A 2006-09-21 2006-09-21 Electromagnetic wave physical quantity measuring instrument Pending JP2008076239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255991A JP2008076239A (en) 2006-09-21 2006-09-21 Electromagnetic wave physical quantity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255991A JP2008076239A (en) 2006-09-21 2006-09-21 Electromagnetic wave physical quantity measuring instrument

Publications (1)

Publication Number Publication Date
JP2008076239A true JP2008076239A (en) 2008-04-03

Family

ID=39348463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255991A Pending JP2008076239A (en) 2006-09-21 2006-09-21 Electromagnetic wave physical quantity measuring instrument

Country Status (1)

Country Link
JP (1) JP2008076239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210134560A1 (en) * 2019-11-05 2021-05-06 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210134560A1 (en) * 2019-11-05 2021-05-06 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
CN112788826A (en) * 2019-11-05 2021-05-11 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
US11967485B2 (en) * 2019-11-05 2024-04-23 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
CN112788826B (en) * 2019-11-05 2024-09-13 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
US8842038B2 (en) High frequency mode generator for radar level gauge
US8040274B2 (en) Apparatus for determining and/or monitoring the level of a medium
CN100375892C (en) Radar filling level measurement using circularly polarized waves
US8881588B2 (en) Dielectric antenna and fill level sensor using the radar principle
US7265558B1 (en) Radar level gauge using elliptically or circularly polarized waves
US9778089B2 (en) Multi-channel guided wave radar level gauge
EP2283382B1 (en) High sensitivity frequency modulated radar level gauge system
US7453393B2 (en) Coupler with waveguide transition for an antenna in a radar-based level measurement system
US8350752B2 (en) Radar level gauge system with bottom reflector and bottom reflector
KR20110010729A (en) Multi-Channel Radar Level Gauge System
EP3178131B1 (en) Folded radiation slots for short wall waveguide radiation
EP2721378A1 (en) Guided wave radar level gauge system with dielectric constant compensation through multi-mode propagation
US20070069833A1 (en) Galvanic isolation mechanism for a planar circuit
US6750657B2 (en) Combination of a feedthrough element for an electric high-frequency signal and a probe, and a level meter metering device including a combination of this type
US20140333470A1 (en) Apparatus for Determining Fill Level by Means of a Helical Antenna
US20170322064A1 (en) Multi-phase fluid fraction measurement
JP2008076239A (en) Electromagnetic wave physical quantity measuring instrument
JP5260840B2 (en) Microwave densitometer
EP3559643B1 (en) Device for determining substance parameters by means of electromagnetic waves
JP2001083102A (en) Electromagnetic-wave type concentration measuring instrument
Schulz et al. A multistatic feeding concept for beam steering based on a dielectric ellipsoidal antenna
Fenn Antenna Design for the Laptop Radar Project
CN105811122A (en) Radar antennas and radars incorporating them
CN106329073B (en) A kind of sensor antenna
GB2401995A (en) Radar duplexing arrangement