[go: up one dir, main page]

JP2008069104A - Method for producing helicene derivatives, triyne derivatives, and helicene derivatives - Google Patents

Method for producing helicene derivatives, triyne derivatives, and helicene derivatives Download PDF

Info

Publication number
JP2008069104A
JP2008069104A JP2006248775A JP2006248775A JP2008069104A JP 2008069104 A JP2008069104 A JP 2008069104A JP 2006248775 A JP2006248775 A JP 2006248775A JP 2006248775 A JP2006248775 A JP 2006248775A JP 2008069104 A JP2008069104 A JP 2008069104A
Authority
JP
Japan
Prior art keywords
group
derivative
alkyl
formula
helicene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006248775A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
健 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2006248775A priority Critical patent/JP2008069104A/en
Publication of JP2008069104A publication Critical patent/JP2008069104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a helicene derivative having an extremely stable helical asymmetry, equipped with a large optical anisotropy and expected to be developed in various uses, a method for producing the same and a triyne derivative becoming an intermediate of the same. <P>SOLUTION: This helicene derivative is expressed by formula (I) [wherein, at least one side of X<SP>1</SP>, Y<SP>1</SP>and X<SP>2</SP>, Y<SP>2</SP>are each present and the X<SP>1</SP>, X<SP>2</SP>, Y<SP>1</SP>, Y<SP>2</SP>are each independently any of CH<SB>2</SB>, C=O, O, N, S, P, B and Si; also the N, S, P, B and Si may be connected with any of the CH<SB>2</SB>, C=O and O; and E<SP>1</SP>, E<SP>2</SP>are each independently any of H, an alkyl, an aryl, an allyl, benzyl, an alkenyl, an akynyl, an alkyl ether, an alkyl ester, an alkyl ketone, a heterocyclic ring or the derivative of them]. The compound is produced by cyclotrimerizing a triyne derivative by using a specific rhodium compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヘリセン誘導体、トリイン誘導体、ヘリセン誘導体の製造方法に関する。更に詳しくは、極めて安定ならせん不斉を有し、大きな光学異方性が期待できる[7]ヘリセン誘導体、当該[7]ヘリセン誘導体の中間体となるトリイン誘導体、当該[7]ヘリセン誘導体の製造方法に関する。   The present invention relates to a method for producing a helicene derivative, a triyne derivative, and a helicene derivative. More specifically, [7] helicene derivatives having extremely stable helical asymmetry and high optical anisotropy, triyne derivatives serving as intermediates of the [7] helicene derivatives, and production of the [7] helicene derivatives Regarding the method.

有機化合物は、我々の生活において医薬品、農薬、香料、食品添加物等として用いられてきた。また、近年にあっては、有機化合物は有機ELや有機半導体のような機能性有機材料としても用いられており、例えば、ビアリール化合物やジスルフィド化合物等の実用例が報告されている。そして、今後も機能性有機材料へのニーズはますます高まるものと予測され、各方面で様々な研究がなされている。   Organic compounds have been used in our lives as pharmaceuticals, agricultural chemicals, fragrances, food additives and the like. In recent years, organic compounds have also been used as functional organic materials such as organic EL and organic semiconductors, and practical examples such as biaryl compounds and disulfide compounds have been reported. In the future, the need for functional organic materials is expected to increase further, and various studies are being conducted in various fields.

このような機能性有機材料の中でも、ヘリセン誘導体は新規機能性有機材料として大きな関心を集めている。かかるヘリセン誘導体は、複数の芳香環が弧を描くように互いにオルト基で縮環してらせん構造を有するため、非平面π共役系に基づく機能、物性を奏すると考えられる。ヘリセン誘導体は、具体的には、らせんの向きによる光学異性体が存在するキラルな分子でもあることから、分子自体がキラルな発色団になりうる。また、光学活性ヘリセン誘導体は非常に大きい比旋光度を示すことから、この性質を利用してディテクター等への応用が期待されている。   Among these functional organic materials, helicene derivatives are attracting great interest as new functional organic materials. Such a helicene derivative is considered to exhibit functions and physical properties based on a non-planar π-conjugated system because it has a helical structure in which a plurality of aromatic rings are condensed with an ortho group so as to form an arc. Specifically, since the helicene derivative is also a chiral molecule in which an optical isomer exists depending on the direction of the helix, the molecule itself can be a chiral chromophore. In addition, since the optically active helicene derivative exhibits a very large specific rotation, application to a detector or the like is expected by utilizing this property.

加えて、ヘリセン誘導体は、芳香族同士が近接して重なり合う構造であり、それにより生じるπ電子間の相互作用に関しても、大きな関心が持たれるようになっている。ヘリセン誘導体は、これらの性質等を利用した非線形光学材料への応用が期待され、分子認識の材料や、有機EL素子、蛍光材料、有機バッファ層構成材料、非線形光学材料などの光学デバイスへの応用が期待されている。   In addition, the helicene derivative has a structure in which aromatics are closely overlapped with each other, and there is a great interest in the interaction between π electrons generated thereby. Helicene derivatives are expected to be applied to nonlinear optical materials using these properties, etc., and applied to optical devices such as molecular recognition materials, organic EL elements, fluorescent materials, organic buffer layer constituent materials, and nonlinear optical materials. Is expected.

ヘリセン誘導体の合成法としては、光環化反応が広く知られており、例えば、Wittig反応やSiegrist反応により合成した芳香族化合物を光環化するなど、煩雑な多工程を経て合成される場合が多く(例えば、非特許文献1を参照。)、また、マイクロ波を照射して光環化する方法も知られている(例えば、特許文献1を参照。)。一方、光環化反応を用いない直接的なエナンチオ選択的合成方法としては、遷移金属錯体触媒を用いた分子内[2+2+2]付加環化反応によるヘリセン誘導体の合成方法として、ニッケル錯体触媒等による方法が検討され、Ni(0)/(S)−MOP錯体触媒を用いたエナンチオ選択的な光学活性ヘリセン誘導体の合成方法が報告されている(例えば、非特許文献2を参照。)。   As a method for synthesizing a helicene derivative, a photocyclization reaction is widely known. For example, it is often synthesized through complicated multi-steps such as photocyclization of an aromatic compound synthesized by a Wittig reaction or a Siegrist reaction ( For example, see Non-Patent Document 1.) Also, a method of photocyclization by irradiating microwaves is known (see, for example, Patent Document 1). On the other hand, as a direct enantioselective synthesis method without using a photocyclization reaction, a method using a nickel complex catalyst or the like as a synthesis method of a helicene derivative by an intramolecular [2 + 2 + 2] cycloaddition reaction using a transition metal complex catalyst. A method for synthesizing enantioselective optically active helicene derivatives using a Ni (0) / (S) -MOP complex catalyst has been reported (for example, see Non-Patent Document 2).

特開2005−15427号公報([特許請求の範囲])JP-A-2005-15427 ([Claims]) 「ザ ジャーナル オブ オーガニック ケミストリー(The Journal Of Organic Chemistry)」、(米国)、アメリカン ケミカル ソサイエティ(American Chemical Society)、1991年、第56号、第3769頁“The Journal of Organic Chemistry” (USA), American Chemical Society, 1991, 56, 3769. 「テトラヘドロン レター(Tetrahedron Letters)」、(米国)、エルセビア(Elsevier)、1999年、第40号、第1993頁−第1996頁“Tetrahedron Letters” (USA), Elsevier, 1999, 40, 1993-1996.

ところで、ヘリセン誘導体のうち、[7]ヘリセン誘導体は、極めて安定ならせん不斉(ヘシリティとも呼ばれる。)を有し、大きな光学異方性を期待することができる。一方、ヘリセン誘導体を合成する方法として広く知られている光環化反応は、高希釈条件を必要とする等の理由により、大量合成への応用が困難であり、[7]ヘリセン誘導体の製造手段としても適さなかった。また、ニッケル錯体等を用いる合成方法についても、収率及びエナンチオ選択性ともに満足のいくものではなかった。加えて、ニッケル錯体は、空気に不安定な錯体であることや、[7]ヘリセン以上の合成に適用できないことや、単座配位子しか用いることができないことなどの問題もあった。   By the way, among the helicene derivatives, [7] helicene derivatives have extremely stable helical asymmetry (also referred to as helicity) and can be expected to have large optical anisotropy. On the other hand, the photocyclization reaction, which is widely known as a method for synthesizing a helicene derivative, is difficult to apply to mass synthesis due to the necessity of high dilution conditions, and [7] As a means for producing a helicene derivative Was also not suitable. Also, the synthesis method using a nickel complex or the like was not satisfactory in terms of yield and enantioselectivity. In addition, the nickel complex has a problem that it is an air-unstable complex, cannot be applied to the synthesis of [7] helicene or more, and can only use a monodentate ligand.

また、これ以外の合成法としては、Diels−Alder反応や、クロスカップリング反応などによるものが報告されている。しかし、これらの合成法は収率も低く、基質一般性においても満足のいくものではなかった。このように、光学活性ヘリセン誘導体の大量合成は大変困難であることから、これらの高エナンチオ選択的であり、高効率かつ基質一般性の高い合成法の開発が強く求められていた。   As other synthesis methods, those by Diels-Alder reaction, cross-coupling reaction, etc. have been reported. However, these synthesis methods have low yields and are not satisfactory in terms of substrate generality. As described above, since it is very difficult to synthesize optically active helicene derivatives in large quantities, there has been a strong demand for the development of synthetic methods that are highly enantioselective, highly efficient, and have high substrate generality.

本発明は前記の課題に鑑みてなされたものであり、極めて安定ならせん不斉を有し、大きな光学異方性を備えるため、種々の用途展開が期待できる[7]ヘリセン誘導体、当該[7]ヘリセン誘導体を高エナンチオ選択的に、安定かつ高収率で製造することができる[7]ヘリセン誘導体の製造方法、及び中間体となるトリイン誘導体を提供することにある。   The present invention has been made in view of the above problems, and has a very stable helical asymmetry and a large optical anisotropy. Therefore, it can be expected to be used in various applications. [7] Helicene derivatives, [7] [7] It is an object to provide a method for producing a helicene derivative capable of producing a helicene derivative with high enantioselectivity in a stable and high yield, and a triyne derivative as an intermediate.

前記の課題を解決するために、本発明の請求項1に係るヘリセン誘導体は、下記式(I)で表されることを特徴とする。   In order to solve the above problems, a helicene derivative according to claim 1 of the present invention is represented by the following formula (I).

Figure 2008069104
(式(I)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In formula (I), at least one of X 1 and Y 1 , X 2 and Y 2 is present, respectively, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)

本発明の請求項2に係るヘリセン誘導体は、前記請求項1において、下記式(II)で表されることを特徴とする。   A helicene derivative according to claim 2 of the present invention is characterized in that, in claim 1, it is represented by the following formula (II).

Figure 2008069104
(式(II)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In formula (II), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)

本発明の請求項3に係るヘリセン誘導体は、前記請求項1または請求項2において、前記E及び/またはEが、それぞれ独立して水素原子、アルキル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基よりなる群から選ばれる1種であることを特徴とする。 The helicene derivative according to claim 3 of the present invention is the helicene derivative according to claim 1 or 2, wherein the E 1 and / or E 2 are each independently a hydrogen atom, an alkyl group, an alkyl ether group, an alkyl ester group, It is one kind selected from the group consisting of alkyl ketone groups.

本発明の請求項4に係るトリイン誘導体は、下記式(III)で表されることを特徴とする。   The triyne derivative according to claim 4 of the present invention is represented by the following formula (III).

Figure 2008069104
(式(III)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In formula (III), at least one of X 1 and Y 1 , X 2 and Y 2 is present, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)

本発明の請求項5に係るトリイン誘導体は、前記請求項4において、下記式(IV)で表されることを特徴とする。   The triyne derivative according to claim 5 of the present invention is represented by the following formula (IV) in claim 4.

Figure 2008069104
(式(IV)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In Formula (IV), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)

本発明の請求項6に係るヘリセン誘導体の製造方法は、下記式(X)で表されるロジウム化合物を用いて、下記式(III)で表されるトリイン誘導体を環化三量化させることを特徴とする。   The method for producing a helicene derivative according to claim 6 of the present invention is characterized in that a triyne derivative represented by the following formula (III) is cyclized and trimerized using a rhodium compound represented by the following formula (X). And

Figure 2008069104
(式(X)中、LはRP−Q−PRで表されるビスホスフィンを表し、Yは非共役ジエン化合物を表し、XはBF、PF、BPh、ClO、SbFまたはCFSOを表す。また、mは1または2を表し、nは0または1を表す。ただし、m=1のとき、nは0または1を表し、m=2のときはn=0を表す。R、R、R及びRは、それぞれ独立して置換基を有していてもよいアリール基、置換基を有してもよいシクロアルキル基を表し、Qは置換基を有していてもよい2価のアリーレン基を表す。)
Figure 2008069104
(In formula (X), L represents a bisphosphine represented by R 1 R 2 PQ-PR 3 R 4 , Y represents a non-conjugated diene compound, X represents BF 4 , PF 6 , BPh 4 , Represents ClO 4 , SbF 6 or CF 3 SO 3 , m represents 1 or 2, n represents 0 or 1, provided that when m = 1, n represents 0 or 1 and m = 2 In this case, n represents 0. R 1 , R 2 , R 3 and R 4 each independently represents an aryl group which may have a substituent or a cycloalkyl group which may have a substituent. Q represents a divalent arylene group which may have a substituent.

Figure 2008069104
(式(III)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In formula (III), at least one of X 1 and Y 1 , X 2 and Y 2 is present, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)

本発明の請求項7に係るヘリセン誘導体の製造方法は、前記請求項6において、前記トリイン誘導体が、下記式(IV)で表されることを特徴とする。   The method for producing a helicene derivative according to claim 7 of the present invention is characterized in that, in claim 6, the triyne derivative is represented by the following formula (IV).

Figure 2008069104
(式(IV)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In Formula (IV), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)

本発明の請求項1に係るヘリセン誘導体は、π電子がキラルならせん構造を形成する、光学活性な[7]ヘリセン誘導体となり、比旋光度に優れる、π電子系が拡張される等といった特色を有する。また、ヘリセン誘導体中に、XとYを含んだ5員環ないしは6員環、及び、XとYを含んだ5員環ないしは6員環が形成されているため、ヘテロ原子の導入による多彩な物性発現が期待できるという特徴を有し、機能性有機材料として、有機EL素子、蛍光材料、有機バッファ層構成材料、非線形光学材料などの各種の光学デバイス、光学活性配位子、光学活性カラム充填材料等の様々な用途に適用することができる。 The helicene derivative according to claim 1 of the present invention is characterized in that π electrons form a chiral helical structure, becomes an optically active [7] helicene derivative, has excellent specific rotation, and expands the π electron system. Have. In addition, since a 5-membered or 6-membered ring containing X 1 and Y 1 and a 5- or 6-membered ring containing X 2 and Y 2 are formed in the helicene derivative, It has the feature that various physical properties can be expected by the introduction, and various organic devices such as organic EL elements, fluorescent materials, organic buffer layer constituent materials, nonlinear optical materials, optically active ligands, etc. as functional organic materials It can be applied to various uses such as optically active column packing material.

本発明の請求項2に係るヘリセン誘導体は、式(II)で表されるように、式(I)に係るヘリセン誘導体におけるX、Xを−O−、Y、Yを−CH−としているので、合成が極めて容易である、π電子系が拡張される、らせん構造が酸及び塩基に比較的安定である等というメリットがある。 In the helicene derivative according to claim 2 of the present invention, as represented by the formula (II), X 1 and X 2 in the helicene derivative according to the formula (I) are —O—, Y 1 and Y 2 are —CH— Since it is 2- , there are merits that the synthesis is very easy, the π-electron system is expanded, and the helical structure is relatively stable to acids and bases.

本発明の請求項3に係るヘリセン誘導体は、ヘリセン誘導体を構成するE、Eを特定の基とすることにより、双極子モーメントが大きくなり、機能性有機材料としての用途展開が拡大するというメリットがある。 The helicene derivative according to claim 3 of the present invention has a dipole moment increased by using E 1 and E 2 constituting the helicene derivative as specific groups, and the application development as a functional organic material is expanded. There are benefits.

本発明の請求項4に係るトリイン誘導体は、式(III)で表される構成となるので、前記した式(I)で表される本発明のヘリセン誘導体を製造する際の好適な中間体となる。   Since the triyne derivative according to claim 4 of the present invention has a structure represented by the formula (III), a suitable intermediate for producing the helicene derivative of the present invention represented by the above formula (I) Become.

本発明の請求項5に係るトリイン誘導体は、前記した式(III)に係るトリイン誘導体において、構成を式(IV)で表されるように、X、Xを−O−、Y、Yを−CH−と特定しているので、前記した式(II)で表される本発明のヘリセン誘導体を製造する際の好適な中間体となる。 In the triyne derivative according to claim 5 of the present invention, in the triyne derivative according to the above formula (III), X 1 and X 2 are represented by —O—, Y 1 , as represented by the formula (IV), Since Y 2 is specified as —CH 2 —, it is a suitable intermediate for producing the helicene derivative of the present invention represented by the above formula (II).

本発明の請求項6に係るヘリセン誘導体の製造方法は、式(III)に表されるトリイン誘導体を、式(X)で表されるロジウム化合物を用いトリイン誘導体を環化三量化させるようにしているので、前記した式(I)に表される本発明のヘリセン誘導体を、高エナンチオ選択的に高収率で大量に製造することができる。また、反応温度としても、室温状態で反応を進行させることができるため、前記の特性を備えたヘリセン誘導体を簡便な操作で効率よく製造することができる。   In the method for producing a helicene derivative according to claim 6 of the present invention, the triyne derivative represented by the formula (III) is cyclized and trimerized using the rhodium compound represented by the formula (X). Therefore, the helicene derivative of the present invention represented by the above formula (I) can be produced in a large amount with high yield and high enantioselectivity. In addition, since the reaction can be allowed to proceed at room temperature, the helicene derivative having the above characteristics can be efficiently produced by a simple operation.

本発明の請求項7に係るヘリセン誘導体の製造方法は、請求項6に係るヘリセン誘導体の製造方法において、使用するトリイン誘導体を式(IV)に表されるものに特定しているので、前記した本発明の製造方法の奏する効果を享受するとともに、式(II)で表されるトリイン誘導体を効率よく製造することができる。   The method for producing a helicene derivative according to claim 7 of the present invention specifies the triyne derivative used in the method for producing a helicene derivative according to claim 6 as represented by the formula (IV). While enjoying the effect which the manufacturing method of this invention show | plays, the triyne derivative represented by Formula (II) can be manufactured efficiently.

以下、本発明のヘリセン誘導体、当該ヘリセン誘導体の中間体となるトリイン誘導体、当該ヘリセン誘導体の製造方法に関して具体的に説明する。本発明のヘリセン誘導体は、下記式(I)で表される。   Hereinafter, the helicene derivative of the present invention, the triyne derivative serving as an intermediate of the helicene derivative, and the method for producing the helicene derivative will be specifically described. The helicene derivative of the present invention is represented by the following formula (I).

Figure 2008069104
Figure 2008069104

かかる式(I)で表されるヘリセン誘導体は、π電子がキラルならせん構造を形成する、光学活性な[7]ヘリセン誘導体となる。前記したように、[7]ヘリセン誘導体は、極めて安定ならせん不斉(ヘシリティ)を有し、大きな光学異方性を期待することができるため、比旋光度に優れる、π電子系が拡張される等といった特色を有する。   The helicene derivative represented by the formula (I) becomes an optically active [7] helicene derivative in which π electrons form a chiral helical structure. As described above, the [7] helicene derivative has extremely stable helical asymmetry and can be expected to have a large optical anisotropy, so that the π-electron system with excellent specific rotation is expanded. Etc.

ここで、式(1)中、XとY、XとYは、それぞれ、いずれか少なくとも一方(XとYのいずれか一方あるいは両方、及びXとY2のいずれか一方あるいは両方)が存在し、それぞれ独立してX、X、Y、Yは、CH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよいものである。このように、式(I)に表されるヘリセン誘導体にあっては、XとYは、いずれか少なくとも一方が存在すればよく、XとYのいずれか一方が存在した場合には、式(I)のヘリセン誘導体には、XあるいはYを含む5員環が形成され、XとYの両方が存在した場合には、式(I)のヘリセン誘導体には、X及びYを含む6員環が形成されることになる。同様に、式(I)に表されるヘリセン誘導体にあっては、XとYは、いずれか少なくとも一方が存在すればよく、XとYのいずれか一方が存在した場合には、式(I)のヘリセン誘導体には、XあるいはYを含む5員環が形成され、XとYの両方が存在した場合には、式(I)のヘリセン誘導体には、X及びYを含む6員環が形成されることになる。 Here, in the formula (1), X 1 and Y 1 , X 2 and Y 2 are each at least one (one or both of X 1 and Y 1 , and one of X 2 and Y 2). Or both), and X 1 , X 2 , Y 1 , and Y 2 each independently represent CH 2 , C═O, O, N, S, P, B, or Si. N, S, P, B, and Si may be bonded to any one of CH 2 , C═O, and O. Thus, in the helicene derivatives represented in formula (I), X 1 and Y 1 may be either at least one of existence, when one of X 1 and Y 1 is present Is a helicene derivative of formula (I) in which a 5-membered ring containing X 1 or Y 1 is formed, and when both X 1 and Y 1 are present, A 6-membered ring containing X 1 and Y 1 will be formed. Similarly, in the helicene derivatives represented in formula (I), X 2 and Y 2 may be either at least one of existence, when one of X 2 and Y 2 are present In the helicene derivative of the formula (I), a 5-membered ring containing X 2 or Y 2 is formed, and when both X 2 and Y 2 are present, the helicene derivative of the formula (I) A 6-membered ring containing 2 and Y 2 will be formed.

本発明にあっては、ヘリセン誘導体中に、XとYを含んだ5員環ないしは6員環、及び、XとYを含んだ5員環ないしは6員環が形成されているため、ヘテロ原子の導入による多彩な物性発現が期待できるというメリットがある。 In the present invention, a 5-membered or 6-membered ring containing X 1 and Y 1 and a 5-membered or 6-membered ring containing X 2 and Y 2 are formed in the helicene derivative. Therefore, there is a merit that various physical properties can be expected by introducing hetero atoms.

また、式(I)中、E、Eは、それぞれ独立して、水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体が挙げられる。これらは直鎖構造だけではなく、側鎖を有していてもよく、更には環状構造を有していてもよい。E、Eは、特に、それぞれ独立して、水素原子、アルキル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基のいずれかとすることが好ましく、かかる基に特定することにより、双極子モーメントが大きくなり、機能性有機材料としての用途展開が拡大する。 In formula (I), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl Examples thereof include ketone groups, heterocyclic groups, and derivatives thereof. These may have not only a straight chain structure but also a side chain, and may further have a cyclic structure. E 1 and E 2 are particularly preferably each independently a hydrogen atom, an alkyl group, an alkyl ether group, an alkyl ester group, or an alkyl ketone group, and by specifying such a group, the dipole moment Will increase the use of functional organic materials.

また、アルキル基としては、例えば、メチル基(CH−)、エチル基(CHCH−)、プロピル基(CHCHCH−)、イソプロピル基((CHCH−)、ブチル基(CHCHCHCH−)、イソブチル基((CHCHCH−)、s−ブチル基(CHCHCH(CH)−)、t−ブチル基((CHC−)、フェニル基(C−)等を挙げることができる。 Examples of the alkyl group include a methyl group (CH 3 —), an ethyl group (CH 3 CH 2 —), a propyl group (CH 3 CH 2 CH 2 —), and an isopropyl group ((CH 3 ) 2 CH—). , Butyl group (CH 3 CH 2 CH 2 CH 2 —), isobutyl group ((CH 3 ) 2 CHCH 2 —), s-butyl group (CH 3 CH 2 CH (CH 3 ) —), t-butyl group ( (CH 3 ) 3 C—), phenyl group (C 6 H 5 —) and the like can be mentioned.

本発明のヘリセン誘導体は、式(I)において、X、Xを−O−、Y、Yを−CH−とした場合には、下記式(II)で表される。 The helicene derivative of the present invention is represented by the following formula (II) when X 1 and X 2 are —O—, Y 1 and Y 2 are —CH 2 — in formula (I).

Figure 2008069104
(式(II)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In formula (II), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)

また、式(I)で表されるヘリセン誘導体を製造するには、下記式(III)で表されるトリイン誘導体を、下記式(X)で表されるロジウム化合物の存在下環化三量化させ、[2+2+2]環化付加させる。なお、本発明における[2+2+2]環化付加とは、アセチレンを例に挙げると、下記に表されるように、3個の三重結合を6員環になるように環化させ、ベンゼン骨格を形成させるものである。   In order to produce a helicene derivative represented by the formula (I), a triyne derivative represented by the following formula (III) is cyclized and trimerized in the presence of a rhodium compound represented by the following formula (X). [2 + 2 + 2] cycloaddition. In the present invention, [2 + 2 + 2] cycloaddition is an example of acetylene, and as shown below, three triple bonds are cyclized to form a 6-membered ring to form a benzene skeleton. It is something to be made.

Figure 2008069104
(式(III)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In formula (III), at least one of X 1 and Y 1 , X 2 and Y 2 is present, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)

Figure 2008069104
Figure 2008069104

以下、本発明のヘリセン誘導体の製造方法で用いられるロジウム化合物について説明する。ロジウム化合物は、下記式(X)で表される。   Hereinafter, the rhodium compound used in the method for producing a helicene derivative of the present invention will be described. The rhodium compound is represented by the following formula (X).

Figure 2008069104
(式(X)中、LはRP−Q−PRで表されるビスホスフィンを表し、Yは非共役ジエン化合物を表し、XはBF、PF、BPh、ClO、SbFまたはCFSOを表す。また、mは1または2を表し、nは0または1を表す。ただし、m=1のとき、nは0または1を表し、m=2のときはn=0を表す。R、R、R及びRは、それぞれ独立して置換基を有していてもよいアリール基、置換基を有してもよいシクロアルキル基を表し、Qは置換基を有していてもよい2価のアリーレン基を表す。)
Figure 2008069104
(In formula (X), L represents a bisphosphine represented by R 1 R 2 PQ-PR 3 R 4 , Y represents a non-conjugated diene compound, X represents BF 4 , PF 6 , BPh 4 , Represents ClO 4 , SbF 6 or CF 3 SO 3 , m represents 1 or 2, n represents 0 or 1, provided that when m = 1, n represents 0 or 1 and m = 2 In this case, n represents 0. R 1 , R 2 , R 3 and R 4 each independently represents an aryl group which may have a substituent or a cycloalkyl group which may have a substituent. Q represents a divalent arylene group which may have a substituent.

式(X)における、Lで表されるRP−Q−PRなるビスホスフィンにおいて、R、R、R及びRで表される置換基を有していてもよいアリール基としては、例えば炭素数6〜14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基等が挙げられる。これらアリール基は置換基を有していてもよく、該置換基としては、アルキル基、アルコキシル基、アリール基、複素環基等が挙げられる。 In the formula (X), the bisphosphine represented by R 1 R 2 PQ-PR 3 R 4 represented by L has a substituent represented by R 1 , R 2 , R 3 and R 4. Examples of the aryl group that may be used include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. These aryl groups may have a substituent, and examples of the substituent include an alkyl group, an alkoxyl group, an aryl group, and a heterocyclic group.

アルキル基としては、直鎖状でも、分岐状でもあるいは環状でもよい、例えば炭素数1〜15、好ましくは炭素数1〜10、より好ましくは炭素数1〜6のアルキル基が挙げられ、具体例としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基及びtert−ブチル基等が挙げられる。アルコキシル基としては、直鎖状でも分岐状でもあるいは環状でもよい、例えば炭素数1〜6のアルコキシル基が挙げられ、具体的にはメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、イソブトキシ基及びtert−ブトキシ基等が挙げられる。   The alkyl group may be linear, branched or cyclic, and examples thereof include an alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Specific examples Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group. Examples of the alkoxyl group may be linear, branched or cyclic, and examples thereof include an alkoxyl group having 1 to 6 carbon atoms, specifically, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, n -Butoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group and the like.

アリール基としては、例えば炭素数6〜14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基等が挙げられる。複素環基としては脂肪族複素環基及び芳香族複素環基が挙げられ、脂肪族複素環基としては、例えば炭素数2〜14で、異種原子として少なくとも1個、好ましくは1〜3個の例えば窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでいる、5〜8員、好ましくは5または6員の単環、多環または縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、ピロリジル−2−オン基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基、テトラヒドロチエニル基等が挙げられる。芳香族複素環基としては、例えば炭素数2〜15で、異種原子として少なくとも1個、好ましくは1〜3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、5〜8員、好ましくは5または6員の単環式、多環式または縮合環式のヘテロアリール基が挙げられ、具体的にはフリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基等が挙げられる。   As an aryl group, a C6-C14 aryl group is mentioned, for example, Specifically, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group etc. are mentioned. Examples of the heterocyclic group include an aliphatic heterocyclic group and an aromatic heterocyclic group, and the aliphatic heterocyclic group has, for example, 2 to 14 carbon atoms and at least one hetero atom, preferably 1 to 3 hetero atoms. For example, a 5- to 8-membered, preferably 5- or 6-membered monocyclic, polycyclic or condensed ring aliphatic heterocyclic group containing a heteroatom such as a nitrogen atom, an oxygen atom or a sulfur atom can be mentioned. Specific examples of the aliphatic heterocyclic group include pyrrolidyl-2-one group, piperidino group, piperazinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group, tetrahydrothienyl group and the like. The aromatic heterocyclic group has, for example, 2 to 15 carbon atoms and contains at least one, preferably 1 to 3 hetero atoms such as nitrogen, oxygen and sulfur atoms as hetero atoms, 5 to 8 A 5-membered, preferably 5- or 6-membered monocyclic, polycyclic or condensed ring heteroaryl group, specifically, a furyl group, a thienyl group, a pyridyl group, a pyrimidyl group, a pyrazyl group, a pyridazyl group, Pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, benzothienyl group, quinolyl group, isoquinolyl group, quinoxalyl group, phthalazyl group, quinazolyl group, naphthyridyl group, cinnolyl group, benzoimidazolyl group, benzoxazolyl group, benzothiazolyl Groups and the like.

また、R、R、R及びRで表される置換基を有していてもよいシクロアルキル基としては、5員環または6員環のシクロアルキル基が挙げられ、環状は前記したアルキル基またはアルコキシル基で、1ないし2以上置換されていてもよい。好ましいシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of the cycloalkyl group which may have a substituent represented by R 1 , R 2 , R 3 and R 4 include a 5-membered or 6-membered cycloalkyl group. The alkyl group or alkoxyl group may be substituted by 1 to 2 or more. Preferred cycloalkyl groups include a cyclopentyl group and a cyclohexyl group.

Qで表される2価のアリーレン基としては、フェニレン基、ビフェニルジイル基、ビナフタレンジイル基等が挙げられる。フェニレン基としては、oまたはm−フェニレン基が挙げられ、該フェニレン基はメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基及びtert−ブチル基等のアルキル基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、イソブトキシ基及びtert−ブトキシ基等のアルコキシル基;水酸基、アミノ基または置換アミノ基等で置換されていてもよい。ビフェニルジイル基及びビナフタレンジイル基としては、1,1’−ビアリール−2,2’−ジイル型の構造を有するものが好ましく、該ビフェニルジイル基及びビナフタレンジイル基は前記したようなアルキル基、アルコキシル基、例えばメチレンジオキシ基、エチレンジオキシ基、トリメチレンジオキシ基等のアルキレンジオキシ基、水酸基、アミノ基、置換アミノ基等で置換されていてもよい。   Examples of the divalent arylene group represented by Q include a phenylene group, a biphenyldiyl group, a binaphthalenediyl group, and the like. Examples of the phenylene group include o or m-phenylene group, and the phenylene group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-butyl group. An alkyl group such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group and tert-butoxy group; hydroxyl group, amino group or substituted amino group Etc. may be substituted. As the biphenyldiyl group and the binaphthalenediyl group, those having a 1,1′-biaryl-2,2′-diyl type structure are preferable, and the biphenyldiyl group and the binaphthalenediyl group are alkyl groups as described above, It may be substituted with an alkoxyl group, for example, an alkylenedioxy group such as a methylenedioxy group, an ethylenedioxy group, or a trimethylenedioxy group, a hydroxyl group, an amino group, a substituted amino group, or the like.

L、即ちRP−Q−PRで表されるビスホスフィンの具体例としては、例えば自体公知のビスホスフィン類が挙げられ、その内の一つとして下記式(Y)で表される化合物が挙げられる。 Specific examples of bisphosphine represented by L, that is, R 1 R 2 PQ-PR 3 R 4 include, for example, bisphosphines known per se, and one of them is represented by the following formula (Y). And the compounds represented.

Figure 2008069104
(式(Y)中、R11及びR12は、それぞれ独立して、アルキル基、アルコキシル基もしくはハロゲン原子で置換されていてもよいフェニル基、シクロペンチル基、またはシクロヘキシル基を示す)
Figure 2008069104
(In formula (Y), R 11 and R 12 each independently represents an alkyl group, an alkoxyl group, or a phenyl group, a cyclopentyl group, or a cyclohexyl group, which may be substituted with a halogen atom)

上記R11及びR12における、フェニル基の置換基のアルキル基としては、例えば、メチル基、tert−ブチル基等の直鎖状または分岐状の炭素数1〜6のアルキル基;アルコキシル基としては、例えば、メトキシ基、tert−ブトキシ基等の直鎖状または分岐状の炭素数1〜6のアルコキシル基;ハロゲン原子としては、例えば、塩素原子、臭素原子、フッ素原子等が挙げられる。 Examples of the alkyl group for the substituent of the phenyl group in R 11 and R 12 include linear or branched alkyl groups having 1 to 6 carbon atoms such as a methyl group and a tert-butyl group; For example, a linear or branched alkoxy group having 1 to 6 carbon atoms such as a methoxy group and a tert-butoxy group; examples of the halogen atom include a chlorine atom, a bromine atom, and a fluorine atom.

11及びR12の具体例としては、例えば、フェニル基、p−トリル基、m−トリル基、3,5−キシリル基、p−tert−ブチルフェニル基、p−メトキシフェニル基、p−クロロフェニル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。 Specific examples of R 11 and R 12 include, for example, phenyl group, p-tolyl group, m-tolyl group, 3,5-xylyl group, p-tert-butylphenyl group, p-methoxyphenyl group, p-chlorophenyl. Group, cyclopentyl group, cyclohexyl group and the like.

また、式(Y)で表される化合物の基本骨格であるビナフチル環はメチル基、tert−ブチル基等のアルキル基;メトキシ基、tert−ブトキシ基等のアルコキシル基;トリメチルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基等のトリアルキルシリル基及びトリフェニルシリル基等のトリアリールシリル基で置換されていてもよい。   The binaphthyl ring, which is the basic skeleton of the compound represented by the formula (Y), is an alkyl group such as a methyl group or a tert-butyl group; an alkoxyl group such as a methoxy group or a tert-butoxy group; a trimethylsilyl group or a triisopropylsilyl group. And a trialkylsilyl group such as a tert-butyldimethylsilyl group and a triarylsilyl group such as a triphenylsilyl group.

また、RP−Q−PRで表されるビスホスフィンの他の具体例としては、下記一般式(Z)で表される化合物が挙げられる。 Moreover, the compound represented by the following general formula (Z) is mentioned as another specific example of the bisphosphine represented by R < 1 > R < 2 > PQ-PR < 3 > R < 4 >.

Figure 2008069104
(式(Z)中、R13及びR14は、それぞれ独立して、アルキル基、アルコキシル基もしくはハロゲン原子で置換されていてもよいフェニル基、シクロペンチル基またはシクロヘキシル基を示す。R15、R16、R17、R18、R19及びR20は、それぞれ独立して、水素原子、アルキル基、アルコキシル基、アシルオキシ基、ハロゲン原子、ハロアルキル基またはジアルキルアミノ基を示し、R15、R16及びR17のうちの2つで置換基を有していてもよいメチレン鎖または置換基を有していてもよいモノまたはポリメチレンジオキシ基を形成していてもよく、また、R18、R19及びR20の内の2つで置換基を有していてもよいメチレン鎖または置換基を有していてもよいモノまたはポリメチレンジオキシ基を形成していてもよい。ただし、R17とR20が共に水素原子の場合は除く。)
Figure 2008069104
(In Formula (Z), R 13 and R 14 each independently represent an alkyl group, an alkoxyl group, or a phenyl group, a cyclopentyl group, or a cyclohexyl group that may be substituted with a halogen atom. R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, an alkyl group, an alkoxyl group, an acyloxy group, a halogen atom, a haloalkyl group or a dialkylamino group, and R 15 , R 16 and R 20 Two of 17 may form a methylene chain which may have a substituent or a mono or polymethylenedioxy group which may have a substituent, and R 18 , R 19 and two in substituted optionally also have a good methylene chain or substituent mono- or polymethylene of the R 20 dioxabicycloctane It may form a group. However, in the case of R 17 and R 20 are both hydrogen atoms excluded.)

上記R13及びR14における、フェニル基の置換基のアルキル基としては、例えば、メチル基、tert−ブチル基等の直鎖状または分岐状の炭素数1〜6のアルキル基、アルコキシル基としては、例えば、メトキシ基、tert−ブトキシ基等の直鎖状または分岐状の炭素数1〜6のアルコキシル基、ハロゲン原子としては例えば塩素原子、臭素原子、フッ素原子等が挙げられ、これら置換基は該フェニル基上に複数置換されていてもよい。R13、R14の具体例としては、例えば、フェニル基、p−トリル基、m−トリル基、o−トリル基、3,5−キシリル基、3,5−ジ−tert−ブチルフェニル基、p−tert−ブチルフェニル基、p−メトキシフェニル基、3,5−ジ−tert−ブチル−4−メトキシフェニル基、p−クロロフェニル基、m−フルオロフェニル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of the alkyl group for the substituent of the phenyl group in the above R 13 and R 14 include, for example, a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group and a tert-butyl group, and an alkoxyl group. For example, a linear or branched alkoxy group having 1 to 6 carbon atoms such as a methoxy group or a tert-butoxy group, and a halogen atom include, for example, a chlorine atom, a bromine atom, a fluorine atom, and the like. Multiple substitutions may be made on the phenyl group. Specific examples of R 13 and R 14 include, for example, phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, 3,5-xylyl group, 3,5-di-tert-butylphenyl group, Examples include p-tert-butylphenyl group, p-methoxyphenyl group, 3,5-di-tert-butyl-4-methoxyphenyl group, p-chlorophenyl group, m-fluorophenyl group, cyclopentyl group, cyclohexyl group and the like. .

また、R15〜R20におけるアルキル基としては、例えば、メチル基、tert−ブチル基等の直鎖状または分岐状の炭素数1〜6のアルキル基;アルコキシル基としては、例えば、メトキシ基、tert−ブトキシ基等の直鎖状または分岐状の炭素数1〜6のアルコキシル基;アシルオキシ基としては、例えば、アセトキシ基、プロパノイルオキシ基、トリフルオロアセトキシ基、ベンゾイルオキシ基等の炭素数2〜10のアシルオキシ基;ハロゲン原子としては、例えば、塩素原子、臭素原子、フッ素原子等;ハロアルキル基としては、例えば、トリフルオロメチル基等の炭素数1〜4のハロアルキル基;ジアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。R15、R16及びR17の内の2つでメチレン鎖を形成する場合、及びR18、R19及びR20の内の2つでメチレン鎖を形成する場合のメチレン鎖としては、例えば、炭素数3〜5のメチレン鎖が好ましく、具体的にはトリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。また、置換基を有していてもよいメチレン鎖の置換基としては、アルキル基及びハロゲン原子等が挙げられ、置換基の具体例としては、例えば、炭素数1〜6の前記したようなアルキル基及びフッ素原子等が挙げられる。 Examples of the alkyl group in R 15 to R 20 include a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group and a tert-butyl group; examples of the alkoxyl group include a methoxy group, linear or branched alkoxyl groups having 1 to 6 carbon atoms such as a tert-butoxy group; examples of the acyloxy group include 2 carbon atoms such as an acetoxy group, a propanoyloxy group, a trifluoroacetoxy group, and a benzoyloxy group A halogen atom, for example, a chlorine atom, a bromine atom, a fluorine atom, etc .; a haloalkyl group, for example, a haloalkyl group having 1 to 4 carbon atoms, such as a trifluoromethyl group; Examples thereof include a dimethylamino group and a diethylamino group. Examples of the methylene chain when two of R 15 , R 16 and R 17 form a methylene chain, and the case where two of R 18 , R 19 and R 20 form a methylene chain include: A methylene chain having 3 to 5 carbon atoms is preferred, and specific examples include a trimethylene group, a tetramethylene group, and a pentamethylene group. In addition, examples of the substituent of the methylene chain which may have a substituent include an alkyl group and a halogen atom, and specific examples of the substituent include, for example, an alkyl as described above having 1 to 6 carbon atoms. Group, fluorine atom and the like.

また、R15、R16及びR17の内の2つで置換基を有していてもよいモノまたはポリメチレンジオキシ基を形成する場合、及びR18、R19及びR20の内の2つで置換基を有していてもよいモノまたはポリメチレンジオキシ基を形成する場合の具体例としては、例えば、メチレンジオキシ基、エチレンジオキシ基、トリメチレンジオキシ基等が挙げられる。また、該モノまたはポリメチレンジオキシ基に置換する置換基としては、アルキル基及びハロゲン原子等が挙げられ、置換基を有していてもよいモノまたはポリメチレンジオキシ基の置換基の具体例としては、例えば、炭素数1〜6の前記したようなアルキル基及びフッ素原子等が挙げられる。 In addition, when two of R 15 , R 16 and R 17 form a mono- or polymethylenedioxy group which may have a substituent, and two of R 18 , R 19 and R 20 Specific examples of forming a mono- or polymethylenedioxy group which may have a substituent include, for example, a methylenedioxy group, an ethylenedioxy group, and a trimethylenedioxy group. Examples of the substituent substituted on the mono- or polymethylenedioxy group include an alkyl group and a halogen atom. Specific examples of the substituent of the mono- or polymethylenedioxy group which may have a substituent Examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms and a fluorine atom.

式(X)において、Yで表される非共役ジエン化合物としては、環状でも非環状でもよく、非共役ジエン化合物が環状非共役ジエン化合物である場合には、単環状、多環状、縮環状、架橋環状のいずれであってもよい。また、非共役ジエン化合物は、置換基で置換された非共役ジエン化合物、即ち置換非共役ジエン化合物でもよい。前記置換基は、本発明の製造方法に悪影響を与えない置換基であれば特に限定されない。好ましい非共役ジエン化合物としては、例えば、1,5−シクロオクタジエン、ビシクロ[2,2,1]ヘプタ−2,5−ジエン、1,5−ヘキサジエン等が挙げられる。   In the formula (X), the non-conjugated diene compound represented by Y may be cyclic or non-cyclic. When the non-conjugated diene compound is a cyclic non-conjugated diene compound, monocyclic, polycyclic, condensed cyclic, Any of a crosslinked ring may be used. The non-conjugated diene compound may be a non-conjugated diene compound substituted with a substituent, that is, a substituted non-conjugated diene compound. The substituent is not particularly limited as long as it does not adversely affect the production method of the present invention. Preferred examples of the non-conjugated diene compound include 1,5-cyclooctadiene, bicyclo [2,2,1] hepta-2,5-diene, 1,5-hexadiene, and the like.

本発明で用いられる、式(X)で表されるロジウム化合物は、例えば、下記のスキーム1に示すように、不活性ガス雰囲気下、公知の方法で得られるか、または市販されているロジウム−オレフィン配位錯体に、メタノール、エタノール、イソプロパノール、ブタノール、トルエン、テトラヒドロフラン等の有機溶媒中で、例えば前記のLで表されるビスホスフィンを反応させた後、MX(Mは一価の金属陽イオンを示し、Xは前記と同じ意味を示す。)でカウンターアニオンの交換反応を行うか(ロジウム化合物(A)または(B))、これに更に水素ガスを作用させてオレフィン性配位子を脱離させることにより得ることができる(ロジウム化合物(C))。(式中、CODは1,5−シクロオクタジエンを示す。以下同様。)   The rhodium compound represented by the formula (X) used in the present invention can be obtained by a known method in an inert gas atmosphere or commercially available rhodium-, for example, as shown in Scheme 1 below. After reacting the olefin coordination complex with the above-mentioned bisphosphine represented by L in an organic solvent such as methanol, ethanol, isopropanol, butanol, toluene and tetrahydrofuran, MX (M is a monovalent metal cation). X represents the same meaning as described above), or the counter anion exchange reaction is carried out (rhodium compound (A) or (B)), or hydrogen gas is further reacted to remove the olefinic ligand. (Rhodium compound (C)). (In the formula, COD represents 1,5-cyclooctadiene. The same shall apply hereinafter.)

(スキーム1)

Figure 2008069104
(Scheme 1)
Figure 2008069104

本発明で用いられる、式(X)で表されるロジウム化合物は、また、下記スキーム2に示すように、予めカウンターアニオンの交換反応を行ったロジウム−ビスオレフィン錯体にLで表されるビスホスフィンを反応させ、続いて水素ガスでオレフィン性配位子を脱離させることによっても得ることができる。   As shown in the following scheme 2, the rhodium compound represented by the formula (X) used in the present invention is a bisphosphine represented by L in a rhodium-bisolefin complex that has been subjected to a counter anion exchange reaction in advance. It can also be obtained by reacting and subsequently desorbing the olefinic ligand with hydrogen gas.

(スキーム2)

Figure 2008069104
(Scheme 2)
Figure 2008069104

この時、ロジウム−オレフィン配位錯体の中心金属モル数に対してLで表されるビスホスフィンの添加量はビスホスフィンの一部が酸化を受ける場合があるので1.0〜2.4倍モル、より好ましくは1.05〜2.2倍モル使用することが望ましい。   At this time, the addition amount of bisphosphine represented by L with respect to the number of moles of the central metal of the rhodium-olefin coordination complex is 1.0 to 2.4 times mole because a part of bisphosphine may be oxidized. More preferably, it is desirable to use 1.05 to 2.2 times mole.

式(X)で表されるロジウム化合物の製造に用いられるロジウム−オレフィン配位錯体としては、オレフィン配位子の選択によって種々の錯体を取り扱うことが可能であるが、入手の容易性より、1,5−シクロオクタジエンのロジウム錯体である[Rh(COD)Cl]やノルボルナジエンのロジウム錯体である[Rh(NBD)Cl]
(式中、NBDは2,5−ノルボルナジエンを示す。以下同様。)が特に好ましい。なお、本発明の触媒活性種は[Rh(L)]Xであるが、その前駆体であるロジウム化合物(A)も本発明のヘリセン誘導体の製造方法において用いることができる。
As the rhodium-olefin coordination complex used for the production of the rhodium compound represented by the formula (X), various complexes can be handled depending on the selection of the olefin ligand. [Rh (COD) Cl] 2 which is a rhodium complex of 1,5-cyclooctadiene and [Rh (NBD) Cl] 2 which is a rhodium complex of norbornadiene
(In the formula, NBD represents 2,5-norbornadiene. The same shall apply hereinafter). The catalytically active species of the present invention is [Rh (L)] X, but the precursor rhodium compound (A) can also be used in the method for producing a helicene derivative of the present invention.

カウンターアニオン交換反応においては、例えば、銀塩(AgX)と反応させて行うことが、取り扱いの面で好ましい。   In the counter anion exchange reaction, for example, it is preferable to react with a silver salt (AgX) in terms of handling.

前記ロジウム化合物(A)、(B)及び(C)は、調製後は、特に精製することなく本発明の製造方法に用いることができる。   The rhodium compounds (A), (B) and (C) can be used in the production method of the present invention without any particular purification after preparation.

本発明のヘリセンの製造方法は、式(X)で示されるロジウム化合物または該ロジウム化合物を含む溶液と、例えば、式(III)で表されるトリイン誘導体とを反応させることにより行われる。   The method for producing helicene of the present invention is carried out by reacting a rhodium compound represented by the formula (X) or a solution containing the rhodium compound with a triyne derivative represented by the formula (III), for example.

具体的には、まず、反応溶媒に式(X)で示されるロジウム化合物または該ロジウム化合物を含む溶液を加え(あるいは、ロジウム化合物または該ロジウム化合物を含む溶液に、反応溶媒を加え)、これに、式(III)で表されるトリイン誘導体を加えることにより反応が進行しトリイン誘導体が環化三量化され、不斉[2+2+2]付加環化反応が進行し、式(I)に表されるヘリセン誘導体が合成される。   Specifically, first, the rhodium compound represented by the formula (X) or a solution containing the rhodium compound is added to the reaction solvent (or the reaction solvent is added to the rhodium compound or the solution containing the rhodium compound). By adding a triyne derivative represented by the formula (III), the reaction proceeds, the triyne derivative is cyclized and trimerized, an asymmetric [2 + 2 + 2] cycloaddition reaction proceeds, and the helicene represented by the formula (I) Derivatives are synthesized.

反応溶媒としては、反応に関与しないものであれば特に制限は無いが、例えば、N,N−ジメチルホルムアミド、ホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、o−ジクロロベンゼン等のハロゲン化炭化水素類、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、tert−ブタノール等の非求核性のアルコール類、ジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等のエーテル類及びジメチルスルホキシド等のスルホキシド類等が挙げられる。これらの溶媒はそれぞれ単独で用いてもよく、また、二種以上適宜組み合わせて用いても良い。更には、場合によってはアルキン類そのものを反応溶媒として用いるようにしてもよい。   The reaction solvent is not particularly limited as long as it does not participate in the reaction. For example, amides such as N, N-dimethylformamide, formamide, N, N-dimethylacetamide, dichloromethane, 1,2-dichloroethane, chloroform , Halogenated hydrocarbons such as carbon tetrachloride and o-dichlorobenzene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane and cyclohexane, for example, aromatic hydrocarbons such as benzene, toluene and xylene , Non-nucleophilic alcohols such as tert-butanol, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane Kind and Sulfoxides such as methyl sulfoxide. Each of these solvents may be used alone or in combination of two or more. Furthermore, in some cases, alkynes themselves may be used as a reaction solvent.

ロジウム化合物の使用量は、反応基質のトリイン誘導体に対して、通常1〜50mol%程度とすればよい。なお、反応は、窒素またはアルゴン等の不活性ガス中で行うことが好ましい。   The amount of the rhodium compound used may normally be about 1 to 50 mol% with respect to the triyne derivative of the reaction substrate. The reaction is preferably performed in an inert gas such as nitrogen or argon.

反応温度は、使用するトリイン誘導体の種類等により適宜決定すればよいが、−20℃〜80℃程度で実施すればよい。本発明の製造方法にあっては、反応を室温状態であっても進行させることができるので、ヘリセン誘導体を簡便な操作で得ることができる。   The reaction temperature may be appropriately determined depending on the type of triyne derivative used and the like, but may be carried out at about -20 ° C to 80 ° C. In the production method of the present invention, since the reaction can proceed even at room temperature, a helicene derivative can be obtained by a simple operation.

反応時間も、使用するトリイン誘導体及びロジウム化合物の使用量により適宜決定すればよいが、通常10分〜200時間、好ましくは1時間〜50時間である。   The reaction time may be appropriately determined depending on the amounts of the triyne derivative and rhodium compound used, but is usually 10 minutes to 200 hours, preferably 1 hour to 50 hours.

なお、反応終了後は、濾過やシリカゲルカラムクロマトグラフィー等、この種分野で通常行われる後処理操作を行い、結晶化、蒸留、各種クロマトグラフィー等の精製法を単独または適宜組み合わせることにより所望のヘリセン誘導体を得ることができる。   After completion of the reaction, post-treatment operations that are usually performed in this kind of field such as filtration and silica gel column chromatography are performed, and the desired helicene can be obtained by combining purification methods such as crystallization, distillation, and various chromatography alone or in combination as appropriate. Derivatives can be obtained.

次に、式(I)で表されるヘリセン誘導体の製造における中間体となる、式(III)で表されるトリイン誘導体の製造手段の一例を、出発物質として式(V)で表される1−ヨード−2−ナフトールを用いて、後記する式(V−5)で表されるビナフトール誘導体(ジ(2−ヒドロキシナフタレン−1−イル)アセチレン)を製造して、かかるビナフトール誘導体を用いて、式(IV)で表されるトリイン誘導体を製造する手段を挙げて説明する。なお、式(IV)で表されるトリイン誘導体は、式(III)においてX、Xを−O−、Y、Yを−CH−としたものであり、式(II)で表されるヘリセン誘導体の中間体として使用されるものである。 Next, an example of a means for producing a triyne derivative represented by formula (III), which is an intermediate in the production of a helicene derivative represented by formula (I), is represented by formula (V) as a starting material. -Using iodo-2-naphthol, a binaphthol derivative (di (2-hydroxynaphthalen-1-yl) acetylene) represented by the following formula (V-5) is produced, and using such a binaphthol derivative, The means for producing the triyne derivative represented by the formula (IV) will be described. The triyne derivative represented by the formula (IV) is one in which X 1 and X 2 are —O— and Y 1 and Y 2 are —CH 2 — in the formula (III). It is used as an intermediate of the represented helicene derivative.

Figure 2008069104
Figure 2008069104

Figure 2008069104
(式(IV)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
Figure 2008069104
(In Formula (IV), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)

まず、出発原料となる、式(V)で表される1−ヨード−2−ナフトールに水素化ナトリウム(NaH)を作用させ、MOM基を有するメトキシメチルクロライド(MOM−Cl)との反応により、式(V−1)で表される1−ヨード−2−メトキシメトキシナフタレンを得るようにする。   First, sodium hydride (NaH) is allowed to act on 1-iodo-2-naphthol represented by the formula (V) as a starting material, and reacted with methoxymethyl chloride having a MOM group (MOM-Cl). 1-iodo-2-methoxymethoxynaphthalene represented by the formula (V-1) is obtained.

Figure 2008069104
Figure 2008069104

かかる1−ヨード−2−メトキシメトキシナフタレンの合成にあっては、MOM基を用いて水酸基の保護を行うことが好ましい。後の工程で菌頭カップリング及びトリメチルシリル基の脱保護を塩基性条件下で行うため、塩基に強く、保護・脱保護が比較的容易なMOM基を選択することが好ましい。   In the synthesis of 1-iodo-2-methoxymethoxynaphthalene, it is preferable to protect the hydroxyl group using an MOM group. Since the bacterial head coupling and the deprotection of the trimethylsilyl group are performed under basic conditions in a later step, it is preferable to select a MOM group that is strong against bases and relatively easy to protect and deprotect.

次に、1−ヨード−2−メトキシメトキシナフタレン(式(V−1))とトリメチルシリルアセチレンとの菌頭カップリングを行い、式(V−2)に表される(2−メトキシメトキシナフタレン−1−イルエチニル)トリメチルシランを得て、かかる(2−メトキシメトキシナフタレン−1−イルエチニル)トリメチルシランのトリメチルシリル基の脱保護により、末端アルキンである、式(V−3)に表される1−エチニル2−メトキシメトキシナフタレンを合成する。   Next, 1-iodo-2-methoxymethoxynaphthalene (formula (V-1)) and trimethylsilylacetylene are coupled to each other, and (2-methoxymethoxynaphthalene-1 represented by formula (V-2) is represented. 1-ethynyl 2 represented by the formula (V-3), which is a terminal alkyne by deprotection of the trimethylsilyl group of (2-methoxymethoxynaphthalen-1-ylethynyl) trimethylsilane -Synthesize methoxymethoxynaphthalene.

Figure 2008069104
Figure 2008069104

Figure 2008069104
Figure 2008069104

かかる末端アルキンである1−エチニル2−メトキシメトキシナフタレンと、先に合成した、1−ヨード−2−メトキシメトキシナフタレン(式(V−1))との菌頭カップリングを行い、MOM基で保護された、式(V−4)で表されるジ(2−メトキシメトキシナフタレン−1−イル)アセチレンを合成する。また、このジ(2−メトキシメトキシナフタレン−1−イル)アセチレンにおけるMOM基を塩酸存在下において脱保護することにより、式(V−5)で表されるビナフトール誘導体(ジ(2−ヒドロキシナフタレン−1−イル)アセチレン)を得ることができる。   This terminal alkyne, 1-ethynyl-2-methoxymethoxynaphthalene, and the previously synthesized 1-iodo-2-methoxymethoxynaphthalene (formula (V-1)) were subjected to bacterial head coupling and protected with the MOM group The di (2-methoxymethoxynaphthalen-1-yl) acetylene represented by the formula (V-4) is synthesized. Further, by deprotecting the MOM group in this di (2-methoxymethoxynaphthalen-1-yl) acetylene in the presence of hydrochloric acid, a binaphthol derivative represented by the formula (V-5) (di (2-hydroxynaphthalene- 1-yl) acetylene) can be obtained.

Figure 2008069104
Figure 2008069104

Figure 2008069104
Figure 2008069104

前記の内容により得られた、式(V−5)で表されるビナフトール誘導体(ジ(2−ヒドロキシナフタレン−1−イル)アセチレン)からは、一般式として、前記した式(IV)で表されるトリイン誘導体を合成することができる。例えば、ジ(2−ヒドロキシナフタレン−1−イル)アセチレンとプロパルギルブロマイドとのエーテル化反応により、リンカーにエーテル結合を有するトリイン誘導体(IV−1)を合成することができる。かかるトリイン誘導体は、式(II−1)で表されるヘリセン誘導体を製造するための中間体として用いることができる。   From the binaphthol derivative (di (2-hydroxynaphthalen-1-yl) acetylene) represented by the formula (V-5) obtained according to the above contents, it is represented by the formula (IV) described above as a general formula. Can be synthesized. For example, the triyne derivative (IV-1) having an ether bond in the linker can be synthesized by an etherification reaction of di (2-hydroxynaphthalen-1-yl) acetylene and propargyl bromide. Such a triyne derivative can be used as an intermediate for producing a helicene derivative represented by the formula (II-1).

Figure 2008069104
Figure 2008069104

Figure 2008069104
Figure 2008069104

また、式(V−5)に表されるジ(2−ヒドロキシナフタレン−1−イル)アセチレンと1−ブロモ−2−ブチンとのエーテル化反応により、リンカーにエーテル結合を有するトリイン誘導体(IV−2)を合成することができる。かかるトリイン誘導体は、式(II−2)で表されるヘリセン誘導体を製造するための中間体として用いることができる。   In addition, a triyne derivative (IV-) having an ether bond in a linker by an etherification reaction of di (2-hydroxynaphthalen-1-yl) acetylene represented by the formula (V-5) and 1-bromo-2-butyne. 2) can be synthesized. Such a triyne derivative can be used as an intermediate for producing a helicene derivative represented by the formula (II-2).

Figure 2008069104
Figure 2008069104

Figure 2008069104
Figure 2008069104

ここで、前記したエーテル化合成反応において80℃に昇温すると反応が複雑化してしまい、目的とするトリインの収率が低下した。反応性は低下するものの室温でも反応は進行するため、室温程度で長時間反応を行う方が収率は向上するものと考えられる。   Here, when the temperature was raised to 80 ° C. in the etherification synthesis reaction described above, the reaction became complicated, and the yield of the target triyne was lowered. Although the reactivity decreases, the reaction proceeds even at room temperature. Therefore, it is considered that the yield is improved when the reaction is performed at room temperature for a long time.

更には、末端にアルキンを有するトリイン誘導体(IV−1)から、例えば、LDAを作用させて生じたリチウムアセチリドに対して、クロロメチルメチルエーテルを反応させることによって、アルキン末端に配位性置換基を有するトリイン誘導体(IV−3)を合成することができる。かかるトリイン誘導体は、式(II−3)で表されるヘリセン誘導体を製造するための中間体として用いることができる。   Furthermore, from the triyne derivative (IV-1) having an alkyne at the terminal, for example, by reacting lithium acetylide generated by the action of LDA with chloromethyl methyl ether, a coordinating substituent at the alkyne terminal It is possible to synthesize a triyne derivative (IV-3) having Such a triyne derivative can be used as an intermediate for producing a helicene derivative represented by the formula (II-3).

Figure 2008069104
Figure 2008069104

Figure 2008069104
Figure 2008069104

同様に、末端アルキンを有するトリイン誘導体(IV−1)に、クロロ蟻酸メチルを反応させることにより、アルキン末端に電子求引性置換基を有するトリイン誘導体(IV−4)を合成することができる。かかるトリイン誘導体は、式(II−4)で表されるヘリセン誘導体を製造するための中間体として用いることができる。   Similarly, a triyne derivative (IV-4) having an electron-attracting substituent at the alkyne end can be synthesized by reacting a triyne derivative (IV-1) having a terminal alkyne with methyl chloroformate. Such a triyne derivative can be used as an intermediate for producing a helicene derivative represented by the formula (II-4).

Figure 2008069104
Figure 2008069104

Figure 2008069104
Figure 2008069104

なお、前記した説明にあっては、式(I)で表されるヘリセン誘導体の製造における中間体となるトリイン誘導体の製造方法として、出発物質として式(V)で表される1−ヨード−2−ナフトールを用いて、式(V−5)で表されるビナフトール誘導体(ジ(2−ヒドロキシナフタレン−1−イル)アセチレン)を製造して、かかるビナフトール誘導体を用いて、式(IV)で表されるトリイン誘導体を製造する例を挙げて説明したが、反応系中にX、X、Y、Yを導入することにより、式(III)で表されるトリイン誘導体を好適に製造することができる。 In the above description, as a method for producing a triyne derivative serving as an intermediate in the production of a helicene derivative represented by formula (I), 1-iodo-2 represented by formula (V) is used as a starting material. -A naphthol derivative (di (2-hydroxynaphthalen-1-yl) acetylene) represented by the formula (V-5) is produced using naphthol, and the binaphthol derivative is used to produce a binaphthol derivative represented by the formula (IV). Although an example of producing a triyne derivative to be produced has been described, the triyne derivative represented by the formula (III) is suitably produced by introducing X 1 , X 2 , Y 1 , Y 2 into the reaction system. can do.

以上説明したように、式(I)に表される本発明のヘリセン誘導体は、π電子がキラルならせん構造を形成する、光学活性な[7]ヘリセン誘導体となり、極めて安定ならせん不斉を有し、大きな光学異方性を期待でき、また、比旋光度に優れる、π電子系が拡張される等といった特色を有する。更には、ヘリセン誘導体中に、XとYを含んだ5員環ないしは6員環、及び、XとYを含んだ5員環ないしは6員環が形成されているため、ヘテロ原子の導入による多彩な物性発現が期待できるという特徴を有する。 As described above, the helicene derivative of the present invention represented by the formula (I) is an optically active [7] helicene derivative in which π electrons form a chiral helical structure, and has extremely stable helical asymmetry. In addition, it can be expected to have a large optical anisotropy, has an excellent specific rotation, has an extended π-electron system, and the like. Furthermore, since a 5-membered or 6-membered ring containing X 1 and Y 1 and a 5- or 6-membered ring containing X 2 and Y 2 are formed in the helicene derivative, a hetero atom It has the feature that various physical properties can be expected by the introduction of.

よって、本発明のヘリセン誘導体は、機能性有機材料として、有機EL素子、蛍光材料、有機バッファ層構成材料、非線形光学材料などの各種の光学デバイス、光学活性配位子、光学活性カラム充填材等の用途として適用することができる。   Therefore, the helicene derivative of the present invention includes various organic devices such as organic EL elements, fluorescent materials, organic buffer layer constituting materials, and nonlinear optical materials, optically active ligands, optically active column fillers, and the like as functional organic materials. It can be applied as a use.

また、式(III)に表されるトリイン誘導体を、式(X)で表されるロジウム化合物を用いトリイン誘導体を環化三量化させる本発明のヘリセン誘導体の製造方法によれば、式(I)に表される本発明のヘリセン誘導体を、高エナンチオ選択的に高収率で大量に製造することができる。また、反応温度としても、室温状態で反応が進行するため、前記の特性を備えたヘリセン誘導体を簡便な操作で効率よく製造することができる。そして、式(III)に表される本発明のトリイン誘導体も、前記した式(I)で表される本発明のヘリセン誘導体を製造する際の好適な中間体となる。   Further, according to the method for producing a helicene derivative of the present invention in which a triyne derivative represented by formula (III) is cyclized and trimerized using a rhodium compound represented by formula (X), the formula (I) The helicene derivative of the present invention represented by the formula (1) can be produced in large quantities with high enantioselectivity and in high yield. In addition, since the reaction proceeds at room temperature as the reaction temperature, a helicene derivative having the above characteristics can be efficiently produced by a simple operation. The triyne derivative of the present invention represented by the formula (III) is also a suitable intermediate for producing the helicene derivative of the present invention represented by the aforementioned formula (I).

なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。   The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the objects and effects. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. Further, the specific structure, shape, and the like in carrying out the present invention are not problematic as other structures, shapes, and the like as long as the objects and effects of the present invention can be achieved. The present invention is not limited to the above-described embodiments, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.

例えば、ヘリセン誘導体やトリイン誘導体の種類としても、ヘリセン誘導体として式(II)、あるいは(II−1)ないし(II−4)を、トリイン誘導体として式(IV)、あるいは(IV−1)ないし(IV−4)を例に挙げて説明したが、ヘリセン誘導体やトリイン誘導体はこれらには限定されず、前記したX、X、Y、Y、E、Eの要件を具備する基を適用する限り、ヘリセン誘導体やトリイン誘導体を自由に選択できる。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
For example, as the types of helicene derivatives and triyne derivatives, the formula (II) or (II-1) to (II-4) is used as the helicene derivative, and the formula (IV), or (IV-1) to (IV) is used as the triyne derivative. Although IV-4) has been described as an example, helicene derivatives and triyne derivatives are not limited to these, and have the requirements of X 1 , X 2 , Y 1 , Y 2 , E 1 , E 2 described above. As long as the group is applied, helicene derivatives and triyne derivatives can be freely selected.
In addition, the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.

次に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

[実施例1]
ヘリセン誘導体の製造(1):
下記(1)〜(8)により、ヘリセン誘導体である8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン−9,10−ジメチルジカルボキシレートを合成した。
[Example 1]
Production of helicene derivative (1):
According to the following (1) to (8), the helicene derivative 8H, 11H-naphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d] pyran-9,10-dimethyldicarboxylate was synthesized.

(1)1−ヨード−2−メトキシメトキシナフタレンの合成:
攪拌した水素化ナトリウム(55%パラフィン溶液、0.89g、20.5mmol)のテトラヒドロフラン懸濁溶液(20ml)に、式(V)で表される1−ヨード−2−ナフトール(5.00g、18.5mmol)及びメトキシメチルクロライド(2.2mL、29.2mmol)のテトラヒドロフラン溶液(30ml)を室温にて添加し、これら混合物を室温にて3時間攪拌した。反応後の生成物をエーテルで抽出した。有機層は、食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。粗生成物は、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=20:1)で精製し、式(V−1)で表される1−ヨード−2−メトキシメトキシナフタレンをパールイエローの液体(2)(5.54g、17.6mmol、収率95%)として得た。H−NMRデータを以下に示す。
(1) Synthesis of 1-iodo-2-methoxymethoxynaphthalene:
To a stirred suspension of sodium hydride (55% paraffin solution, 0.89 g, 20.5 mmol) in tetrahydrofuran (20 ml), 1-iodo-2-naphthol (5.00 g, 18 0.5 mmol) and a solution of methoxymethyl chloride (2.2 mL, 29.2 mmol) in tetrahydrofuran (30 ml) were added at room temperature, and the mixture was stirred at room temperature for 3 hours. The product after the reaction was extracted with ether. The organic layer was washed with brine, dried over sodium sulfate and concentrated. The crude product was purified by silica gel chromatography (hexane: ethyl acetate = 20: 1), and 1-iodo-2-methoxymethoxynaphthalene represented by the formula (V-1) was converted into a pearl yellow liquid (2) ( 5.54 g, 17.6 mmol, 95% yield). 1 H-NMR data is shown below.

1H−NMR(CDCl,300MHz)δ8.16(d,J=8.1Hz 1H),7.79(d,J=9.0Hz)J=9.0Hz,1H),7.75(d,J=8.1Hz,1H)7.51−7.58(m,1H),7.37−7.44(m,1H),7.36(d,J=9.0Hz,1H),5.36(s,2H),3.58(s,3H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.16 (d, J = 8.1 Hz 1H), 7.79 (d, J = 9.0 Hz) J = 9.0 Hz, 1H), 7.75 (d , J = 8.1 Hz, 1H) 7.51-7.58 (m, 1H), 7.37-7.44 (m, 1H), 7.36 (d, J = 9.0 Hz, 1H), 5.36 (s, 2H), 3.58 (s, 3H)

(2)(2−メトキシメトキシナフタレン−1−イルエチニル)トリメチルシランの合成:
(1)で得られた1−ヨード−2−メトキシメトキシナフタレン(2.02g、6.42mmol)とトリメチルシリルアセチレン(1.1ml、7.78mmol)のジイソプロピルアミン溶液(50ml)にテトラキス(トリフェニルホスフィン)パラジウム(75mg、0.064mmol)を添加した。混合物を5分間攪拌し、さらにヨウ化銅(28mg、0.14mmol)を加えた。そして、混合物をアルゴン雰囲気下、室温にて5時間攪拌した。褐色油状の生成物を濾過し、濃縮した。得られた粗(2−メトキシメトキシナフタレン−1−イルエチニル)トリメチルシラン(式(V−2))2.99gを次の合成段階では精製することなく使用した。H−NMRデータを以下に示す。
(2) Synthesis of (2-methoxymethoxynaphthalen-1-ylethynyl) trimethylsilane:
Tetrakis (triphenylphosphine) was added to a diisopropylamine solution (50 ml) of 1-iodo-2-methoxymethoxynaphthalene (2.02 g, 6.42 mmol) and trimethylsilylacetylene (1.1 ml, 7.78 mmol) obtained in (1). ) Palladium (75 mg, 0.064 mmol) was added. The mixture was stirred for 5 minutes and more copper iodide (28 mg, 0.14 mmol) was added. The mixture was stirred for 5 hours at room temperature under an argon atmosphere. The brown oily product was filtered and concentrated. The crude (2-methoxymethoxynaphthalen-1-ylethynyl) trimethylsilane (formula (V-2)) 2.99 g obtained was used without purification in the next synthesis step. 1 H-NMR data is shown below.

1H−NMR(CDCl,300MHz)δ8.26(d,J=8.1Hz,1H),7.73−7.80(m,2H),7.55(ddd,J=8.1,6.9and1.2Hz,1H),7.41(ddd,J=8.4,8.9,and1.2Hz,1H),7.35(d,J=9.0Hz,1H),5.37(s、2H),3.59(s,3H),0.34(s,9H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.26 (d, J = 8.1 Hz, 1H), 7.73-7.80 (m, 2H), 7.55 (ddd, J = 8.1) 6.9 and 1.2 Hz, 1 H), 7.41 (ddd, J = 8.4, 8.9, and 1.2 Hz, 1 H), 7.35 (d, J = 9.0 Hz, 1 H), 5.37 (S, 2H), 3.59 (s, 3H), 0.34 (s, 9H)

(3)1−エチニル−2−メトキシメトキシナフタレンの合成:
水酸化カリウム(0.5g)水溶液2mlに、(2)で得られた2−メトキシメトキシナフタレン−1−イルエチニルトリメチルシラン(2.99g)のメタノール(20ml)・テトラヒドロフラン溶液(5ml)を加えた。上記混合溶液を室温にて30分間激しく攪拌した。反応混合溶液を水(5ml)で希釈し、エーテル抽出をした。有機層を食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。粗生成物は、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、式(V−3)で表される1−エチニル−2−メトキシメトキシナフタレンを紫色の液体(1.21g、5.7mmol、1−ヨード−2−メトキシメトキシナフタレンからの収率89%)として得た。H−NMRデータを以下に示す。
(3) Synthesis of 1-ethynyl-2-methoxymethoxynaphthalene:
To 2 ml of aqueous potassium hydroxide (0.5 g) solution was added 2-methoxymethoxynaphthalen-1-ylethynyltrimethylsilane (2.99 g) obtained in (2) in methanol (20 ml) / tetrahydrofuran solution (5 ml). . The mixed solution was vigorously stirred at room temperature for 30 minutes. The reaction mixture was diluted with water (5 ml) and extracted with ether. The organic layer was washed with brine, dried over sodium sulfate and concentrated. The crude product was purified by silica gel chromatography (hexane: ethyl acetate = 10: 1), and 1-ethynyl-2-methoxymethoxynaphthalene represented by the formula (V-3) was converted into a purple liquid (1.21 g, 5.7 mmol, 89% yield from 1-iodo-2-methoxymethoxynaphthalene). 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.29(d,J=8.1Hz),7.75−7.83(m,2H),7.56(ddd,J=8.4,6.9,and1.5Hz,1H),7.42(d,J=9.0Hz,1H),7.41(ddd,J=8.4,6.9,and1.5Hz,1H),5.39(s、2H),3.73(s,1H),3.57(s、3H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.29 (d, J = 8.1 Hz), 7.75-7.83 (m, 2H), 7.56 (ddd, J = 8.4, 6. 9, and 1.5 Hz, 1 H), 7.42 (d, J = 9.0 Hz, 1 H), 7.41 (ddd, J = 8.4, 6.9, and 1.5 Hz, 1 H), 5.39. (S, 2H), 3.73 (s, 1H), 3.57 (s, 3H)

(4)ジ(2−メトキシメトキシナフタレン−1−イル)アセチレンの合成:
(1)で得られた1−ヨード−2−メトキシメトキシナフタレン(0.150g、0476mmol)のジイソプロピルアミン溶液(30ml)に、テトラ(トリフェニルホスフィン)パラジウム(0.011g、0.01mmol)を添加した。混合物を5分間攪拌し、さらにヨウ化銅(10ミリg、0.05mmol)を加えた。そして、混合物溶液に(3)で得られた1−エチニル−2−メトキシメトキシナフタレン(0.100g、0.471mmol)をゆっくり添加した。この混合物をアルゴン雰囲気下、室温にて3時間攪拌した。さらに、濾過後、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製した。(3)で得られた1−エチニル2−メトキシメトキシナフタレンから収率82%で、式(V−4)で表されるジ(2−メトキシメトキシナフタレン−1−イル)アセチレンを黄色の固体として得た。H−NMRデータを以下に示す。
(4) Synthesis of di (2-methoxymethoxynaphthalen-1-yl) acetylene:
Tetra (triphenylphosphine) palladium (0.011 g, 0.01 mmol) was added to a diisopropylamine solution (30 ml) of 1-iodo-2-methoxymethoxynaphthalene (0.150 g, 0476 mmol) obtained in (1). did. The mixture was stirred for 5 minutes and more copper iodide (10 mg, 0.05 mmol) was added. Then, 1-ethynyl-2-methoxymethoxynaphthalene (0.100 g, 0.471 mmol) obtained in (3) was slowly added to the mixture solution. The mixture was stirred at room temperature for 3 hours under an argon atmosphere. Further, after filtration, the filtrate was concentrated and purified by silica gel chromatography (hexane: ethyl acetate = 10: 1). The di (2-methoxymethoxynaphthalen-1-yl) acetylene represented by the formula (V-4) was converted into a yellow solid from the 1-ethynyl 2-methoxymethoxynaphthalene obtained in (3) in a yield of 82%. Obtained. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.64(d,J=8.1Hz,2H),7.79−7.86(m,4H),7.60(ddd,J=8.1,6.9,and0.9Hz,2H),7.41−7.48(m,4H),5.51(s,4H),3.63(s,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.64 (d, J = 8.1 Hz, 2H), 7.79-7.86 (m, 4H), 7.60 (ddd, J = 8.1) 6.9, and 0.9 Hz, 2H), 7.41-7.48 (m, 4H), 5.51 (s, 4H), 3.63 (s, 6H)

(5)ジ(2−ヒドロキシナフタレン−1−イル)アセチレンの合成:
(4)で得られたジ(2−メトキシメトキシナフタレン−1−イル)アセチレン(1.04g、2.60mmol)のテトラヒロドフラン/水/塩酸溶液(18ml、体積比12:4:2)を室温にて21時間攪拌した。生成物を酢酸エチルにより抽出した。有機層を洗浄し、有機層を食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。粗生成物は、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、式(V−5)で表されるジ(2−ヒドロキシナフタレン−1−イル)アセチレンを黄色の固体として得た(0.731g、2.36mmol、ジ(2−メトキシメトキシナフタレン−1−イル)アセチレンからの収率60%)。H−NMRデータを以下に示す。
(5) Synthesis of di (2-hydroxynaphthalen-1-yl) acetylene:
Tetrahydrofuran / water / hydrochloric acid solution of di (2-methoxymethoxynaphthalen-1-yl) acetylene (1.04 g, 2.60 mmol) obtained in (4) (18 ml, volume ratio 12: 4: 2) Was stirred at room temperature for 21 hours. The product was extracted with ethyl acetate. The organic layer was washed, the organic layer was washed with brine, dried over sodium sulfate and concentrated. The crude product is purified by silica gel chromatography (hexane: ethyl acetate = 10: 1) to obtain di (2-hydroxynaphthalen-1-yl) acetylene represented by the formula (V-5) as a yellow solid. (0.731 g, 2.36 mmol, 60% yield from di (2-methoxymethoxynaphthalen-1-yl) acetylene). 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.27(d,J=8.1Hz,2H),7.81−7.87(m,4H),7.60(ddd,J=8.1,6.9and0.9Hz,2H),7.43(ddd,J=8.1,6.9,and0.9Hz,2H),7.27(d,J=9.0Hz,2H),6.46(s,2H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.27 (d, J = 8.1 Hz, 2H), 7.81-7.87 (m, 4H), 7.60 (ddd, J = 8.1) 6.9 and 0.9 Hz, 2H), 7.43 (ddd, J = 8.1, 6.9, and 0.9 Hz, 2H), 7.27 (d, J = 9.0 Hz, 2H), 6.46 (S, 2H)

(6)トリイン(ジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレン)の合成:
炭酸カリウム(0.461g、3.36mmol)のアセトン溶液に、(5)で得られたジ(2−ヒドロキシナフタレン−1−イル)アセチレン(0.206g、0.664mmol)とプロパギルブロミド(0.242g、2.03mmol)を添加し、その混合物を室温にて47時間攪拌した。生成物を酢酸エチルで抽出した。有機層を食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。粗生成物は、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=30:1)で精製し、式(VI−1)に表されるジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレンを薄黄色の固体として得た(0.154g、0399mmol、ジ(2−ヒドロキシナフタレニル−1−イル)アセチレンからの収率60%)。H−NMRデータを以下に示す。
(6) Synthesis of triyne (di (2-prop-2-ynyloxynaphthalen-1-yl) acetylene):
To an acetone solution of potassium carbonate (0.461 g, 3.36 mmol), di (2-hydroxynaphthalen-1-yl) acetylene (0.206 g, 0.664 mmol) obtained in (5) and propargyl bromide (0 .242 g, 2.03 mmol) was added and the mixture was stirred at room temperature for 47 hours. The product was extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate and concentrated. The crude product was purified by silica gel chromatography (hexane: ethyl acetate = 30: 1), and di (2-prop-2-ynyloxynaphthalen-1-yl) acetylene represented by the formula (VI-1). Was obtained as a pale yellow solid (0.154 g, 0399 mmol, 60% yield from di (2-hydroxynaphthalenyl-1-yl) acetylene). 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.67(d,J=8.1Hz,2H),7.80−7.89(m,4H),7.63(ddd,J=8.1,6.9,and1.2Hz,2H),7.46(ddd,J=8.1,6.9,and1.2Hz,2H),7.42(d,J=9.0Hz、2H),5.07(d,J=2.4Hz,4H),2.61(t,J=2.4Hz,2H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.67 (d, J = 8.1 Hz, 2H), 7.80-7.89 (m, 4H), 7.63 (ddd, J = 8.1) 6.9, and 1.2 Hz, 2H), 7.46 (ddd, J = 8.1, 6.9, and 1.2 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H), 5 .07 (d, J = 2.4 Hz, 4H), 2.61 (t, J = 2.4 Hz, 2H)

(7)トリイン(ジ[2−(4−メトキシ−4−オキソブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレンの合成:
n−ブチルリチウム(1.52M、ヘキサン溶液、0.45ml、0.68mmol)とジイソプロピルアミン(0.1ml、0.708mmol)テトラヒドロフラン溶液から構成されるジイソプロピルアミンリチウム溶液を、攪拌状態にある、(6)で得られたジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレン(0.115g、0.296mmol)テトラヒドロフラン溶液(10ml)に−80℃の条件で添加し、30分間攪拌した。上記混合溶液を攪拌したメチルクロロホルメート(クロロ蟻酸メチル)(0.096ml、1.24mmol)に−80℃の条件で添加し、混合溶液を室温にて3時間攪拌した。この反応は、水を加えることにより停止し、酢酸エチルにより抽出を行った。有機層を飽和食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。残留生成物をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、式(IV−4)に表されるジ[2−(4−メトキシ−4−オキソブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレンを黄色の固体として得た(0.087g、0.173mmol、ジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレンからの収率58%)。H−NMRデータを以下に示す。
(7) Synthesis of triyne (di [2- (4-methoxy-4-oxobut-2-ynyloxy) naphthalen-1-yl] acetylene:
A diisopropylamine lithium solution composed of n-butyllithium (1.52M, hexane solution, 0.45 ml, 0.68 mmol) and diisopropylamine (0.1 ml, 0.708 mmol) tetrahydrofuran solution is in a stirred state ( 6) The di (2-prop-2-ynyloxynaphthalen-1-yl) acetylene (0.115 g, 0.296 mmol) obtained in 6) was added to a tetrahydrofuran solution (10 ml) at −80 ° C. for 30 minutes. Stir. The above mixed solution was added to stirred methyl chloroformate (methyl chloroformate) (0.096 ml, 1.24 mmol) at −80 ° C., and the mixed solution was stirred at room temperature for 3 hours. The reaction was stopped by adding water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated. The residual product was purified by silica gel chromatography (hexane: ethyl acetate = 10: 1) and di [2- (4-methoxy-4-oxobut-2-ynyloxy) naphthalene- represented by the formula (IV-4) 1-yl] acetylene was obtained as a yellow solid (0.087 g, 0.173 mmol, 58% yield from di (2-prop-2-ynyloxynaphthalen-1-yl) acetylene). 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.61(d,J=8.1Hz,2H),7.87(d,J=9.0Hz,2H),7.85(d,J=7.8Hz,2H),7.67(ddd,J=8.1,6.9,and1.2Hz,2H),7.48(ddd,J=7.8,6.9,and1.2Hz,2H),7.36(d,J=9.0Hz,2H),5.18(s、4H),3.77(s,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.61 (d, J = 8.1 Hz, 2H), 7.87 (d, J = 9.0 Hz, 2H), 7.85 (d, J = 7. 8Hz, 2H), 7.67 (ddd, J = 8.1, 6.9, and 1.2Hz, 2H), 7.48 (ddd, J = 7.8, 6.9, and 1.2Hz, 2H) 7.36 (d, J = 9.0 Hz, 2H), 5.18 (s, 4H), 3.77 (s, 6H)

(8)ヘリセン(8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン−9,10−ジメチルジカルボキシレート)の合成:
アルゴン雰囲気下、式(A)で表される配位子(R,R)−Me−Duphos3.1mg(0.010mmol)及び[Rh(cod)]BF(cod:1,5−シクロオクタジエン)4.1mg(0.010mmol)を1.0mlの塩化メチレン溶液に加えて溶解させ、得られた混合液を常圧の水素雰囲気下で30分間撹拌後、濃縮乾固した。室温において濃縮残渣に(7)で得られたジ[2−(4−メトキシ−4−オキソブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレン25.1mg(0.05mmol)の塩化メチレン溶液0.5mlを更に加え、1.5mlの塩化メチレン溶液でリンスした。混合液は室温で5時間撹拌した後、濃縮して溶媒を除去し、薄層クロマトグラフィー(TLC)で精製することにより、式(II−4)に表される8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン−9,10−ジメチルジカルボキシレート12.5mg(0.0249mmol、収率50%、70%ee)を得た。H−NMRデータを以下に示す。
(8) Helicene (8H, 11H-naphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d] Synthesis of pyran-9,10-dimethyldicarboxylate):
Under an argon atmosphere, the ligand (R, R) -Me-Duphos 3.1 mg (0.010 mmol) represented by the formula (A) and [Rh (cod) 2 ] BF 4 (cod: 1,5-cycloocta Diene) 4.1 mg (0.010 mmol) was added to 1.0 ml of methylene chloride solution and dissolved, and the resulting mixture was stirred under atmospheric hydrogen atmosphere for 30 minutes and then concentrated to dryness. A solution of 25.1 mg (0.05 mmol) of di [2- (4-methoxy-4-oxobut-2-ynyloxy) naphthalen-1-yl] acetylene obtained in (7) as a concentrated residue at room temperature in methylene chloride solution 0. An additional 5 ml was added and rinsed with 1.5 ml of methylene chloride solution. The mixture was stirred at room temperature for 5 hours, then concentrated to remove the solvent, and purified by thin layer chromatography (TLC) to obtain 8H, 11H-naphtho [2, represented by the formula (II-4). 1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d] pyran-9,10-dimethyldicarboxylate 12.5 mg (0.0249 mmol, yield 50%, 70% ee) was obtained. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ7.46(d,J=9.0Hz,2H),7.26(d,J=9.0Hz,2H),7.20(d,J=8.1Hz,2H),6.81(ddd,J=8.1,6.9,and1.2Hz,2H),6.76(d,J=8.1Hz,2H),6.58(ddd,J=8.1,6.9,and1.2Hz,2H).5.54(d,J=13.8Hz,2H),4.89(d,J=13.8Hz,2H),3.99(s,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 7.46 (d, J = 9.0 Hz, 2H), 7.26 (d, J = 9.0 Hz, 2H), 7.20 (d, J = 8. 1 Hz, 2H), 6.81 (ddd, J = 8.1, 6.9, and 1.2 Hz, 2H), 6.76 (d, J = 8.1 Hz, 2H), 6.58 (ddd, J = 8.1, 6.9, and 1.2 Hz, 2H). 5.54 (d, J = 13.8 Hz, 2H), 4.89 (d, J = 13.8 Hz, 2H), 3.99 (s, 6H)

Figure 2008069104
Figure 2008069104

[実施例1−2]
ヘリセン誘導体の製造(1−2)
実施例1(8)における配位子として、式(B)で表される(R)−BINAPを用いること以外は実施例1と同様にして、8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン−9,10−ジメチルジカルボキシレートを収率38%、42%ee)で得た。
[Example 1-2]
Production of helicene derivatives (1-2)
In the same manner as in Example 1 except that (R) -BINAP represented by the formula (B) is used as the ligand in Example 1 (8), 8H, 11H-naphtho [2,1-b] is used. Naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d] pyran-9,10-dimethyldicarboxylate with a yield of 38%, 42 % Ee).

Figure 2008069104
Figure 2008069104

[実施例2]
ヘリセン誘導体の製造(2):
トリイン誘導体として、実施例1(6)で得られた(ジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレン)、配位子として(R)−BINAPを用いること以外は実施例1(8)と同様にして、式(II−1)に表される8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピランを収率50%、36%eeで得た。H−NMRデータを以下に示す。
[Example 2]
Production of helicene derivative (2):
Implemented except that (tri (2-prop-2-ynyloxynaphthalen-1-yl) acetylene) obtained in Example 1 (6) was used as the triyne derivative and (R) -BINAP was used as the ligand. Analogously to Example 1 (8), 8H, 11H-naphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [ 3 ′, 4 ′: 5,6] benzo- [d] pyran was obtained in a yield of 50% and 36% ee. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ7.47(d,J=9.0Hz,2H),7.31(s,2H),7.30(d,J=7.8Hz,2H),7.23(d,J=9.0Hz,2H),6.90(d,J=8.1Hz,2H),6.78(ddd,J=7.8,6.9,and0.9Hz、2H),6.52(ddd,J=8.1,6.9,and0.9Hz,2H),5.27(d,J=12.0Hz,2H),4.88(d,J=12.0Hz,2H) 1 H-NMR (CDCl 3 , 300 MHz) δ 7.47 (d, J = 9.0 Hz, 2H), 7.31 (s, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7 .23 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 8.1 Hz, 2H), 6.78 (ddd, J = 7.8, 6.9, and 0.9 Hz, 2H ), 6.52 (ddd, J = 8.1, 6.9, and 0.9 Hz, 2H), 5.27 (d, J = 12.0 Hz, 2H), 4.88 (d, J = 12. 0Hz, 2H)

[実施例3]
ヘリセン誘導体の製造(3):
下記(1)(2)により、ヘリセン誘導体である8H,11H−9、10−ジメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピランを合成した。
[Example 3]
Production of helicene derivative (3):
According to the following (1) and (2), the helicene derivative 8H, 11H-9,10-dimethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′ , 4 ′: 5,6] benzo- [d] pyran was synthesized.

(1)トリイン(ジ(2−ブチ−2−イニルオキシナフタレン−1−イル)アセチレン)の合成:
炭酸カリウム(0.237g、1.72mmol)のアセトン溶液20mlに、実施例1(5)で得られたジ(2−ヒドロキシナフタレニン−1−イル)アセチレン(0.091g、0.293mmol)と1−ブロモ−2−ブチン(0.122g、0.914mmol)を添加し、その混合物を室温にて8時間還流した。生成物を酢酸エチルで抽出した。有機層を食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。粗生成物は、シリカゲルクロマトグラフ(ヘキサン:酢酸エチル=10:1)で精製し、式(IV−2)に表されるジ(2−ブチ−2−イニルオキシナフタレン−1−イル)アセチレンを黄色の固体として得た(0.029g、0.0700mmol、ジ(2−ヒドロキシナフタレニン−1−イル)アセチレンからの収率24%)。H−NMRデータを以下に示す。
(1) Synthesis of triyne (di (2-but-2-ynyloxynaphthalen-1-yl) acetylene):
To 20 ml of an acetone solution of potassium carbonate (0.237 g, 1.72 mmol), di (2-hydroxynaphthalen-1-yl) acetylene (0.091 g, 0.293 mmol) obtained in Example 1 (5) and 1-Bromo-2-butyne (0.122 g, 0.914 mmol) was added and the mixture was refluxed at room temperature for 8 hours. The product was extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate and concentrated. The crude product was purified by silica gel chromatography (hexane: ethyl acetate = 10: 1), and di (2-but-2-ynyloxynaphthalen-1-yl) acetylene represented by the formula (IV-2). Was obtained as a yellow solid (0.029 g, 0.0700 mmol, 24% yield from di (2-hydroxynaphthalen-1-yl) acetylene). 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.68(d,J=8.4Hz,2H),7.84(d,J=9.0Hz,2H),7.82(d,J=7.8Hz,2H),7.61(ddd,J=8.4,6.9,and1.2Hz,2H),7.44(ddd,J=7.8,6.9,and1.2Hz、2H),7.42(d,J=9.0Hz,2H),5.00(q,J=2.4Hz,4H),1.89(t,J=2.4Hz,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.68 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 9.0 Hz, 2H), 7.82 (d, J = 7. 8 Hz, 2H), 7.61 (ddd, J = 8.4, 6.9, and 1.2 Hz, 2H), 7.44 (ddd, J = 7.8, 6.9, and 1.2 Hz, 2H) 7.42 (d, J = 9.0 Hz, 2H), 5.00 (q, J = 2.4 Hz, 4H), 1.89 (t, J = 2.4 Hz, 6H)

(2)ヘリセン(8H,11H−9、10−ジメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン)の合成:
トリインとして(1)で得られたジ(2−ブチ−2−イニルオキシナフタレン−1−イル)アセチレン、配位子として(R)−BINAPを用いること以外は実施例1(8)と同様にして、式(II−2)に示す8H,11H−9、10−ジメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピランを収率50%、26%eeで得た。H−NMRデータを以下に示す。
(2) Helicene (8H, 11H-9, 10-dimethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] Synthesis of benzo- [d] pyran):
Similar to Example 1 (8) except that di (2-but-2-ynyloxynaphthalen-1-yl) acetylene obtained in (1) as triyne and (R) -BINAP as the ligand are used. And 8H, 11H-9,10-dimethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 represented by the formula (II-2) ': 5,6] benzo- [d] pyran was obtained with a yield of 50% and 26% ee. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ7.41(d,J=8.7Hz,2H),7.26(d,J=8.7Hz,2H),7.20(d、J=8.1Hz,2H),6.91(d,J=8.1Hz,2H),6.77(ddd,J=8.1,6.9,and0.9Hz,2H),6.53(ddd,J=8.1,6.9,and0.9Hz,2H),5.58(d,J=12.9Hz,2H),4.73(d,J=12.9Hz,2H),2.41(s,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 7.41 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8. 1 Hz, 2H), 6.91 (d, J = 8.1 Hz, 2H), 6.77 (ddd, J = 8.1, 6.9, and 0.9 Hz, 2H), 6.53 (ddd, J = 8.1, 6.9, and 0.9 Hz, 2H), 5.58 (d, J = 12.9 Hz, 2H), 4.73 (d, J = 12.9 Hz, 2H), 2.41 ( s, 6H)

[実施例4]
ヘリセン誘導体の製造(4):
下記(1)(2)により、ヘリセン誘導体である8H,11H−9,10−ジメトキシメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピランを合成した。
[Example 4]
Production of helicene derivative (4):
According to the following (1) and (2), the helicene derivative 8H, 11H-9,10-dimethoxymethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ', 4': 5,6] benzo- [d] pyran was synthesized.

(1)トリイン(ジ[2−(4−メトキシブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレン)の合成:
n−ブチルリチウム(1.52M、ヘキサン溶液、0.4ml、0.608mmolル)を、実施例1(6)で得られたジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレン(0.104g、0.269mmol)テトラヒドロフラン溶液に−80℃の条件で添加し、30分間攪拌した。上記混合溶液を攪拌したクロロメトキシメタン(0.081ml、1.08mmol)に−80℃の条件で添加し、徐々に室温まで戻した。この反応は、水を加えることにより停止し、酢酸エチルにより抽出を行った。有機層を飽和食塩水にて洗浄し、硫酸ナトリウムで乾燥し濃縮した。残留生成物をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、式(IV−3)に表されるジ[2−(4−メトキシブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレンを黄色の固体として得た(0.028g、0.059mmol、ジ(2−プロプ−2−イニルオキシナフタレン−1−イル)アセチレンからの収率22%)。H−NMRデータを以下に示す。
(1) Synthesis of triyne (di [2- (4-methoxybut-2-ynyloxy) naphthalen-1-yl] acetylene):
n-Butyllithium (1.52M, hexane solution, 0.4 ml, 0.608 mmol) was obtained from di (2-prop-2-ynyloxynaphthalen-1-yl) obtained in Example 1 (6). Acetylene (0.104 g, 0.269 mmol) was added to a tetrahydrofuran solution at −80 ° C. and stirred for 30 minutes. The above mixed solution was added to stirred chloromethoxymethane (0.081 ml, 1.08 mmol) at −80 ° C. and gradually returned to room temperature. The reaction was stopped by adding water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated. The residual product was purified by silica gel chromatography (hexane: ethyl acetate = 10: 1), and di [2- (4-methoxybut-2-ynyloxy) naphthalen-1-yl] represented by the formula (IV-3) Acetylene was obtained as a yellow solid (0.028 g, 0.059 mmol, 22% yield from di (2-prop-2-ynyloxynaphthalen-1-yl) acetylene). 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.37(d,J=8.4Hz,2H),7.86(d,J=9.0Hz,2H),7.82(d,J=8.1Hz,2H),7.60(ddd,J=8.4,6.9,and1.2Hz,2H),7.43(ddd,J=8.1,6.9.and1.2Hz,2H),7.40(d,J=9.0Hz,2H),5.04(t,J=1.8Hz,4H),4.14(t,J=1.8Hz,4H),3.35(s,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.37 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 9.0 Hz, 2H), 7.82 (d, J = 8. 1 Hz, 2H), 7.60 (ddd, J = 8.4, 6.9, and 1.2 Hz, 2H), 7.43 (ddd, J = 8.1, 6.9. And 1.2 Hz, 2H) 7.40 (d, J = 9.0 Hz, 2H), 5.04 (t, J = 1.8 Hz, 4H), 4.14 (t, J = 1.8 Hz, 4H), 3.35 ( s, 6H)

(2)ヘリセン(8H,11H−9,10−ジメトキシメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン)の合成:
トリインとして、(1)で得られたジ[2−(4−メトキシブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレン、配位子として(R)−BINAPを用いること以外は実施例1(8)と同様にして、式(II−3)に表される(8H,11H−9,10−ジメトキシメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン)を収率50%、46%eeで得た。H−NMRデータを以下に示す。
(2) Helicene (8H, 11H-9,10-dimethoxymethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6 Synthesis of benzo- [d] pyran):
Example 1 (8) except that di [2- (4-methoxybut-2-ynyloxy) naphthalen-1-yl] acetylene obtained in (1) was used as the triyne and (R) -BINAP was used as the ligand. ), (8H, 11H-9,10-dimethoxymethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] represented by the formula (II-3) Pyrano [3 ′, 4 ′: 5,6] benzo- [d] pyran) was obtained in a yield of 50% and 46% ee. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ7.42(d,J=9.0Hz,2H),7.26(d,J=9.0Hz,2H),7.19(d,J=7.8Hz,2H),6.85(d,J=8.1Hz,2H),6.78(ddd,J=7.8,6.6,and0.9Hz,2H),6.54(ddd,J=8.1,6.6,and0.9Hz,2H),5.60(d,J=13.2Hz,2H),4.77(d,J=13.2Hz,2H),4.75(d,J=11.4Hz,2H),4.68(d、J=11.4Hz.2H),3.51(s,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 7.42 (d, J = 9.0 Hz, 2H), 7.26 (d, J = 9.0 Hz, 2H), 7.19 (d, J = 7. 8 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 6.78 (ddd, J = 7.8, 6.6, and 0.9 Hz, 2H), 6.54 (ddd, J = 8.1, 6.6, and 0.9 Hz, 2H), 5.60 (d, J = 13.2 Hz, 2H), 4.77 (d, J = 13.2 Hz, 2H), 4.75 ( d, J = 11.4 Hz, 2H), 4.68 (d, J = 11.4 Hz.2H), 3.51 (s, 6H)

[実施例5]
ヘリセン誘導体の製造(5):
下記(1)(2)により、ヘリセン誘導体である(8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン−9,10−ジブチルジカルボキシレート)を合成した。
[Example 5]
Production of helicene derivative (5):
According to the following (1) and (2), (8H, 11H-naphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d] pyran-9,10-dibutyldicarboxylate).

(1)トリイン(ジ[2−(4−ブトキシブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレン)の合成:
メチルクロロホルメートの代わりにブチルクロロホルメートを用いること以外は実施例1(7)と同様にして、式(IV−5)に表されるジ[2−(4−ブトキシブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレンを黄色の固体として収率70%で得た。H−NMRデータを以下に示す。
(1) Synthesis of triyne (di [2- (4-butoxybuty-2-ynyloxy) naphthalen-1-yl] acetylene):
Di [2- (4-butoxybuty-2-ynyloxy) represented by the formula (IV-5) is prepared in the same manner as in Example 1 (7) except that butyl chloroformate is used instead of methyl chloroformate. Naphthalen-1-yl] acetylene was obtained as a yellow solid in a yield of 70%. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.63(d,J=7.5Hz,2H),7.82−7.89(m,4H),7.67(ddd,J=8.1,6.6,and1.2Hz,2H),7.47(ddd,J=7.5,6.6,and0.9Hz,2H),7.37(d,J=9.3Hz,2H),5.18(s,4H),4.18(t,J=6.6Hz,4H),1.57−1.69(m,4H),1.30−1.44(m,4H)、0.91(t,7.2Hz,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.63 (d, J = 7.5 Hz, 2H), 7.82-7.89 (m, 4H), 7.67 (ddd, J = 8.1) 6.6, and 1.2 Hz, 2H), 7.47 (ddd, J = 7.5, 6.6, and 0.9 Hz, 2H), 7.37 (d, J = 9.3 Hz, 2H), 5 .18 (s, 4H), 4.18 (t, J = 6.6 Hz, 4H), 1.57-1.69 (m, 4H), 1.30-1.44 (m, 4H), 0 .91 (t, 7.2 Hz, 6H)

Figure 2008069104
Figure 2008069104

(2)ヘリセン(8H,11H−9,10−ジメトキシメチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン)の合成:
トリインとして(1)で得られたジ[2−(4−ブトキシブチ−2−イニルオキシ)ナフタレン−1−イル]アセチレンを用いること以外は実施例1(8)と同様にして、式(II−5)に表される(8H,11H−ナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン−9,10−ジブチルジカルボキシレート)を黄緑色の固体として収率70%、71%eeで得た。H−NMRデータを以下に示す。
(2) Helicene (8H, 11H-9,10-dimethoxymethylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6 Synthesis of benzo- [d] pyran):
In the same manner as in Example 1 (8) except that di [2- (4-butoxybuty-2-ynyloxy) naphthalen-1-yl] acetylene obtained in (1) was used as triyne, the compound of formula (II-5 (8H, 11H-naphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d Pyran-9,10-dibutyldicarboxylate) was obtained as a yellow-green solid in a yield of 70% and 71% ee. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ7.45(d,J=8.1Hz,2H),7.26(d,J=8.7Hz,2H),7.20(d,J=8.1Hz,2H),6.81(ddd,J=8.1,6.9,and1.2Hz,2H),6.58(ddd,J=8.4,6.9,and1.2Hz,2H)、5.53(d,J=13.8Hz,2H),4.89(d,J=13.8Hz,2H),4.46(dt,J=10.8,and6.6Hz,2H),4.30(dt,J=10.8,and6.6Hz,2H),1.71−1.83(m,4H),1.42−1.58(m,4H),1.00(t,7.2Hz,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 7.45 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8. 1 Hz, 2H), 6.81 (ddd, J = 8.1, 6.9, and 1.2 Hz, 2H), 6.58 (ddd, J = 8.4, 6.9, and 1.2 Hz, 2H) 5.53 (d, J = 13.8 Hz, 2H), 4.89 (d, J = 13.8 Hz, 2H), 4.46 (dt, J = 10.8, and 6.6 Hz, 2H), 4.30 (dt, J = 10.8, and 6.6 Hz, 2H), 1.71-1.83 (m, 4H), 1.42-1.58 (m, 4H), 1.00 (t , 7.2Hz, 6H)

Figure 2008069104
Figure 2008069104

[実施例6]
ヘリセン誘導体の製造(6):
下記(1)(2)により、ヘリセン誘導体である8H,11H−9、10−ジブチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピランを合成した。
[Example 6]
Production of helicene derivative (6):
According to the following (1) and (2), the helicene derivative 8H, 11H-9,10-dibutylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [d] pyran was synthesized.

(1)トリイン(ジ(2−ヘプチ−2−イニルオキシナフタレン−1−イル)アセチレン)の合成:
1−ブロモ−2−ブチンの代わりに1−ブロモ−2−ヘプチンを用いること以外は実施例3(1)と同様にして、式(IV−6)に表されるジ(2−ヘプチ−2−イニルオキシナフタレン−1−イル)アセチレンを薄黄色の固体として収率50%で得た。H−NMRデータを以下に示す。
(1) Synthesis of triyne (di (2-hept-2-ynyloxynaphthalen-1-yl) acetylene):
Di (2-hept-2) represented by the formula (IV-6) was obtained in the same manner as in Example 3 (1) except that 1-bromo-2-heptin was used instead of 1-bromo-2-butyne. -Inyloxynaphthalen-1-yl) acetylene was obtained as a pale yellow solid in a yield of 50%. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ8.67(d,J=7.5Hz,2H),7.79−7.85(m,4H),7.60(ddd,J=8.1,6.6,and1.2Hz,2H),7.40−7.46(m,4H),5.04(t,J=2.1Hz,4H),2.23(tt,J=6.9,and2.1Hz,4H),1.28−1.53(m,8H),0.85(t,7.2Hz,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 8.67 (d, J = 7.5 Hz, 2H), 7.79-7.85 (m, 4H), 7.60 (ddd, J = 8.1) 6.6, and 1.2 Hz, 2H), 7.40-7.46 (m, 4H), 5.04 (t, J = 2.1 Hz, 4H), 2.23 (tt, J = 6.9) , And 2.1 Hz, 4H), 1.28-1.53 (m, 8H), 0.85 (t, 7.2 Hz, 6H)

Figure 2008069104
Figure 2008069104

(2)ヘリセン(8H,11H−9、10−ジブチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピラン)の合成:
トリインとして(1)で得られたジ(2−ヘプチ−2−イニルオキシナフタレン−1−イル)アセチレンを用いること以外は実施例1(8)と同様にして、式(II−6)に表される8H,11H−9、10−ジブチルナフト[2,1−b]ナフタ[1’’,2’’:5’,6’]ピラノ[3’,4’:5,6]ベンゾ−[d]ピランを薄黄色の固体として収率50%で得た。H−NMRデータを以下に示す。
(2) Helicene (8H, 11H-9,10-dibutylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo -[D] pyran) synthesis:
In the same manner as in Example 1 (8) except that di (2-hept-2-ynyloxynaphthalen-1-yl) acetylene obtained in (1) is used as triyne, formula (II-6) 8H, 11H-9,10-dibutylnaphtho [2,1-b] naphtha [1 ″, 2 ″: 5 ′, 6 ′] pyrano [3 ′, 4 ′: 5,6] benzo- [ d] Pyran was obtained as a pale yellow solid in 50% yield. 1 H-NMR data is shown below.

H−NMR(CDCl,300MHz)δ7.40(d,J=8.7Hz,2H),7.26(d,J=8.7Hz,2H),7.19(d,J=8.1Hz,2H),6.91(d,J=8.1Hz,2H),6.76(ddd,J=8.1,6.9,and1.2Hz,2H)、6.52(ddd,J=8.1,6.9,and1.2Hz,2H)、5.52(d,J=12.6Hz,2H),4.71(d,J=12.6Hz,2H),2.77(t,J=7.5Hz,4H),1.46−1.71(m,8H),1.04(t,6.9Hz,6H) 1 H-NMR (CDCl 3 , 300 MHz) δ 7.40 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8. 1 Hz, 2H), 6.91 (d, J = 8.1 Hz, 2H), 6.76 (ddd, J = 8.1, 6.9, and 1.2 Hz, 2H), 6.52 (ddd, J = 8.1, 6.9, and 1.2 Hz, 2H), 5.52 (d, J = 12.6 Hz, 2H), 4.71 (d, J = 12.6 Hz, 2H), 2.77 ( t, J = 7.5 Hz, 4H), 1.46-1.71 (m, 8H), 1.04 (t, 6.9 Hz, 6H)

Figure 2008069104
Figure 2008069104

本発明は、分子認識の材料として用いられるほか、有機EL素子、蛍光材料、有機バッファ層構成材料、非線形光学材料などの各種の光学デバイスなどに応用することが期待される[7]ヘリセン誘導体、当該[7]ヘリセン誘導体の製造方法、及び中間体となるトリイン誘導体として有利に使用することができる。   In addition to being used as a material for molecular recognition, the present invention is expected to be applied to various optical devices such as organic EL elements, fluorescent materials, organic buffer layer constituent materials, and nonlinear optical materials [7] helicene derivatives, It can be advantageously used as a method for producing the [7] helicene derivative and a triyne derivative serving as an intermediate.

Claims (7)

下記式(I)で表されることを特徴とするヘリセン誘導体。
Figure 2008069104
(式(I)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
A helicene derivative represented by the following formula (I):
Figure 2008069104
(In formula (I), at least one of X 1 and Y 1 , X 2 and Y 2 is present, respectively, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)
下記式(II)で表されることを特徴とする請求項1に記載のヘリセン誘導体。
Figure 2008069104
(式(II)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
It is represented by following formula (II), The helicene derivative of Claim 1 characterized by the above-mentioned.
Figure 2008069104
(In formula (II), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)
前記E及び/またはEが、それぞれ独立して水素原子、アルキル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基よりなる群から選ばれる1種であることを特徴とする請求項1または請求項2に記載のヘリセン誘導体。 The E 1 and / or E 2 are each independently one selected from the group consisting of a hydrogen atom, an alkyl group, an alkyl ether group, an alkyl ester group, and an alkyl ketone group. The helicene derivative according to claim 2. 下記式(III)で表されることを特徴とするトリイン誘導体。
Figure 2008069104
(式(III)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
A triyne derivative represented by the following formula (III):
Figure 2008069104
(In formula (III), at least one of X 1 and Y 1 , X 2 and Y 2 is present, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)
下記式(IV)で表されることを特徴とする請求項4に記載のトリイン誘導体。
Figure 2008069104
(式(IV)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
The triyne derivative according to claim 4, which is represented by the following formula (IV):
Figure 2008069104
(In Formula (IV), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)
下記式(X)で表されるロジウム化合物を用いて、下記式(III)で表されるトリイン誘導体を環化三量化させることを特徴とするヘリセン誘導体の製造方法。
Figure 2008069104
(式(X)中、LはRP−Q−PRで表されるビスホスフィンを表し、Yは非共役ジエン化合物を表し、XはBF、PF、BPh、ClO、SbFまたはCFSOを表す。また、mは1または2を表し、nは0または1を表す。ただし、m=1のとき、nは0または1を表し、m=2のときはn=0を表す。R、R、R及びRは、それぞれ独立して置換基を有していてもよいアリール基、置換基を有してもよいシクロアルキル基を表し、Qは置換基を有していてもよい2価のアリーレン基を表す。)
Figure 2008069104
(式(III)中、XとY、XとYは、それぞれ、いずれか少なくとも一方が存在し、X、X、Y、Yは、それぞれ独立してCH、C=O、O、N、S、P、B、Siのいずれかを示す。また、N、S、P、B、Siは、CH、C=O、Oのいずれかと結合されていてもよい。E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
A method for producing a helicene derivative, wherein a triyne derivative represented by the following formula (III) is cyclized and trimerized using a rhodium compound represented by the following formula (X).
Figure 2008069104
(In formula (X), L represents a bisphosphine represented by R 1 R 2 PQ-PR 3 R 4 , Y represents a non-conjugated diene compound, X represents BF 4 , PF 6 , BPh 4 , Represents ClO 4 , SbF 6 or CF 3 SO 3 , m represents 1 or 2, n represents 0 or 1, provided that when m = 1, n represents 0 or 1 and m = 2 In this case, n represents 0. R 1 , R 2 , R 3 and R 4 each independently represents an aryl group which may have a substituent or a cycloalkyl group which may have a substituent. Q represents a divalent arylene group which may have a substituent.
Figure 2008069104
(In formula (III), at least one of X 1 and Y 1 , X 2 and Y 2 is present, and X 1 , X 2 , Y 1 and Y 2 are each independently CH 2 , C = O, O, N, S, P, B, or Si, and N, S, P, B, or Si may be bonded to any one of CH 2 , C═O, and O. E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group or Indicates any of these derivatives.)
前記トリイン誘導体が、下記式(IV)で表されることを特徴とする請求項6に記載のヘリセン誘導体の製造方法。
Figure 2008069104
(式(IV)中、E、Eは、それぞれ独立して水素原子、アルキル基、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体のいずれかを示す。)
The method for producing a helicene derivative according to claim 6, wherein the triyne derivative is represented by the following formula (IV).
Figure 2008069104
(In Formula (IV), E 1 and E 2 are each independently a hydrogen atom, alkyl group, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group. Represents a heterocyclic group or a derivative thereof.)
JP2006248775A 2006-09-13 2006-09-13 Method for producing helicene derivatives, triyne derivatives, and helicene derivatives Pending JP2008069104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248775A JP2008069104A (en) 2006-09-13 2006-09-13 Method for producing helicene derivatives, triyne derivatives, and helicene derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248775A JP2008069104A (en) 2006-09-13 2006-09-13 Method for producing helicene derivatives, triyne derivatives, and helicene derivatives

Publications (1)

Publication Number Publication Date
JP2008069104A true JP2008069104A (en) 2008-03-27

Family

ID=39291026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248775A Pending JP2008069104A (en) 2006-09-13 2006-09-13 Method for producing helicene derivatives, triyne derivatives, and helicene derivatives

Country Status (1)

Country Link
JP (1) JP2008069104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047318A1 (en) 2008-10-24 2010-04-29 国立大学法人京都大学 Helicene derivative, axially asymmetric amino acid, amine or aminoalcohol derivative, perylene derivative or salt thereof, and methods for producing same
JP2011184341A (en) * 2010-03-08 2011-09-22 Tokyo Univ Of Agriculture & Technology Axially asymmetric phosphine compound and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047318A1 (en) 2008-10-24 2010-04-29 国立大学法人京都大学 Helicene derivative, axially asymmetric amino acid, amine or aminoalcohol derivative, perylene derivative or salt thereof, and methods for producing same
JP2011184341A (en) * 2010-03-08 2011-09-22 Tokyo Univ Of Agriculture & Technology Axially asymmetric phosphine compound and method for producing the same

Similar Documents

Publication Publication Date Title
JP5648240B2 (en) Organoaluminum compound
CN101228103A (en) Stabilized Cyclic(Alkyl)(Amino)Carbenes as Ligands for Transition Metal Catalysts
US7964744B2 (en) Method for producing a ruthenium complex
JP3566955B2 (en) Novel ruthenium complex and method for producing alcohol compound using the same as catalyst
JP2006508161A (en) Catalytic hydrogenation of carbon-heteroatom double bonds
Liu et al. 3, 3′-Functionalized octahydro-BINOL: a facile synthesis and its high enantioselectivity in the alkyne addition to aldehydes
JP6054108B2 (en) Process for producing optically active 2,3-dihydrofarnesal
CN104370976B (en) Oxygen-containing substituents Er Mao Tie oxazoline phosphine ligands, it is prepared and the application in Asymmetrical annular-addition reaction
Iuliano et al. Deoxycholic acid-based phosphites as chiral ligands in the enantioselective conjugate addition of dialkylzincs to cyclic enones: preparation of (−)-(R)-muscone
JPH03255090A (en) 2,2&#39;-bis(di-(3,5-dialkylphenyl)phosphino)-1,1&#39;-binaphthyl and transition metal complex containing the compound as ligand
JP2008069104A (en) Method for producing helicene derivatives, triyne derivatives, and helicene derivatives
JP3789508B2 (en) Optically active asymmetric diphosphine and method for obtaining optically active substance in the presence of the compound
US6476250B1 (en) Optically active fluorinated binaphthol derivative
JP5546781B2 (en) 2,2&#39;-bis (dialkylphosphino) biphenyl compound, method for producing the same, and metal complex having the compound as a ligand
JPWO2014077323A1 (en) Optically active isopulegol and method for producing optically active menthol
JP4416466B2 (en) Method for producing benzene derivatives
JP2008201760A (en) Optically active spiro compound and method for producing the same
JP5594762B2 (en) Method for producing silafluorene derivative
JPH07330786A (en) Optically active tertiary phosphine compound, transition metal complex having this as a ligand, and production method using the same
JP2015172024A (en) Chiral bicyclic diene ligand having hydrogen bond formation amide group
JP4759722B2 (en) Process for producing aromatic carboxylic acid ester having a substituent
JPH0959290A (en) Ferroceny diphenylphosphine derivative and hydrosilylation method using the ligand metal complex
EP1698609B1 (en) Process for producing an alcohol or its silyl ether
JP3590980B2 (en) Optically active tertiary phosphine compound, transition metal complex having the same as ligand, and use thereof
Villiers et al. 1, 6‐Dibromohexa‐1, 3, 5‐triene− Stereocontrolled Synthesis of Monosubstituted and Disubstituted Hexatrienes by Palladium‐Catalysed Cross‐Coupling Reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120501