[go: up one dir, main page]

JP2008068532A - Molding method of preform made of fiber-reinforced plastic - Google Patents

Molding method of preform made of fiber-reinforced plastic Download PDF

Info

Publication number
JP2008068532A
JP2008068532A JP2006249581A JP2006249581A JP2008068532A JP 2008068532 A JP2008068532 A JP 2008068532A JP 2006249581 A JP2006249581 A JP 2006249581A JP 2006249581 A JP2006249581 A JP 2006249581A JP 2008068532 A JP2008068532 A JP 2008068532A
Authority
JP
Japan
Prior art keywords
work
workpiece
mold
viscosity
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006249581A
Other languages
Japanese (ja)
Inventor
Masatoshi Kobayashi
正俊 小林
Chiaki Mori
千章 森
Makoto Okudaira
誠 奥平
Yasuhiko Tange
康彦 丹下
Masayuki Yamaguchi
賢之 山口
Eizaburo Matsumoto
英三郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006249581A priority Critical patent/JP2008068532A/en
Publication of JP2008068532A publication Critical patent/JP2008068532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To mold a fiber-reinforced plastic containing continuous fibers. <P>SOLUTION: Raw materials 6 and 7 made of a continuous fiber-reinforced plastic are used as a work W. First, the work W and a mold 1 are preheated and the peripheral edge part of the work W is grasped by work holders 10. Then, the pressing of the work W by the mold 1 is started in a stage that the viscosity of the work W lowers to a moldable value. At this time, the work W is pressed while drawn in the mold 1 from the work holders 10. Finally, a molded preform P is heated to be solidified. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続繊維を含んだ繊維強化プラスチック製プリフォームを型成形する方法に関する。   The present invention relates to a method for molding a fiber-reinforced plastic preform containing continuous fibers.

近年、軽量で強度のある繊維強化プラスチックが種々の分野で使用されている。自動車への適用としては、例えば、表裏の層を繊維強化プラスチックで成形し、これら層間に発泡体を充填してなる車体パネルがある(特許文献1参照)。
特開2002−264846号公報
In recent years, lightweight and strong fiber reinforced plastics are used in various fields. As an application to automobiles, for example, there is a vehicle body panel in which front and back layers are formed of fiber reinforced plastic and foam is filled between these layers (see Patent Document 1).
JP 2002-264846 A

繊維強化プラスチックには、連続繊維を含んだものと、不連続繊維を含んだものがある。不連続繊維を含んだものは、伸張性があるため、金型による型成形が可能である。一方、連続繊維を含んだものは、伸長性がないため、これを無理に型成形しようとすると、製品が破損してしまう。これは、繊維自体は伸長性がないため、繊維が成形荷重を受けて破断してしまうからである。   Fiber reinforced plastics include those containing continuous fibers and those containing discontinuous fibers. Those containing discontinuous fibers are extensible and can be molded with a mold. On the other hand, those containing continuous fibers do not have extensibility. Therefore, if this is forced to mold, the product will be damaged. This is because the fiber itself does not have extensibility, and the fiber is broken by receiving a forming load.

本発明は、このような事情に鑑み、連続繊維を含んだ繊維強化プラスチックの型成形を可能にした方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a method capable of molding a fiber-reinforced plastic containing continuous fibers.

上記課題を解決するための本発明は、連続繊維を含んだ繊維強化プラスチックを型成形する方法であって、ワークとして連続繊維強化プラスチック製のシートを用い、このワークと金型を予備加熱するとともに、ワークホルダによってワークの周縁部を挟持する工程と、ワークの粘度が型成形可能な値まで低下した段階で金型によるワークのプレスを開始する工程と、ワークをワークホルダから金型側へ引き込みながらプレスする工程と、型成形されたワークを加熱または冷却して固化または半固化させる工程とからなることを特徴とする。   The present invention for solving the above-mentioned problems is a method of molding a fiber reinforced plastic containing continuous fibers, using a sheet made of continuous fiber reinforced plastic as a work, and preheating the work and the mold. , The process of clamping the peripheral part of the work with the work holder, the process of starting the work pressing with the mold when the work viscosity is lowered to a moldable value, and drawing the work from the work holder to the mold side It is characterized by comprising a step of pressing while solidifying or semi-solidifying a molded workpiece by heating or cooling.

かかる構成によれば、ワークを予備加熱すると、ワークの粘度(マトリクス樹脂の粘度)が低下し、内部の繊維が徐々に散らけ、繊維同士が滑り易くなり、ワークの伸長が可能になる。ワークの伸長性は、ワークの粘度低下にともなって徐々に高くなる。そして、ワークの粘度が型成形可能な値まで低下すると、金型によるワークのプレスが開始される。ワークはワークホルダから金型側へ引き込まれながらプレスされていく。つまり、ワークの周縁部はワークホルダによって半拘束状態で保持されているので、ワークの粘度低下にともなう繊維の分散が妨げられることはない。要するに、ワークは繊維の分散により十分な伸びが可能になった状態でプレスされるので、繊維の破断による製品の破損を生じることなく、型成形を行うことができる。   According to this configuration, when the workpiece is preheated, the viscosity of the workpiece (the viscosity of the matrix resin) is decreased, the internal fibers are gradually scattered, the fibers are easily slipped, and the workpiece can be extended. The work extensibility gradually increases as the work viscosity decreases. And when the viscosity of a workpiece | work falls to the value which can be shape-molded, the press of the workpiece | work by a metal mold | die will be started. The work is pressed while being drawn from the work holder to the mold side. That is, since the peripheral part of the work is held in a semi-constrained state by the work holder, the dispersion of the fibers accompanying the decrease in the viscosity of the work is not hindered. In short, since the workpiece is pressed in a state where sufficient elongation is possible due to the dispersion of the fibers, the molding can be performed without causing the product to be damaged due to the breaking of the fibers.

ワークの予備加熱に先立って、耐熱性と伸縮性を有するフィルムをワークの両面に付着しておくのが好ましい。   Prior to the preliminary heating of the workpiece, it is preferable to attach a film having heat resistance and stretchability to both surfaces of the workpiece.

かかる構成によれば、ワークの金型型面に対する摩擦が小さくなり、製品の破損や皺の発生を防止できるとともに、ワークが金型型面に密着しにくくなり、マトリクス樹脂の欠損や脱型不良、ゴミ付着の発生防止にも役立つ。   According to such a configuration, the friction of the workpiece against the mold surface is reduced, the product can be prevented from being damaged or wrinkled, and the workpiece is less likely to be in close contact with the mold surface. , Also helps prevent dust deposits.

本発明によれば、ワークの予備加熱によって、ワークの粘度(マトリクス樹脂の粘度)が低下し、内部の繊維が散らけ、繊維同士が滑り易くなるため、ワークの伸びが可能になる。そして、ワークの粘度が型成形可能な値まで低下した段階で金型によるプレスが開始されるので、連続繊維を含んだワークであっても、繊維の破断による製品の破損を生じることなく、型成形を行うことができる。   According to the present invention, the work pre-heating reduces the work viscosity (matrix resin viscosity), the internal fibers are scattered, and the fibers are easily slipped, so that the work can be stretched. And since the press by the mold is started when the viscosity of the work is reduced to a value that can be molded, even if the work includes continuous fibers, the mold does not cause damage to the product due to fiber breakage. Molding can be performed.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。
図10は繊維強化プラスチック製自動車パネルの製造工程の概略を示している。
前工程では、連続繊維を含んだ繊維強化プラスチック製の原反(プリプレグ)を裁断し、繊維方向が交差するように複数枚の原反を重ね合わせ、これを加圧して一体化しておく。なお、原反の積層方法の詳細例は、特願2005−1266号に記載されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 10 shows the outline of the manufacturing process of the fiber reinforced plastic automobile panel.
In the previous step, a fiber reinforced plastic original fabric (prepreg) containing continuous fibers is cut, and a plurality of original fabrics are overlapped so that the fiber directions cross each other, and these are pressed and integrated. In addition, the detailed example of the lamination method of an original fabric is described in Japanese Patent Application No. 2005-1266.

次いで、積層した原反に温風を吹き付けて予備加熱する。なお、温風を吹き付ける代わりに、ワークを熱板で挟んだり、赤外線を照射したりしてもよい。予備加熱と同時に熱硬化性樹脂の場合は、金型1も同程度の温度に予備加熱し、熱可塑性樹脂の場合は、予備加熱温度以下に温度調整する。そして、予備加熱した原反を金型1でプレスしてプリフォームを成形する。成形されたプリフォームはトリム加工が施され、その後、メイン工程に送られる。   Next, preheating is performed by blowing warm air on the laminated original fabric. Instead of blowing warm air, the work may be sandwiched between hot plates or irradiated with infrared rays. In the case of a thermosetting resin at the same time as the preheating, the mold 1 is also preheated to the same temperature, and in the case of a thermoplastic resin, the temperature is adjusted to the preheating temperature or lower. Then, the preheated raw fabric is pressed with a mold 1 to form a preform. The molded preform is trimmed and then sent to the main process.

メイン工程では、熱硬化性樹脂の場合は、プリフォーム温度の以上の温度に温度制御された金型でプレス成形される一方、熱可塑性樹脂の場合は、金型を再予備加熱し、その温度以下に温度制御された金型でプレス成形される。
後工程はパネルの種類により異なるが、トリムや塗装が施された後に最終製品に仕上がる。
In the main process, in the case of a thermosetting resin, it is press-molded with a mold whose temperature is controlled to a temperature above the preform temperature, while in the case of a thermoplastic resin, the mold is re-preheated and the temperature is It is press-molded with a temperature-controlled mold below.
Although the post-process varies depending on the type of panel, it is finished into a final product after trimming and painting.

次に、前工程におけるプリフォームの成形方法について詳細に説明する。
予め、図5に示すように2枚の原反6,7を中間層である樹脂シート8(液状樹脂でも可)を介して貼り合わせておく。樹脂シート8(または液状樹脂)は、後述のように原反6,7のマトリクス樹脂に較べて固化(熱硬化性樹脂の場合は熱硬化、熱可塑性樹脂の場合は冷却化)が速いという特性がある。貼り合わせた原反6,7の両面には、耐熱性と伸縮性を有するフィルム9を付着し、温風を所定の時間吹き付けて予備加熱する。なお、温風を吹き付ける代わりに、ワークを熱板で挟んだり、赤外線を照射したりしてもよい。ワークの予備加熱は、後述のようにワークWの粘度が型成形可能な値まで低下するまで行なう。
Next, the preform molding method in the previous step will be described in detail.
As shown in FIG. 5, two original fabrics 6 and 7 are bonded in advance through a resin sheet 8 (which may be a liquid resin) as an intermediate layer. As will be described later, the resin sheet 8 (or liquid resin) is faster in solidification (thermosetting in the case of a thermosetting resin and cooling in the case of a thermoplastic resin) than the matrix resin of the original fabric 6,7. There is. A film 9 having heat resistance and stretchability is attached to both surfaces of the bonded original fabrics 6 and 7, and preheating is performed by blowing warm air for a predetermined time. Instead of blowing warm air, the work may be sandwiched between hot plates or irradiated with infrared rays. The preheating of the workpiece is performed until the viscosity of the workpiece W is lowered to a value that enables mold forming as will be described later.

そして、熱硬化性樹脂の場合は、金型1をワークWの予備加熱温度と同程度の温度に予備加熱してから、熱可塑性樹脂の場合は、金型1をワークWの予備加熱温度以下の温度に温度制御してから、ワークWを金型1にセットする(図1参照)。次いで、ワークホルダ10でワークWの周縁部を挟持する(図2参照)。
ワークホルダ10は圧縮ガスなどによるスプリング作用を有するもので、ワークWの周縁部を半拘束状態(摺動自在な状態)で保持する。なお、ワークWの予備加熱は金型1にセットした状態で行ってもよい。あるいは、金型全体を予備加熱すべき温度の雰囲気中に置いてもよい。
In the case of a thermosetting resin, the mold 1 is preheated to a temperature similar to the preheating temperature of the work W, and in the case of a thermoplastic resin, the mold 1 is not higher than the preheating temperature of the work W. Then, the workpiece W is set on the mold 1 (see FIG. 1). Next, the peripheral portion of the workpiece W is clamped by the workpiece holder 10 (see FIG. 2).
The work holder 10 has a spring action by compressed gas or the like, and holds the peripheral portion of the work W in a semi-constrained state (slidable state). Note that the preheating of the workpiece W may be performed in a state of being set in the mold 1. Alternatively, the entire mold may be placed in an atmosphere at a temperature to be preheated.

そして、予備加熱により型成形可能な粘度に達したワークWを金型1でプレスする(図3参照)。つまり、ワークWはパンチ11でダイス12に押し付けられることになる。ワークWは、その周縁部がワークホルダ10によって半拘束状態で保持されているので、ワークホルダ9から金型1側へ引き込まれながらプレスされていく。ワークWは、金型1で所定時間プレスされた後に脱型される。図4はこのようにして成形されたプリフォームPの一例を示している。   And the workpiece | work W which reached the viscosity which can be shape-molded by preheating is pressed with the metal mold | die 1 (refer FIG. 3). That is, the workpiece W is pressed against the die 12 by the punch 11. Since the work W is held in a semi-constrained state by the work holder 10, the work W is pressed while being drawn from the work holder 9 to the mold 1 side. The workpiece W is demolded after being pressed by the mold 1 for a predetermined time. FIG. 4 shows an example of the preform P formed in this way.

図6は、原反6,7のマトリクス樹脂(熱硬化性樹脂)と、原反6,7の間に介装する樹脂シート8(または液状樹脂)の熱硬化特性の一例を示している。同図において、原反6,7のマトリクス樹脂は実線で、樹脂シート8(または液状樹脂)は点線で示してある。なお、同図において、温度T0℃の材料をT1℃の雰囲気中に置いた時点を加熱時間の基点としている。その際、ワークWの温度は概ね一点鎖線で示すように変化する。ここで、ワークWと金型1の予備加熱温度はT1℃として表示されている。 FIG. 6 shows an example of thermosetting characteristics of the matrix resin (thermosetting resin) of the original fabrics 6 and 7 and the resin sheet 8 (or liquid resin) interposed between the original fabrics 6 and 7. In the figure, the matrix resins of the original fabrics 6 and 7 are indicated by solid lines, and the resin sheet 8 (or liquid resin) is indicated by dotted lines. In the figure, the time point when the material having the temperature T 0 ° C is placed in the atmosphere of T 1 ° C is used as the base point of the heating time. At that time, the temperature of the workpiece W changes as indicated by the alternate long and short dash line. Here, the preheating temperature of the workpiece W and the mold 1 is indicated as T 1 ° C.

すなわち、樹脂シート8(または液状樹脂)は原反6,7のマトリクス樹脂に較べて熱硬化が速く進行するため、樹脂シート8(または液状樹脂)の粘度が最低になる時刻tbは原反6,7のマトリクス樹脂の粘度が最低になる時刻tMbよりも早くなる。金型1によるワークWのプレスは、生産性を考慮すると、破損の虞のない型成形可能な粘度まで達した時刻ta以降で時刻tMb以前に行なわれることになる。 That is, since the resin sheet 8 (or liquid resin) is thermally cured faster than the matrix resin of the original fabrics 6 and 7, the time t b when the viscosity of the resin sheet 8 (or liquid resin) is minimum is the original fabric. It becomes earlier than the time t Mb when the viscosity of the matrix resin Nos. 6 and 7 becomes the lowest. Press work W by the die 1, considering productivity, will be performed at time t Mb earlier at time t a later reaches moldable viscosity without risk of damage.

すなわち、ワークWを予備加熱すると、ワークWの粘度が低下し、内部の繊維が徐々に散らけ、繊維同士が滑り易くなり、ワークWの伸長が可能になる。ワークWの伸長性は、ワークWの粘度低下にともなって徐々に高くなり、型成形可能な値まで低下する。なお、型成形が可能となるワークWの粘度ηcは、原反6,7の繊維の密度や成形形状等によって異なるが、概ね5×104Poise以下である。一方、時刻tMbの経過後は熱硬化が始まり、ワークWの粘度は増加していく。つまり、生産性を考慮すると、ワークWのプレスは時刻tMbよりも前に開始するのがよい。 That is, when the workpiece W is preheated, the viscosity of the workpiece W is decreased, the internal fibers are gradually scattered, the fibers are easily slipped, and the workpiece W can be extended. The extensibility of the workpiece W gradually increases as the viscosity of the workpiece W decreases, and decreases to a value that enables mold forming. Note that the viscosity η c of the workpiece W that can be molded is different depending on the density of the fibers of the raw fabrics 6 and 7, the molding shape, and the like, but is approximately 5 × 10 4 Poise or less. On the other hand, after the elapse of time t Mb , thermosetting starts, and the viscosity of the workpiece W increases. That is, in consideration of productivity, it is preferable that the press of the workpiece W is started before the time t Mb .

ワークWはワークホルダ10から金型1側へ引き込まれながらプレスされていくので、つまり、ワークWの周縁部はワークホルダ10によって半拘束状態で保持されているので、ワークWの粘度低下にともなう繊維の分散が妨げられることはない。要するに、ワークWは繊維の分散により十分な伸びが可能になった状態でプレスされるので、繊維の破断による製品の破損を生じることなく、型成形を行うことができる。   Since the workpiece W is pressed while being pulled from the workpiece holder 10 to the mold 1 side, that is, the peripheral portion of the workpiece W is held in a semi-constrained state by the workpiece holder 10, the viscosity of the workpiece W decreases. The fiber dispersion is not hindered. In short, since the workpiece W is pressed in a state where sufficient elongation is possible due to the dispersion of the fibers, the molding can be performed without causing the product to be damaged due to the breaking of the fibers.

なお、ワークWの金型1からの脱型は、樹脂シート8(または液状樹脂)が形状崩れしない粘度ηrに達する時刻tcで行える。一方、樹脂シート8(または液状樹脂)を用いない場合、時刻tMcまでは脱型が行われないことになる。 The workpiece W can be removed from the mold 1 at time t c when the resin sheet 8 (or liquid resin) reaches a viscosity η r that does not cause the shape of the workpiece W to be deformed. On the other hand, when the resin sheet 8 (or liquid resin) is not used, demolding is not performed until time t Mc .

図7は熱可塑性樹脂の粘度変化特性の一例を示している。同図において、樹脂シート8(または液状樹脂)の特性は省いてあるが、それ以外は、縦軸と横軸の値を含めて図6と同一である。なお、同図においても、温度T0℃の材料をT1℃の雰囲気中に置いた時点を加熱時間の基点としているが、ワークWの粘度が最小となった時刻tMbで金型1によるプレスを開始するので、ワークWの温度は概ね一点鎖線で示すように変化することになる。 FIG. 7 shows an example of the viscosity change characteristic of the thermoplastic resin. In the figure, the characteristics of the resin sheet 8 (or liquid resin) are omitted, but other than that, it is the same as FIG. 6 including values on the vertical axis and the horizontal axis. Also in this figure, although the time of placing the temperature T 0 ° C. material in an atmosphere of T 1 ° C. and a base point of the heating time depends on the mold 1 at time t Mb viscosity of the workpiece W is minimized Since the press is started, the temperature of the workpiece W changes as shown by a dashed line.

つまり、ワークWは予備加熱により粘度が徐々に低下し、時刻tMbで粘度が最小になり、その後は、温度T2の金型1で冷却固化が進行する。このため、ワークWの粘度が型成形可能な値ηc(概ね5×104Poise)まで低下した時刻tMa以降であれば、どの時点で金型1にセットしてもよいが、ワークWの温度が低下し、粘度がηc以上になる前にワークWのプレスを開始する必要がある。ワークWはプレス状態で冷却固化された後に脱型される。 That is, the viscosity of the workpiece W gradually decreases due to the preheating, the viscosity becomes minimum at time t Mb , and thereafter, cooling and solidification proceeds in the mold 1 at the temperature T 2 . For this reason, the workpiece W may be set in the mold 1 at any time as long as it is after the time t Ma when the viscosity of the workpiece W is reduced to a mold-forming value η c (approximately 5 × 10 4 Poise). It is necessary to start pressing the workpiece W before the temperature of the workpiece decreases and the viscosity becomes η c or more. The workpiece W is demolded after being cooled and solidified in a pressed state.

また、耐熱性と伸縮性を有するフィルム9をワークWの両面に付着して型成形を行っているので、ワークWの金型型面に対する摩擦が小さくなり、製品の破損や皺の発生を防止できるとともに、ワークWが金型型面に密着しにくくなり、樹脂欠損などの脱型不良やごみ付着の発生防止にも役立つ。フィルム9はメイン成形を行なう直前で取り除くと良い。図8は、図4のプリフォームPのフランジ部fに発生した皺の高さを示している。   In addition, since the film 9 having heat resistance and stretchability is attached to both surfaces of the workpiece W and molding is performed, the friction of the workpiece W against the mold surface is reduced, preventing product damage and wrinkles. In addition, the work W becomes difficult to adhere to the mold surface, which is useful for preventing the occurrence of demolding defects such as resin deficiencies and dust adhesion. The film 9 is preferably removed immediately before main molding. FIG. 8 shows the height of the ridge generated in the flange portion f of the preform P in FIG.

ところで、前工程で成形されたプリフォームPは脱型後のスプリングバック作用で変形し、メイン工程の金型3,4での熱プレスに支障を来たす虞がある。そこで、図5に示すように原反6,7の間に樹脂シート8(または液状樹脂)を介装した状態で型成形を行うことで、スプリングバック作用を抑制してプリフォームPの変形を防止している。   By the way, the preform P molded in the previous process may be deformed by the spring back action after demolding, which may hinder the hot press in the molds 3 and 4 in the main process. Therefore, as shown in FIG. 5, by performing mold molding with the resin sheet 8 (or liquid resin) interposed between the raw fabrics 6 and 7, the deformation of the preform P is suppressed by suppressing the springback action. It is preventing.

すなわち、樹脂シート8は、図6に示すように原反6,7のマトリクス樹脂に較べて熱硬化が速く進行し、ワークWを脱型した時には、樹脂シート8(または液状樹脂)を構成していた樹脂の層は硬化がかなり進行している。このため、硬化した樹脂層が原反6,7のマトリクス樹脂層の収縮を抑制し、脱型後のプリフォームPに生じるスプリングバック作用が抑制されることになる。尚、この樹脂シート8(または液状樹脂)は低い加熱温度でも速く熱硬化する材料であるが、このような材料は特に高温下での強度が比較的低く、原反6,7のマトリクス樹脂として使えない場合が多い。   That is, as shown in FIG. 6, the resin sheet 8 is rapidly cured as compared with the matrix resins 6 and 7, and when the workpiece W is removed, the resin sheet 8 (or liquid resin) is formed. The cured resin layer has progressed considerably. For this reason, the cured resin layer suppresses the shrinkage of the matrix resin layers of the original fabrics 6 and 7, and the spring back action generated in the preform P after demolding is suppressed. The resin sheet 8 (or liquid resin) is a material that quickly cures even at a low heating temperature. However, such a material has a relatively low strength particularly at high temperatures, and is used as a matrix resin of raw fabrics 6 and 7. There are many cases that cannot be used.

図9はプリフォームPが脱型後に形状変化する状態を示している。   FIG. 9 shows a state in which the shape of the preform P changes after demolding.

同図において、Aは樹脂シート8を介装したワークWを予備加熱(80℃の温風を5分間吹き付ける)した場合を示し、プリフォームPに形状変化が生じず、形状保持比は1を保っている。Bは、樹脂シート8が介装されていないワークWを予備加熱(80℃の温風を5分間吹き付ける)した場合を示し、形状保持比は徐々に低下している。Cは、樹脂シート8が介装されていないワークWを予備加熱せずに成形した場合を示し、形状保持比の低下はBよりも急になる。なお、形状保持比とは、図4のプリフォームPにおける凸部の高さhをその初期値で除した値をいう。   In the figure, A shows the case where the work W interposing the resin sheet 8 is pre-heated (80 ° C. warm air is blown for 5 minutes), the shape change does not occur in the preform P, and the shape retention ratio is 1. I keep it. B shows the case where the work W in which the resin sheet 8 is not interposed is preheated (80 ° C. warm air is blown for 5 minutes), and the shape retention ratio gradually decreases. C shows the case where the workpiece W in which the resin sheet 8 is not interposed is molded without preheating, and the decrease in the shape retention ratio is steeper than that of B. The shape retention ratio refers to a value obtained by dividing the height h of the convex portion in the preform P in FIG. 4 by its initial value.

〔実施例〕
本発明の効果を確認するため、以下の実験を行った。
1.ワークの作製
原反6,7の繊維は炭素繊維とし、マトリクス樹脂はエポキシ(熱硬化性樹脂の場合)またはポリプロピレン(熱可塑性樹脂の場合)とした。炭素繊維の重量比率は40〜60%とした。また、低い加熱温度でも速く硬化する液状エポキシ及びワーク両表面へ付着させるためのフィルムには、4種類(低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ナイロンフィルム)のものを用意した。
〔Example〕
In order to confirm the effect of the present invention, the following experiment was conducted.
1. Fabrication of work The fibers of the original fabrics 6 and 7 were carbon fibers, and the matrix resin was epoxy (in the case of a thermosetting resin) or polypropylene (in the case of a thermoplastic resin). The weight ratio of carbon fiber was 40-60%. In addition, four types (low density polyethylene film, high density polyethylene film, polypropylene film, nylon film) of liquid epoxy that hardens quickly even at a low heating temperature and a film for adhering to both surfaces of the work were prepared.

原反6,7は300×300mmサイズに裁断後、重ね合わせて加圧し、積層されたワークWを得た。積層パターンは、原反の繊維形態が一方向の場合は、繊維方向を0°,90°,+45°,−45°の4パターンとし、層の中心を境にシンメトリーとなるよう計8層とした。また、クロスの場合は、0°/90°,+45°/−45°の2パターンとし 層の中心を境にシンメトリーとなるよう計4層とした。各ワークの中間の層(一方向の場合は4〜5層日の間、クロスの場合は2〜3層目の間)には、塗工機にてエポキシを塗布率0.1〜0.5g/100cm2で塗布した。   The raw fabrics 6 and 7 were cut into a size of 300 × 300 mm, and then superposed and pressed to obtain a laminated workpiece W. When the fiber pattern of the raw fabric is unidirectional, the laminated pattern has four patterns of 0 °, 90 °, + 45 °, and −45 ° in the fiber direction, and a total of 8 layers so as to be symmetrical with the center of the layer as a boundary. did. In the case of cloth, two patterns of 0 ° / 90 ° and + 45 ° / −45 ° were used, and a total of four layers were formed so as to be symmetrical with the center of the layer as a boundary. In the middle layer of each workpiece (4 to 5 days in the case of one direction, 2 to 3 layers in the case of cloth), epoxy is applied at a coating rate of 0.1 to 0. It was applied at 5 g / 100 cm2.

2. 樹脂特性(加熱一冷却による粘度変化)の測定方法
粘度・粘弾性測定機および誘電分析測定機(NETZSCH社製)の両方を用いた。粘度・粘弾性測定では、原反6,7に使用されているマトリックス樹脂のみ採取し20℃に温度調整後、これを80℃に制御されたステージヘ投入し粘度測定を行った。また、中間層用の液状エポキシついても同様の測定を行った。誘電分析測定では、重ね合わせた原反の間へフィルム状センサーを挿入し20℃に温度調整後、80℃に制御された小型プレス機で加圧して測定を行った。また、中間層用の液状エポキシは、フィルム状センサーを液状エポキシ内へ挿入し、同様な測定を行った。一方、マトリックス樹脂が熱可塑性の場合は粘度・粘弾性測定機による測定のみとし、原反に使用されているマトリックス樹脂のみ採取後に薄い(0.2〜0.4mm)フィルム状とし20℃に温度調整した。これを168℃に制御されたステージへ投入し粘度測定を行った。
2. Measuring method of resin characteristics (viscosity change by heating and cooling) Both viscosity / viscoelasticity measuring machine and dielectric analysis measuring machine (manufactured by NETZSCH) were used. In the viscosity / viscoelasticity measurement, only the matrix resin used in the raw fabrics 6 and 7 was collected, adjusted to a temperature of 20 ° C., and then put into a stage controlled at 80 ° C. to measure the viscosity. The same measurement was performed on the liquid epoxy for the intermediate layer. In the dielectric analysis measurement, a film-like sensor was inserted between the stacked raw materials, the temperature was adjusted to 20 ° C., and the measurement was performed by pressing with a small press controlled at 80 ° C. The liquid epoxy for the intermediate layer was measured by inserting a film sensor into the liquid epoxy. On the other hand, when the matrix resin is thermoplastic, it is only measured with a viscosity / viscoelasticity measuring instrument, and only the matrix resin used in the original fabric is collected and then made into a thin (0.2 to 0.4 mm) film and heated to 20 ° C It was adjusted. This was put into a stage controlled at 168 ° C. and the viscosity was measured.

3.プリフォームの成形
予備加熱前のワークWの温度T0は20±1.0℃に保持した。予備加熱の方法は、温風吹き付け、熱板による挟持、赤外線照射の3つが全て可能であるが、上述の樹脂特性測定と同等の昇温速度を再現するのに最も容易であった熱板で挟む方法でを行った。予備加熱を所定時間行った後直ちにプレスへ移行した。最大型締力が60tonのプレス機を使用し、金型1は、熱硬化性樹脂の場合で80℃に、熱可塑性樹脂の場合で40℃に温度制御した。図4に示すプリフォームPの高さhを変化させて異なる展開率1.01〜1.15で成形を実施した。なお、展開率とは、図4に示すプリフォームPの表面上の点abcdeを結ぶ線の長さを、平面視において点aeを結ぶ線の長さで除した値をいう。
3. Molding of preform The temperature T 0 of the workpiece W before preheating was kept at 20 ± 1.0 ° C. There are three preheating methods: hot air spraying, sandwiching with a hot plate, and infrared irradiation, but the hot plate is the easiest to reproduce the same heating rate as the above-mentioned resin characteristic measurement. It was done by the method of pinching. Immediately after the preheating was performed for a predetermined time, it was transferred to the press. A press machine having a maximum clamping force of 60 tons was used, and the temperature of the mold 1 was controlled to 80 ° C. in the case of a thermosetting resin and 40 ° C. in the case of a thermoplastic resin. Molding was performed at different development ratios of 1.01 to 1.15 by changing the height h of the preform P shown in FIG. The expansion rate is a value obtained by dividing the length of the line connecting the points abcde on the surface of the preform P shown in FIG. 4 by the length of the line connecting the points ae in plan view.

4.評価方法
プリフォームの破れ発生は、脱型後のプリフォームを目視で観察し、破れの有無を調べた。図11〜図13において、○は破れ無し、△は高い絞り比形状でのみ破れ発生、×は明らかな破れ発生を示している(*1)。
4. Evaluation method The occurrence of tearing of the preform was observed by visually observing the preform after demolding to determine whether the preform was broken. In FIGS. 11 to 13, ◯ indicates no tearing, Δ indicates that tearing occurs only with a high aperture ratio shape, and × indicates that clear tearing occurs (* 1).

プリフォームの形状保持状況は、脱型直後のプリフォームの高さh(図4参照)の変化をレーザー変位計で測定し続け、スプリングバックの程度を上述の形状保持比で評価した。図11〜図13において、○は0.95以上、△は0.9〜0.95、×は0.9未満を示している(*2)。   As for the shape retention state of the preform, the change in the height h (see FIG. 4) of the preform immediately after demolding was continuously measured with a laser displacement meter, and the degree of springback was evaluated by the above-described shape retention ratio. 11 to 13, ◯ indicates 0.95 or more, Δ indicates 0.9 to 0.95, and X indicates less than 0.9 (* 2).

型付着による樹脂欠損状況は、プリフォームを成形する前後のワーク重量を各々W0,W1とし、重量減少率%(=100×(W0−W1)/W0)で評価した。図11〜図13において、○は1.0%未満、△は1.0〜1.5%未満、×は1.5%以上を示している(*3)。 The state of resin deficiency due to mold adhesion was evaluated by weight reduction rate% (= 100 × (W 0 −W 1 ) / W 0 ), where W 0 and W 1 were workpiece weights before and after forming a preform, respectively. 11 to 13, ◯ indicates less than 1.0%, Δ indicates 1.0 to less than 1.5%, and X indicates 1.5% or more (* 3).

5.評価結果
(1)予備加熱でマトリック樹脂の粘度を低下させることにより、プリフォームの繊維破損を抑える効果がある。
5. Evaluation results
(1) By reducing the viscosity of the matrix resin by preheating, there is an effect of suppressing fiber breakage of the preform.

(2) 中間層に硬化速度の速い樹脂を設けることにより、脱型後のプリフォーム形状を保持できるので、生産性向上の効果がある。   (2) By providing the intermediate layer with a resin having a high curing rate, the preform shape after demolding can be maintained, which has the effect of improving productivity.

(3) ワーク両表面に付着したフィルムは、金型の型面に対する摩擦係数の低減により、繊維破損の抑制および型付着による樹脂欠損防止に効果があり、耐熱性の高いHDPEやPPが有効である。   (3) The film adhering to both surfaces of the workpiece is effective in suppressing fiber breakage and preventing resin deficiency due to mold adhesion by reducing the coefficient of friction against the mold surface. Highly heat-resistant HDPE and PP are effective. is there.

本発明の方法でプリフォームを成形する場合の第1工程を示す図The figure which shows the 1st process in the case of shape | molding a preform with the method of this invention 同第2工程を示す図The figure which shows the 2nd process 同第3工程を示す図Diagram showing the third step 同方法で成形したプリフォームの斜視図Perspective view of preform molded by the same method 金型にセットするワークの断面図Sectional view of workpiece set in the mold 熱硬化性樹脂の加熱による粘度変化を示す図The figure which shows the viscosity change by heating of thermosetting resin 熱可塑性樹脂の加熱による粘度変化を示す図The figure which shows the viscosity change by heating of the thermoplastic resin 本発明の方法で成形したプリフォームにおける皺の発生状態を示す図The figure which shows the generation | occurrence | production state of wrinkles in the preform shape | molded by the method of this invention プリフォームの脱型後の形状変化を示す図Diagram showing the shape change after preform removal 自動車の車体パネルの製造工程を示す図The figure which shows the manufacturing process of the body panel of the car 熱硬化性樹脂によるプリフォームの成形結果の一部を示す図A diagram showing a part of the result of molding a preform with thermosetting resin 図11の残りの部分を示す図FIG. 11 shows the remaining part of FIG. 熱可塑性樹脂によるプリフォームの成形結果を示す図The figure which shows the molding result of the preform with the thermoplastic resin

符号の説明Explanation of symbols

1 金型
2 金型
6 原反
7 原反
8 樹脂シート
9 フィルム
10 ワークホルダ
11 ダイス
12 パンチ
W ワーク
P プリフォーム
DESCRIPTION OF SYMBOLS 1 Mold 2 Mold 6 Original fabric 7 Original fabric 8 Resin sheet 9 Film 10 Work holder 11 Die 12 Punch W Work P Preform

Claims (2)

連続繊維を含んだ繊維強化プラスチックを型成形する方法であって、
ワークとして連続繊維強化プラスチック製のシートを用い、このワークと金型を予備加熱するとともに、ワークホルダによってワークの周縁部を挟持する工程と、
ワークの粘度が型成形可能な値まで低下した段階で金型によるワークのプレスを開始する工程と、
ワークをワークホルダから金型側へ引き込みながらプレスする工程と、
型成形されたワークを加熱または冷却して固化または半固化させる行程と、
からなることを特徴とする繊維強化プラスチック製プリフォームの成形方法。
A method of molding a fiber reinforced plastic containing continuous fibers,
Using a continuous fiber reinforced plastic sheet as a work, preheating the work and the mold, and sandwiching the peripheral edge of the work with a work holder;
Starting the pressing of the workpiece with a mold when the viscosity of the workpiece has dropped to a value that can be molded;
Pressing the workpiece while drawing it from the workpiece holder to the mold,
A process of solidifying or semi-solidifying the molded workpiece by heating or cooling;
A method for molding a fiber reinforced plastic preform, comprising:
ワークの予備加熱に先立って、耐熱性と伸縮性を有するフィルムをワークの両面に付着しておくことを特徴とする請求項1に記載の繊維強化プラスチック製プリフォームの成形方法。   2. The method for molding a fiber-reinforced plastic preform according to claim 1, wherein films having heat resistance and stretchability are adhered to both surfaces of the work prior to preheating the work.
JP2006249581A 2006-09-14 2006-09-14 Molding method of preform made of fiber-reinforced plastic Pending JP2008068532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249581A JP2008068532A (en) 2006-09-14 2006-09-14 Molding method of preform made of fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249581A JP2008068532A (en) 2006-09-14 2006-09-14 Molding method of preform made of fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2008068532A true JP2008068532A (en) 2008-03-27

Family

ID=39290549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249581A Pending JP2008068532A (en) 2006-09-14 2006-09-14 Molding method of preform made of fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2008068532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532760A (en) * 2009-07-07 2012-12-20 ザ・ボーイング・カンパニー Curing system and method utilizing electromagnetic force and conduction heat transfer
JP6368874B1 (en) * 2017-07-25 2018-08-01 アイティテクノ 株式会社 Manufacturing method of molded products
WO2019188195A1 (en) 2018-03-29 2019-10-03 東レ株式会社 Method for producing fiber-reinforced resin
WO2020138473A1 (en) * 2018-12-27 2020-07-02 三菱ケミカル株式会社 Method for manufacturing preform, method for manufacturing composite material molded article, and mold
CN115464010A (en) * 2021-10-08 2022-12-13 上海聚克流体控制有限公司 Forming process and equipment of metal diaphragm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612518A (en) * 1984-03-16 1986-01-08 アルカン インタ−ナシヨナル リミティド Method of molding shaped article of plastic composite article
JPH03126532A (en) * 1989-10-11 1991-05-29 Fuji Heavy Ind Ltd Folding molding method of composite material
JPH0372408U (en) * 1989-11-17 1991-07-22
JP2006007492A (en) * 2004-06-23 2006-01-12 Toyota Motor Corp FRP preform manufacturing method
JP2007001046A (en) * 2005-06-21 2007-01-11 Toyota Industries Corp Shaping method of sheetlike structure and fiber reinforced resin
JP2007090809A (en) * 2005-09-30 2007-04-12 Toray Ind Inc Method and apparatus for manufacturing frp preform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612518A (en) * 1984-03-16 1986-01-08 アルカン インタ−ナシヨナル リミティド Method of molding shaped article of plastic composite article
JPH03126532A (en) * 1989-10-11 1991-05-29 Fuji Heavy Ind Ltd Folding molding method of composite material
JPH0372408U (en) * 1989-11-17 1991-07-22
JP2006007492A (en) * 2004-06-23 2006-01-12 Toyota Motor Corp FRP preform manufacturing method
JP2007001046A (en) * 2005-06-21 2007-01-11 Toyota Industries Corp Shaping method of sheetlike structure and fiber reinforced resin
JP2007090809A (en) * 2005-09-30 2007-04-12 Toray Ind Inc Method and apparatus for manufacturing frp preform

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532760A (en) * 2009-07-07 2012-12-20 ザ・ボーイング・カンパニー Curing system and method utilizing electromagnetic force and conduction heat transfer
JP6368874B1 (en) * 2017-07-25 2018-08-01 アイティテクノ 株式会社 Manufacturing method of molded products
JP2019025890A (en) * 2017-07-25 2019-02-21 アイティテクノ 株式会社 Production method of molding
WO2019188195A1 (en) 2018-03-29 2019-10-03 東レ株式会社 Method for producing fiber-reinforced resin
CN111886119A (en) * 2018-03-29 2020-11-03 东丽株式会社 Method for producing fiber-reinforced resin
KR20200133203A (en) 2018-03-29 2020-11-26 도레이 카부시키가이샤 Manufacturing method of fiber reinforced resin
WO2020138473A1 (en) * 2018-12-27 2020-07-02 三菱ケミカル株式会社 Method for manufacturing preform, method for manufacturing composite material molded article, and mold
CN113272108A (en) * 2018-12-27 2021-08-17 三菱化学株式会社 Method for producing preform, method for producing composite material molded article, and mold
JPWO2020138473A1 (en) * 2018-12-27 2021-10-21 三菱ケミカル株式会社 Preform manufacturing method and composite material molded product manufacturing method and mold
CN115464010A (en) * 2021-10-08 2022-12-13 上海聚克流体控制有限公司 Forming process and equipment of metal diaphragm

Similar Documents

Publication Publication Date Title
JP6543791B2 (en) Method of manufacturing resin molded body and press molding apparatus
EP0333198A2 (en) Process for producing a multilayer molded article
JP4417359B2 (en) Method for molding fiber reinforced plastic preform
JPH0250131B2 (en)
JPH03505559A (en) pressure sensitive adhesive release liner
CN101203404A (en) Process for the manufacture of interior trim parts comprising defined surfaces and/or defined color profiles and articles obtained therefrom
CN104755240A (en) Method for manufacturing preform and method for manufacturing fiber-reinforced resin molded article
JP2008540196A (en) Manufacturing process of laminated composite product and composite product produced by lamination process
JP2006051819A (en) Mold
JP2008068532A (en) Molding method of preform made of fiber-reinforced plastic
EP3283331A1 (en) Method and apparatus for nonwoven trim panels
JP2004508978A (en) Method and apparatus for preparing molded articles
US20210316479A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
KR20200133203A (en) Manufacturing method of fiber reinforced resin
JP6712430B1 (en) Method for producing thermoplastic fiber-reinforced resin molded product
JP6563794B2 (en) Decorative method, decorative sheet, molded sheet and method for producing the same
JP6429869B2 (en) Method for controlled formation of cellular material
JP6303053B1 (en) Method for producing metal-fiber reinforced resin composite molded body
CN107433723B (en) Method for manufacturing spare and accessory parts
JP3109197B2 (en) Automobile part molded product by laminate
JP3572823B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
US20110297308A1 (en) Method of making automotive body parts
WO1994001274A1 (en) Method of molding interior finishing material of cardboard
US10882218B2 (en) Tool configured to have a changeable shape
JP2004122549A (en) Method for producing interior finish material for car

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713