[go: up one dir, main page]

JP2008068390A - Crystal material polishing method - Google Patents

Crystal material polishing method Download PDF

Info

Publication number
JP2008068390A
JP2008068390A JP2006251918A JP2006251918A JP2008068390A JP 2008068390 A JP2008068390 A JP 2008068390A JP 2006251918 A JP2006251918 A JP 2006251918A JP 2006251918 A JP2006251918 A JP 2006251918A JP 2008068390 A JP2008068390 A JP 2008068390A
Authority
JP
Japan
Prior art keywords
polishing
pad
liquid
abrasive
lha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251918A
Other languages
Japanese (ja)
Other versions
JP5336699B2 (en
Inventor
Makoto Sato
佐藤  誠
Kazuhiro Okuda
和弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2006251918A priority Critical patent/JP5336699B2/en
Publication of JP2008068390A publication Critical patent/JP2008068390A/en
Application granted granted Critical
Publication of JP5336699B2 publication Critical patent/JP5336699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal material polishing method capable of obtaining sufficient polishing efficiency and polishing performance in polishing with a CMP method even in the case of polishing a material hard to be machined such as a single-crystal substrate composed of silicon carbide SiC and gallium nitride GaN. <P>SOLUTION: In polishing using the CMP method, the surface of a material hard to be machined such as a single-crystal substrate composed of silicon carbide SiC and gallium nitride GaN is polished by using a polishing pad including abrasive grains under the existence of oxidative polishing liquid, and high polishing efficiency can be thereby properly obtained, keeping low surface roughness. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、たとえば半導体ウェハのCMP法による研磨加工などに好適に用いられる研磨体とその製造方法に関する。   The present invention relates to a polishing body suitably used for, for example, polishing processing of a semiconductor wafer by a CMP method and a manufacturing method thereof.

半導体集積回路のような電子デバイスはシリコン単結晶基板上に構築される場合が多いが、比較的大きな電力の制御機能が求められるパワーデバイス等では、さらに電気特性が良好な炭化珪素SiCや窒化ガリウムGaNから成る単結晶基板を上記シリコン単結晶基板に替えて用いることが期待されている。このような炭化珪素SiCや窒化ガリウムGaNから成る単結晶基板を用いたパワーデバイスは、モータや発電機の回転数やトルクを制御する制御素子として、ハイブリッド車両や燃料電池車両等に好適に用いられる。   Electronic devices such as semiconductor integrated circuits are often built on a silicon single crystal substrate, but for power devices that require a relatively large power control function, silicon carbide SiC or gallium nitride with even better electrical characteristics It is expected that a single crystal substrate made of GaN is used in place of the silicon single crystal substrate. A power device using such a single crystal substrate made of silicon carbide SiC or gallium nitride GaN is suitably used for a hybrid vehicle, a fuel cell vehicle, or the like as a control element for controlling the rotational speed and torque of a motor or generator. .

一般に、超LSIの製造では半導体ウェハに多数のチップを形成し、最終工程で各チップサイズに切断するという製法が採られている。最近では超LSIの製造技術の向上に伴い集積度が飛躍的に向上し、配線の多層化が進んでいる為、各層を形成する工程においては、半導体ウェハ全体の平坦化(グローバルプラナリゼーション)が要求される。そのような半導体ウェハ全体の平坦化を実現する手法のひとつとして、CMP(Chemical Mechanical Polishing:化学的機械的研磨)法という研磨方法が挙げられる。このCMP法とは、定盤上に貼られた不織布あるいは発泡パッドなどの研磨パッドにウェハを押しつけて強制回転させ、そこに微細な研磨粒子(遊離砥粒)を含有したスラリ(細かい粉末がたとえばアルカリ水溶液などの液体中に分散している濃厚な懸濁液)を流して研磨をおこなうものである。かかるCMP法によれば、液体成分による化学的研磨と、遊離砥粒による機械的研磨との相乗効果によって比較的精度の高い研磨加工がおこなわれる。   In general, in the manufacture of VLSI, a manufacturing method is employed in which a large number of chips are formed on a semiconductor wafer and cut into each chip size in the final process. Recently, with the improvement of VLSI manufacturing technology, the degree of integration has dramatically improved, and the number of layers of wiring has increased. In the process of forming each layer, the entire semiconductor wafer has been flattened (global planarization). Required. One method for realizing the planarization of the entire semiconductor wafer is a polishing method called a CMP (Chemical Mechanical Polishing) method. This CMP method means that a wafer is pressed against a polishing pad such as a non-woven fabric or foam pad affixed on a surface plate and forcibly rotated, and a slurry containing fine abrasive particles (free abrasive grains) A thick suspension) dispersed in a liquid such as an alkaline aqueous solution is poured to perform polishing. According to the CMP method, relatively high-precision polishing is performed by a synergistic effect of chemical polishing using a liquid component and mechanical polishing using free abrasive grains.

しかし、そのような従来のCMP法では、定常的にスラリを研磨パッドに供給しつつ研磨加工をおこなうものであり、いきおいスラリの消費がかさむものであった。使用済みのスラリには産業廃棄物としての処理が求められる為、廃棄に無視できない費用がかかることに加え、環境保護の観点からも好ましくなかった。また、CMP法による研磨加工において最もコストがかかるのは、スラリに含まれる研磨粒子であり、さらには、必ずしもスラリに含まれる研磨粒子のすべてが研磨加工に関与するわけではなく、多数の研磨粒子が無駄に廃棄される為、非経済的であるという不具合があった。   However, in such a conventional CMP method, polishing is performed while constantly supplying the slurry to the polishing pad, and the consumption of the slurry is increased. Since the used slurry is required to be treated as an industrial waste, it is not preferable from the viewpoint of environmental protection, in addition to a cost that cannot be ignored. In addition, the most cost in the polishing process by the CMP method is the abrasive particles contained in the slurry. Furthermore, not all of the abrasive particles contained in the slurry are necessarily involved in the polishing process. Was wasted and was uneconomical.

かかる不具合を解消すべく、スラリによらずにCMP法による研磨加工をおこなう為の固形研磨体が考案されている。たとえば、特許文献1および特許文献2に記載された研磨体がそれである。
特開2001−214154号公報 特開2004−25415号公報
In order to solve such a problem, a solid polishing body has been devised for performing polishing by a CMP method without using a slurry. For example, the abrasive | polishing body described in patent document 1 and patent document 2 is it.
JP 2001-214154 A JP 2004-25415 A

特許文献1の研磨体は、たとえば熱可塑性重合体などの非水溶性物質中に酸化セリウムなどの研磨粒子およびデキストリンなどの水溶性物質を含有する研磨体であり、CMP法による研磨加工に際して、その研磨体から上記研磨粒子が遊離することにより、研磨加工に関与する遊離砥粒を自己供給することを目的とするものである。しかし、その効果を検証する為、本発明者がかかる研磨体を試作して研磨加工に用いたところ、研磨効率がスラリを用いた従来のCMP法による研磨加工に比べて劣るものであることに加え、酸化セリウムあるいは二酸化マンガンなどといった比較的研磨性能に優れた研磨粒子を用いたもの以外は十分な研磨性能を示さないという結果が得られた。   The abrasive body of Patent Document 1 is an abrasive body containing abrasive particles such as cerium oxide and a water-soluble substance such as dextrin in a water-insoluble substance such as a thermoplastic polymer. The purpose is to self-supply the free abrasive grains involved in the polishing process by releasing the abrasive particles from the abrasive body. However, in order to verify the effect, when the present inventor prototyped such a polishing body and used it for polishing processing, the polishing efficiency was inferior to polishing processing by the conventional CMP method using slurry. In addition, the result was that sufficient polishing performance was not obtained except those using abrasive particles having relatively excellent polishing performance such as cerium oxide or manganese dioxide.

これに対し、特許文献2の研磨体は、研磨体と被研磨体との間に遊離砥粒を介在させた状態でそれらを互いに押しつけて相対移動させることにより被研磨体の研磨加工をおこなうCMP法では、前記研磨体により必要十分な研磨粒子が自己供給される必要があることに着目し、研磨粒子が前記母材樹脂から遊離し易い構成とするために、その母材樹脂の臨界表面張力を1.6×10−2〜4.0×10−2(N/m)の範囲内とし、遊離砥粒を好適に自己供給し得る研磨体としたものである。これによれば、母材樹脂と前記研磨粒子とが必要十分な結合力により相互に固着されている為、CMP法による研磨加工に際して前記研磨粒子が前記母材樹脂から遊離し易く、前記研磨体と被研磨体との間に遊離砥粒を好適に自己供給することができるので、シリコンSi単結晶基板に対しては比較的良い研磨性能が得られるが、炭化珪素SiCや窒化ガリウムGaNから成る単結晶基板は高硬度であって大変加工しにくい難加工材料であるため、その研磨に対しては、十分な研磨効率や研磨性能が未だ得られ難いものであった。このため、低価格で量産することが困難であり、実用化のネックとなっていた。 On the other hand, the polishing body of Patent Document 2 performs a polishing process on the object to be polished by pressing the abrasive grains between the polishing object and the object to be polished and moving them relative to each other. In this method, attention is paid to the fact that necessary and sufficient abrasive particles need to be supplied by the abrasive body, and the critical surface tension of the matrix resin is used in order to make the abrasive particles easily separated from the matrix resin. Is within the range of 1.6 × 10 −2 to 4.0 × 10 −2 (N / m), and a polishing body capable of suitably self-supplying free abrasive grains is obtained. According to this, since the base material resin and the abrasive particles are fixed to each other with a necessary and sufficient bonding force, the abrasive particles are easily released from the base material resin during the polishing process by the CMP method. Since free abrasive grains can be suitably self-supplied between the substrate and the object to be polished, a relatively good polishing performance can be obtained for a silicon Si single crystal substrate, but it is made of silicon carbide SiC or gallium nitride GaN. Since the single crystal substrate has a high hardness and is difficult to process, it is difficult to obtain sufficient polishing efficiency and performance for polishing. For this reason, it is difficult to mass-produce at a low price, which has been a bottleneck for practical use.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、炭化珪素SiCや窒化ガリウムGaNから成る単結晶基板のような難加工材料でも、CMP法による研磨において十分な研磨効率や研磨性能が得られる研磨加工方法を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to sufficiently polish even difficult-to-process materials such as single crystal substrates made of silicon carbide SiC or gallium nitride GaN in the CMP method. An object of the present invention is to provide a polishing method capable of obtaining high polishing efficiency and polishing performance.

本発明者は、かかるCMP法による難加工材料の研磨法を開発すべく鋭意研究を継続した結果、研磨液の存在下において砥粒内包研磨パッドを用いて結晶材料の表面を平滑に研磨するためのCMP法による研磨加工方法に際して、その研磨液に酸化剤を溶解して酸化性を付与すると、前記難加工材料に対しても研磨能率や研磨性能が格段に優れたものとなることを見出した。本発明はこの知見に基づいて為されたものである。   As a result of continual research to develop a polishing method for difficult-to-process materials by the CMP method, the present inventors have smoothly polished the surface of a crystal material using an abrasive-containing polishing pad in the presence of a polishing liquid. In the polishing method using the CMP method, it has been found that when an oxidizing agent is dissolved in the polishing solution to impart oxidizability, polishing efficiency and polishing performance are remarkably improved even for the difficult-to-process materials. . The present invention has been made based on this finding.

すなわち、本発明の要旨とするところは、研磨液の存在下において砥粒内包研磨パッドを用いて結晶材料の表面を平滑に研磨するためのCMP法による研磨加工方法であって、その研磨液は、酸化性の研磨液であることにある。   That is, the gist of the present invention is a polishing method by a CMP method for smoothly polishing the surface of a crystal material using an abrasive-encapsulated polishing pad in the presence of a polishing liquid, and the polishing liquid is It is an oxidizing polishing liquid.

このようにすれば、CMP法による研磨加工において、結晶材料の表面が酸化性の研磨液の存在下において砥粒内包研磨パッドを用いて研磨されるので、低い表面粗度を得つつ、高い研磨能率が好適に得られる。   In this way, in the polishing process by the CMP method, the surface of the crystal material is polished using the abrasive-encapsulated polishing pad in the presence of an oxidizing polishing liquid, so that high polishing is achieved while obtaining low surface roughness. Efficiency is suitably obtained.

ここで、前記酸化性の研磨液は、好適には、過マンガン酸カリウムまたはチオ硫酸カリウムを酸化還元電位調整剤として添加されたものである。このようにすれば、容易に酸化性の研磨液が得られる。   Here, the oxidizing polishing liquid is preferably one in which potassium permanganate or potassium thiosulfate is added as a redox potential regulator. In this way, an oxidizing polishing liquid can be easily obtained.

また、前記研磨液は、酸性の研磨液である。好適には、その酸性の研磨液は、pH調整剤が添加されたことによってpHが7未満とされたものである。このようにすれば、一層、高い研磨能率が好適に得られる。   The polishing liquid is an acidic polishing liquid. Preferably, the acidic polishing liquid has a pH of less than 7 by adding a pH adjuster. In this way, a higher polishing efficiency can be suitably obtained.

また、前記研磨パッドは、連通気孔が形成された母材樹脂とその連通気孔内に設けられた研磨粒子とを備えた砥粒内包研磨パッドである。このようにすれば、一層高い研磨能率と、低い表面粗度が得られる。   The polishing pad is an abrasive-encapsulated polishing pad including a base material resin in which continuous air holes are formed and abrasive particles provided in the continuous air holes. In this way, higher polishing efficiency and lower surface roughness can be obtained.

また、前記砥粒内包研磨パッドの母剤樹脂は、ポリエーテルサルホン(PES)樹脂から構成されたものである。このようにすれば、一層高い研磨効率が得られる。しかし、たとえばポリフッ化ビニル、フッ化ビニル・ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン、フッ化ビニリデン・ヘキサフルオロプロピレン共重合体等のフッ素系合成樹脂や、ポリエチレン樹脂、およびポリメタクリル酸メチルの内、少なくとも1つを含む合成樹脂等であっても好適に用いられる。   Further, the base resin of the abrasive-encapsulated polishing pad is composed of polyethersulfone (PES) resin. In this way, higher polishing efficiency can be obtained. However, for example, among fluorine-based synthetic resins such as polyvinyl fluoride, vinyl fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, polyethylene resin, and polymethyl methacrylate Even a synthetic resin containing at least one is preferably used.

また、前記研磨粒子は、シリカ、セリア、アルミナ、ジルコニア、チタニア、マンガン酸化物、炭酸バリウム、酸化クロム、および酸化鉄の内、少なくとも1つを含むものである。このようにすれば、良好な表面粗度を得ることができる被研磨体に応じた硬度を備えた研磨粒子を用いることができるという利点がある。上記研磨粒子は、好適には、その平均粒径が0.005〜10(μm)の範囲内であり、たとえばシリカとしては、たとえばヒュームドシリカ(硝煙シリカ:四塩化ケイ素、クロロシランなどを水素および酸素の存在のもとで高温燃焼させて得られるシリカ微粒子)などが好適に用いられる。また、好適には、上記研磨粒子の上記研磨体に対する体積割合は20〜50(%)の範囲内であり、重量割合は51〜90(%)の範囲内である。   The abrasive particles include at least one of silica, ceria, alumina, zirconia, titania, manganese oxide, barium carbonate, chromium oxide, and iron oxide. In this way, there is an advantage that it is possible to use abrasive particles having hardness corresponding to the object to be polished, which can obtain good surface roughness. The above-mentioned abrasive particles preferably have an average particle diameter in the range of 0.005 to 10 (μm). For example, as silica, for example, fumed silica (smoke silica: silicon tetrachloride, chlorosilane, etc., hydrogen and Silica fine particles obtained by high-temperature combustion in the presence of oxygen are preferably used. Preferably, the volume ratio of the abrasive particles to the polishing body is in the range of 20 to 50 (%), and the weight ratio is in the range of 51 to 90 (%).

また、前記研磨液量は、極めて微量であり、研磨定盤の面積当たり0.1〜200ml/min/mである。このようにすれば、一層高い研磨効率が得られるとともに、表面荒さが細かくなる。 The amount of the polishing liquid is extremely small, and is 0.1 to 200 ml / min / m 2 per area of the polishing surface plate. In this way, higher polishing efficiency can be obtained and the surface roughness becomes finer.

また、前記結晶材料は、SiCまたはGaNの単結晶である。このようにすれば、SiCまたはGaNの単結晶のような難加工材料であっても、高い研磨能率および低い表面粗度が得られる。   The crystal material is a single crystal of SiC or GaN. In this way, high polishing efficiency and low surface roughness can be obtained even with difficult-to-process materials such as SiC or GaN single crystals.

以下、本発明の1適用例を図面と共に説明する。   Hereinafter, one application example of the present invention will be described with reference to the drawings.

図1は、本発明の一例が適用されるCMP(Chemical Mechanical Polishing:化学的機械的研磨)法による研磨加工を実施するための研磨加工装置10の要部をフレームを取り外して観念的に示している。この図1において、研磨加工装置10には、研磨定盤12がその垂直な軸心C1まわりに回転可能に支持された状態で設けられており、その研磨定盤12は、定盤駆動モータ13により、図に矢印で示す1回転方向へ回転駆動されるようになっている。この研磨定盤12の上面すなわち被研磨体(結晶材料)16が押しつけられる面には、本実施例の研磨パッド(砥粒内包研磨パッド)14が貼り着けられている。一方、上記研磨定盤12上の軸心C1から偏心した位置には、SiCウェハ等の被研磨体16を吸着或いは保持枠等を用いて下面において保持するワーク保持部材(キャリヤ)18がその軸心C2まわりに回転可能、その軸心C2方向に移動可能に支持された状態で配置されており、そのワーク保持部材18は、図示しないワーク駆動モータにより或いは上記研磨定盤12から受ける回転モーメントにより図1に矢印で示す1回転方向へ回転させられるようになっている。ワーク保持部材18の下面すなわち上記研磨パッド14と対向する面には被研磨体16が保持され、被研磨体16が所定の荷重で研磨パッド14に押圧されるようになっている。また、研磨加工装置10のワーク保持部材18の近傍には、滴下ノズル22および/またはスプレーノズル24が設けられており、図示しないタンクから送出された酸化性水溶液である研磨液(ルブリカント)20が上記研磨定盤12上に供給されるようになっている。   FIG. 1 conceptually shows a main part of a polishing apparatus 10 for performing polishing by a CMP (Chemical Mechanical Polishing) method to which an example of the present invention is applied, with a frame removed. Yes. In FIG. 1, the polishing apparatus 10 is provided with a polishing surface plate 12 rotatably supported around a vertical axis C <b> 1, and the polishing surface plate 12 includes a surface plate driving motor 13. Thus, it is driven to rotate in one rotation direction indicated by an arrow in the figure. The polishing pad (abrasive-encapsulated polishing pad) 14 of this embodiment is attached to the upper surface of the polishing surface plate 12, that is, the surface to which the object to be polished (crystal material) 16 is pressed. On the other hand, at a position deviated from the axis C1 on the polishing surface plate 12, a work holding member (carrier) 18 for holding the object 16 to be polished such as a SiC wafer on the lower surface by suction or using a holding frame or the like. The workpiece holding member 18 is arranged so as to be rotatable around the center C2 and movable in the direction of the axis C2. The workpiece holding member 18 is provided by a workpiece driving motor (not shown) or by a rotational moment received from the polishing surface plate 12. It can be rotated in one rotation direction indicated by an arrow in FIG. The workpiece 16 is held on the lower surface of the work holding member 18, that is, the surface facing the polishing pad 14, and the workpiece 16 is pressed against the polishing pad 14 with a predetermined load. Further, a dripping nozzle 22 and / or a spray nozzle 24 are provided in the vicinity of the work holding member 18 of the polishing apparatus 10, and a polishing liquid (lubricant) 20, which is an oxidizing aqueous solution sent from a tank (not shown), is provided. It is supplied on the polishing surface plate 12.

なお、上記研磨加工装置10には、研磨定盤12の軸心C1に平行な軸心C3まわりに回転可能、その軸心C3の方向および前記研磨定盤12の径方向に移動可能に配置された図示しない調整工具保持部材と、その調整工具保持部材の下面すなわち前記研磨パッド14と対向する面に取り付けられた図示しないダイヤモンドホイールのような研磨体調整工具(コンディショナー)とが必要に応じて設けられており、かかる調整工具保持部材およびそれに取り付けられた研磨体調整工具は、図示しない調整工具駆動モータにより回転駆動された状態で前記研磨パッド14に押しつけられ、且つ研磨定盤12の径方向に往復移動させられることにより、研磨パッド14の研磨面の調整がおこなわれてその研磨パッド14の表面状態が研磨加工に適した状態に常時維持されるようになっている。   The polishing apparatus 10 is disposed so as to be rotatable around an axis C3 parallel to the axis C1 of the polishing surface plate 12, and to be movable in the direction of the axis C3 and the radial direction of the polishing surface plate 12. An adjustment tool holding member (not shown) and a polishing body adjustment tool (conditioner) such as a diamond wheel (not shown) attached to the lower surface of the adjustment tool holding member, that is, the surface facing the polishing pad 14 are provided as necessary. The adjusting tool holding member and the polishing body adjusting tool attached to the adjusting tool holding member are pressed against the polishing pad 14 while being rotated by an adjusting tool driving motor (not shown), and in the radial direction of the polishing surface plate 12. By reciprocating, the polishing surface of the polishing pad 14 is adjusted, and the surface state of the polishing pad 14 is suitable for polishing. It is adapted to be maintained at all times to the state.

上記研磨加工装置10によるCMP法の研磨加工に際しては、上記研磨定盤12およびそれに貼り着けられた研磨パッド14と、ワーク保持部材18およびその下面に保持された被研磨体16とが、上記定盤駆動モータ13およびワーク駆動モータによりそれぞれの軸心まわりに回転駆動された状態で、上記滴下ノズル22および/またはスプレーノズル24から研磨液20が上記研磨パッド14の表面上に供給されつつ、ワーク保持部材18に保持された被研磨体16がその研磨パッド14に押しつけられる。そうすることにより、上記被研磨体16の被研磨面すなわち上記研磨パッド14に対向する面が、上記研磨液20による化学的研磨作用と、上記研磨パッド14内に内包されてその研磨パッド14から自己供給された研磨粒子26による機械的研磨作用とによって平坦に研磨される。この研磨粒子26には、たとえば平均粒径80nm程度のシリカが用いられる。   When polishing by the CMP method by the polishing apparatus 10, the polishing surface plate 12, the polishing pad 14 attached thereto, the workpiece holding member 18, and the object 16 to be polished held on the lower surface of the polishing table 12 are fixed. While the polishing liquid 20 is being supplied from the dropping nozzle 22 and / or the spray nozzle 24 onto the surface of the polishing pad 14 while being rotated around the respective axis centers by the panel driving motor 13 and the workpiece driving motor, The object to be polished 16 held by the holding member 18 is pressed against the polishing pad 14. By doing so, the surface to be polished of the object to be polished 16, that is, the surface facing the polishing pad 14, is chemically polished by the polishing liquid 20 and contained in the polishing pad 14, and is removed from the polishing pad 14. The surface is polished flat by the mechanical polishing action by the self-supplied abrasive particles 26. For example, silica having an average particle size of about 80 nm is used for the abrasive particles 26.

上記研磨定盤12上に貼り着け付けられた研磨パッド14は、図2に示すように、連通気孔30を備えた母材樹脂32と、その母材樹脂32の連通気孔30に充填された多数の研磨粒子26とを備えて円板状に形成されたものであり、たとえば300(mmφ)×5(mm)程度の寸法を備えている。この研磨パッド14は、研磨粒子26としての平均粒径80nm程度のヒュームドシリカとポリエーテルサルホン(poly-ether sulfone :PES )樹脂とを、N,N−ジメチルフォルアミド(N,N-dimethylformamide : DMF )溶媒中で混合して所定の成形型内に鋳込み且つそのDMF 溶媒を蒸発させて硬化させることにより、寸法が500×500×2mmのシートを成形し、研磨パッド14として用いる所望の円形寸法に切断されたものである。研磨パッド14は、たとえば、26容積%程度の研磨粒子26と28容積%程度の母材樹脂32と、残りの容積を占める連通気孔30とから構成されている。図2は、その研磨パッド14の組織を走査型電子顕微鏡によって拡大して示す図であり、スポンジ状或いは編み目状に形成された母材樹脂32の連通気孔30は研磨粒子26よりも同等以上の大きさに形成されており、その連通気孔30内には多数の研磨粒子26が保持されている。その母材樹脂32と前記研磨粒子26とが必要十分な結合力により相互に固着されている。本実施例の研磨パッド14は、たとえばコロイダルシリカなどを含有したスラリによることなく、遊離砥粒を含まない研磨液20の供給によってCMP法による研磨加工を可能とするものである。   As shown in FIG. 2, the polishing pad 14 attached on the polishing surface plate 12 includes a base material resin 32 having continuous air holes 30 and a large number of the base air resin 30 filled in the continuous air holes 30. The abrasive particles 26 are formed in a disk shape, and have a size of about 300 (mmφ) × 5 (mm), for example. This polishing pad 14 is made of fumed silica having an average particle size of about 80 nm as polishing particles 26 and polyether-sulfone (PES) resin and N, N-dimethylformamide (N, N-dimethylformamide). : DMF) Mixed in a solvent, cast into a predetermined mold, and the DMF solvent is evaporated and cured to form a sheet having a size of 500 × 500 × 2 mm and used as a polishing pad 14 Cut to size. The polishing pad 14 is composed of, for example, about 26% by volume of abrasive particles 26, about 28% by volume of a base resin 32, and a continuous vent 30 that occupies the remaining volume. FIG. 2 is an enlarged view showing the structure of the polishing pad 14 by a scanning electron microscope. The continuous air holes 30 of the base material resin 32 formed in a sponge shape or a stitch shape are equal to or larger than the polishing particles 26. A large number of abrasive particles 26 are held in the continuous vent hole 30. The base material resin 32 and the abrasive particles 26 are fixed to each other with a necessary and sufficient bonding force. The polishing pad 14 of the present embodiment enables polishing by a CMP method by supplying a polishing liquid 20 that does not contain loose abrasive grains, without using a slurry containing, for example, colloidal silica.

図2に示すように、上記母材樹脂32はたとえば断面径の平均が0.05(μm)程度の繊維状を成しており、その繊維状の母材樹脂32の間隙にたとえば平均粒径が80nm程度の研磨粒子26がその一部において上記母材樹脂32に固着した状態で、あるいはその間隙において上記母材樹脂32から分離した状態で存在している。すなわち、繊維状の母材樹脂32の断面積の平均は、たとえば研磨粒子26の平均粒径の1/10〜1/3程度である。そのような繊維状の母材樹脂32相互の間隙を複数の連通気孔30と考えれば、上記研磨粒子26はその連通気孔30内に設けられたものであると言える。かかる連通気孔30の研磨粒子26に対する体積割合は、たとえば15〜60(%)程度である。   As shown in FIG. 2, the base resin 32 has a fiber shape with an average cross-sectional diameter of about 0.05 (μm), for example, and an average particle diameter is formed in the gap between the fibrous base resin 32. The abrasive particles 26 having a thickness of about 80 nm are present in a state where they are partly fixed to the base resin 32 or separated from the base resin 32 in the gaps. That is, the average cross-sectional area of the fibrous base material resin 32 is, for example, about 1/10 to 1/3 of the average particle diameter of the abrasive particles 26. Considering such a gap between the fibrous base material resins 32 as a plurality of continuous air holes 30, it can be said that the abrasive particles 26 are provided in the continuous air holes 30. The volume ratio of the continuous air holes 30 to the abrasive particles 26 is, for example, about 15 to 60 (%).

以上のように構成された研磨加工装置10における研磨加工に際しては、研磨定盤12およびそれに貼り付けられた研磨体パッド14と、ワーク保持部材18およびその下面に保持された被研磨体16とが、定盤駆動モータ13および図示しないワーク駆動モータによりそれぞれの軸心まわりに回転駆動された状態で、上記滴下ノズル22から、たとえば過マンガン酸カリウム水溶液などの酸化性の研磨液20が上記研磨パッド14の表面上に供給されつつ、ワーク保持部材18に保持された被研磨体16がその研磨パッド14の表面に押しつけられる。そうすることにより、上記被研磨体16の被研磨面すなわち上記研磨パッド14に接触する対向面が、上記研磨液20による化学的研磨作用と、上記研磨パッド14により自己供給された研磨粒子26による機械的研磨作用とによって平坦に研磨される。   When polishing is performed in the polishing apparatus 10 configured as described above, the polishing surface plate 12, the polishing pad 14 attached thereto, the work holding member 18 and the object 16 held on the lower surface thereof are provided. In addition, an oxidizing polishing liquid 20 such as a potassium permanganate aqueous solution is supplied from the dropping nozzle 22 to the polishing pad in a state where the platen driving motor 13 and a work driving motor (not shown) are driven to rotate around the respective axis centers. The object to be polished 16 held by the work holding member 18 is pressed against the surface of the polishing pad 14 while being supplied onto the surface of the polishing pad 14. By doing so, the surface to be polished of the object to be polished 16, that is, the surface facing the polishing pad 14, is caused by the chemical polishing action by the polishing liquid 20 and the abrasive particles 26 supplied by the polishing pad 14. It is polished flat by a mechanical polishing action.

[実験例1]
以下、本発明者等が行った実験例1を説明する。先ず、図1に示す研磨加工装置10と同様に構成された装置を用い、表1に示す研磨条件にて、表2に示す研磨パッドと研磨液との6種類の組合わせで研磨試験を行った。試験番号No.1乃至No.2に用いた研磨パッドIC-1000はニッタ・ハース社製の発泡ポリウレタンから成るパッドであり、試験番号No.3乃至No.6に用いた研磨パッドLHA パッドは、ポリフッ化ビニリデン(PVDF)樹脂と平均粒径250nmの球状シリカをDMF溶媒中で混合して鋳型に入れ、そのDMF溶媒を蒸発させて硬化させることにより、500×500×2mmのシート状に成形し、300mmφの円形に切り出したものである。表3には、各試験番号に用いられた研磨液の研磨液酸化還元電位Eh(水素電極基準電位)および水素イオン濃度pHと研磨結果である研磨レートPRおよび表面粗度Raが示されている。このLHA パッドには、研磨粒子として24.5容積%の球状シリカが含まれる。本実験例1において研磨液の微量噴霧とは、たとえば0.1〜200ml/min/m程度の量である。
[Experimental Example 1]
Hereinafter, Experimental Example 1 conducted by the present inventors will be described. First, a polishing test was performed using an apparatus configured similarly to the polishing apparatus 10 shown in FIG. 1 under the polishing conditions shown in Table 1 and six combinations of polishing pads and polishing liquids shown in Table 2. It was. The polishing pad IC-1000 used for test numbers No. 1 to No. 2 is a pad made of foamed polyurethane manufactured by Nitta Haas, and the polishing pad LHA pad used for test numbers No. 3 to No. 6 is Polyvinylidene fluoride (PVDF) resin and spherical silica with an average particle size of 250 nm are mixed in a DMF solvent and placed in a mold, and the DMF solvent is evaporated and cured to form a sheet of 500 × 500 × 2 mm. , Cut into a circle of 300 mmφ. Table 3 shows the polishing solution oxidation-reduction potential Eh (hydrogen electrode reference potential) and hydrogen ion concentration pH of the polishing solution used for each test number, the polishing rate PR and the surface roughness Ra as the polishing result. . This LHA pad contains 24.5 vol% spherical silica as abrasive particles. In this experimental example 1, the minute amount spraying of the polishing liquid is, for example, an amount of about 0.1 to 200 ml / min / m 2 .

[表1]
研磨加工装置 :ラップマスター LP-15型
研磨パッド :300 mmφ
研磨パッド回転数:1/sec
被研磨体 :SiC 単結晶板 6H(0001)
被研磨体の形状 :10mm×10mm×0.26 mm の板が3個
被研磨体回転数 :1/sec
研磨荷重(圧力):24.6 kPa
研磨液供給量 :IC-1000には 0.167cm/sec
LHA パッドには 0.0067cm/sec(dry mist)
研磨時間 :120 min
コンディショナー:SD#325(電着ダイヤモンドホイール)
[Table 1]
Polishing equipment: Lapping Master LP-15 type polishing pad: 300 mmφ
Polishing pad rotation speed: 1 / sec
Object to be polished: SiC single crystal plate 6H (0001)
Shape of object to be polished: 3 plates of 10 mm x 10 mm x 0.26 mm Number of objects to be polished: 1 / sec
Polishing load (pressure): 24.6 kPa
Polishing liquid supply amount: 0.167 cm 3 / sec for IC-1000
0.0067cm 3 / sec (dry mist) on the LHA pad
Polishing time: 120 min
Conditioner: SD # 325 (Electroplated diamond wheel)

[表2]
試験番号 研磨パッド 研磨液
No.1 IC-1000 スラリー(HO +シリカ12.5Wt%)
No.2 IC-1000 スラリー(HO +シリカ12.5Wt%+KMnO 0.1mol/cm)
No.3 LHA パッド 研磨液(HO)
No.4 LHA パッド 研磨液(HO + KMnO 0.1mol/cm)
No.5 LHA パッド 研磨液(HO) ドライミスト( 微量噴霧)
No.6 LHA パッド 研磨液(HO + KMnO 0.1mol/cm) ドライミスト
[Table 2]
Test number Polishing pad Polishing liquid
No.1 IC-1000 slurry (H 2 O + silica 12.5Wt%)
No.2 IC-1000 slurry (H 2 O + silica 12.5 Wt% + KMnO 4 0.1 mol / cm 3 )
No.3 LHA pad polishing liquid (H 2 O)
No.4 LHA pad polishing liquid (H 2 O + KMnO 4 0.1 mol / cm 3 )
No.5 LHA pad Polishing liquid (H 2 O) Dry mist (trace spray)
No.6 LHA pad Polishing liquid (H 2 O + KMnO 4 0.1 mol / cm 3 ) Dry mist

[表3]
試験番号 酸化還元電位Eh 水素イオン濃度pH 研磨レート 表面粗度Ra
No.1 560 mV 4.49 117 nm/h 1.43 nm
No.2 1016 mV 5.38 250 nm/h 0.54 nm
No.3 565 mV 4.99 67 nm/h 0.61 nm
No.4 1012 mV 5.69 133 nm/h 0.50 nm
No.5 565 mV 4.99 216 nm/h 0.63 nm
No.6 1012mV 5.69 366 nm/h 0.32 nm
[Table 3]
Test number Redox potential Eh Hydrogen ion concentration pH Polishing rate Surface roughness Ra
No.1 560 mV 4.49 117 nm / h 1.43 nm
No.2 1016 mV 5.38 250 nm / h 0.54 nm
No.3 565 mV 4.99 67 nm / h 0.61 nm
No.4 1012 mV 5.69 133 nm / h 0.50 nm
No.5 565 mV 4.99 216 nm / h 0.63 nm
No.6 1012mV 5.69 366 nm / h 0.32 nm

上記研磨試験の結果、上記試験番号 No.1 乃至 No.6 の研磨レートPR(nm/h)を図3に、表面粗さRa(nm)を図4に示す。各研磨レートを比較すると、研磨粒子(シリカ)と水の組み合わせである研磨液を用いた試験番号 No.1 、No.3、No.5よりも、研磨粒子(シリカ)と過マンガン酸カリウムKMnOの組み合わせである研磨液を用いた試験番号 No.2 、No.4、No.6の方が研磨レートが高い。また、図5に示すように、酸化還元電位Eh(mV)と研磨レートPRとの関係を見ても、酸化還元電位Ehが高い No.2 、No.4、No.6の方が研磨レートPRが高い。研磨液中の過マンガン酸カリウムKMnOがSiCに対して酸化作用を起こし、表面にできたSiO若しくはSiを研磨粒子が除去しているものと考えられる。LHAパッドに対して試験番号 No.1 、No.2の遊離砥粒研磨の場合と同量の研磨液を供給したNo.3、No.4では、遊離砥粒研磨よりも研磨レートPRが低いが、ドライミストにより微量供給したNo.5、No.6では、遊離砥粒研磨よりも研磨レートPRが高い。このことは、No.3、No.4ではLHAパッドにとっては供給量が多すぎてSiCがLHAパッドから浮き、実質的に作用する研磨粒子数が少なくなったことが原因と考えられる。さらに、粗さを比較すると、研磨粒子(シリカ)と水の組み合わせである研磨液を用いた試験番号 No.1 、No.3、No.5よりも、研磨粒子(シリカ)と過マンガン酸カリウムKMnOの組み合わせである研磨液を用いた試験番号 No.2 、No.4、No.6の方が、被研磨体であるSiC単結晶板の表面に条痕がほとんど認められず、化学作用を伴った研磨面のように見受けられた。このことからも、研磨液に含まれる過マンガン酸カリウムKMnOの化学的作用の存在が考えられる。 As a result of the polishing test, the polishing rates PR (nm / h) of the test numbers No. 1 to No. 6 are shown in FIG. 3, and the surface roughness Ra (nm) is shown in FIG. Comparing each polishing rate, polishing particles (silica) and potassium permanganate KMnO are more than test numbers No.1, No.3, and No.5 using a polishing liquid that is a combination of abrasive particles (silica) and water. 4 which is a combination polishing solution test No. No.2 using, No.4, high polishing rate towards the No.6. In addition, as shown in FIG. 5, even when looking at the relationship between the oxidation-reduction potential Eh (mV) and the polishing rate PR, No. 2, No. 4, and No. 6 with the higher oxidation-reduction potential Eh have higher polishing rates. PR is high. It is considered that the potassium permanganate KMnO 4 in the polishing liquid caused an oxidizing action on SiC, and the SiO 2 or Si formed on the surface was removed by the abrasive particles. In No. 3 and No. 4 where the same amount of polishing liquid was supplied to the LHA pad as in the case of free abrasive polishing of test numbers No. 1 and No. 2, the polishing rate PR was lower than that of free abrasive polishing. However, in No. 5 and No. 6 supplied in a small amount by dry mist, the polishing rate PR is higher than that of free abrasive polishing. This is considered to be because in No. 3 and No. 4, the supply amount was too large for the LHA pad, and SiC floated from the LHA pad, and the number of abrasive particles that acted substantially decreased. Furthermore, when comparing the roughness, the abrasive particles (silica) and potassium permanganate were compared to the test numbers No.1, No.3 and No.5 using the polishing liquid which is a combination of abrasive particles (silica) and water. KMnO which is a combination polishing solution test No. No.2 using the 4, No.4, found the following No.6, was scarcely observed streaks on the surface of the SiC single crystal plate is polished body, chemistry It looked like a polished surface with a. This also suggests the existence of chemical action of potassium permanganate KMnO 4 contained in the polishing liquid.

[実験例2]
以下、本発明者等が行った実験例2を説明する。先ず、図1に示す研磨加工装置10と同様に構成された装置を用い、表1に示す研磨条件にて、表4に示す研磨パッドと研磨液との6種類の組合わせで研磨試験を行った。試験番号No.1乃至No.9に用いた研磨パッドIC-1000はニッタ・ハース社製の発泡ポリウレタンから成るパッドであり、試験番号No.10 乃至No.18 に用いた LHAパッドは、研磨粒子26としての平均粒径80nm程度のヒュームドシリカとポリエーテルサルホン(poly-ether slphone :PES )樹脂とをDMF溶媒中で混合して所定の成形型内に鋳込み且つそのDMF溶媒を蒸発させて硬化させることにより、寸法が500×500×2mmのシートを成形し、それを300mmφの円形に切り出したものである。このLHAパッドには、研磨粒子として24.5容積%の球状シリカが含まれる。本実験例2において研磨液の微量滴下とは、たとえば0.1〜200ml/min/m程度の量である。
[Experiment 2]
Hereinafter, Experimental Example 2 conducted by the present inventors will be described. First, a polishing test was performed using six types of combinations of the polishing pad and the polishing liquid shown in Table 4 under the polishing conditions shown in Table 1, using an apparatus configured similarly to the polishing apparatus 10 shown in FIG. It was. The polishing pad IC-1000 used for test numbers No. 1 to No. 9 is a pad made of foamed polyurethane manufactured by Nitta Haas, and the LHA pad used for test numbers No. 10 to No. 18 is abrasive particles. 26, fumed silica having an average particle size of about 80 nm and polyether-sulfone (PES) resin are mixed in a DMF solvent, cast into a predetermined mold, and the DMF solvent is evaporated. By curing, a sheet having a size of 500 × 500 × 2 mm is formed and cut into a circle of 300 mmφ. This LHA pad contains 24.5 vol% spherical silica as abrasive particles. In this experimental example 2, the minute amount of the polishing liquid is, for example, about 0.1 to 200 ml / min / m 2 .

[表4]
試験番号 研磨パッド 研磨液
No.1 IC-1000 スラリ( シリカ12.5Wt% + KSO 0.1mol/l 溶液
+ HCl 溶液 0.1mol/l)
No.2 IC-1000 スラリ( シリカ12.5Wt% + KSO 0.1mol/l 溶液)
No.3 IC-1000 スラリ( シリカ12.5Wt% + KSO 0.1mol/l 溶液
+ KOH 0.1mol/l溶液)
No.4 IC-1000 スラリ( シリカ12.5Wt% + HCl 0.1mol/l溶液)
No.5 IC-1000 スラリ( シリカ12.5Wt% + HO)
No.6 IC-1000 スラリ( シリカ12.5Wt% + KOH 溶液 0.1mol/l)
No.7 IC-1000 スラリ( シリカ12.5Wt% + KMnO 溶液 0.1mol/l
+ HCl 溶液 0.1mol/l)
No.8 IC-1000 スラリ( シリカ12.5Wt% + KMnO 溶液 0.1mol/l)
No.9 IC-1000 スラリ( シリカ12.5Wt% + KMnO 0.1mol/l溶液
+ KOH 0.1mol/l溶液)
No.10 LHA パッド KSO 0.1mol/l + HCl 0.1mol/l溶液を微量滴下
No.11 LHA パッド KSO 0.1mol/l 溶液を微量滴下
No.12 LHA パッド KSO 0.1mol/l + KOH 0.1mol/l溶液を微量滴下
No.13 LHA パッド HCl 0.1mol/l溶液を微量滴下
No.14 LHA パッド HO を微量滴下
No.15 LHA パッド KOH 0.1mol/l溶液を微量滴下
No.16 LHA パッド KMnO 0.1mol/l + HCl 0.1mol/l 溶液を微量滴下
No.17 LHA パッド KMnO 0.1mol/l溶液を微量滴下
No.18 LHA パッド KMnO 0.1mol/l + KOH 0.1mol/l 溶液を微量滴下
[Table 4]
Test number Polishing pad Polishing liquid
No.1 IC-1000 slurry (silica 12.5Wt% + K 2 S 2 O 3 0.1mol / l solution
+ HCl solution 0.1mol / l)
No.2 IC-1000 slurry (silica 12.5Wt% + K 2 S 2 O 3 0.1mol / l solution)
No.3 IC-1000 slurry (silica 12.5Wt% + K 2 S 2 O 3 0.1mol / l solution
+ KOH 0.1mol / l solution)
No.4 IC-1000 slurry (silica 12.5Wt% + HCl 0.1mol / l solution)
No.5 IC-1000 slurry (silica 12.5Wt% + H 2 O)
No.6 IC-1000 slurry (silica 12.5Wt% + KOH solution 0.1mol / l)
No.7 IC-1000 Slurry (Silica 12.5Wt% + KMnO 4 solution 0.1mol / l
+ HCl solution 0.1mol / l)
No.8 IC-1000 slurry (silica 12.5Wt% + KMnO 4 solution 0.1mol / l)
No.9 IC-1000 Slurry (Silica 12.5Wt% + KMnO 4 0.1mol / l solution
+ KOH 0.1mol / l solution)
No.10 LHA pad K 2 S 2 O 3 0.1mol / l + HCl 0.1mol / l
No.11 LHA pad K 2 S 2 O 3 0.1mol / l solution drop
No.12 LHA pad K 2 S 2 O 3 0.1mol / l + KOH 0.1mol / l
No.13 LHA pad HCl 0.1mol / l in small amount
No.14 A small amount of LHA pad H 2 O was dropped.
No.15 LHA pad KOH 0.1mol / l solution is dripped
No.16 LHA pad KMnO 4 0.1mol / l + HCl 0.1mol / l solution in small amount
No.17 LHA pad KMnO 4 0.1mol / l solution is added in a small amount
No.18 LHA pad KMnO 4 0.1mol / l + KOH 0.1mol / l solution in small amount

上記実験例2の各試験番号No.1乃至No.18 の研磨液の酸化還元電位Eh(mV)の値は、還元剤として機能するチオ硫酸カリウムKと酸化剤として機能する過酸化マンガンカリウムKMnOとを用いて表4に示すように調整されている。また、上記実験例2の各試験番号No.1乃至No.18 の研磨液の水素イオン濃度pHの値は、塩酸HClと水酸化カリウムKOHとを用いて表5に示すように調整され、さらに、各試験において測定された研磨レートPRおよび表面粗度Raが表5に示されている。図6は、上記各試験番号No.1乃至No.18 の酸化還元電位Ehと水素イオン濃度pHの関係を示している。 The values of the oxidation-reduction potential Eh (mV) of the polishing liquids of test numbers No. 1 to No. 18 in Experimental Example 2 function as potassium thiosulfate K 2 S 2 O 3 that functions as a reducing agent and as an oxidizing agent. It is adjusted as shown in Table 4 by using a peroxide potassium manganese KMnO 4. Further, the hydrogen ion concentration pH values of the polishing liquids of test numbers No. 1 to No. 18 in Experimental Example 2 were adjusted as shown in Table 5 using hydrochloric acid HCl and potassium hydroxide KOH, and Table 5 shows the polishing rate PR and the surface roughness Ra measured in each test. FIG. 6 shows the relationship between the oxidation-reduction potential Eh and the hydrogen ion concentration pH in each of the test numbers No. 1 to No. 18.

[表5]
試験番号 酸化還元電位Eh 水素イオン濃度pH 研磨レート 表面粗度Ra
No.1 148 mV 2.0 28 nm/h 0.71 nm
No.2 266 mV 5.2 183 nm/h 0.62 nm
No.3 137 mV 12.4 35 nm/h 0.53 nm
No.4 755 mV 1.4 232 nm/h 0.53 nm
No.5 560 mV 4.5 117 nm/h 1.43 nm
No.6 241 mV 11.5 167 nm/h 1.57 nm
No.7 1359 mV 1.3 308 nm/h 0.24 nm
No.8 1016 mV 5.4 250 nm/h 0.53 nm
No.9 683 mV 11.5 162 nm/h 0.24 nm
No.10 137 mV 1.5 34 nm/h 0.44 nm
No.11 361 mV 6.2 67 nm/h 0.48 nm
No.12 40 mV 13.0 50 nm/h 1.07 nm
No.13 648 mV 1.3 150 nm/h 1.06 nm
No.14 565 mV 5.0 217 nm/h 0.63 nm
No.15 166 mV 12.8 200 nm/h 1.35 nm
No.16 1382 mV 1.2 400 nm/h 0.59 nm
No.17 1012 mV 5.7 450 nm/h 0.35 nm
No.18 735 mV 13.3 100 nm/h 0.83 nm
[Table 5]
Test number Redox potential Eh Hydrogen ion concentration pH Polishing rate Surface roughness Ra
No.1 148 mV 2.0 28 nm / h 0.71 nm
No.2 266 mV 5.2 183 nm / h 0.62 nm
No.3 137 mV 12.4 35 nm / h 0.53 nm
No.4 755 mV 1.4 232 nm / h 0.53 nm
No.5 560 mV 4.5 117 nm / h 1.43 nm
No.6 241 mV 11.5 167 nm / h 1.57 nm
No.7 1359 mV 1.3 308 nm / h 0.24 nm
No.8 1016 mV 5.4 250 nm / h 0.53 nm
No.9 683 mV 11.5 162 nm / h 0.24 nm
No.10 137 mV 1.5 34 nm / h 0.44 nm
No.11 361 mV 6.2 67 nm / h 0.48 nm
No.12 40 mV 13.0 50 nm / h 1.07 nm
No.13 648 mV 1.3 150 nm / h 1.06 nm
No.14 565 mV 5.0 217 nm / h 0.63 nm
No.15 166 mV 12.8 200 nm / h 1.35 nm
No.16 1382 mV 1.2 400 nm / h 0.59 nm
No.17 1012 mV 5.7 450 nm / h 0.35 nm
No.18 735 mV 13.3 100 nm / h 0.83 nm

酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す研磨レートPRを加えた三次元座標の図7と、酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す表面粗度Raを加えた三次元座標の図8に、遊離砥粒(シリカ)で研磨を行った試験番号 No.1 乃至 No.9 の値がそれぞれ示されている。また、LHAパッドで研磨を行った試験番号 No.10乃至 No.18の研磨レートPRおよび表面粗度Ra値が同様の三次元表示を行う図9および図10にそれぞれ示されている。   FIG. 7 shows three-dimensional coordinates obtained by adding a polishing rate PR indicated by contour lines to the two-dimensional coordinates of redox potential Eh and hydrogen ion concentration pH, and surface roughness indicated by contour lines on two-dimensional coordinates of redox potential Eh and hydrogen ion concentration pH. FIG. 8 showing three-dimensional coordinates to which the degree Ra is added shows the values of test numbers No. 1 to No. 9 obtained by polishing with loose abrasive grains (silica). Further, the polishing rate PR and the surface roughness Ra value of test numbers No. 10 to No. 18 polished with the LHA pad are shown in FIGS. 9 and 10, respectively, in which the same three-dimensional display is performed.

実験番号 No.8 およびNo.17 には共に酸化剤が含まれているが、実験番号 No.8 のIC-1000による研磨の研磨レート( 除去率) PRよりも、実験番号No.17 によるLHA パッドによる研磨の研磨レートPRが高い値を示している。実験番号No.17 によるLHA パッドによる研磨の研磨レートPRは実験番号 No.8 のIC-1000による研磨よりも1.8倍ほど高い値を示している。実験番号 No.6 のスラリーは市販の公知のシリコンウエハ用のスラリーと同様の酸化還元電位Ehおよび水素イオン濃度pHを有している。実験番号No.17 によるLHA パッドによる研磨の研磨レートPRは、実験番号 No.6 の研磨レートPRよりも2.7倍ほど高い値を示している。このことは、酸化剤の添加によって酸化性とされた研磨液によれば、研磨レートPRが大幅に改善されることが示されているとともに、LHA パッドを用いることによっても、研磨レートPRが大幅に改善されることが示されている。図7乃至図10において、破線が酸化性領域と還元性領域との境界を示している。図7および図9おいて、酸化還元電位Ehが高くなるほど高く、水素イオン濃度pHおよび酸化還元電位Ehが低くなるほど低くなることが示されている。これにより、シリカによるSiC単結晶の研磨において酸化還元電位Ehが大きな影響を与えるので、酸化反応が発生していると考えられる。   Both experiment numbers No. 8 and No. 17 contain an oxidizer, but the polishing rate (removal rate) of polishing with IC-1000 of experiment number No. 8 is higher than the LHA according to experiment number No. 17. The polishing rate PR of polishing with the pad shows a high value. The polishing rate PR of polishing with the LHA pad according to Experiment No. 17 is 1.8 times higher than that with the IC-1000 of Experiment No. 8. The slurry of Experiment No. 6 has the same oxidation-reduction potential Eh and hydrogen ion concentration pH as those of a commercially available known slurry for silicon wafers. The polishing rate PR for polishing with the LHA pad according to the experiment number No. 17 is about 2.7 times higher than the polishing rate PR of the experiment number No. 6. This indicates that the polishing rate PR is greatly improved by the polishing liquid made oxidizing by the addition of an oxidizing agent, and the polishing rate PR is also greatly increased by using an LHA pad. Has been shown to be improved. 7 to 10, the broken line indicates the boundary between the oxidizing region and the reducing region. 7 and 9, it is shown that the higher the redox potential Eh, the higher the hydrogen ion concentration pH and the lower the redox potential Eh. As a result, the oxidation-reduction potential Eh has a great influence on the polishing of the SiC single crystal with silica, and it is considered that an oxidation reaction has occurred.

表面粗さRaについて、実験番号 No.8 のIC-1000による研磨の表面粗さRaは良好な低い値を示し、実験番号No.17 によるLHA パッドによる研磨の表面粗さRaも良好な低い値を示している。これら実験番号 No.8 およびNo.17 は共に研磨レートPRが高い。他方、実験番号 No.6 および No.15の LHAパッドによる研磨の表面粗さRaも大きい。これらの研磨液は強アルカリ領域であって、如何なる酸化作用や摩耗作用はない。図8および図10において、酸性領域において表面粗さRaが改善されるが、非酸化領域、強アルカリ領域において、表面粗さRaが大きくなると考えられる。これらのデータから、炭素原子Cは酸化されることにより炭酸ガスCOとなり、SiC単結晶から容易に離脱できるものと考えられる。シリカによるSiC単結晶の研磨が酸化反応を促進するとすると、SiC単結晶の研磨レートPRが大幅に改善される。また、遊離砥粒による研磨に比較して、LHA パッドによる研磨においてLHA パッドにより研磨粒子の動きが保持されるので、LHA パッドの機械的な力が強く働くと考えられる。さらに、酸化作用の影響により、LHA パッドによる除去率が改善される。 Regarding the surface roughness Ra, the surface roughness Ra of the polishing with the IC-1000 of the experiment number No. 8 shows a good low value, and the surface roughness Ra of the polishing with the LHA pad according to the experiment number No. 17 is also a good low value Is shown. These experiment numbers No. 8 and No. 17 both have a high polishing rate PR. On the other hand, the surface roughness Ra of the polishing with the LHA pads of Experiment No. 6 and No. 15 is also large. These polishing liquids are strongly alkaline regions and do not have any oxidizing action or wear action. 8 and 10, the surface roughness Ra is improved in the acidic region, but it is considered that the surface roughness Ra is increased in the non-oxidized region and the strong alkali region. From these data, it is considered that the carbon atom C is oxidized to become carbon dioxide CO 2 and can be easily detached from the SiC single crystal. If the polishing of the SiC single crystal with silica promotes the oxidation reaction, the polishing rate PR of the SiC single crystal is greatly improved. Also, compared to polishing with loose abrasive grains, the movement of the abrasive particles is retained by the LHA pad in the polishing by the LHA pad, so it is considered that the mechanical force of the LHA pad works strongly. Furthermore, the removal rate by the LHA pad is improved due to the effect of oxidation.

[実験例3]
以下、本発明者等が行った実験例3を説明する。先ず、図1に示す研磨加工装置10と同様に構成された装置を用い、表1に示す研磨条件にて、表6に示す研磨パッドと研磨液との5種類の組合わせで研磨試験を行った。試験番号No.1乃至No.5に用いた LHAパッドは、研磨粒子26としての平均粒径80nm程度のヒュームドシリカと、ポリフッ化ビニル、フッ化ビニル・ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン、フッ化ビニリデン・ヘキサフルオロプロピレン共重合体等のフッ素系樹脂とをDMF溶媒中で混合して所定の成形型内に鋳込み且つそのDMF溶媒を蒸発させて硬化させることにより、寸法が500×500×2mmのシートを成形し、それを300mmφの円形に切り出したものである。表7には、各試験番号に用いられた研磨液の研磨液酸化還元電位Ehおよび水素イオン濃度pHと研磨結果である研磨レートPRおよび表面粗度Raが示されている。このLHAパッドには、研磨粒子として24.5容積%の球状シリカが含まれる。本実験例3において研磨液の微量滴下とは、たとえば0.1〜200ml/min/m程度の量である。
[Experiment 3]
Hereinafter, Experimental Example 3 performed by the present inventors will be described. First, a polishing test was performed using five types of combinations of the polishing pad and the polishing liquid shown in Table 6 under the polishing conditions shown in Table 1, using an apparatus configured similarly to the polishing apparatus 10 shown in FIG. It was. The LHA pads used in test numbers No. 1 to No. 5 are fumed silica having an average particle size of about 80 nm as abrasive particles 26, polyvinyl fluoride, vinyl fluoride / hexafluoropropylene copolymer, and polyvinylidene fluoride. , By mixing a fluororesin such as vinylidene fluoride / hexafluoropropylene copolymer in a DMF solvent, casting into a predetermined mold, and evaporating the DMF solvent to cure, the dimensions are 500 × 500 A sheet of × 2 mm is formed and cut into a 300 mmφ circle. Table 7 shows the polishing solution oxidation-reduction potential Eh and hydrogen ion concentration pH of the polishing solution used for each test number, the polishing rate PR and the surface roughness Ra, which are polishing results. This LHA pad contains 24.5 vol% spherical silica as abrasive particles. In this experimental example 3, the minute amount of the polishing liquid is, for example, about 0.1 to 200 ml / min / m 2 .

[表6]
試験番号 研磨パッド 研磨液
No.1 LHA パッド HCl 0.1mol/l溶液を微量滴下
No.2 LHA パッド KSO 0.1mol/l 溶液を微量滴下
No.3 LHA パッド HO を微量滴下
No.4 LHA パッド KMnO 0.1mol/l溶液を微量滴下
No.5 LHA パッド KOH 1mol/l溶液を微量滴下
[Table 6]
Test number Polishing pad Polishing liquid
No.1 LHA pad HCl 0.1mol / l in small amount
No.2 LHA pad K 2 S 2 O 3 0.1mol / l solution is added in a small amount
No.3 A small amount of LHA pad H 2 O was dropped.
No.4 LHA pad KMnO 4 0.1mol / l solution is dripped in a small amount
No.5 LHA pad KOH 1mol / l solution is dripped in a small amount

[表7]
試験番号 酸化還元電位Eh 水素イオン濃度pH 研磨レート 表面粗度Ra
No.1 648 mV 1.32 317 nm/h 1.06 nm
No.2 361 mV 6.20 233 nm/h 1.16 nm
No.3 565 mV 4.99 217 nm/h 0.63 nm
No.4 1012 mV 5.69 367 nm/h 0.33 nm
No.5 166 mV 12.81 300 nm/h 2.35 nm
[Table 7]
Test number Redox potential Eh Hydrogen ion concentration pH Polishing rate Surface roughness Ra
No.1 648 mV 1.32 317 nm / h 1.06 nm
No.2 361 mV 6.20 233 nm / h 1.16 nm
No.3 565 mV 4.99 217 nm / h 0.63 nm
No.4 1012 mV 5.69 367 nm / h 0.33 nm
No.5 166 mV 12.81 300 nm / h 2.35 nm

酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す研磨レートPRを加えた三次元座標の図11と、酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す表面粗度Raを加えた三次元座標の図12に、LHAパッドで研磨を行った試験番号 No.1 乃至 No.5 の値がそれぞれ示されている。   FIG. 11 shows three-dimensional coordinates obtained by adding a polishing rate PR indicated by contour lines to the two-dimensional coordinates of redox potential Eh and hydrogen ion concentration pH, and surface roughness indicated by contour lines in two-dimensional coordinates of redox potential Eh and hydrogen ion concentration pH. FIG. 12 showing the three-dimensional coordinates to which the degree Ra is added shows the values of test numbers No. 1 to No. 5 polished with the LHA pad.

本実験例3においては、フッ素系樹脂を母材とするLHA パッドを用いることによっても、酸化剤の添加によって酸化性とされた研磨液によれば、酸化還元電位Ehが高くなるほど研磨レートPRが大幅に改善されることが示されているとともに、研磨液が酸性となるほど、表面粗さRaが改善されるが、非酸化領域、強アルカリ領域において、表面粗さRaが大きくなる。   In Experimental Example 3, the polishing rate PR increases as the oxidation-reduction potential Eh increases according to the polishing liquid rendered oxidizing by the addition of the oxidizing agent even by using an LHA pad having a fluororesin as a base material. It is shown that the surface roughness Ra is improved as the polishing liquid becomes more acidic, but the surface roughness Ra is increased in the non-oxidized region and the strong alkali region.

その他一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において、種々の変更が加えられて用いられるものである。   Although not exemplified one by one, the present invention is used with various modifications within the scope not departing from the gist thereof.

本発明の一適用例の研磨加工方法を実施する研磨加工装置の構成を概念的に示す斜視図である。It is a perspective view which shows notionally the structure of the grinding | polishing processing apparatus which implements the grinding | polishing processing method of one application example of this invention. 図1に示す研磨パッドの表面組織を走査型電子顕微鏡によって拡大した様子を説明する図である。It is a figure explaining a mode that the surface structure of the polishing pad shown in FIG. 1 was expanded with the scanning electron microscope. 実験例1において、6つの試験番号に示される研磨において得られた研磨レートPR(nm/h)の値をそれぞれ示すグラフである。In Experimental example 1, it is a graph which respectively shows the value of polishing rate PR (nm / h) obtained in the grinding | polishing shown by six test numbers. 実験例1において、6つの試験番号に示される研磨において得られた表面粗さRa(nm)の値をそれぞれ示すグラフである。In Experimental example 1, it is a graph which respectively shows the value of surface roughness Ra (nm) obtained in the grinding | polishing shown by six test numbers. 実験例1において、6つの試験番号に示される研磨においてそれぞれ得られた酸化還元電位Eh(mV)と研磨レートPRとの関係を示す図である。In Experimental example 1, it is a figure which shows the relationship between the oxidation reduction potential Eh (mV) each obtained in the grinding | polishing shown by six test numbers, and polishing rate PR. 実験例2において、各試験番号No.1乃至No.18 の研磨においてそれぞれ得られた酸化還元電位Ehと水素イオン濃度pHとの関係を示している。In Experimental Example 2, the relationship between the oxidation-reduction potential Eh and the hydrogen ion concentration pH obtained in the polishing of each test number No. 1 to No. 18 is shown. 酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す研磨レートPRを加えた三次元座標において、実験例2における各試験番号No.1乃至No.9の遊離砥粒スラリーを用いた研磨においてそれぞれ得られた研磨レートPRの大きさを等高線を用いて示す図である。In the three-dimensional coordinates obtained by adding the polishing rate PR indicated by the contour lines to the two-dimensional coordinates of the oxidation-reduction potential Eh and the hydrogen ion concentration pH, the free abrasive slurry of each test number No. 1 to No. 9 in Experimental Example 2 was used. It is a figure which shows the magnitude | size of polishing rate PR each obtained in grinding | polishing using a contour line. 酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す表面粗度Raを加えた三次元座標において、実験例2における各試験番号No.1乃至No.9の遊離砥粒スラリーを用いた研磨においてそれぞれ得られた表面粗さRaの大きさを等高線を用いて示す図である。In the three-dimensional coordinates obtained by adding the surface roughness Ra indicated by the contour lines to the two-dimensional coordinates of the oxidation-reduction potential Eh and the hydrogen ion concentration pH, the free abrasive slurry of each test number No. 1 to No. 9 in Experimental Example 2 is used. It is a figure which shows the magnitude | size of surface roughness Ra each obtained in the grinding | polishing which used it using a contour line. 酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す研磨レートPRを加えた三次元座標において、実験例2における各試験番号 No.10乃至 No.18のLHAパッドを用いた研磨においてそれぞれ得られた研磨レートPRの大きさを等高線を用いて示す図である。In the three-dimensional coordinates obtained by adding the polishing rate PR indicated by contour lines to the two-dimensional coordinates of the oxidation-reduction potential Eh and the hydrogen ion concentration pH, in polishing using the LHA pads of test numbers No. 10 to No. 18 in Experimental Example 2. It is a figure which shows the magnitude | size of each obtained polishing rate PR using a contour line. 酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す表面粗度Raを加えた三次元座標において、実験例2における各試験番号 No.10乃至 No.18のLHAパッドを用いた研磨においてそれぞれ得られた表面粗さRaの大きさを等高線を用いて示す図である。Polishing using LHA pads of test numbers No. 10 to No. 18 in Experimental Example 2 in three-dimensional coordinates obtained by adding surface roughness Ra indicated by contour lines to two-dimensional coordinates of oxidation-reduction potential Eh and hydrogen ion concentration pH It is a figure which shows the magnitude | size of surface roughness Ra obtained in each using a contour line. 酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す研磨レートPRを加えた三次元座標において、実験例3における各試験番号 No.1 乃至 No.5 のLHAパッドを用いた研磨においてそれぞれ得られた研磨レートPRの大きさを等高線を用いて示す図である。In the three-dimensional coordinates obtained by adding the polishing rate PR indicated by contour lines to the two-dimensional coordinates of the oxidation-reduction potential Eh and the hydrogen ion concentration pH, in polishing using the LHA pads of test numbers No. 1 to No. 5 in Experimental Example 3. It is a figure which shows the magnitude | size of each obtained polishing rate PR using a contour line. 酸化還元電位Ehおよび水素イオン濃度pHの二次元座標に等高線で示す表面粗度Raを加えた三次元座標において、実験例3における各試験番号 No.1 乃至 No.5 のLHAパッドを用いた研磨においてそれぞれ得られた表面粗さRaの大きさを等高線を用いて示す図である。Polishing using LHA pads of test numbers No. 1 to No. 5 in Experimental Example 3 in three-dimensional coordinates obtained by adding surface roughness Ra indicated by contour lines to two-dimensional coordinates of oxidation-reduction potential Eh and hydrogen ion concentration pH It is a figure which shows the magnitude | size of surface roughness Ra obtained in each using a contour line.

符号の説明Explanation of symbols

10:研磨加工装置
12:研磨定盤
14:研磨パッド(砥粒内包研磨パッド)
16:被研磨体(結晶材料)
20:研磨液
26:研磨粒子
30:連通気孔
32:母材樹脂
10: Polishing processing device 12: Polishing surface plate 14: Polishing pad (polishing pad with abrasive grains)
16: Object to be polished (crystal material)
20: Polishing liquid 26: Polishing particle 30: Continuous vent 32: Base material resin

Claims (9)

研磨液の存在下において砥粒内包研磨パッドを用いて結晶材料の表面を平滑に研磨するためのCMP法による研磨加工方法であって、
前記研磨液は、酸化性の研磨液であることを特徴とする研磨加工方法。
A polishing method by a CMP method for smoothly polishing the surface of a crystal material using an abrasive-encapsulated polishing pad in the presence of a polishing liquid,
The polishing method, wherein the polishing liquid is an oxidizing polishing liquid.
前記酸化性の研磨液は、過マンガン酸カリウムまたはチオ硫酸カリウムを酸化還元電位調整剤として添加されたものである請求項1の研磨加工方法。 2. The polishing method according to claim 1, wherein the oxidizing polishing liquid is added with potassium permanganate or potassium thiosulfate as a redox potential regulator. 前記研磨液は、酸性の研磨液である請求項1または2の研磨加工方法。 The polishing method according to claim 1 or 2, wherein the polishing liquid is an acidic polishing liquid. 前記酸性の研磨液は、pH調整剤が添加されたことによってpHが7未満とされたものである請求項3の研磨加工方法。 The polishing method according to claim 3, wherein the acidic polishing liquid has a pH of less than 7 by adding a pH adjuster. 前記砥粒内包研磨パッドは、連通気孔が形成された母材樹脂と該連通気孔内に設けられた研磨粒子とを備えたものである請求項1乃至4のいずれかの研磨加工方法。 The polishing method according to any one of claims 1 to 4, wherein the abrasive-encapsulated polishing pad includes a base resin in which continuous air holes are formed and abrasive particles provided in the continuous air holes. 前記砥粒内包研磨パッドの母剤樹脂は、ポリエーテルサルホン(PES)樹脂から構成されたものである請求項5の研磨加工方法。 6. The polishing method according to claim 5, wherein the base resin of the abrasive-encapsulated polishing pad is composed of a polyethersulfone (PES) resin. 前記研磨粒子は、シリカ、セリア、アルミナ、ジルコニア、チタニア、マンガン酸化物、炭酸バリウム、酸化クロム、および酸化鉄の内、少なくとも1つを含むものである請求項5の研磨加工方法。 The polishing method according to claim 5, wherein the abrasive particles contain at least one of silica, ceria, alumina, zirconia, titania, manganese oxide, barium carbonate, chromium oxide, and iron oxide. 前記研磨液量は、研磨定盤の面積当たり0.1〜200ml/min/mである請求項1乃至5のいずれかの研磨加工方法。 The polishing method according to claim 1, wherein the amount of the polishing liquid is 0.1 to 200 ml / min / m 2 per area of the polishing platen. 前記結晶材料は、SiCまたはGaNの単結晶である請求項1乃至8のいずれかの研磨加工方法。 The polishing method according to claim 1, wherein the crystal material is a single crystal of SiC or GaN.
JP2006251918A 2006-09-15 2006-09-15 Polishing method of crystal material Active JP5336699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251918A JP5336699B2 (en) 2006-09-15 2006-09-15 Polishing method of crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251918A JP5336699B2 (en) 2006-09-15 2006-09-15 Polishing method of crystal material

Publications (2)

Publication Number Publication Date
JP2008068390A true JP2008068390A (en) 2008-03-27
JP5336699B2 JP5336699B2 (en) 2013-11-06

Family

ID=39290428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251918A Active JP5336699B2 (en) 2006-09-15 2006-09-15 Polishing method of crystal material

Country Status (1)

Country Link
JP (1) JP5336699B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182782A (en) * 2009-02-04 2010-08-19 Hitachi Metals Ltd Silicon carbide single crystal substrate and method for manufacturing the same
WO2010120784A1 (en) * 2009-04-13 2010-10-21 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
EP2365042A3 (en) * 2010-03-10 2011-12-28 Fujimi Incorporated Polishing composition and polishing method using the same
WO2012135342A1 (en) * 2011-03-28 2012-10-04 Sinmat, Inc. Chemical mechanical polishing of group iii-nitride surfaces
WO2012147605A1 (en) * 2011-04-26 2012-11-01 旭硝子株式会社 Method for polishing non-oxide single crystal substrate
WO2012165376A1 (en) * 2011-06-03 2012-12-06 旭硝子株式会社 Polishing agent and polishing method
JP2012248569A (en) * 2011-05-25 2012-12-13 Asahi Glass Co Ltd Polishing agent and polishing method
JP2012253259A (en) * 2011-06-06 2012-12-20 Disco Abrasive Syst Ltd Polishing method and acidic polishing solution
WO2013035539A1 (en) * 2011-09-05 2013-03-14 旭硝子株式会社 Polishing agent and polishing method
WO2013051555A1 (en) * 2011-10-07 2013-04-11 旭硝子株式会社 Single-crystal silicon-carbide substrate and polishing solution
WO2013054883A1 (en) * 2011-10-13 2013-04-18 三井金属鉱業株式会社 Polishing slurry, and polishing method
CN103659468A (en) * 2013-12-09 2014-03-26 天津中环领先材料技术有限公司 Waxed polishing method for reducing chemical burns of single crystal silicon polished wafer
WO2015152021A1 (en) * 2014-03-31 2015-10-08 株式会社ノリタケカンパニーリミテド Method for polishing gan single crystal material
CN105108590A (en) * 2015-07-23 2015-12-02 廖张洁 Polishing method of UV-cured 3D printing product
CN105150031A (en) * 2015-06-18 2015-12-16 江苏苏创光学器材有限公司 Production method for sapphire frameless touch screen panel
WO2016072370A1 (en) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
DE102015221392A1 (en) 2014-11-06 2016-05-12 Disco Corporation METHOD OF POLISHING A SiC SUBSTRATE
DE102015221391A1 (en) 2014-11-06 2016-05-12 Disco Corporation POLISHING LIQUID AND METHOD FOR POLISHING A SiC SUBSTRATE
WO2016072371A1 (en) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド Polishing composition
WO2016084561A1 (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
JP2017047508A (en) * 2015-09-02 2017-03-09 富士ゼロックス株式会社 Polishing member, fixing device, and image formation device
CN106926139A (en) * 2017-03-23 2017-07-07 大连理工大学 KDP crystal water dissolving micro-nano processing system and processing method
WO2018012468A1 (en) * 2016-07-12 2018-01-18 株式会社ノリタケカンパニーリミテド Polishing body and manufacturing method therefor
DE102019204555A1 (en) 2018-04-05 2019-10-10 Disco Corporation Method for polishing a SiC substrate
JP2021057368A (en) * 2019-09-26 2021-04-08 株式会社ノリタケカンパニーリミテド Polishing method for semiconductor wafer
JP2021061306A (en) * 2019-10-05 2021-04-15 株式会社ノリタケカンパニーリミテド POLISHING METHOD AND POLISHING LIQUID FOR InP SEMICONDUCTOR MATERIAL
JP2022044084A (en) * 2020-09-07 2022-03-17 株式会社ノリタケカンパニーリミテド Wafer polishing method and wafer polishing device
KR20220086255A (en) 2020-12-16 2022-06-23 동명대학교산학협력단 High-efficient hybrid polishing system using hydroxyl radical and dissolved oxygen
KR20220086258A (en) 2020-12-16 2022-06-23 동명대학교산학협력단 High-efficient hybrid polishing system using dispersion improvement of the abrasive grain
JP2022094550A (en) * 2020-12-15 2022-06-27 株式会社ノリタケカンパニーリミテド Cmp polishing device and cmp polishing management system
JP2022157069A (en) * 2021-03-31 2022-10-14 株式会社ノリタケカンパニーリミテド Polishing pad and wafer polishing method
JP2022157071A (en) * 2021-03-31 2022-10-14 株式会社ノリタケカンパニーリミテド Polishing pad and wafer polishing method
JP2023108208A (en) * 2022-01-25 2023-08-04 株式会社ノリタケカンパニーリミテド Polishing pad, polishing pad manufacturing method, and wafer polishing method
JP2023133815A (en) * 2022-03-14 2023-09-27 株式会社ノリタケカンパニーリミテド polishing body
JP2023150173A (en) * 2022-03-31 2023-10-16 株式会社ノリタケカンパニーリミテド polishing pad
WO2024195369A1 (en) * 2023-03-22 2024-09-26 ノリタケ株式会社 Polishing pad and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018724A (en) * 2000-07-03 2002-01-22 Tosoh Corp Polishing molded body and polishing surface plate using the same
JP2004025415A (en) * 2002-06-28 2004-01-29 Noritake Co Ltd Polishing body and its manufacturing method
JP2004034173A (en) * 2002-06-28 2004-02-05 Ebara Corp Fixed abrasive grain polishing tool
JP2005514778A (en) * 2001-12-21 2005-05-19 マイクロン テクノロジー,インコーポレイティド Method for planarizing a surface containing a Group VIII metal using a complexing agent
JP2006179647A (en) * 2004-12-22 2006-07-06 Renesas Technology Corp Manufacturing method of semiconductor device and manufacturing device for semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018724A (en) * 2000-07-03 2002-01-22 Tosoh Corp Polishing molded body and polishing surface plate using the same
JP2005514778A (en) * 2001-12-21 2005-05-19 マイクロン テクノロジー,インコーポレイティド Method for planarizing a surface containing a Group VIII metal using a complexing agent
JP2004025415A (en) * 2002-06-28 2004-01-29 Noritake Co Ltd Polishing body and its manufacturing method
JP2004034173A (en) * 2002-06-28 2004-02-05 Ebara Corp Fixed abrasive grain polishing tool
JP2006179647A (en) * 2004-12-22 2006-07-06 Renesas Technology Corp Manufacturing method of semiconductor device and manufacturing device for semiconductor

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182782A (en) * 2009-02-04 2010-08-19 Hitachi Metals Ltd Silicon carbide single crystal substrate and method for manufacturing the same
WO2010120784A1 (en) * 2009-04-13 2010-10-21 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
US9368367B2 (en) 2009-04-13 2016-06-14 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
TWI593790B (en) * 2010-03-10 2017-08-01 福吉米股份有限公司 Polishing composition and polishing method using the same
EP2365042A3 (en) * 2010-03-10 2011-12-28 Fujimi Incorporated Polishing composition and polishing method using the same
WO2012135342A1 (en) * 2011-03-28 2012-10-04 Sinmat, Inc. Chemical mechanical polishing of group iii-nitride surfaces
US8828874B2 (en) 2011-03-28 2014-09-09 Sinmat, Inc. Chemical mechanical polishing of group III-nitride surfaces
JP2014522098A (en) * 2011-03-28 2014-08-28 シンマット,インコーポレーテッド Chemical mechanical polishing method for III-nitride surface
KR101608932B1 (en) * 2011-03-28 2016-04-04 신메트, 잉크 Chemical Mechanical Polishing of Group III-Nitride Surfaces
US9129901B2 (en) 2011-04-26 2015-09-08 Asahi Glass Company, Limited Polishing method of non-oxide single-crystal substrate
CN103493183A (en) * 2011-04-26 2014-01-01 旭硝子株式会社 Method for polishing non-oxide single crystal substrate
US20140057438A1 (en) * 2011-04-26 2014-02-27 Asahi Glass Company, Limited Polishing method of non-oxide single-crystal substrate
WO2012147605A1 (en) * 2011-04-26 2012-11-01 旭硝子株式会社 Method for polishing non-oxide single crystal substrate
JP5614498B2 (en) * 2011-04-26 2014-10-29 旭硝子株式会社 Polishing method of non-oxide single crystal substrate
TWI475607B (en) * 2011-04-26 2015-03-01 Asahi Glass Co Ltd Preparation method of non - oxide single crystal substrate
JP2012248569A (en) * 2011-05-25 2012-12-13 Asahi Glass Co Ltd Polishing agent and polishing method
CN103503118A (en) * 2011-06-03 2014-01-08 旭硝子株式会社 Polishing agent and polishing method
US9085714B2 (en) 2011-06-03 2015-07-21 Asahi Glass Company, Limited Polishing agent and polishing method
WO2012165376A1 (en) * 2011-06-03 2012-12-06 旭硝子株式会社 Polishing agent and polishing method
JPWO2012165376A1 (en) * 2011-06-03 2015-02-23 旭硝子株式会社 Abrasive and polishing method
JP2012253259A (en) * 2011-06-06 2012-12-20 Disco Abrasive Syst Ltd Polishing method and acidic polishing solution
WO2013035539A1 (en) * 2011-09-05 2013-03-14 旭硝子株式会社 Polishing agent and polishing method
JPWO2013035539A1 (en) * 2011-09-05 2015-03-23 旭硝子株式会社 Abrasive and polishing method
JP2015057864A (en) * 2011-10-07 2015-03-26 旭硝子株式会社 Silicon carbide single crystal substrate
JPWO2013051555A1 (en) * 2011-10-07 2015-03-30 旭硝子株式会社 Polishing liquid
US20140220299A1 (en) * 2011-10-07 2014-08-07 Asahi Glass Company, Limited Single-crystal silicon-carbide substrate and polishing solution
CN104979184A (en) * 2011-10-07 2015-10-14 旭硝子株式会社 Single-crystal silicon-carbide substrate and polishing solution
US10138397B2 (en) 2011-10-07 2018-11-27 AGC Inc. Single-crystal silicon-carbide substrate and polishing solution
US10040972B2 (en) 2011-10-07 2018-08-07 Asahi Glass Company, Limited Single crystal silicon-carbide substrate and polishing solution
WO2013051555A1 (en) * 2011-10-07 2013-04-11 旭硝子株式会社 Single-crystal silicon-carbide substrate and polishing solution
JPWO2013054883A1 (en) * 2011-10-13 2015-03-30 三井金属鉱業株式会社 Abrasive slurry and polishing method
WO2013054883A1 (en) * 2011-10-13 2013-04-18 三井金属鉱業株式会社 Polishing slurry, and polishing method
US9318339B2 (en) 2011-10-13 2016-04-19 Mitsui Mining & Smelting, Ltd Polishing slurry and polishing method
CN103659468A (en) * 2013-12-09 2014-03-26 天津中环领先材料技术有限公司 Waxed polishing method for reducing chemical burns of single crystal silicon polished wafer
KR102230096B1 (en) 2014-03-31 2021-03-18 가부시키가이샤 노리타케 캄파니 리미티드 Method for polishing gan single crystal material
KR102230101B1 (en) 2014-03-31 2021-03-18 가부시키가이샤 노리타케 캄파니 리미티드 Method for polishing gan single crystal material
KR20210000328A (en) 2014-03-31 2021-01-04 가부시키가이샤 노리타케 캄파니 리미티드 Method for polishing gan single crystal material
TWI659093B (en) * 2014-03-31 2019-05-11 日商則武股份有限公司 Honing processing method of GaN single crystal material
US10272537B2 (en) 2014-03-31 2019-04-30 Noritake Co., Limited Method for polishing GaN single crystal material
WO2015152021A1 (en) * 2014-03-31 2015-10-08 株式会社ノリタケカンパニーリミテド Method for polishing gan single crystal material
JPWO2015152021A1 (en) * 2014-03-31 2017-04-13 株式会社ノリタケカンパニーリミテド Polishing method of GaN single crystal material
KR20160138099A (en) 2014-03-31 2016-12-02 가부시키가이샤 노리타케 캄파니 리미티드 Method for polishing gan single crystal material
US9761454B2 (en) 2014-11-06 2017-09-12 Disco Corporation Method of polishing SiC substrate
DE102015221392A1 (en) 2014-11-06 2016-05-12 Disco Corporation METHOD OF POLISHING A SiC SUBSTRATE
DE102015221391A1 (en) 2014-11-06 2016-05-12 Disco Corporation POLISHING LIQUID AND METHOD FOR POLISHING A SiC SUBSTRATE
KR20160054403A (en) 2014-11-06 2016-05-16 가부시기가이샤 디스코 GRINDING SOLUTION AND METHOD FOR GRINDING SiC SUBSTRATE
TWI655282B (en) * 2014-11-06 2019-04-01 日商迪思科股份有限公司 Grinding method of SiC substrate
US9994739B2 (en) 2014-11-06 2018-06-12 Disco Corporation Polishing liquid and method of polishing SiC substrate
WO2016072370A1 (en) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
JP2016093880A (en) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
KR102617024B1 (en) * 2014-11-07 2023-12-26 가부시키가이샤 후지미인코퍼레이티드 Polishing method and composition for polishing
CN107109191A (en) * 2014-11-07 2017-08-29 福吉米株式会社 Composition for polishing
JP2016096326A (en) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド Polishing method and polishing composition
KR20170081191A (en) * 2014-11-07 2017-07-11 가부시키가이샤 후지미인코퍼레이티드 Polishing method and composition for polishing
CN107109191B (en) * 2014-11-07 2022-03-15 福吉米株式会社 Abrasive composition
EP3216562A4 (en) * 2014-11-07 2018-04-18 Fujimi Incorporated Polishing method and composition for polishing
US11015098B2 (en) 2014-11-07 2021-05-25 Fujimi Incorporated Polishing composition
WO2016072371A1 (en) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド Polishing composition
TWI731843B (en) * 2014-11-07 2021-07-01 日商福吉米股份有限公司 Polishing composition
JP2016093884A (en) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
JP2016094588A (en) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド Polishing composition
US10227517B2 (en) 2014-11-07 2019-03-12 Fujimi Incorporated Polishing method and polishing composition
US10759981B2 (en) 2014-11-07 2020-09-01 Fujimi Incorporated Polishing method and polishing composition
EP3792000A1 (en) * 2014-11-07 2021-03-17 Fujimi Incorporated Polishing method and polishing composition
US10221501B2 (en) 2014-11-27 2019-03-05 Sumitomo Electric Industries, Ltd. Silicon carbide substrate
WO2016084561A1 (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
US10030319B2 (en) 2014-11-27 2018-07-24 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
CN107002280B (en) * 2014-11-27 2019-06-18 住友电气工业株式会社 Silicon carbide substrate, method of manufacturing same, and method of manufacturing silicon carbide semiconductor device
JPWO2016084561A1 (en) * 2014-11-27 2017-09-07 住友電気工業株式会社 Silicon carbide substrate, method of manufacturing the same, and method of manufacturing silicon carbide semiconductor device
CN107002280A (en) * 2014-11-27 2017-08-01 住友电气工业株式会社 Silicon carbide substrate, its manufacture method and the method for manufacturing manufacturing silicon carbide semiconductor device
JP2019178062A (en) * 2014-11-27 2019-10-17 住友電気工業株式会社 Silicon carbide substrate, manufacturing method thereof, and manufacturing method of silicon carbide semiconductor device
CN105150031A (en) * 2015-06-18 2015-12-16 江苏苏创光学器材有限公司 Production method for sapphire frameless touch screen panel
CN105108590A (en) * 2015-07-23 2015-12-02 廖张洁 Polishing method of UV-cured 3D printing product
JP2017047508A (en) * 2015-09-02 2017-03-09 富士ゼロックス株式会社 Polishing member, fixing device, and image formation device
JPWO2018012468A1 (en) * 2016-07-12 2019-05-30 株式会社ノリタケカンパニーリミテド Polishing body and method of manufacturing the same
CN109475995A (en) * 2016-07-12 2019-03-15 株式会社则武 Abrasive body and its manufacturing method
KR20190027873A (en) * 2016-07-12 2019-03-15 가부시키가이샤 노리타케 캄파니 리미티드 Abrasive body and manufacturing method thereof
KR102362022B1 (en) * 2016-07-12 2022-02-10 가부시키가이샤 노리타케 캄파니 리미티드 Abrasive body and manufacturing method thereof
US11745303B2 (en) 2016-07-12 2023-09-05 Noritake Co., Limited Polishing body and manufacturing method therefor
WO2018012468A1 (en) * 2016-07-12 2018-01-18 株式会社ノリタケカンパニーリミテド Polishing body and manufacturing method therefor
CN109475995B (en) * 2016-07-12 2021-11-05 株式会社则武 Abrasive body and its manufacturing method
TWI745397B (en) * 2016-07-12 2021-11-11 日商則武股份有限公司 Grinding body and manufacturing method thereof
CN106926139A (en) * 2017-03-23 2017-07-07 大连理工大学 KDP crystal water dissolving micro-nano processing system and processing method
DE102019204555A1 (en) 2018-04-05 2019-10-10 Disco Corporation Method for polishing a SiC substrate
KR20190116923A (en) 2018-04-05 2019-10-15 가부시기가이샤 디스코 POLISHING METHOD OF SiC SUBSTRATE
JP2021057368A (en) * 2019-09-26 2021-04-08 株式会社ノリタケカンパニーリミテド Polishing method for semiconductor wafer
JP7409815B2 (en) 2019-09-26 2024-01-09 株式会社ノリタケカンパニーリミテド Semiconductor wafer polishing method
JP2021061306A (en) * 2019-10-05 2021-04-15 株式会社ノリタケカンパニーリミテド POLISHING METHOD AND POLISHING LIQUID FOR InP SEMICONDUCTOR MATERIAL
JP7409820B2 (en) 2019-10-05 2024-01-09 株式会社ノリタケカンパニーリミテド Polishing method and polishing liquid for InP semiconductor material
JP7433170B2 (en) 2020-09-07 2024-02-19 株式会社ノリタケカンパニーリミテド Wafer polishing method and wafer polishing device
JP2022044084A (en) * 2020-09-07 2022-03-17 株式会社ノリタケカンパニーリミテド Wafer polishing method and wafer polishing device
JP7394741B2 (en) 2020-12-15 2023-12-08 株式会社ノリタケカンパニーリミテド CMP polishing management system
JP2022094550A (en) * 2020-12-15 2022-06-27 株式会社ノリタケカンパニーリミテド Cmp polishing device and cmp polishing management system
KR20220086255A (en) 2020-12-16 2022-06-23 동명대학교산학협력단 High-efficient hybrid polishing system using hydroxyl radical and dissolved oxygen
KR20220086258A (en) 2020-12-16 2022-06-23 동명대학교산학협력단 High-efficient hybrid polishing system using dispersion improvement of the abrasive grain
JP2022157071A (en) * 2021-03-31 2022-10-14 株式会社ノリタケカンパニーリミテド Polishing pad and wafer polishing method
JP2022157069A (en) * 2021-03-31 2022-10-14 株式会社ノリタケカンパニーリミテド Polishing pad and wafer polishing method
JP7650179B2 (en) 2021-03-31 2025-03-24 ノリタケ株式会社 Polishing pad and wafer polishing method
JP2023108208A (en) * 2022-01-25 2023-08-04 株式会社ノリタケカンパニーリミテド Polishing pad, polishing pad manufacturing method, and wafer polishing method
JP7573556B2 (en) 2022-01-25 2024-10-25 ノリタケ株式会社 Polishing pad, manufacturing method of polishing pad, and wafer polishing method
JP2023133815A (en) * 2022-03-14 2023-09-27 株式会社ノリタケカンパニーリミテド polishing body
JP2023150173A (en) * 2022-03-31 2023-10-16 株式会社ノリタケカンパニーリミテド polishing pad
WO2024195369A1 (en) * 2023-03-22 2024-09-26 ノリタケ株式会社 Polishing pad and method for manufacturing same

Also Published As

Publication number Publication date
JP5336699B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5336699B2 (en) Polishing method of crystal material
JP6420939B2 (en) Polishing method of GaN single crystal material
JP5088524B2 (en) Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
KR101494034B1 (en) Compositions and methods for modifying a surface suited for semiconductor fabrication
US6918821B2 (en) Materials and methods for low pressure chemical-mechanical planarization
JP2003532292A5 (en)
JP2001047357A (en) Polishing pad used for chemical-mechanical polishing of board with slurry containing abrasive particles
JP4266579B2 (en) Polishing body and method for producing the same
JP2007512966A5 (en)
TW201118938A (en) Method for producing a semiconductor wafer
US6677239B2 (en) Methods and compositions for chemical mechanical polishing
JP2005007520A (en) Abrasive pad, manufacturing method thereof, and grinding method thereof
JP3975047B2 (en) Polishing method
JP7409820B2 (en) Polishing method and polishing liquid for InP semiconductor material
JP5343099B2 (en) Semiconductor wafer polishing method
JP2008288240A (en) SiC crystal polishing method
JP2001127022A (en) Polishing method and polishing device
JP7595498B2 (en) Polishing body and wafer polishing method
JP7433170B2 (en) Wafer polishing method and wafer polishing device
JP2004179414A (en) Polishing device, polishing pad, polishing agent, swelling treatment agent and polishing precess
KR20240168994A (en) Method for polishing silicon and composition for polishing silicon
JP2005260185A (en) Polishing pad
KR20070022924A (en) Chemical mechanical polishing apparatus and chemical mechanical polishing method
JP2007319981A (en) Polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120905

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5336699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350