JP2008066272A - Anode for nonaqueous electrolyte secondary battery - Google Patents
Anode for nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2008066272A JP2008066272A JP2007042791A JP2007042791A JP2008066272A JP 2008066272 A JP2008066272 A JP 2008066272A JP 2007042791 A JP2007042791 A JP 2007042791A JP 2007042791 A JP2007042791 A JP 2007042791A JP 2008066272 A JP2008066272 A JP 2008066272A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- active material
- negative electrode
- metal material
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 139
- 239000007769 metal material Substances 0.000 claims abstract description 63
- 239000011149 active material Substances 0.000 claims description 107
- 238000007772 electroless plating Methods 0.000 claims description 40
- 239000011248 coating agent Substances 0.000 claims description 34
- 238000000576 coating method Methods 0.000 claims description 34
- 238000009713 electroplating Methods 0.000 claims description 15
- 239000002002 slurry Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 150000002642 lithium compounds Chemical class 0.000 abstract description 10
- 239000013543 active substance Substances 0.000 abstract 3
- 239000010410 layer Substances 0.000 description 54
- 239000002184 metal Substances 0.000 description 46
- 229910052751 metal Inorganic materials 0.000 description 45
- 238000007747 plating Methods 0.000 description 32
- 239000011135 tin Substances 0.000 description 29
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 28
- 239000010408 film Substances 0.000 description 27
- 229910052718 tin Inorganic materials 0.000 description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 21
- 229910052802 copper Inorganic materials 0.000 description 21
- 239000010949 copper Substances 0.000 description 21
- 229910052710 silicon Inorganic materials 0.000 description 21
- 239000010703 silicon Substances 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000002344 surface layer Substances 0.000 description 18
- 239000011856 silicon-based particle Substances 0.000 description 16
- 229910052744 lithium Inorganic materials 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- -1 or even if formed Inorganic materials 0.000 description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- 239000002210 silicon-based material Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910000365 copper sulfate Inorganic materials 0.000 description 5
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 229910001128 Sn alloy Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 4
- 239000011366 tin-based material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Inorganic materials [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- IMCZVHVSYPQRDR-UHFFFAOYSA-J dicopper phosphonato phosphate trihydrate Chemical compound O.O.O.[Cu++].[Cu++].[O-]P([O-])(=O)OP([O-])([O-])=O IMCZVHVSYPQRDR-UHFFFAOYSA-J 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000137 polyphosphoric acid Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- PIYNUZCGMLCXKJ-UHFFFAOYSA-N 1,4-dioxane-2,6-dione Chemical compound O=C1COCC(=O)O1 PIYNUZCGMLCXKJ-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- ZMPRRFPMMJQXPP-UHFFFAOYSA-N 2-sulfobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1S(O)(=O)=O ZMPRRFPMMJQXPP-UHFFFAOYSA-N 0.000 description 1
- KFJDQPJLANOOOB-UHFFFAOYSA-N 2h-benzotriazole-4-carboxylic acid Chemical compound OC(=O)C1=CC=CC2=NNN=C12 KFJDQPJLANOOOB-UHFFFAOYSA-N 0.000 description 1
- IHYAGCYJVNHXCT-UHFFFAOYSA-N 3,3,4,4,5,5-hexafluorooxane-2,6-dione Chemical compound FC1(F)C(=O)OC(=O)C(F)(F)C1(F)F IHYAGCYJVNHXCT-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- NMSRALOLNIBERV-UHFFFAOYSA-N 4,5,6,6a-tetrahydro-3ah-cyclopenta[c]furan-1,3-dione Chemical compound C1CCC2C(=O)OC(=O)C21 NMSRALOLNIBERV-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- WWJAZKZLSDRAIV-UHFFFAOYSA-N 4-fluoro-2-benzofuran-1,3-dione Chemical compound FC1=CC=CC2=C1C(=O)OC2=O WWJAZKZLSDRAIV-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- XVMKZAAFVWXIII-UHFFFAOYSA-N 5-fluoro-2-benzofuran-1,3-dione Chemical compound FC1=CC=C2C(=O)OC(=O)C2=C1 XVMKZAAFVWXIII-UHFFFAOYSA-N 0.000 description 1
- ROWKCXLLOLDVIO-UHFFFAOYSA-N 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound O1C2C=CC1C(C(=O)O)C2C(O)=O ROWKCXLLOLDVIO-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- GRSMWKLPSNHDHA-UHFFFAOYSA-N Naphthalic anhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=CC3=C1 GRSMWKLPSNHDHA-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical class [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 150000003627 tricarboxylic acid derivatives Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、リチウム二次電池などの非水電解液二次電池用の負極に関する。 The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
特許文献1には、リチウム二次電池用の負極として、活物質としてのシリコン粉末に、黒鉛、ポリビニルアルコール、カルボキシメチルセルロース及び水を添加し、混練してなるペーストを、集電体上に塗布したものが提案されている。しかし、シリコンは、リチウムの吸蔵放出に起因する体積変化の程度が大きいので、充放電を繰り返すと、膨張収縮によって生ずる応力で微粉化して集電体から脱落しやすい。その結果、サイクル特性が低下してしまう。 In Patent Document 1, a paste obtained by adding graphite, polyvinyl alcohol, carboxymethyl cellulose, and water to a silicon powder as an active material and kneading as a negative electrode for a lithium secondary battery was applied onto a current collector. Things have been proposed. However, since silicon has a large volume change caused by insertion and extraction of lithium, when charging and discharging are repeated, it is pulverized by stress generated by expansion and contraction and easily falls off the current collector. As a result, cycle characteristics are degraded.
このような不都合を解消すべく本出願人は先に、電解液と接し且つ導電性を有する表裏一対の面を含み、該面間に活物質の粒子を含む活物質層を備えた非水電解液二次電池用負極を提案した(特許文献2参照)。この負極の活物質層には、リチウム化合物の形成能の低い金属材料が浸透しており、浸透した該金属材料中に活物質の粒子が存在している。活物質層がこのような構造になっているので、この負極においては、充放電によって該粒子が膨張収縮することに起因して微粉化しても、その脱落が起こりづらくなる。その結果、この負極を用いると、電池のサイクル寿命が長くなるという利点がある。 In order to eliminate such inconvenience, the present applicant has first made a non-aqueous electrolysis comprising an active material layer including a pair of front and back surfaces that are in contact with an electrolytic solution and have conductivity, and active material particles between the surfaces. A negative electrode for a liquid secondary battery was proposed (see Patent Document 2). A metal material having a low lithium compound forming ability is infiltrated into the active material layer of the negative electrode, and active material particles are present in the infiltrated metal material. Since the active material layer has such a structure, even if the particles are pulverized due to expansion and contraction of the particles due to charge and discharge, the active material layer is unlikely to fall off. As a result, when this negative electrode is used, there is an advantage that the cycle life of the battery becomes long.
しかし本発明者らが更に検討を重ねたところ、本出願人が先に提案した負極は、充放電の繰り返しに起因する活物質の粒子の脱落は防止できるものの、前記の金属材料の浸透の程度によっては、活物質の粒子間に十分な空隙が形成されず、電解液を円滑に流通させられない場合があることが判明した。 However, as a result of further studies by the present inventors, the negative electrode previously proposed by the present applicant can prevent the active material particles from falling off due to repeated charge and discharge, but the degree of penetration of the metal material described above It has been found that there are cases where sufficient voids are not formed between the particles of the active material and the electrolytic solution cannot be smoothly circulated.
従って本発明の目的は、前述した従来技術の負極よりも性能が一層向上した非水電解液二次電池用負極を提供することにある。 Accordingly, an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery whose performance is further improved as compared with the negative electrode of the prior art described above.
本発明は、活物質の粒子を含む活物質層を備え、該粒子間に、無電解めっきによって析出した金属材料が存在していることを特徴とする非水電解液二次電池用負極を提供するものである。 The present invention provides a negative electrode for a non-aqueous electrolyte secondary battery comprising an active material layer containing particles of an active material, wherein a metal material deposited by electroless plating is present between the particles. To do.
本発明によれば、活物質の粒子の表面に無電解めっきによって金属材料が析出するので、該粒子に十分な電子伝導性が付与される。また、無電解めっきによって金属材料が粒子間に析出するので、該粒子どうし及び該粒子と集電体との密着性が向上する。更に、無電解めっきによれば、活物質層の厚み方向にわたって金属材料を均一に析出させることができる。これらの理由によってサイクル特性が向上する。 According to the present invention, since the metal material is deposited on the surface of the active material particles by electroless plating, sufficient electron conductivity is imparted to the particles. In addition, since the metal material is deposited between the particles by electroless plating, the adhesion between the particles and between the particles and the current collector is improved. Furthermore, according to electroless plating, a metal material can be uniformly deposited over the thickness direction of the active material layer. For these reasons, the cycle characteristics are improved.
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には本発明の非水電解液二次電池用負極の一実施形態の断面構造の模式図が示されている。本実施形態の負極10は、集電体11と、その少なくとも一面に形成された活物質層12を備えている。なお図1においては、便宜的に集電体11の片面にのみ活物質層12が形成されている状態が示されているが、活物質層は集電体の両面に形成されていてもよい。 The present invention will be described below based on preferred embodiments with reference to the drawings. FIG. 1 shows a schematic diagram of a cross-sectional structure of an embodiment of a negative electrode for a non-aqueous electrolyte secondary battery of the present invention. The negative electrode 10 of this embodiment includes a current collector 11 and an active material layer 12 formed on at least one surface thereof. 1 shows a state in which the active material layer 12 is formed only on one side of the current collector 11 for convenience, the active material layer may be formed on both sides of the current collector. .
活物質層12は、活物質の粒子12aを含んでいる。活物質としては、リチウムイオンの吸蔵放出が可能な材料が用いられる。そのような材料としては、例えばシリコン系材料やスズ系材料、アルミニウム系材料、ゲルマニウム系材料が挙げられる。負極重量あたりの容量密度を向上させる上では、特にシリコン系材料やスズ系材料が好ましく、特にシリコン系材料が好ましい。 The active material layer 12 includes active material particles 12a. As the active material, a material capable of occluding and releasing lithium ions is used. Examples of such materials include silicon-based materials, tin-based materials, aluminum-based materials, and germanium-based materials. In order to improve the capacity density per negative electrode weight, silicon-based materials and tin-based materials are particularly preferable, and silicon-based materials are particularly preferable.
シリコン系材料やスズ系材料からなる活物質の粒子12aとしては、リチウムの吸蔵が可能で且つシリコン又はスズを含有する材料、例えばイ)シリコン単体又はスズ単体の粒子、ロ)シリコン又はスズと金属との化合物粒子、ハ)シリコン単体又はスズ単体の粒子の表面に金属が被覆されてなる粒子などが挙げられる。また、シリコン酸化物も挙げられる。これらの材料はそれぞれ単独で、或いはこれらを混合して用いることができる。 As the active material particles 12a made of a silicon-based material or a tin-based material, a material capable of occluding lithium and containing silicon or tin, for example, a) silicon or tin particles, and b) silicon or tin and metal. And c) particles obtained by coating a metal on the surface of particles of silicon alone or tin alone. Moreover, a silicon oxide is also mentioned. These materials can be used alone or in combination.
シリコン系粒子又はスズ系粒子が、前記のロ)のシリコン又はスズと金属との化合物粒子である場合、該化合物は、シリコン又はスズと金属との合金を含み、1)シリコン又はスズと金属との固溶体、2)シリコン又はスズと金属との金属間化合物、或いは3)シリコン単相若しくはスズ単相、金属単相、シリコン若しくはスズと金属との固溶体、シリコン若しくはスズと金属との金属間化合物のうちの二相以上の相からなる複合体の何れかである。前記金属としては、Cu、Ag、Ni、Co、Ceが好ましく、特に電子伝導性に優れ且つリチウム化合物の形成能の低さの点から、Cu、Ag、Niを用いることが望ましい。ロ)の化合物粒子におけるシリコン又はスズと金属との組成は、シリコン又はスズの量が30〜99.9重量%で、金属の量が0.1〜70重量%であることが好ましい。更に好ましい組成は、化合物粒子の製造方法に応じて適切な範囲が選択される。例えば該化合物粒子が、シリコン又はスズと金属との二元系合金であり、該合金を、急冷法を用いて製造する場合、シリコン又はスズの量は40〜90重量%であることが望ましい。一方、金属の量は10〜60重量%であることが好ましい。前記化合物粒子がシリコン又はスズと金属との三元系以上の合金である場合には、先に述べた二元系合金に更にB、Al、Sn、Fe、Cr、Zn、In、V、Y、Zr、Nb、Ta、W、La、Pr、Pd及びNdからなる群から選択される元素が少量含まれていてもよい。これによって、微粉化が抑制されるという付加的な効果が奏される。この効果を一層高めるため、これらの元素は前記化合物粒子中に0.01〜10重量%、特に0.05〜1.0重量%含まれていることが好ましい。特に、スズ系の合金粒子として、スズと、コバルトと、炭素と、ニッケル及びクロムのうちの少なくとも一方とを含む合金が好ましく用いられる。また、負極を電池に組み込む前に、又は組み込んだ後に、シリコン系材料又はスズ系材料からなる活物質粒子に対してリチウムを吸蔵させてもよい。 In the case where the silicon-based particles or tin-based particles are compound particles of silicon or tin and metal of the above b), the compound contains silicon or an alloy of tin and metal, and 1) silicon or tin and metal 2) Intermetallic compound of silicon or tin and metal, or 3) Si single phase or single phase of tin, single phase of metal, solid solution of silicon or tin and metal, intermetallic compound of silicon or tin and metal Any one of the composites composed of two or more phases. As the metal, Cu, Ag, Ni, Co, and Ce are preferable. In particular, Cu, Ag, and Ni are desirably used from the viewpoint of excellent electronic conductivity and low ability to form a lithium compound. The composition of silicon or tin and metal in the compound particles of (b) is preferably such that the amount of silicon or tin is 30 to 99.9% by weight and the amount of metal is 0.1 to 70% by weight. A more preferable composition is selected in an appropriate range depending on the method for producing compound particles. For example, when the compound particles are a binary alloy of silicon or tin and metal, and the alloy is manufactured using a rapid cooling method, the amount of silicon or tin is preferably 40 to 90% by weight. On the other hand, the amount of metal is preferably 10 to 60% by weight. In the case where the compound particles are a ternary or higher alloy of silicon or tin and metal, B, Al, Sn, Fe, Cr, Zn, In, V, Y are further added to the binary alloy described above. , Zr, Nb, Ta, W, La, Pr, Pd and Nd may be contained in a small amount. Thereby, the additional effect that pulverization is suppressed is produced. In order to further enhance this effect, these elements are preferably contained in the compound particles in an amount of 0.01 to 10% by weight, particularly 0.05 to 1.0% by weight. In particular, an alloy containing tin, cobalt, carbon, and at least one of nickel and chromium is preferably used as the tin-based alloy particles. Further, lithium may be occluded in the active material particles made of a silicon-based material or a tin-based material before or after the negative electrode is incorporated in the battery.
前記のロ)のシリコン又はスズと金属との化合物粒子が合金粒子である場合、該合金粒子は、例えば急冷法によって製造されることが、合金の結晶子が微細なサイズとなり且つ均質分散されることにより、微粉化が抑制され、電子伝導性が保持される点から好ましい。この急冷法においては、先ずシリコン又はスズと、金属とを含む原料の溶湯を準備する。原料は高周波溶解によって溶湯となす。溶湯におけるシリコン又はスズと金属との割合は前述した範囲とする。溶湯の温度は1200〜1500℃、特に1300〜1450℃とすることが急冷条件との関係で好ましい。鋳型鋳造法を用いてこの溶湯から合金を得る。即ち、該溶湯を銅製又は鉄製の鋳型に流し込んで、急冷されたシリコン系合金又はスズ系合金のインゴットを得る。このインゴットを粉砕し篩い分けして、例えば粒径40μm以下のものを本発明に供する。 When the compound particles of silicon or tin and metal of b) above are alloy particles, the alloy particles are produced by, for example, a rapid cooling method, so that the crystallites of the alloy have a fine size and are uniformly dispersed. By this, it is preferable from the point by which pulverization is suppressed and electronic conductivity is maintained. In this rapid cooling method, first, a raw material melt containing silicon or tin and a metal is prepared. The raw material is made into molten metal by high frequency melting. The ratio of silicon or tin to metal in the molten metal is in the range described above. The temperature of the molten metal is preferably 1200 to 1500 ° C., particularly 1300 to 1450 ° C., in relation to the rapid cooling conditions. An alloy is obtained from this molten metal using a mold casting method. That is, the molten metal is poured into a copper or iron mold to obtain a rapidly cooled silicon alloy or tin alloy ingot. The ingot is pulverized and sieved, and for example, those having a particle size of 40 μm or less are provided for the present invention.
シリコン系粒子又はスズ系粒子が、前記のハ)のシリコン単体又はスズ単体の粒子の表面に金属が被覆されてなる粒子(この粒子を金属被覆粒子という)である場合、被覆金属としては、先に述べたロ)の粒子に含まれる金属、例えば銅などと同様のものが用いられる。金属被覆粒子におけるシリコン又はスズの量は70〜99.9重量%、特に80〜99重量%、とりわけ85〜95であることが好ましい。一方、銅を始めとする被覆金属の量は0.1〜30重量%、特に1〜20重量%、とりわけ5〜15重量%であることが好ましい。金属被覆粒子は例えば無電解めっき法を用いて製造される。この無電解めっき法においては、先ずシリコン粒子又はスズ粒子が懸濁されており且つ銅を始めとする被覆金属を含むめっき浴を用意する。このめっき浴中において、シリコン粒子又はスズ粒子を無電解めっきしてシリコン粒子又はスズ粒子の表面に前記被覆金属を被覆させる。めっき浴中におけるシリコン粒子又はスズ粒子の濃度は400〜600g/l程度とすることが好ましい。前記被覆金属として銅を無電解めっきする場合には、めっき浴中に硫酸銅、ロシェル塩等を含有させておくことが好ましい。この場合、硫酸銅の濃度は6〜9g/l、ロシェル塩の濃度は70〜90g/lであることが、めっき速度のコントロールの点から好ましい。同様の理由からめっき浴のpHは12〜13、浴温は20〜30℃であることが好ましい。めっき浴中に含まれる還元剤としては、例えばホルムアルデヒド等が用いられ、その濃度は15〜30cc/l程度とすることができる。また、無電解めっき浴として、市販品を用いることもできる。 In the case where the silicon-based particles or tin-based particles are particles in which a metal is coated on the surface of the silicon simple substance or tin simple particles in the above (c) (this particle is referred to as a metal-coated particle), The same metals as those contained in the particles b) mentioned above, such as copper, are used. The amount of silicon or tin in the metal-coated particles is preferably 70 to 99.9% by weight, particularly 80 to 99% by weight, especially 85 to 95. On the other hand, the amount of the coating metal including copper is preferably 0.1 to 30% by weight, particularly 1 to 20% by weight, particularly 5 to 15% by weight. The metal-coated particles are produced using, for example, an electroless plating method. In this electroless plating method, first, a plating bath in which silicon particles or tin particles are suspended and containing a coating metal such as copper is prepared. In this plating bath, silicon particles or tin particles are electrolessly plated to coat the surface of the silicon particles or tin particles with the coating metal. The concentration of silicon particles or tin particles in the plating bath is preferably about 400 to 600 g / l. When electrolessly plating copper as the coating metal, it is preferable to contain copper sulfate, Rochelle salt or the like in the plating bath. In this case, the concentration of copper sulfate is preferably 6 to 9 g / l, and the concentration of Rochelle salt is preferably 70 to 90 g / l from the viewpoint of controlling the plating rate. For the same reason, the pH of the plating bath is preferably 12 to 13, and the bath temperature is preferably 20 to 30 ° C. As the reducing agent contained in the plating bath, for example, formaldehyde or the like is used, and the concentration thereof can be about 15 to 30 cc / l. Moreover, a commercial item can also be used as an electroless-plating bath.
以上の各種活物質の粒子12aのうち特に好ましいものは、リチウムの吸蔵量の高さの点からシリコン単体又はシリコン酸化物の粒子である。 Of the various active material particles 12a described above, silicon particles or silicon oxide particles are particularly preferable from the viewpoint of high lithium storage capacity.
活物質層12においては、粒子12a間に金属材料13が存在している。この金属材料13は、粒子12aの構成材料と異なる材料であり、好ましくはリチウム化合物の形成能の低い金属材料である。この金属材料13は無電解めっきによって析出したものである。金属材料13は粒子12aの表面の少なくとも一部を被覆している。金属材料13で被覆された粒子12aの間には空隙が形成されている。つまり金属材料13は、リチウムイオンを含む非水電解液が粒子12aへ到達可能なような隙間を確保した状態で粒子12a間に析出している。図1中、金属材料13は、粒子12aの周囲を取り囲む太線として便宜的に表されている。なお同図は活物質層12を二次元的にみた模式図であり、実際は各粒子は他の粒子と直接ないし金属材料13を介して接触している。「リチウム化合物の形成能の低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるか若しくは非常に不安定であることを意味する。 In the active material layer 12, the metal material 13 exists between the particles 12a. The metal material 13 is a material different from the constituent material of the particles 12a, and is preferably a metal material having a low lithium compound forming ability. This metal material 13 is deposited by electroless plating. The metal material 13 covers at least a part of the surface of the particle 12a. Gaps are formed between the particles 12 a covered with the metal material 13. That is, the metal material 13 is deposited between the particles 12a in a state in which a gap is secured so that the non-aqueous electrolyte containing lithium ions can reach the particles 12a. In FIG. 1, the metal material 13 is conveniently represented as a thick line surrounding the periphery of the particle 12a. This figure is a schematic view of the active material layer 12 viewed two-dimensionally. In reality, each particle is in direct contact with other particles or through a metal material 13. “Low lithium compound forming ability” means that lithium does not form an intermetallic compound or solid solution, or even if formed, lithium is in a very small amount or very unstable.
金属材料13は導電性を有するものであり、その例としてはリチウム化合物の形成能の低い材料である銅、ニッケル、鉄、コバルト又はこれらの金属の合金などが挙げられる。これら以外の金属として銀を用いることもできる。特に金属材料13は、活物質の粒子12aが膨張収縮しても該粒子12aの表面の被覆が破壊されにくい延性の高い材料であることが好ましい。そのような材料としては銅を用いることが好ましい。 The metal material 13 has conductivity, and examples thereof include copper, nickel, iron, cobalt, or alloys of these metals, which are materials having a low lithium compound forming ability. Silver can also be used as a metal other than these. In particular, the metal material 13 is preferably a highly ductile material in which even if the active material particles 12a expand and contract, the coating on the surface of the particles 12a is not easily broken. It is preferable to use copper as such a material.
無電解めっきによって析出した金属材料13は、活物質層12の厚み方向全域にわたって活物質の粒子12aの表面に存在していることが好ましい。そして金属材料13のマトリックス中に活物質の粒子12aが存在していることが好ましい。これによって、充放電によって該粒子12aが膨張収縮することに起因して微粉化しても、その脱落が起こりづらくなる。また、金属材料13を通じて活物質層12全体の電子伝導性が確保されるので、電気的に孤立した活物質の粒子12aが生成すること、特に活物質層12の深部に電気的に孤立した活物質の粒子12aが生成することが効果的に防止される。このことは、活物質として半導体であり電子伝導性の乏しい材料、例えばシリコン系材料を用いる場合に特に有利である。金属材料13が活物質層12の厚み方向全域にわたって活物質の粒子12aの表面に析出していることは、該材料13を測定対象とした電子顕微鏡マッピングによって確認できる。 The metal material 13 deposited by electroless plating is preferably present on the surface of the active material particles 12 a over the entire thickness direction of the active material layer 12. The active material particles 12 a are preferably present in the matrix of the metal material 13. Thus, even if the particles 12a are pulverized due to expansion and contraction due to charge / discharge, the particles are less likely to fall off. In addition, since the electronic conductivity of the entire active material layer 12 is ensured through the metal material 13, the electrically isolated active material particles 12 a are generated, and in particular, the electrically isolated active material is deep in the active material layer 12. Generation of the particles 12a of the substance is effectively prevented. This is particularly advantageous when a material that is a semiconductor and has poor electron conductivity, such as a silicon-based material, is used as the active material. The fact that the metal material 13 is deposited on the surface of the active material particles 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the material 13 as a measurement target.
無電解めっきによって析出した金属材料13は、粒子12aの表面を連続に又は不連続に被覆している。金属材料13が粒子12aの表面を連続に被覆している場合には、金属材料13の被覆に、非水電解液の流通が可能な微細な空隙を形成することが好ましい。金属材料13が粒子12aの表面を不連続に被覆している場合には、粒子12aの表面のうち、金属材料13で被覆されていない部位を通じて該粒子12aへ非水電解液が供給される。 The metal material 13 deposited by electroless plating covers the surfaces of the particles 12a continuously or discontinuously. When the metal material 13 continuously covers the surfaces of the particles 12a, it is preferable to form fine voids in the coating of the metal material 13 that allow the non-aqueous electrolyte to flow. When the metal material 13 discontinuously coats the surface of the particle 12a, the non-aqueous electrolyte is supplied to the particle 12a through a portion of the surface of the particle 12a that is not covered with the metal material 13.
活物質の粒子12aの表面を被覆している金属材料13は、その厚みの平均が好ましくは0.05〜2μm、更に好ましくは0.1〜0.25μmという薄いものである。つまり金属材料13は最低限の厚みで以て活物質の粒子12aの表面を被覆している。これによって、エネルギー密度を高めつつ、充放電によって粒子12aが膨張収縮して微粉化することに起因する脱落を防止している。ここでいう「厚みの平均」とは、活物質の粒子12aの表面のうち、実際に金属材料13が被覆している部分に基づき計算された値である。従って活物質の粒子12aの表面のうち金属材料13で被覆されていない部分は、平均値の算出の基礎にはされない。 The average thickness of the metal material 13 covering the surface of the active material particles 12a is preferably 0.05 to 2 μm, more preferably 0.1 to 0.25 μm. That is, the metal material 13 covers the surface of the active material particles 12a with a minimum thickness. As a result, while the energy density is increased, the particles 12a are prevented from falling off due to expansion / contraction and pulverization due to charge / discharge. Here, the “average thickness” is a value calculated based on a portion of the surface of the active material particle 12 a that is actually covered with the metal material 13. Accordingly, the portion of the surface of the active material particle 12a that is not covered with the metal material 13 is not used as a basis for calculating the average value.
無電解めっきによって析出した金属材料13で被覆された粒子12a間に形成された空隙は、リチウムイオンを含む非水電解液の流通の経路としての働きを有している。この空隙の存在によって非水電解液が活物質層12の厚み方向へ円滑に流通するので、サイクル特性を向上させることができる。更に、粒子12a間に形成されている空隙は、充放電で活物質の粒子12aが体積変化することに起因する応力を緩和するための空間としての働きも有する。充電によって体積が増加した活物質の粒子12aの体積の増加分は、この空隙に吸収される。その結果、該粒子12aの微粉化が起こりづらくなり、また負極10の著しい変形が効果的に防止される。 The voids formed between the particles 12a coated with the metal material 13 deposited by electroless plating have a function as a flow path for the non-aqueous electrolyte containing lithium ions. Since the non-aqueous electrolyte smoothly flows in the thickness direction of the active material layer 12 due to the presence of the voids, cycle characteristics can be improved. Further, the voids formed between the particles 12a also have a function as a space for relieving stress caused by the volume change of the active material particles 12a due to charge and discharge. The increase in the volume of the active material particles 12a whose volume has been increased by charging is absorbed by the voids. As a result, pulverization of the particles 12a is difficult to occur, and significant deformation of the negative electrode 10 is effectively prevented.
活物質層12は、後述するように、好適には粒子12a及び結着剤を含むスラリーを集電体上に塗布し乾燥させて得られた塗膜に対し、所定のめっき浴を用いた無電解めっきを行い、粒子12a間に金属材料13を析出させることで形成される。 As will be described later, the active material layer 12 is preferably formed by applying a slurry containing a particle 12a and a binder onto a current collector and drying the coating film using a predetermined plating bath. It is formed by performing electrolytic plating and depositing a metal material 13 between the particles 12a.
活物質層中に形成される空隙の割合、つまり空隙率は、15〜45体積%程度、特に20〜40体積%程度であることが好ましい。空隙率をこの範囲内とすることで、非水電解液の流通が可能な空隙を活物質層12内に必要且つ十分に形成することが可能となる。活物質層12の空隙量は、水銀圧入法(JIS R 1655)で測定される。水銀圧入法は、固体中の細孔の大きさやその容積を測定することによって、その固体の物理的形状の情報を得るための手法である。水銀圧入法の原理は、水銀に圧力を加えて測定対象物の細孔中へ圧入し、その時に加えた圧力と、押し込まれた(浸入した)水銀体積の関係を測定することにある。この場合、水銀は活物質層12内に存在する大きな空隙から順に浸入していく。本発明においては、圧力90MPaで測定した空隙量を全体の空隙量とみなしている。活物質層12の空隙率(%)は、前記の方法で測定された単位面積当たりの空隙量を、単位面積当たりの活物質層12の見かけの体積で除し、それに100を乗じることにより求める。 The ratio of voids formed in the active material layer, that is, the void ratio, is preferably about 15 to 45% by volume, particularly about 20 to 40% by volume. By setting the porosity within this range, it is possible to form necessary and sufficient voids in the active material layer 12 that allow the nonaqueous electrolyte to flow. The void amount of the active material layer 12 is measured by a mercury intrusion method (JIS R 1655). The mercury intrusion method is a method for obtaining information on the physical shape of a solid by measuring the size and volume of pores in the solid. The principle of the mercury intrusion method is to apply a pressure to mercury to inject it into the pores of the object to be measured, and to measure the relationship between the pressure applied at that time and the volume of mercury that has been pushed in (intruded). In this case, mercury enters sequentially from the large voids present in the active material layer 12. In the present invention, the void amount measured at a pressure of 90 MPa is regarded as the entire void amount. The porosity (%) of the active material layer 12 is obtained by dividing the void amount per unit area measured by the above method by the apparent volume of the active material layer 12 per unit area and multiplying it by 100. .
活物質の粒子12aの粒径を適切に選択することによっても、前記の空隙率をコントロールすることができる。この観点から、粒子12aはその最大粒径が好ましくは30μm以下であり、更に好ましくは10μm以下である。また粒子の粒径をD50値で表すと0.1〜8μm、特に0.3〜4μmであることが好ましい。粒子の粒径は、レーザー回折散乱式粒度分布測定、電子顕微鏡観察(SEM観察)によって測定される。 The porosity can also be controlled by appropriately selecting the particle size of the active material particles 12a. From this viewpoint, the particle 12a has a maximum particle size of preferably 30 μm or less, more preferably 10 μm or less. Moreover, when the particle diameter of the particle is expressed by a D 50 value, it is preferably 0.1 to 8 μm, particularly preferably 0.3 to 4 μm. The particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement and electron microscope observation (SEM observation).
本実施形態の負極においては、活物質の粒子12a表面が、電解めっきによって、リチウム化合物の形成能の低い金属材料で被覆されており、該金属材料上に、該金属材料と同種又は異種のリチウム化合物の形成能の低い金属材料が無電解めっきによって析出していてもよい。また、活物質の粒子12aとして、その表面が予め金属で被覆されたものを用いてもよい。このようにすることで、無電解めっきに先立ち、粒子12aの表面にめっき核が予め存在することになるので、無電解めっきを首尾良く行うことが可能となる。 In the negative electrode of the present embodiment, the surface of the active material particles 12a is coated with a metal material having a low lithium compound forming ability by electrolytic plating, and the same or different type of lithium as the metal material is formed on the metal material. A metal material having a low compound forming ability may be deposited by electroless plating. Further, as the active material particles 12a, particles whose surfaces are previously coated with metal may be used. By doing in this way, since the plating nucleus exists in advance on the surface of the particle 12a prior to the electroless plating, the electroless plating can be performed successfully.
負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向上させにくく、逆に多すぎると強度が低下し活物質の脱落が起こりやすくなる傾向にある。これらを勘案すると、活物質層の厚みは10〜40μm、好ましくは15〜30μm、更に好ましくは18〜25μmである。 If the amount of the active material relative to the whole negative electrode is too small, it is difficult to sufficiently improve the energy density of the battery. Conversely, if the amount is too large, the strength decreases and the active material tends to fall off. Considering these, the thickness of the active material layer is 10 to 40 μm, preferably 15 to 30 μm, and more preferably 18 to 25 μm.
本実施形態の負極10においては、活物質層12の表面に薄い表面層(図示せず)が形成されていてもよい。また負極10はそのような表面層を有していなくてもよい。表面層の厚みは、0.25μm以下、好ましくは0.1μm以下という薄いものである。表面層の厚みの下限値に制限はない。表面層を形成することで、微粉化した活物質の粒子12aの脱落を一層防止することができる。尤も、本実施形態においては、活物質層12の空隙率を上述した範囲内に設定することによって、表面層を用いなくても微粉化した活物質の粒子12aの脱落を十分に防止することが可能である。 In the negative electrode 10 of the present embodiment, a thin surface layer (not shown) may be formed on the surface of the active material layer 12. Further, the negative electrode 10 may not have such a surface layer. The thickness of the surface layer is 0.25 μm or less, preferably 0.1 μm or less. There is no restriction | limiting in the lower limit of the thickness of a surface layer. By forming the surface layer, the pulverized active material particles 12a can be further prevented from falling off. However, in the present embodiment, by setting the porosity of the active material layer 12 within the above-described range, it is possible to sufficiently prevent the pulverized active material particles 12a from dropping without using a surface layer. Is possible.
負極10が前記の厚みの薄い表面層を有するか又は該表面層を有していないことによって、負極10を用いて二次電池を組み立て、当該電池の初期充電を行うときの過電圧を低くすることができる。このことは、二次電池の充電時に負極10の表面でリチウムが還元することを防止できることを意味する。リチウムの還元は、両極の短絡の原因となるデンドライトの発生につながる。 When the negative electrode 10 has the thin surface layer or does not have the surface layer, a secondary battery is assembled using the negative electrode 10 to reduce the overvoltage when the battery is initially charged. Can do. This means that lithium can be prevented from being reduced on the surface of the negative electrode 10 when the secondary battery is charged. The reduction of lithium leads to the generation of dendrites that cause a short circuit between the two electrodes.
負極10が表面層を有している場合、該表面層は活物質層12の表面を連続又は不連続に被覆している。表面層が活物質層12の表面を連続に被覆している場合、該表面層は、その表面において開孔し且つ活物質層12と通ずる多数の微細空隙(図示せず)を有していることが好ましい。微細空隙は表面層の厚さ方向へ延びるように表面層中に存在していることが好ましい。微細空隙は非水電解液の流通が可能なものである。微細空隙の役割は、活物質層12内に非水電解液を供給することにある。微細空隙は、負極10の表面を電子顕微鏡観察により平面視したとき、金属材料13で被覆されている面積の割合、即ち被覆率が95%以下、特に80%以下、とりわけ60%以下となるような大きさであることが好ましい。被覆率が95%を超えると、高粘度な非水電解液が浸入しづらくなり、非水電解液の選択の幅が狭くなるおそれがある。 When the negative electrode 10 has a surface layer, the surface layer covers the surface of the active material layer 12 continuously or discontinuously. When the surface layer continuously covers the surface of the active material layer 12, the surface layer has a large number of microscopic voids (not shown) that are open at the surface and communicate with the active material layer 12. It is preferable. The fine voids are preferably present in the surface layer so as to extend in the thickness direction of the surface layer. The fine voids allow the non-aqueous electrolyte to flow. The role of the fine voids is to supply a non-aqueous electrolyte into the active material layer 12. When the surface of the negative electrode 10 is viewed in plan by electron microscope observation, the fine voids are such that the ratio of the area covered with the metal material 13, that is, the coverage is 95% or less, particularly 80% or less, especially 60% or less. It is preferable that the size is large. When the coverage exceeds 95%, it is difficult for the non-aqueous electrolyte having high viscosity to enter, and the range of selection of the non-aqueous electrolyte may be narrowed.
表面層は、リチウム化合物の形成能の低い金属材料から構成されている。この金属材料は、活物質層12中に析出している金属材料13と同種でもよく、或いは異種でもよい。また表面層は、異なる2種以上の金属材料からなる2層以上の構造であってもよい。負極10の製造の容易さを考慮すると、活物質層12中に存在している金属材料13と、表面層を構成する金属材料とは同種であることが好ましい。 The surface layer is made of a metal material having a low lithium compound forming ability. This metal material may be the same as or different from the metal material 13 deposited in the active material layer 12. The surface layer may have a structure of two or more layers made of two or more different metal materials. Considering the ease of manufacture of the negative electrode 10, the metal material 13 present in the active material layer 12 and the metal material constituting the surface layer are preferably the same type.
本実施形態の負極10において、活物質層12中の空隙率が前述の値になっている場合には、折り曲げに対する負極10の耐性が高くなる。具体的には、JIS C 6471に従い測定されたMIT耐折性が好ましくは30回以上、更に好ましくは50回以上という高耐折性を有するようになる。耐折性が高いことは、負極10を折り畳んだり巻回したりして電池容器内に収容する場合に、負極10に折れが生じにくくなることから極めて有利である。MIT耐折装置としては、例えば東洋精機製作所製の槽付フィルム耐折疲労試験機(品番549)が用いられ、屈曲半径0.8mm、荷重0.5kgf、サンプルサイズ15×150mmで測定することができる。 In the negative electrode 10 of this embodiment, when the porosity in the active material layer 12 has the above-described value, the resistance of the negative electrode 10 to bending increases. Specifically, the MIT folding resistance measured according to JIS C 6471 is preferably 30 times or more, more preferably 50 times or more. High folding resistance is extremely advantageous since the negative electrode 10 is less likely to be folded when the negative electrode 10 is folded or wound and accommodated in a battery container. As the MIT folding endurance device, for example, a film folding endurance fatigue tester (product number 549) manufactured by Toyo Seiki Seisakusho is used, and measurement can be performed with a bending radius of 0.8 mm, a load of 0.5 kgf and a sample size of 15 × 150 mm. it can.
負極10における集電体11としては、非水電解液二次電池用負極の集電体として従来用いられているものと同様のものを用いることができる。集電体11は、先に述べたリチウム化合物の形成能の低い金属材料から構成されていることが好ましい。そのような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等からなることが好ましい。また、コルソン合金箔に代表されるような銅合金箔の使用も可能である。更に集電体として、常態抗張力(JIS C 2318)が好ましくは500MPa以上である金属箔、例えば前記のコルソン合金箔の少なくとも一方の面に銅被膜層を形成したものを用いることもできる。更に集電体として常態伸度(JIS C 2318)が4%以上のものを用いることも好ましい。抗張力が低いと活物質が膨張した際の応力によりシワが生じ、伸び率が低いと該応力により集電体に亀裂が入ることがあるからである。これらの集電体を用いることで、上述した負極10の耐折性を一層高めることが可能となる。集電体11の厚みは、負極10の強度維持と、エネルギー密度向上とのバランスを考慮すると、9〜35μmであることが好ましい。なお、集電体11として銅箔を使用する場合には、クロメート処理や、トリアゾール系化合物及びイミダゾール系化合物などの有機化合物を用いた防錆処理を施しておくことが好ましい。 As the current collector 11 in the negative electrode 10, the same one as conventionally used as the current collector of the negative electrode for the non-aqueous electrolyte secondary battery can be used. The current collector 11 is preferably made of a metal material having a low lithium compound forming ability as described above. Examples of such metallic materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. Also, it is possible to use a copper alloy foil represented by a Corson alloy foil. Further, as the current collector, a metal foil having a normal tensile strength (JIS C 2318) of preferably 500 MPa or more, for example, a copper film layer formed on at least one surface of the aforementioned Corson alloy foil can be used. Furthermore, it is preferable to use a current collector having a normal elongation (JIS C 2318) of 4% or more. This is because when the tensile strength is low, wrinkles are generated due to stress when the active material expands, and when the elongation is low, the current collector may crack. By using these current collectors, it is possible to further improve the folding resistance of the negative electrode 10 described above. The thickness of the current collector 11 is preferably 9 to 35 μm considering the balance between maintaining the strength of the negative electrode 10 and improving the energy density. In addition, when using copper foil as the electrical power collector 11, it is preferable to give the rust prevention process using organic compounds, such as a chromate process and a triazole type compound and an imidazole type compound.
次に、本実施形態の負極10の好ましい製造方法について説明する。本製造方法では、活物質の粒子及び結着剤を含むスラリーを用いて集電体11上に塗膜を形成し、次いでその塗膜に対して無電解めっきを行う。 Next, the preferable manufacturing method of the negative electrode 10 of this embodiment is demonstrated. In this production method, a coating film is formed on the current collector 11 using a slurry containing active material particles and a binder, and then the electroless plating is performed on the coating film.
先ず集電体11上に、活物質の粒子12aを含むスラリーを塗布して塗膜を形成する。集電体11における塗膜形成面の表面粗さは、輪郭曲線の最大高さで0.5〜4μmであることが好ましい。最大高さが4μmを超えると塗膜15の形成精度が低下する。最大高さが0.5μmを下回ると、活物質層12の密着性が低下しやすい。 First, a slurry containing active material particles 12 a is applied onto the current collector 11 to form a coating film. The surface roughness of the coating film forming surface of the current collector 11 is preferably 0.5 to 4 μm at the maximum height of the contour curve. If the maximum height exceeds 4 μm, the formation accuracy of the coating film 15 is lowered. When the maximum height is less than 0.5 μm, the adhesion of the active material layer 12 tends to be lowered.
スラリーは、活物質の粒子の他に、結着剤及び希釈溶媒などを含んでいる。またスラリーはアセチレンブラックやグラファイトなどの導電性炭素材料の粒子を少量含んでいてもよい。特に、活物質の粒子12aがシリコン系材料から構成されている場合には、該活物質の粒子12aの重量に対して導電性炭素材料を1〜3重量%含有することが好ましい。導電性炭素材料の含有量が1重量%未満であると、スラリーの粘度が低下して活物質の粒子12aの沈降が促進されるため、良好な塗膜及び均一な空隙を形成しにくくなる。また導電性炭素材料の含有量が3重量%を超えると、該導電性炭素材料の表面にめっき核が集中し、良好な被覆を形成しにくくなる。 The slurry contains a binder and a diluting solvent in addition to the active material particles. The slurry may contain a small amount of conductive carbon material particles such as acetylene black and graphite. In particular, when the active material particles 12a are made of a silicon-based material, the conductive carbon material is preferably contained in an amount of 1 to 3% by weight based on the weight of the active material particles 12a. When the content of the conductive carbon material is less than 1% by weight, the viscosity of the slurry is lowered and the sedimentation of the active material particles 12a is promoted, so that it is difficult to form a good coating film and uniform voids. On the other hand, if the content of the conductive carbon material exceeds 3% by weight, plating nuclei concentrate on the surface of the conductive carbon material, and it becomes difficult to form a good coating.
結着剤としてはスチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、エチレンプロピレンジエンモノマー(EPDM)などが用いられる。希釈溶媒としてはN−メチルピロリドン、シクロヘキサンなどが用いられる。スラリー中における活物質の粒子12aの量は30〜70重量%程度とすることが好ましい。結着剤の量は0.4〜4重量%程度とすることが好ましい。これらに希釈溶媒を加えてスラリーとする。 As the binder, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM), or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. The amount of the active material particles 12a in the slurry is preferably about 30 to 70% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. A dilution solvent is added to these to form a slurry.
形成された塗膜は、粒子12a間に多数の微小空間を有する。塗膜が形成された集電体11を無電解めっきのめっき浴中に浸漬する。めっき浴への浸漬によって、めっき液が塗膜内の前記微小空間に浸入して、塗膜と集電体11との界面にまで達する。その状態下に無電解めっきを行い、めっき金属種を粒子12aの表面に析出させる。めっき金属種の析出速度は、0.05〜1.5μm/20分、特に0.2〜0.5μm/20分であることが、適切な大きさの結晶粒が形成される点から好ましい。 The formed coating film has a large number of minute spaces between the particles 12a. The current collector 11 on which the coating film is formed is immersed in a plating bath for electroless plating. By dipping in the plating bath, the plating solution enters the minute space in the coating film and reaches the interface between the coating film and the current collector 11. Under the state, electroless plating is performed to deposit the plating metal species on the surfaces of the particles 12a. The deposition rate of the plating metal species is preferably 0.05 to 1.5 μm / 20 minutes, particularly preferably 0.2 to 0.5 μm / 20 minutes from the viewpoint of forming appropriately sized crystal grains.
無電解めっきのめっき液としては、析出させる金属の種類に応じて種々の市販品を用いることができ、その種類は本発明において臨界的なものではない。めっき液としては、活物質の粒子12aの表面に均一に且つ緻密に金属を析出させる観点から、均一析出性、カバーリング性、凹凸に対する追従性に優れているものを用いることが好ましい。この観点から、めっき液としてはプリント配線基板(PWB)などのスルーホールやビアホールに無電解めっきを行うために用いられるものを用いることが好ましい。 As a plating solution for electroless plating, various commercially available products can be used depending on the type of metal to be deposited, and the type is not critical in the present invention. As the plating solution, it is preferable to use a plating solution that is excellent in uniform precipitation, covering property, and followability to unevenness from the viewpoint of depositing a metal uniformly and densely on the surface of the active material particles 12a. From this point of view, it is preferable to use a plating solution that is used for performing electroless plating on a through hole or a via hole such as a printed wiring board (PWB).
活物質の粒子がSiを含む場合には、Siの溶出に伴う置換反応によって無電解めっきを首尾よく進行させる観点から、めっき液としてそのpHが7超〜13、特に7.1〜12.5であるものを用いることが好ましい。このpHはめっき時の温度におけるpHである。 When the particles of the active material contain Si, the pH of the plating solution is more than 7 to 13, particularly 7.1 to 12.5, from the viewpoint of successfully progressing electroless plating by a substitution reaction accompanying the elution of Si. It is preferable to use what is. This pH is the pH at the temperature during plating.
無電解めっきは、塗膜の厚み方向全域に金属材料13が析出した時点で終了させる。めっきの終了時点を調節することで、活物質層12の上面に表面層(図示せず)を形成することができる。このようにして、図1に示す、目的とする負極が得られる。 The electroless plating is terminated when the metal material 13 is deposited over the entire thickness direction of the coating film. By adjusting the end point of plating, a surface layer (not shown) can be formed on the upper surface of the active material layer 12. Thus, the target negative electrode shown in FIG. 1 is obtained.
無電解めっきに先立ち、活物質の粒子を含む塗膜を有する集電体を、電解めっきの浴中に浸漬して電解めっきを行い、該塗膜中の該粒子間に金属材料を析出させてもよい。こうすることで、次に行う無電解めっきのためのめっき核が形成されるので、無電解めっきを一層首尾良く行うことが可能となる。このことは、電子伝導性の乏しい材料であるSiを含む活物質の粒子12aを用いる場合に特に有効である。無電解めっきに先立つ電解めっきにおける金属の析出の程度は、めっき核が形成される程度の少量で十分である。電解めっきにより析出させる金属と、その次に行う無電解めっきにより析出させる金属とは同種でもよく、異種でもよい。 Prior to electroless plating, a current collector having a coating film containing active material particles is immersed in an electrolytic plating bath to perform electrolytic plating, and a metal material is deposited between the particles in the coating film. Also good. By doing so, plating nuclei for the next electroless plating are formed, so that the electroless plating can be performed more successfully. This is particularly effective when using particles 12a of an active material containing Si, which is a material with poor electron conductivity. The amount of metal deposition in the electroplating prior to the electroless plating is sufficient to be small enough to form plating nuclei. The metal deposited by electrolytic plating and the metal deposited by subsequent electroless plating may be the same or different.
無電解めっきに先立ち行う電解めっきに用いられるめっき液としては、析出させる金属として銅を用いる場合には、例えばピロリン酸銅浴を用いることができる。析出させる金属としてニッケルを用いる場合には、例えばアルカリ性のニッケル浴を用いることができる。これらのめっき液を用いることで、粒子12aの表面に均一な微小めっき核を形成することが可能となる。 As a plating solution used for electrolytic plating performed prior to electroless plating, when copper is used as a metal to be deposited, for example, a copper pyrophosphate bath can be used. When nickel is used as the metal to be deposited, for example, an alkaline nickel bath can be used. By using these plating solutions, it is possible to form uniform fine plating nuclei on the surfaces of the particles 12a.
ピロリン酸銅浴を用いる場合、その浴組成、電解条件及びpHは次の通りであることが好ましい。
・ピロリン酸銅三水和物:85〜120g/l
・ピロリン酸カリウム:300〜600g/l
・硝酸カリウム:15〜65g/l
・浴温度:45〜60℃
・電流密度:1〜7A/dm2
・pH:アンモニア水とポリリン酸を添加してpH7.1〜9.5になるように調整する。
When using a copper pyrophosphate bath, the bath composition, electrolysis conditions and pH are preferably as follows.
Copper pyrophosphate trihydrate: 85-120 g / l
-Potassium pyrophosphate: 300-600 g / l
-Potassium nitrate: 15-65 g / l
-Bath temperature: 45-60 ° C
・ Current density: 1 to 7 A / dm 2
PH: Ammonia water and polyphosphoric acid are added to adjust the pH to 7.1 to 9.5.
アルカリ性のニッケル浴を用いる場合には、その浴組成、電解条件及びpHは次の通りであることが好ましい。
・硫酸ニッケル:100〜250g/l
・塩化アンモニウム:15〜30g/l
・ホウ酸:15〜45g/l
・浴温度:45〜60℃
・電流密度:1〜7A/dm2
・pH:25重量%アンモニア水:100〜300g/lの範囲でpH8〜11となるように調整する。
When an alkaline nickel bath is used, the bath composition, electrolysis conditions and pH are preferably as follows.
Nickel sulfate: 100 to 250 g / l
Ammonium chloride: 15-30 g / l
・ Boric acid: 15-45 g / l
-Bath temperature: 45-60 ° C
・ Current density: 1 to 7 A / dm 2
-PH: 25% by weight ammonia water: Adjust to pH 8-11 within the range of 100-300 g / l.
活物質の粒子12として、電子伝導性の乏しい材料であるSiを含む粒子を用いる場合には、無電解めっきに先立ち電解めっきを行うことに代えて、活物質の粒子12の表面が金属で被覆されたものを用いて無電解めっきを行ってもよい。このような粒子12aを用いることで、無電解めっきに先立ち電解めっきを行う場合と同様の効果が奏される。 When particles containing Si, which is a material with poor electron conductivity, are used as the active material particles 12, the surface of the active material particles 12 is covered with metal instead of performing electroplating prior to electroless plating. Electroless plating may be performed using the prepared one. By using such particles 12a, the same effects as in the case of performing electroplating prior to electroless plating are exhibited.
無電解めっき後に、負極10を防錆処理することも好ましい。防錆処理としては、例えばベンゾトリアゾール、カルボキシベンゾトリアゾール、トリルトリアゾール等のトリアゾール系化合物及びイミダゾール等を用いる有機防錆や、コバルト、ニッケル、クロメート等を用いる無機防錆を採用できる。 It is also preferable to subject the negative electrode 10 to rust prevention after electroless plating. As the rust prevention treatment, for example, organic rust prevention using triazole compounds such as benzotriazole, carboxybenzotriazole, tolyltriazole, and imidazole, and inorganic rust prevention using cobalt, nickel, chromate and the like can be employed.
このようにして得られた負極10は、例えばリチウム二次電池等の非水電解液二次電池用の負極として好適に用いられる。この場合、電池の正極は、正極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、更に裁断、打ち抜きすることにより得られる。正極活物質としては、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物等のリチウム遷移金属複合酸化物を始めとする従来公知の正極活物質が用いられる。また、正極活物質として、LiCoO2に少なくともZrとMgの両方を含有させたリチウム遷移金属複合酸化物と、層状構造を有し、少なくともMnとNiの両方を含有するリチウム遷移金属複合酸化物と混合したものも好ましく用いることができる。かかる正極活物質を用いることで充放電サイクル特性及び熱安定性の低下を伴うことなく、充電終止電圧を高めることが期待できる。正極活物質の一次粒子径の平均値は5μm以上10μm以下であることが、充填密度と反応面積との兼ね合いから好ましく、正極に使用する結着剤の重量平均分子量は350,000以上2,000,000以下のポリフッ化ビニリデンであることが好ましい。低温環境での放電特性を向上させることが期待できるからである。 The negative electrode 10 thus obtained is suitably used as a negative electrode for a nonaqueous electrolyte secondary battery such as a lithium secondary battery. In this case, the positive electrode of the battery is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in a suitable solvent to prepare a positive electrode mixture, applying this to a current collector, drying, roll rolling, It is obtained by pressing, further cutting and punching. As the positive electrode active material, conventionally known positive electrode active materials such as lithium transition metal composite oxides such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used. Further, as the positive electrode active material, a lithium transition metal composite oxide in which LiCoO 2 contains at least both Zr and Mg, a lithium transition metal composite oxide having a layered structure and containing at least both Mn and Ni, A mixture thereof can also be preferably used. The use of such a positive electrode active material can be expected to increase the end-of-charge voltage without deteriorating charge / discharge cycle characteristics and thermal stability. The average value of the primary particle diameter of the positive electrode active material is preferably 5 μm or more and 10 μm or less from the viewpoint of the packing density and the reaction area. The weight average molecular weight of the binder used for the positive electrode is 350,000 or more and 2,000. It is preferable that the polyvinylidene fluoride is 1,000 or less. This is because it can be expected to improve discharge characteristics in a low temperature environment.
電池のセパレータとしては、合成樹脂製不織布、ポリエチレンやポリプロピレン等のポリオレフィン、又はポリテトラフルオロエチレンの多孔質フィルム等が好ましく用いられる。電池の過充電時に生じる電極の発熱を抑制する観点からは、ポリオレフィン微多孔膜の片面又は両面にフェロセン誘導体の薄膜が形成されてなるセパレータを用いることが好ましい。セパレータは、突刺強度が0.2N/μm厚以上0.49N/μm厚以下であり、巻回軸方向の引張強度が40MPa以上150MPa以下であることが好ましい。充放電に伴い大きく膨張・収縮する負極活物質を用いても、セパレータの損傷を抑制することができ、内部短絡の発生を抑制することができるからである。 As the battery separator, a synthetic resin nonwoven fabric, a polyolefin such as polyethylene or polypropylene, or a polytetrafluoroethylene porous film is preferably used. From the viewpoint of suppressing the heat generation of the electrode that occurs when the battery is overcharged, it is preferable to use a separator in which a thin film of a ferrocene derivative is formed on one side or both sides of a polyolefin microporous membrane. The separator preferably has a puncture strength of 0.2 N / μm thickness or more and 0.49 N / μm thickness or less, and a tensile strength in the winding axis direction of 40 MPa or more and 150 MPa or less. This is because even when a negative electrode active material that greatly expands and contracts with charge and discharge is used, damage to the separator can be suppressed, and occurrence of internal short circuits can be suppressed.
非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、CF3SO3Li、(CF3SO2)NLi、(C2F5SO2)2NLi、LiClO4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiCl、LiBr、LiI、LiC4F9SO3等が例示される。これらは単独で又は2種以上を組み合わせて用いることができる。これらのリチウム塩のうち、耐水分解性が優れている点から、CF3SO3Li、(CF3SO2)NLi、(C2F5SO2)2NLiを用いることが好ましい。有機溶媒としては、例えばエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。特に、非水電解液全体に対し0.5〜5重量%のビニレンカーボネート及び0.1〜1重量%のジビニルスルホン、0.1〜1.5重量%の1,4−ブタンジオールジメタンスルホネートを含有させることが充放電サイクル特性を更に向上する観点から好ましい。その理由について詳細は明らかでないが、1,4−ブタンジオールジメタンスルホネートとジビニルスルホンが段階的に分解して、正極上に被膜を形成することにより、硫黄を含有する被膜がより緻密なものになるためであると考えられる。 The nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. The lithium salt, CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI And LiC 4 F 9 SO 3 . These can be used alone or in combination of two or more. Of these lithium salts, CF 3 SO 3 Li, (CF 3 SO 2 ) NLi, and (C 2 F 5 SO 2 ) 2 NLi are preferably used because of their excellent water decomposition resistance. Examples of the organic solvent include ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, and the like. In particular, 0.5 to 5% by weight of vinylene carbonate and 0.1 to 1% by weight of divinyl sulfone and 0.1 to 1.5% by weight of 1,4-butanediol dimethanesulfonate with respect to the whole non-aqueous electrolyte It is preferable from the viewpoint of further improving the charge / discharge cycle characteristics. The details are not clear, but 1,4-butanediol dimethanesulfonate and divinylsulfone are decomposed stepwise to form a film on the positive electrode, so that the film containing sulfur becomes denser. It is thought that it is to become.
特に非水電解液としては、4−フルオロ−1,3−ジオキソラン−2−オン,4−クロロ−1,3−ジオキソラン−2−オン或いは4−トリフルオロメチル−1,3−ジオキソラン−2−オンなどのハロゲン原子を有する環状の炭酸エステル誘導体のような比誘電率が30以上の高誘電率溶媒を用いることも好ましい。耐還元性が高く、分解されにくいからである。また、上記高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、或いはメチルエチルカーボネートなどの粘度が1mPa・s以下である低粘度溶媒を混合した電解液も好ましい。より高いイオン伝導性を得ることができるからである。更に、電解液中のフッ素イオンの含有量が14質量ppm以上1290質量ppm以下の範囲内であることも好ましい。電解液に適量なフッ素イオンが含まれていると、フッ素イオンに由来するフッ化リチウムなどの被膜が負極に形成され、負極における電解液の分解反応を抑制することができると考えられるからである。更に、酸無水物及びその誘導体からなる群のうちの少なくとも1種の添加物が0.001質量%〜10質量%含まれていることが好ましい。これにより負極の表面に被膜が形成され、電解液の分解反応を抑制することができるからである。この添加物としては、環に−C(=O)−O−C(=O)−基を含む環式化合物が好ましく、例えば無水コハク酸、無水グルタル酸、無水マレイン酸、無水フタル酸、無水2−スルホ安息香酸、無水シトラコン酸、無水イタコン酸、無水ジグリコール酸、無水ヘキサフルオログルタル酸、無水3−フルオロフタル酸、無水4−フルオロフタル酸などの無水フタル酸誘導体、又は無水3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸、無水1,8−ナフタル酸、無水2,3−ナフタレンカルボン酸、無水1,2−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸などの無水1,2−シクロアルカンジカルボン酸、又はシス−1,2,3,6−テトラヒドロフタル酸無水物或いは3,4,5,6−テトラヒドロフタル酸無水物などのテトラヒドロフタル酸無水物、又はヘキサヒドロフタル酸無水物(シス異性体、トランス異性体)、3,4,5,6−テトラクロロフタル酸無水物、1,2,4−ベンゼントリカルボン酸無水物、二無水ピロメリット酸、又はこれらの誘導体などが挙げられる。 In particular, as the non-aqueous electrolyte, 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one or 4-trifluoromethyl-1,3-dioxolane-2- It is also preferable to use a high dielectric constant solvent having a relative dielectric constant of 30 or more, such as a cyclic carbonate derivative having a halogen atom such as ON. This is because it has high resistance to reduction and is not easily decomposed. Further, an electrolytic solution obtained by mixing the high dielectric constant solvent and a low viscosity solvent having a viscosity of 1 mPa · s or less such as dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate is also preferable. This is because higher ionic conductivity can be obtained. Furthermore, it is also preferable that the content of fluorine ions in the electrolytic solution is in the range of 14 mass ppm to 1290 mass ppm. This is because, when an appropriate amount of fluorine ions is contained in the electrolytic solution, a coating film such as lithium fluoride derived from fluorine ions is formed on the negative electrode, and it is considered that the decomposition reaction of the electrolytic solution in the negative electrode can be suppressed. . Furthermore, it is preferable that 0.001 mass%-10 mass% of at least 1 sort (s) of additives from the group which consists of an acid anhydride and its derivative (s) are contained. This is because a film is formed on the surface of the negative electrode, and the decomposition reaction of the electrolytic solution can be suppressed. As this additive, a cyclic compound containing a —C (═O) —O—C (═O) — group in the ring is preferable. For example, succinic anhydride, glutaric anhydride, maleic anhydride, phthalic anhydride, anhydrous Phthalic anhydride derivatives such as 2-sulfobenzoic acid, citraconic anhydride, itaconic anhydride, diglycolic anhydride, hexafluoroglutaric anhydride, 3-fluorophthalic anhydride, 4-fluorophthalic anhydride, or anhydrous 3,6 -Epoxy-1,2,3,6-tetrahydrophthalic acid, 1,8-naphthalic anhydride, 2,3-naphthalene carboxylic acid anhydride, 1,2-cyclopentane dicarboxylic acid anhydride, 1,2-cyclohexane dicarboxylic acid, etc. 1,2-cycloalkanedicarboxylic anhydride, or cis-1,2,3,6-tetrahydrophthalic anhydride or 3,4,5,6-tetrahydrophthal Tetrahydrophthalic anhydride such as acid anhydride, or hexahydrophthalic anhydride (cis isomer, trans isomer), 3,4,5,6-tetrachlorophthalic anhydride, 1,2,4-benzene Examples thereof include tricarboxylic acid anhydride, dianhydropyromellitic acid, and derivatives thereof.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。特に断らない限り「%」は「重量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “% by weight”.
〔実施例1〕
厚さ18μmの電解銅箔からなる集電体を室温で30秒間酸洗浄した。処理後、15秒間純水洗浄した。集電体上にSiの粒子を含むスラリーを膜厚15μmになるように塗布し塗膜を形成した。スラリーの組成は、粒子:スチレンブタジエンラバー(結着剤):アセチレンブラック=100:1.7:2(重量比)であった。Siの粒子の平均粒径D50は2.5μmであった。平均粒径D50は、日機装(株)製のマイクロトラック粒度分布測定装置(No.9320−X100)を使用して測定した。
[Example 1]
A current collector made of an electrolytic copper foil having a thickness of 18 μm was acid washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied on the current collector to a thickness of 15 μm to form a coating film. The composition of the slurry was particles: styrene butadiene rubber (binder): acetylene black = 100: 1.7: 2 (weight ratio). The average particle diameter D 50 of the Si particles was 2.5 μm. The average particle diameter D 50 was measured using a Microtrac particle size distribution measuring device (No. 9320-X100) manufactured by Nikkiso Co., Ltd.
塗膜が形成された集電体を、メルテックス社製の無電解銅めっき液であるメルプレートCu−390中に浸漬した。25℃で60分間無電解めっきを行い、活物質層を形成した。無電解めっきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させ、水洗、ベンゾトリアゾール(BTA)による防錆処理を施して目的とする負極を得た。得られた負極における活物質層の縦断面の走査型電子顕微鏡写真を図2(a)に示す。 The current collector on which the coating film was formed was immersed in Melplate Cu-390, which is an electroless copper plating solution manufactured by Meltex. Electroless plating was performed at 25 ° C. for 60 minutes to form an active material layer. The electroless plating was terminated when copper was deposited over the entire thickness direction of the coating film, washed with water, and subjected to rust prevention treatment with benzotriazole (BTA) to obtain a target negative electrode. A scanning electron micrograph of a longitudinal section of the active material layer in the obtained negative electrode is shown in FIG.
〔実施例2〕
実施例1において、塗膜が形成された集電体を、以下の浴組成を有するピロリン酸銅浴に浸漬させ、電解めっきを行った。電解の条件は以下の通りとした。陽極にはDSEを用いた。電源は直流電源を用いた。電解時間は1.5分間とした。その後は、実施例1と同様にして銅の無電解めっきを行い、負極を得た。得られた負極における活物質層の縦断面の走査型電子顕微鏡写真を図2(b)に示す。
・ピロリン酸銅三水和物:105g/l
・ピロリン酸カリウム:450g/l
・硝酸カリウム:30g/l
・浴温度:50℃
・電流密度:3A/dm2
・pH:アンモニア水とポリリン酸を添加してpH8.2になるように調整した。
[Example 2]
In Example 1, the current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition, and electrolytic plating was performed. The electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source. The electrolysis time was 1.5 minutes. Thereafter, copper electroless plating was performed in the same manner as in Example 1 to obtain a negative electrode. A scanning electron micrograph of a longitudinal section of the active material layer in the obtained negative electrode is shown in FIG.
Copper pyrophosphate trihydrate: 105 g / l
-Potassium pyrophosphate: 450 g / l
・ Potassium nitrate: 30 g / l
・ Bath temperature: 50 ° C
・ Current density: 3 A / dm 2
-PH: Ammonia water and polyphosphoric acid were added to adjust to pH 8.2.
〔実施例3〕
シリコン粒子が懸濁されており且つ硫酸銅及びロシェル塩を含むめっき浴中において、該シリコン粒子を無電解めっきし、該シリコン粒子の表面に銅を被覆させて、銅被覆シリコン粒子を得た。めっき浴中におけるシリコン粒子の濃度は500g/l、硫酸銅の濃度は7.5g/l、ロシェル塩の濃度は85g/lであった。めっき浴のpHは12.5、浴温は25℃であった。還元剤としホルムアルデヒドを用い、その濃度は22cc/lであった。得られた銅被覆シリコン粒子のD50値は2.5μmであった。また粒子の組成はSi80/Cu20であった。この銅被覆シリコン粒子を用いる以外は、実施例1と同様にして負極を得た。得られた負極における活物質層の縦断面の走査型電子顕微鏡写真を図3に示す。
Example 3
In a plating bath in which silicon particles are suspended and containing copper sulfate and Rochelle salt, the silicon particles are electrolessly plated, and the surfaces of the silicon particles are coated with copper to obtain copper-coated silicon particles. The concentration of silicon particles in the plating bath was 500 g / l, the concentration of copper sulfate was 7.5 g / l, and the concentration of Rochelle salt was 85 g / l. The pH of the plating bath was 12.5, and the bath temperature was 25 ° C. Formaldehyde was used as a reducing agent, and its concentration was 22 cc / l. The obtained copper-coated silicon particles had a D 50 value of 2.5 μm. The composition of the particles was Si80 / Cu20. A negative electrode was obtained in the same manner as in Example 1 except that the copper-coated silicon particles were used. A scanning electron micrograph of the longitudinal section of the active material layer in the obtained negative electrode is shown in FIG.
〔実施例4〕
シリコン80%。ニッケル20%を含む1400℃の溶湯を、銅製の鋳型に流し込んで、急冷されたシリコン−ニッケル合金のインゴットを得た。このインゴットをジェットミルで粉砕し、篩い分けして活物質粒子を得た。得られた活物質粒子を20%のKOH中に投入し、20分間エッチングした。このようにして得られた活物質粒子のD50値は2.5μmであった。この活物質粒子を用いる以外は、実施例1と同様にして負極を得た。
Example 4
80% silicon. A 1400 ° C. molten metal containing 20% nickel was poured into a copper mold to obtain a rapidly cooled silicon-nickel alloy ingot. The ingot was pulverized with a jet mill and sieved to obtain active material particles. The obtained active material particles were put into 20% KOH and etched for 20 minutes. The active material particles thus obtained had a D 50 value of 2.5 μm. A negative electrode was obtained in the same manner as in Example 1 except that this active material particle was used.
〔比較例1〕
無電解めっきを行わない以外は実施例1と同様にして負極を得た。
[Comparative Example 1]
A negative electrode was obtained in the same manner as in Example 1 except that electroless plating was not performed.
〔比較例2〕
実施例1において、塗膜が形成された集電体を、特許文献2を参考にして以下の浴組成を有する硫酸銅浴に浸漬させ電解めっきを行った。電解の条件は以下の通りとした。
・CuSO4:250g/l
・H2SO4:70g/l
・浴温度:40℃
・電流密度:5A/dm2
電解めっきは、塗膜の厚み方向全域にわたって銅が析出した時点で終了させた。それ以外は実施例1と同様にして負極を得た。
[Comparative Example 2]
In Example 1, the current collector on which the coating film was formed was immersed in a copper sulfate bath having the following bath composition with reference to Patent Document 2, and electrolytic plating was performed. The electrolysis conditions were as follows.
CuSO 4 : 250 g / l
・ H 2 SO 4 : 70 g / l
・ Bath temperature: 40 ℃
・ Current density: 5 A / dm 2
The electrolytic plating was terminated when copper was deposited over the entire thickness direction of the coating film. Other than that was carried out similarly to Example 1, and obtained the negative electrode.
〔評価〕
実施例及び比較例で得られた負極について、JIS C 5012に準拠してテープ剥離試験を行い、集電体と活物質層との密着性を評価した。サンプル50個のうち、集電体と活物質層との界面で剥離したものを×、剥離しなかったものを○としたときの、○の割合(%)を算出した。
[Evaluation]
About the negative electrode obtained by the Example and the comparative example, the tape peeling test was done based on JISC5012, and the adhesiveness of a collector and an active material layer was evaluated. Of 50 samples, the ratio (%) of ◯ was calculated when the sample peeled at the interface between the current collector and the active material layer was indicated as x, and the sample that did not peel as ◯.
また、上述した方法で活物質層の空隙率を測定した。更に、以下の基準で総合評価を行った。これらの結果を表1に示す。
◎:密着性が90%超で且つ空隙率が15%超。
○:密着性が50%超90%以下で且つ空隙率が15%超。
×:密着性が50%以下又は空隙率が15%以下。
Further, the porosity of the active material layer was measured by the method described above. Furthermore, comprehensive evaluation was performed according to the following criteria. These results are shown in Table 1.
A: Adhesiveness exceeds 90% and porosity is more than 15%.
○: Adhesiveness is more than 50% and 90% or less, and porosity is more than 15%.
X: Adhesiveness is 50% or less or porosity is 15% or less.
表1に示す結果から明らかなように、実施例の負極においては、集電体と活物質層との密着性が高く、しかも活物質層内に十分な量の空隙が形成されていることが判る。これに対して比較例1の負極では、活物質層内に十分な量の空隙が形成されているものの、集電体と活物質層との密着性が乏しいことが判る。逆に比較例2の負極では、集電体と活物質層との密着性が高いものの、活物質層内に形成される空隙の量が十分でないことが判る。 As is clear from the results shown in Table 1, in the negative electrode of the example, the adhesion between the current collector and the active material layer is high, and a sufficient amount of voids are formed in the active material layer. I understand. On the other hand, in the negative electrode of Comparative Example 1, it can be seen that a sufficient amount of voids are formed in the active material layer, but the adhesion between the current collector and the active material layer is poor. On the contrary, in the negative electrode of Comparative Example 2, it can be seen that the adhesiveness between the current collector and the active material layer is high, but the amount of voids formed in the active material layer is not sufficient.
10 非水電解液二次電池用負極
11 集電体
12 活物質層
12a 活物質の粒子
13 リチウム化合物の形成能の低い金属材料
DESCRIPTION OF SYMBOLS 10 Negative electrode for non-aqueous electrolyte secondary batteries 11 Current collector 12 Active material layer 12a Active material particles 13 Metal material with low lithium compound forming ability
Claims (6)
活物質の粒子を含むスラリーを集電体の少なくとも一面に塗布して塗膜を形成し、
該塗膜が形成された集電体を浴中に浸漬して無電解めっきを行い、該塗膜中の該粒子間に金属材料を析出させることを特徴とする非水電解液二次電池用負極の製造方法。 A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1,
Applying a slurry containing active material particles to at least one surface of the current collector to form a coating film,
For a non-aqueous electrolyte secondary battery, wherein the current collector formed with the coating film is immersed in a bath to perform electroless plating, and a metal material is deposited between the particles in the coating film. Manufacturing method of negative electrode.
前記集電体を無電解めっきの浴中に浸漬して前記の無電解めっきを行う請求項5記載の製造方法。 The current collector on which the coating film is formed is immersed in an electrolytic plating bath to perform electrolytic plating, and a metal material is deposited between the particles in the coating film.
The manufacturing method according to claim 5, wherein the current collector is immersed in an electroless plating bath to perform the electroless plating.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007042791A JP2008066272A (en) | 2006-08-10 | 2007-02-22 | Anode for nonaqueous electrolyte secondary battery |
PCT/JP2007/058417 WO2008018214A1 (en) | 2006-08-10 | 2007-04-18 | Negative electrode for non-aqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006219050 | 2006-08-10 | ||
JP2007042791A JP2008066272A (en) | 2006-08-10 | 2007-02-22 | Anode for nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008066272A true JP2008066272A (en) | 2008-03-21 |
Family
ID=39032752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007042791A Pending JP2008066272A (en) | 2006-08-10 | 2007-02-22 | Anode for nonaqueous electrolyte secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008066272A (en) |
WO (1) | WO2008018214A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024414A1 (en) * | 2009-08-28 | 2011-03-03 | パナソニック株式会社 | Lithium secondary battery and method for manufacturing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102792498B (en) * | 2010-03-11 | 2015-09-02 | 株式会社Lg化学 | Polymer-silicon composite particle, its preparation method, and negative electrode and lithium secondary battery comprising the polymer-silicon composite particle |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3619000B2 (en) * | 1997-01-28 | 2005-02-09 | キヤノン株式会社 | Electrode structure, secondary battery, and manufacturing method thereof |
JP4422417B2 (en) * | 2003-02-07 | 2010-02-24 | 三井金属鉱業株式会社 | Anode for non-aqueous electrolyte secondary battery |
JP2004296412A (en) * | 2003-02-07 | 2004-10-21 | Mitsui Mining & Smelting Co Ltd | Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery |
JP4953557B2 (en) * | 2004-03-30 | 2012-06-13 | 三洋電機株式会社 | Negative electrode for lithium secondary battery and lithium secondary battery |
-
2007
- 2007-02-22 JP JP2007042791A patent/JP2008066272A/en active Pending
- 2007-04-18 WO PCT/JP2007/058417 patent/WO2008018214A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024414A1 (en) * | 2009-08-28 | 2011-03-03 | パナソニック株式会社 | Lithium secondary battery and method for manufacturing same |
CN102246342A (en) * | 2009-08-28 | 2011-11-16 | 松下电器产业株式会社 | Lithium secondary battery and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
WO2008018214A1 (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5192710B2 (en) | Anode for non-aqueous electrolyte secondary battery | |
JP3750117B2 (en) | Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR101113480B1 (en) | Non-aqueous electrolyte secondary battery | |
JP4944648B2 (en) | Anode for non-aqueous electrolyte secondary battery | |
JP2008047304A (en) | Nonaqueous electrolyte secondary battery | |
WO2009087791A1 (en) | Negative electrode for rechargeable battery with nonaqueous electrolyte | |
JP2009158415A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having the same | |
JP2008277156A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP2008047308A (en) | Nonaqueous electrolyte secondary battery | |
JP5192664B2 (en) | Anode for non-aqueous electrolyte secondary battery | |
JP2008016195A (en) | Anode for nonaqueous electrolyte secondary battery | |
JP2009104900A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP2008047303A (en) | Nonaqueous electrolyte secondary battery | |
JP2008047306A (en) | Nonaqueous electrolyte secondary battery | |
JP2008016196A (en) | Negative electrode for polymer electrolyte secondary battery | |
JP2008066279A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP2008016193A (en) | Method of manufacturing nonaqueous electrolyte secondary battery | |
JP2008016192A (en) | Anode for nonaqueous electrolyte secondary battery | |
JP2008016191A (en) | Anode for nonaqueous electrolyte secondary battery | |
JP2008047307A (en) | Nonaqueous electrolyte secondary battery | |
JP2008066272A (en) | Anode for nonaqueous electrolyte secondary battery | |
JP2008016194A (en) | Manufacturing method of nonaqueous electrolyte secondary battery | |
JP2008047305A (en) | Nonaqueous electrolyte secondary battery | |
JP2008251255A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP2009277509A (en) | Anode for non-aqueous electrolyte secondary battery |