JP2008064755A - 部品の傷を識別する方法、および部品検査システム - Google Patents
部品の傷を識別する方法、および部品検査システム Download PDFInfo
- Publication number
- JP2008064755A JP2008064755A JP2007228476A JP2007228476A JP2008064755A JP 2008064755 A JP2008064755 A JP 2008064755A JP 2007228476 A JP2007228476 A JP 2007228476A JP 2007228476 A JP2007228476 A JP 2007228476A JP 2008064755 A JP2008064755 A JP 2008064755A
- Authority
- JP
- Japan
- Prior art keywords
- component
- heat
- surface temperature
- equation
- mathematical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000007689 inspection Methods 0.000 title claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims abstract description 6
- 230000004907 flux Effects 0.000 claims abstract description 4
- 230000001052 transient effect Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 230000001066 destructive effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Radiation Pyrometers (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
【課題】亀裂などの部品の傷を識別することができる非破壊的な検査方法および装置が必要である。
【解決手段】部品を振動させて熱を生じさせ、部品の傷を識別する方法を提供する。部品のあらゆる傷の箇所で、熱が発生する。赤外線カメラなどの撮像装置で、部品表面の温度を測定する。境界要素法または有限要素法を用いた熱伝導方程式などの熱物理学の数学的表現を用いて、熱画像で識別された熱源および熱の強さを識別する。熱源および熱の強さを用いて、部品の傷特性を決定することができる。プロセッサが、表面温度を受信するために撮像装置と通信する。プロセッサは、部品特性および数学的方程式を有するコンピュータメモリを含む。プロセッサは、測定した表面温度と、想定された又は測定した熱流束つまり熱伝達係数と、部品特性と、数学方程式とを用いて、部品の傷特性を決定する。
【選択図】図1
【解決手段】部品を振動させて熱を生じさせ、部品の傷を識別する方法を提供する。部品のあらゆる傷の箇所で、熱が発生する。赤外線カメラなどの撮像装置で、部品表面の温度を測定する。境界要素法または有限要素法を用いた熱伝導方程式などの熱物理学の数学的表現を用いて、熱画像で識別された熱源および熱の強さを識別する。熱源および熱の強さを用いて、部品の傷特性を決定することができる。プロセッサが、表面温度を受信するために撮像装置と通信する。プロセッサは、部品特性および数学的方程式を有するコンピュータメモリを含む。プロセッサは、測定した表面温度と、想定された又は測定した熱流束つまり熱伝達係数と、部品特性と、数学方程式とを用いて、部品の傷特性を決定する。
【選択図】図1
Description
本発明は、部品を検査して、例えば部品内の傷を識別する方法および装置に関する。
多くの構成部品は、その部品の使用を損なう部品の欠陥がないことを保証するために調べられる必要がある。これは、タービン翼などの航空機コンポーネントの場合に特にあてはまる。検査後もその部品を使用できるように、部品を非破壊的方法で調べなければならない。小さい亀裂などの部品の傷を検出するのは難しい。また、超音波、エックス線、蛍光浸透剤、渦電流などの、従来の非破壊的検査技術を用いても、内部部品の欠陥が明らかにならない場合がある。亀裂などの部品の傷を識別することができる非破壊的な検査方法および装置が必要とされている。
部品の傷を識別する方法は、部品を振動させて熱を生じさせるステップを含む。この熱は、部品のどの傷でも発生する。例えば、赤外線カメラを用いて熱画像を得る。境界要素法または有限要素法などの多くの解析モデリング法のうちの任意の数学的表現を、熱伝達方程式と共に用いて、熱画像で識別された熱源および熱の強さを確定する。熱源および熱の強さを用いて、部品の傷特性を決定することができる。
上記の方法は、部品を振動させる振動装置を含む検査システムを用いて、採用される。赤外線カメラなどの撮像装置は、部品表面の温度を測定する。プロセッサが、表面温度を受信するために撮像装置と通信する。プロセッサは、部品特性および数学的方程式を有するコンピュータメモリを含む。プロセッサは、表面温度、部品特性、および数学的方程式を用いて、部品の傷特性を決定する。
本発明のこれらの特徴および他の特徴は、明細書と図面から、よく理解され得る。
部品10内にある傷などの特徴部を識別する検査システム11を図1に示す。検査システム11は、完全に自動化することができる。傷12を有する部品10を、異なる周波数をもつ複数のアクチュエータ32を用いて励振される振動装置30に取り付ける。振動装置30は、例えば、500Hz〜100kHzの範囲で部品10を振動させることができる振動台であっても、超音波装置であってもよい。
振動装置30によって部品10に与えられた振動により、各荷重サイクル(loading cycle)での摩擦および塑性変形によって、部品10内の傷すなわち亀裂のある箇所で、熱が生成される。符号33で概略図に示されるこの熱は、部品10の公称構造温度(nominal structure temperature)を超える温度上昇を生じる。亀裂により生じる温度上昇は、歪みより広い範囲に亘って分布するので、例えば、赤外線カメラ34を用いて検出することができる。部品10の外側の画像を、赤外線カメラ34で撮影する。温度上昇は、亀裂の形状、位置、および弾性−塑性構造におけるエネルギー散逸と、部品10の傷の内部摩擦と、によって決まる。エネルギー散逸ないし熱の放出率を、材料のモデル化でパラメータ化することができ、既知の亀裂形状の経験データに基づいて得ることもできる。この材料情報28はコンピュータメモリ18に保存される。
プロセッサ16およびメモリ18を含むコンピュータ14の概略を図1に示す。コンピュータ14は、ディスプレイなどの出力装置20を含む。ディスプレイ20は、後の分析用に、部品検査で識別された傷特性22をすべて、グラフィカルに、および/またはテキストで表示することができる。
材料情報28に加えて、部品モデル26などの他の部品特性24を、メモリ18に与えることができる。部品モデル26は、例えば、グラフィカルかつ数学的に部品10の構造的特徴を表す境界要素情報とすることができる。部品特性24は、入力装置21を用いてコンピュータ14に入力することができる。メモリ18は、この数学的モデル36を含み、数学的モデル36は、赤外線カメラ34から得た表面温度情報を、部品特性24を用いて、部品10の1つまたは複数の傷に関連付ける。
図2に、部品検査手順を示すフローチャートを示す。ステップ1は、振動装置30を用いて部品10の音響振動を開始するステップを含む。表面や表面下にある、または埋もれた傷すなわち亀裂は、熱33を生成する。ステップ2は、赤外線カメラ34を用いて部品10の熱画像を得るステップを含む。試験の間にわたる過渡温度を捉えるために数枚の画像を撮影することができ、部品10のベースライン温度と比較することができる。ステップ3に示された例において、赤外線カメラ34によって得られた画像をデジタル化して、部品10に関する表面温度などの熱情報を得る。例えば、信号持続時間、信号パラメータ、および獲得時刻などの異なる負荷条件(loading conditions)下で、様々なデジタル化された熱画像のセットを得る。
ステップ4は、測定した複数の表面温度と、想定される又は部品表面で測定した表面熱流束つまり熱伝達係数と、周囲温度と、を用いて、過渡熱伝達方程式を逆に解いて、亀裂すなわち傷によって生じた未知の熱源を予測するステップを含む。その手順の一部として、熱情報が、部品10をグラフィカルに表現する境界要素モデルに関連付けられる。ステップ5で、例えば、境界要素法(boundary element method)つまり有限要素法(finite element method)を用いて、熱源を求めるために、部品10の悪条件設定の過渡的な熱伝達方程式(ill-posed transient heat transfer equations)を解く。この逆解法の結果により、未知の熱源の強さおよび位置を予測する。境界要素法の行列条件付け法(boundary element method matrix conditioning method)を用いて、正則化することにより代数方程式のシステムを解く。ステップ5Aで表されるように、方程式の悪条件システムを、四捨五入の誤りで損なわれた特異方程式(singular equations)と、ほぼ特異な方程式(near-singular equations)とを取り除くことによって条件付けする。ステップ6で示されるように、熱源の強さは、境界要素モデルの各々の数値グリッドセル(numerical grid cell)で得られる。
ステップ7で、熱源および熱の強さの情報を亀裂の形状および位置の情報に変換する。ステップ7Aで、予備的な材料試験およびモデリング情報を参照する。予備的な材料情報は、既知の亀裂形状からの、既知の摩擦係数(friction coefficients)およびエネルギー放出率(energy release rates)を含む。これらは経験的に集められたデータであり、逆解法を初期段階で効果的にフィルタリングすることができる。ステップ7Bで、亀裂分布の初期段階の近似値に到達する。亀裂分布は、最小二乗法などの反復法つまり数値法を用いて、範囲を狭めることができる。この数値法は、熱源に関するエネルギー変換率と、複数の予測値と、の差を最小化する。最終的に、内部亀裂の寸法および位置を計算して求めることができる。その後、ステップ8に示すように、この情報を用いて、部品10を許容するか棄却するかを判定する。
本発明の実施例を開示したが、当業者であれば、本発明の範囲内で変更がなされ得ることを理解されるであろう。このため、本発明の特許請求の範囲および内容を決定するために請求項を検討されたい。
Claims (18)
- 部品の傷を識別する方法であって、
部品を振動させて、傷の箇所で熱を生じさせるステップと、
前記部品の熱画像を得るステップと、
前記部品および前記熱画像の数学的表現に基づいた熱伝達方程式を解くステップと、
前記傷に対応する前記熱の源および強さを識別するステップと、
前記源および強さから傷特性を決定するステップと、
を含む、部品の傷を識別する方法。 - 前記熱画像が、表面温度を含むことを特徴とする、請求項1に記載の方法。
- 前記熱画像が、熱流束を含むことを特徴とする、請求項2に記載の方法。
- 前記数学的表現が、境界要素モデルを含み、前記熱画像が、前記境界要素モデルに適用されることを特徴とする、請求項1に記載の方法。
- 前記熱の源および強さが、境界要素モデルからグリッドセルへ関連付けられることを特徴とする、請求項4に記載の方法。
- 前記熱伝達方程式が、材料情報を含む部品特性に基づいて解かれることを特徴とする、請求項1に記載の方法。
- 前記材料情報が、前記部品材料の摩擦係数およびエネルギー放出率を含むことを特徴とする、請求項6に記載の方法。
- 前記熱伝達方程式が、過渡的な逆熱伝導方程式を含むことを特徴とする、請求項1に記載の方法。
- 前記過渡的な逆熱伝導方程式が、正則化されることを特徴とする、請求項8に記載の方法。
- 前記傷特性が、亀裂の形状および位置を含むことを特徴とする、請求項1に記載の方法。
- 反復法を用いて亀裂分布が決定されることを特徴とする、請求項10に記載の方法。
- 前記部品が、前記傷特性に基づいて許容もしくは棄却されることを特徴とする、請求項10に記載の方法。
- 部品検査システムであって、
前記部品を振動させる振動装置と、
前記部品から表面温度を測定する撮像装置と、
前記表面温度を受信するために前記撮像装置と通信するプロセッサであって、部品特性および数学的方程式を有するメモリを含み、前記表面温度、前記部品特性、および前記数学方程式を用いて前記部品の傷特性を決定するプロセッサと、
を備える、部品検査システム。 - 前記部品特性が、前記部品の境界要素モデルと、前記部品の摩擦係数と、前記部品のエネルギー放出率と、を含むことを特徴とする請求項13に記載のシステム。
- 前記数学的方程式が、過渡的な逆熱伝導方程式を含むことを特徴とする、請求項13に記載のシステム。
- 前記過渡的な逆熱伝導方程式の結果が、正則化されることを特徴とする、請求項15に記載のシステム。
- 前記傷特性が、亀裂の寸法および位置を含むことを特徴とする、請求項13に記載のシステム。
- 前記表面温度が熱流束を決定するために用いられ、前記部品特性が熱伝達係数を含むことを特徴とする、請求項13に記載のシステム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/515,610 US7549339B2 (en) | 2006-09-05 | 2006-09-05 | Inverse thermal acoustic imaging part inspection |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008064755A true JP2008064755A (ja) | 2008-03-21 |
Family
ID=38752520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007228476A Pending JP2008064755A (ja) | 2006-09-05 | 2007-09-04 | 部品の傷を識別する方法、および部品検査システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US7549339B2 (ja) |
EP (1) | EP1898209B1 (ja) |
JP (1) | JP2008064755A (ja) |
CN (1) | CN101140270A (ja) |
SG (1) | SG140580A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012500975A (ja) * | 2008-08-25 | 2012-01-12 | ザ プロクター アンド ギャンブル カンパニー | 機械的処理時の繊維又は基材の摩擦特性を評価する方法 |
KR20160031119A (ko) * | 2014-09-11 | 2016-03-22 | 한국표준과학연구원 | 열전도 억제장치를 이용한 적외선 열화상 비파괴 검사 시스템 및 검사방법 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006049152A1 (de) * | 2006-10-18 | 2008-04-24 | Ludwig-Maximilians-Universität München | Anordnung und Verfahren zum Detektieren eines an einem Körper angeordneten Gegenstands, insbesondere zur Durchführung einer Sicherheitskontrolle |
CN102869973B (zh) * | 2010-04-23 | 2016-01-20 | 西门子公司 | 用于检查涡轮叶片的检验系统 |
US9194842B2 (en) | 2011-06-21 | 2015-11-24 | Honeywell International Inc. | Thermal acoustic imaging methods, systems, and apparatus for detecting defects in an object |
US9204109B1 (en) * | 2012-10-31 | 2015-12-01 | Florida Turbine Technologies, Inc. | IR detection of small cracks during fatigue testing |
CN103616386B (zh) * | 2013-11-28 | 2016-08-17 | 湖南三一路面机械有限公司 | 一种工程机械及其刀具破损检测系统和方法 |
US10815817B2 (en) | 2016-01-21 | 2020-10-27 | Raytheon Technologies Corporation | Heat flux measurement system |
WO2019028465A1 (en) * | 2017-08-04 | 2019-02-07 | University Of South Florida | CONTACTLESS SYSTEM AND METHOD FOR DETECTING DEFECTS IN THE ADDITIVE MANUFACTURING PROCESS |
US10488371B1 (en) * | 2018-05-04 | 2019-11-26 | United Technologies Corporation | Nondestructive inspection using thermoacoustic imagery and method therefor |
US10473593B1 (en) | 2018-05-04 | 2019-11-12 | United Technologies Corporation | System and method for damage detection by cast shadows |
US10914191B2 (en) | 2018-05-04 | 2021-02-09 | Raytheon Technologies Corporation | System and method for in situ airfoil inspection |
US11268881B2 (en) | 2018-05-04 | 2022-03-08 | Raytheon Technologies Corporation | System and method for fan blade rotor disk and gear inspection |
US10902664B2 (en) | 2018-05-04 | 2021-01-26 | Raytheon Technologies Corporation | System and method for detecting damage using two-dimensional imagery and three-dimensional model |
US10958843B2 (en) | 2018-05-04 | 2021-03-23 | Raytheon Technologies Corporation | Multi-camera system for simultaneous registration and zoomed imagery |
US10685433B2 (en) | 2018-05-04 | 2020-06-16 | Raytheon Technologies Corporation | Nondestructive coating imperfection detection system and method therefor |
US11079285B2 (en) | 2018-05-04 | 2021-08-03 | Raytheon Technologies Corporation | Automated analysis of thermally-sensitive coating and method therefor |
US10943320B2 (en) | 2018-05-04 | 2021-03-09 | Raytheon Technologies Corporation | System and method for robotic inspection |
US10928362B2 (en) | 2018-05-04 | 2021-02-23 | Raytheon Technologies Corporation | Nondestructive inspection using dual pulse-echo ultrasonics and method therefor |
CN113237920B (zh) * | 2021-05-17 | 2022-04-22 | 西南交通大学 | 一种特高压换流变压器阀侧套管故障热源检测方法 |
US12269074B2 (en) * | 2022-04-13 | 2025-04-08 | General Electric Company | System and method for cleaning turbine components |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711603A (en) * | 1996-10-30 | 1998-01-27 | United Technologies Corporation | Nondestructive testing: transient depth thermography |
EP1214575B1 (en) * | 1999-09-16 | 2004-12-22 | Wayne State University | Miniaturized contactless sonic ir device for remote non-destructive inspection |
US7064332B2 (en) * | 1999-09-16 | 2006-06-20 | Wayne State University | Hand-held sound source for sonic infrared imaging of defects in materials |
US6236049B1 (en) * | 1999-09-16 | 2001-05-22 | Wayne State University | Infrared imaging of ultrasonically excited subsurface defects in materials |
US6593574B2 (en) * | 1999-09-16 | 2003-07-15 | Wayne State University | Hand-held sound source gun for infrared imaging of sub-surface defects in materials |
DE10059854A1 (de) * | 2000-11-30 | 2002-06-13 | Gerd Busse | Bildgebendes Verfahren zur Darstellung eines temperaturmodulierten Gegenstandes mittels der Phase |
US6698288B2 (en) * | 2001-12-06 | 2004-03-02 | General Electric Company | Method and system for assembling and nondestructive testing of assemblies with composite components |
AU2003293826A1 (en) * | 2002-08-28 | 2004-03-19 | Siemens Westinghouse Power Company | System for infrared imaging by inducing acoustic chaos |
US6730912B2 (en) * | 2002-08-30 | 2004-05-04 | The University Of Chicago | Method and apparatus for detecting normal cracks using infrared thermal imaging |
US7060971B2 (en) * | 2002-09-13 | 2006-06-13 | Siemens Westinghouser Power Corporation | Reference standard systems for thermosonic flaw detection |
US7064331B2 (en) * | 2002-09-13 | 2006-06-20 | Siemens Power Generation, Inc. | Method for calibrating and enhancing flaw detection of an acoustic thermography system |
US6838670B2 (en) * | 2002-11-12 | 2005-01-04 | Siemens Westinghouse Power Corporation | Methods and system for ultrasonic thermographic non-destructive examination for enhanced defect determination |
US7075084B2 (en) | 2002-12-20 | 2006-07-11 | The Boeing Company | Ultrasonic thermography inspection method and apparatus |
US7064330B2 (en) * | 2003-04-30 | 2006-06-20 | United Technologies Corporation | Infrared defect detection via broad-band acoustics |
US7822268B2 (en) * | 2006-06-06 | 2010-10-26 | Siemens Energy, Inc. | Advanced processing of active thermography signals |
US7716987B2 (en) * | 2006-07-31 | 2010-05-18 | University Of Dayton | Non-contact thermo-elastic property measurement and imaging system for quantitative nondestructive evaluation of materials |
-
2006
- 2006-09-05 US US11/515,610 patent/US7549339B2/en active Active
-
2007
- 2007-08-30 EP EP07253415A patent/EP1898209B1/en not_active Not-in-force
- 2007-08-31 SG SG200706413-2A patent/SG140580A1/en unknown
- 2007-09-04 JP JP2007228476A patent/JP2008064755A/ja active Pending
- 2007-09-05 CN CNA2007101473854A patent/CN101140270A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012500975A (ja) * | 2008-08-25 | 2012-01-12 | ザ プロクター アンド ギャンブル カンパニー | 機械的処理時の繊維又は基材の摩擦特性を評価する方法 |
KR20160031119A (ko) * | 2014-09-11 | 2016-03-22 | 한국표준과학연구원 | 열전도 억제장치를 이용한 적외선 열화상 비파괴 검사 시스템 및 검사방법 |
KR101643461B1 (ko) | 2014-09-11 | 2016-07-28 | 한국표준과학연구원 | 열전도 억제장치를 이용한 적외선 열화상 비파괴 검사 시스템 및 검사방법 |
Also Published As
Publication number | Publication date |
---|---|
SG140580A1 (en) | 2008-03-28 |
US7549339B2 (en) | 2009-06-23 |
US20080053234A1 (en) | 2008-03-06 |
CN101140270A (zh) | 2008-03-12 |
EP1898209B1 (en) | 2012-09-26 |
EP1898209A1 (en) | 2008-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008064755A (ja) | 部品の傷を識別する方法、および部品検査システム | |
JP6876407B2 (ja) | 複合構造物におけるリンクル特徴付けのための赤外線サーモグラフィ方法 | |
JP5491692B2 (ja) | 負荷がかかっているサンプルにおける故障事象を位置特定するためのシステムおよび方法 | |
US20080183402A1 (en) | Methods and Systems for Automatically Assessing and Reporting Structural Health | |
EP1517138B1 (en) | Method and apparatus for acoustic thermography inspection | |
JP6865927B2 (ja) | 検査装置、検査方法、検査プログラム、記憶媒体、および検査システム | |
KR101039593B1 (ko) | 검사 신뢰성이 제고된 초음파 가진 열화상을 이용한 물체의 결함검출장치 및 결함검출방법 | |
Ibarra-Castanedo et al. | Active thermography signal processing techniques for defect detection and characterization on composite materials | |
Tao et al. | Towards safe shearography inspection of thick composites with controlled surface temperature heating | |
CN104897353A (zh) | 一种构件损伤检测方法 | |
Zhang et al. | Effect of background subtraction on defect detection in thermographic signal reconstruction coefficient images | |
Szwedo et al. | Application of vibrothermography in nondestructive testing of structures | |
Hassan et al. | Detection of tight fatigue cracks at the root of dampers in fan blades using sonic IR inspection: A feasibility demonstration | |
Lai et al. | Quantify resonance inspection with finite element-based modal analyses | |
Szwedo et al. | Vibrothermographic testing of structures | |
EP2235682B1 (en) | Methods and systems for automatically assessing and reporting structural health | |
Forsyth et al. | A brief introduction to nondestructive testing | |
Holland | Vibrothermography | |
bin Zhao et al. | Infrared thermal wave nondestructive testing for rotor blades in wind turbine generators non-destructive evaluation and damage monitoring | |
CN118671192A (zh) | 瓷质材料的裂纹长度检测方法、装置及存储介质 | |
Ranjit et al. | Detection and quantification of defects in composite material by using thermal wave method | |
GRŚ | Image and data processing techniques in characterization of material nonuniformity by active ir thermography | |
Franco et al. | Inspection analyses on non-cured samples by lock-in and PPT thermography | |
Cohen et al. | A Signal-Based Data Fusion Approach in Non-Destructive Testing of | |
Vaddi | Vibration modeling for vibrothermography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091006 |