JP2008063240A - Method for producing anthracene compound - Google Patents
Method for producing anthracene compound Download PDFInfo
- Publication number
- JP2008063240A JP2008063240A JP2006240020A JP2006240020A JP2008063240A JP 2008063240 A JP2008063240 A JP 2008063240A JP 2006240020 A JP2006240020 A JP 2006240020A JP 2006240020 A JP2006240020 A JP 2006240020A JP 2008063240 A JP2008063240 A JP 2008063240A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- general formula
- group
- carbon atoms
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、有機電界発光素子用材料等に有用なアントラセン化合物の製造方法に関する。 The present invention relates to a method for producing an anthracene compound useful for materials for organic electroluminescent elements.
9,10−ジ置換アントラセン化合物は有機電界発光素子用材料として有用な化合物であることが開示されている(特許文献1を参照)。特許文献1には製造方法としてジハロゲン化アントラセンとホウ酸化合物を触媒の存在下に反応させる方法が開示されている(特許文献1を参照)。しかしながら、この方法では高価なカップリング触媒を使用する必要があった。カップリング触媒を用いない製造方法として、アントラキノン化合物とGrignard試薬とを反応させた後に芳香族化反応させる方法が複数開示されている。 文献1にはアントラキノンとGrignard試薬を反応させた後、塩化アンモニウムと反応させて中間体として9,10-ジ置換-9,10-ジヒドロキシアントラセンを合成し、さらに蟻酸と反応させて9,10−ジ置換アントラセン化合物を得る方法が記載されている(文献1を参照)。しかしながら、この方法では塩化アンモニウムの他に還元剤として蟻酸を使用せねばならず、さらに収率が低い問題があった。
文献2、3にはGrignard試薬とアントラキノン化合物を反応させた後よう化水素酸と反応させ、さらに還元剤として塩化スズ(II)と反応させる方法が記載されている(文献2、3を参照)。しかしながら、この方法は高価なよう化水素酸と塩化スズ(II)を用いるため、工業的に製造する際はコストがかかり好ましくない。さらに重金属であるスズ化合物は環境汚染性の観点から使用するのは好ましくない。
文献4にはGrignard試薬とアントラキノン化合物を反応させた後、塩化チタン(III)と還元剤として水素化リチウムアルミニウムを反応させて目的物を得ている(文献4参照)。しかしながら、この方法は高価な塩化チタン(III)、水素化リチウムアルミニウムを用いている。上記記載のこれらの方法は全て還元剤が必要であり、複数の資材をもちいるために操作が煩雑であることからも、工業的な製造方法としては十分満足できるものではない。文献5にはヨウ化メチルマグネシウムをアントラキノン化合物と反応させた後、塩酸と反応させる方法が記載されている(文献5参照)。しかしながらこの方法ではアントラキノンのα位が塩素原子に置換された生成物が得られる。
Documents 2 and 3 describe a method in which a Grignard reagent and an anthraquinone compound are reacted, then reacted with hydriodic acid, and further reacted with tin (II) chloride as a reducing agent (see Documents 2 and 3). . However, since this method uses expensive hydroiodic acid and tin (II) chloride, it is not preferable because of cost in industrial production. Furthermore, it is not preferable to use a tin compound which is a heavy metal from the viewpoint of environmental pollution.
In Reference 4, after the Grignard reagent and an anthraquinone compound are reacted, titanium (III) chloride is reacted with lithium aluminum hydride as a reducing agent to obtain the desired product (see Reference 4). However, this method uses expensive titanium (III) chloride and lithium aluminum hydride. All of the above-described methods require a reducing agent and are complicated to operate due to the use of a plurality of materials, so that they are not sufficiently satisfactory as an industrial production method. Document 5 describes a method in which methylmagnesium iodide is reacted with an anthraquinone compound and then reacted with hydrochloric acid (see Document 5). However, in this method, a product in which the α-position of anthraquinone is substituted with a chlorine atom is obtained.
本発明は有用な9,10−ジ置換アントラセン化合物を製造する方法として高収率な方法、且つ、還元剤や重金属資材を用いず、製造操作が簡単な方法を提供することを目的とする。 An object of the present invention is to provide a high yield method as a method for producing a useful 9,10-disubstituted anthracene compound and a method having a simple production operation without using a reducing agent or a heavy metal material.
本発明者らは、上記課題を解決するために鋭意検討した結果、芳香族ハロゲン化物のGrignard試薬とアントラキノン化合物を反応させた後に、塩酸または硫酸から選択される1種または2種を反応させることにより、目的物である9,10−ジ置換アントラセン化合物が高い収率で得られることを見出し、本発明に至った。驚くべきことに本発明はα位に塩素原子等の置換基を生じない。なお、本発明は塩化スズ(II)、蟻酸、LiALH4等の還元剤や重金属を用いる必要がなく、安価な塩酸と硫酸を使用することにより目的物を得られるため、工業的に製造する際に環境汚染性の低い、操作が簡便な、低コストな方法として大きな利点を有するものである。
すなわち、本発明は、
一般式(1)
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reacted an aromatic halide Grignard reagent with an anthraquinone compound, and then reacted one or two selected from hydrochloric acid or sulfuric acid. As a result, it was found that the 9,10-disubstituted anthracene compound as the target product was obtained in high yield, and the present invention was achieved. Surprisingly, the present invention does not produce a substituent such as a chlorine atom at the α-position. In the present invention, it is not necessary to use a reducing agent or heavy metal such as tin (II) chloride, formic acid, LiALH4, etc., and the object can be obtained by using inexpensive hydrochloric acid and sulfuric acid. It has a great advantage as a low-cost method with low environmental pollution, simple operation, and low cost.
That is, the present invention
General formula (1)
[式中、R1は炭素数3〜25の芳香族基を表し、X1はフッ素、塩素、臭素、ヨウ素から選ばれるハロゲン原子を表す。]で表される化合物および一般式(2)
[Wherein R 1 represents an aromatic group having 3 to 25 carbon atoms, and X 1 represents a halogen atom selected from fluorine, chlorine, bromine and iodine. And a compound represented by the general formula (2)
〔式中、R2は炭素数3〜25の芳香族基を表し、X2はフッ素、塩素、臭素、ヨウ素から選ばれるハロゲン原子を表す。〕で表される化合物の1種または2種を、一般式(3)
[Wherein R 2 represents an aromatic group having 3 to 25 carbon atoms, and X 2 represents a halogen atom selected from fluorine, chlorine, bromine and iodine. Or a compound represented by general formula (3):
〔式中R3〜R10はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、炭素数3〜25の芳香族基を表す。〕で表されるアントラセン化合物を反応させ、塩酸または硫酸から選択される1種または2種の酸を用いて反応させる、ことを特徴とする一般式(4)
[Wherein R 3 to R 10 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or an aromatic group having 3 to 25 carbon atoms. The anthracene compound represented by the general formula (4) is reacted with one or two acids selected from hydrochloric acid or sulfuric acid.
[式中、R3〜R10は一般式(3)中のR3〜R10と同じ置換基を表し、R11,R12は各々独立にR1またはR2と同じ置換基を表す。]で表されるアントラセン化合物の製造方法に関するものである。
Wherein, R 3 to R 10 in general formula (3) represents the same substituent as R 3 to R 10 in represents R 11, R 12 are each independently the same substituents as R 1 or R 2. ] It is related with the manufacturing method of the anthracene compound represented by this.
本発明によれば、還元剤、重金属資材を用いずにジ置換アントラセン化合物を高い収率で得ることができる。 According to the present invention, a disubstituted anthracene compound can be obtained in high yield without using a reducing agent and heavy metal material.
本発明の製造方法は、一般式(1)、(2)で表される化合物と一般式(3)で表される化合物を反応させ、続いて塩酸または硫酸から選択される1種または2種を反応させて製造することを特徴とする。 In the production method of the present invention, the compound represented by the general formulas (1) and (2) is reacted with the compound represented by the general formula (3), and then one or two selected from hydrochloric acid or sulfuric acid. It is characterized by producing by reacting.
一般式(1)中のR1、一般式(2)中のR2は炭素数3〜25の芳香族基であり、炭素数3〜25の芳香族基としては特に限定されないが、各々独立にフェニル基、ナフチル基、フルオレニル基、ピレニル基、ベンゾピレニル基、ペンタセニル基などの炭素環式芳香族基、フリル基、チエニル基、ピリジル基、ベンゾフラニル基、ジベンゾフラニル基、カルバゾリル基などの複素環式芳香族基を表す。さらにこの芳香族基は炭素数1〜16のアルキル基、炭素数1〜16のアルコキシ基、炭素数1〜24の置換アミノ基、炭素数6〜25の炭素環式芳香族基、炭素数3〜25の複素環式芳香族基で置換されてもよい。 R 1 in the general formula (1), R 2 in the general formula (2) is an aromatic group having 3 to 25 carbon atoms is not particularly restricted but includes aromatic group of 3-25 carbon atoms, each independently And heterocyclic rings such as phenyl group, naphthyl group, fluorenyl group, pyrenyl group, benzopyrenyl group, pentacenyl group, and other carbocyclic aromatic groups, furyl group, thienyl group, pyridyl group, benzofuranyl group, dibenzofuranyl group, carbazolyl group, etc. Represents an aromatic group. Further, this aromatic group is an alkyl group having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, a substituted amino group having 1 to 24 carbon atoms, a carbocyclic aromatic group having 6 to 25 carbon atoms, or 3 carbon atoms. It may be substituted with ~ 25 heterocyclic aromatic groups.
一般式(3)、(4)中のR3〜10は水素原子、ハロゲン原子、アルキル基、アルコキシ基、炭素数3〜25の芳香族基を表す。特に限定されないが、ハロゲン原子はフッ素原子、塩素原子、臭素原子、ヨウ素原子を表し、アルキル基は炭素数1〜16のアルキル基、アルコキシ基は炭素数1〜16のアルコキシ基、炭素数3〜25の芳香族基はフェニル基、ナフチル基、フルオレニル基、ピレニル基、ベンゾピレニル基、ペンタセニル基などの炭素環式芳香族基、フリル基、チエニル基、ピリジル基、ベンゾフラニル基、ジベンゾフラニル基、カルバゾリル基などの複素環式芳香族基を表す。
一般式(4)中のR3〜10はそれぞれ2つ以上と繋がり、炭化水素環や複素環を形成していても良い。しかしながら、R3〜10はR11、R12と直接結合していてはならない。
R 3 to 10 in the general formulas (3) and (4) represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or an aromatic group having 3 to 25 carbon atoms. Although not particularly limited, the halogen atom represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, the alkyl group is an alkyl group having 1 to 16 carbon atoms, the alkoxy group is an alkoxy group having 1 to 16 carbon atoms, or 3 to 3 carbon atoms. 25 aromatic groups are phenyl, naphthyl, fluorenyl, pyrenyl, benzopyrenyl, pentacenyl and other carbocyclic aromatic groups, furyl, thienyl, pyridyl, benzofuranyl, dibenzofuranyl, carbazolyl Represents a heterocyclic aromatic group such as a group;
R 3 to 10 in the general formula (4) are each connected to two or more, and may form a hydrocarbon ring or a heterocyclic ring. However, R 3 to 10 must not be directly bonded to R 11 and R 12 .
一般式(1)で表される化合物と一般式(2)で表される化合物は、使用するときに別の化合物から製造して用いても良い。具体的には、Grignard試薬を製造する公知の方法を用いてR1−X1やR2−X2といったハロゲン化アリールとマグネシウムを反応させて製造する。さらに、ハロゲン化アリールとマグネシウムを反応させた反応マスを一般式(3)の化合物との反応にそのまま用いてもよい。 The compound represented by the general formula (1) and the compound represented by the general formula (2) may be produced from another compound when used. Specifically, it is produced by reacting an aryl halide such as R 1 -X 1 or R 2 -X 2 with magnesium using a known method for producing a Grignard reagent. Furthermore, a reaction mass obtained by reacting an aryl halide with magnesium may be used as it is for the reaction with the compound of the general formula (3).
一般式(1)、(2)の化合物を製造する際は、溶媒を用いても良いし、用いなくても良いが、好ましくは、ジメチルエーテル、ジエチルエーテルなどの非環状エーテルやテトラヒドロフラン、1,4―ジオキサンなどの環状エーテルを用いる。さらに好ましくは、溶媒中の水分を可能な限り除去したものを用いる。水分は一般式(1)、(2)の化合物と反応し、収率の低下を招く原因となる。 In producing the compounds of the general formulas (1) and (2), a solvent may or may not be used, but preferably acyclic ether such as dimethyl ether or diethyl ether, tetrahydrofuran, 1, 4 -Use cyclic ethers such as dioxane. More preferably, the water in the solvent is removed as much as possible. Moisture reacts with the compounds of general formulas (1) and (2) and causes a decrease in yield.
一般式(1)、(2)の化合物と一般式(3)の化合物の反応は、溶媒を用いても良いし、用いなくても良い。溶媒として好ましくは、Grignard試薬と反応しない溶媒、例えば、ジメチルエーテル、ジエチルエーテルなどの非環状エーテルやテトラヒドロフラン、1,4―ジオキサンなどの環状エーテル、ヘキサン、ヘプタン等の脂肪族炭化水素、トルエン、ナフタレン等の芳香属性炭化水素を用いるのが好ましい。一般式(1)、(2)の化合物をハロゲン化アリールから製造した場合は、その溶媒を(3)との反応溶媒に用いることができる。 The reaction of the compounds of general formulas (1) and (2) and the compound of general formula (3) may or may not use a solvent. The solvent is preferably a solvent that does not react with the Grignard reagent, for example, acyclic ether such as dimethyl ether and diethyl ether, cyclic ether such as tetrahydrofuran and 1,4-dioxane, aliphatic hydrocarbons such as hexane and heptane, toluene, naphthalene and the like It is preferable to use the aromatic attribute hydrocarbons. When the compounds of the general formulas (1) and (2) are produced from an aryl halide, the solvent can be used as a reaction solvent with (3).
本発明では、一般式(1)、(2)の化合物と一般式(3)の化合物を反応させた後、塩酸および硫酸の1種または2種を用いて反応させて(芳香族化反応)一般式(4)の化合物を製造する。
芳香族化反応は溶媒を用いても良いし、用いなくても良い。また、一般式(1)、(2)の化合物と一般式(3)の化合物を反応させた溶媒をそのまま用いることができる。一般式(3)の化合物と反応させた後、引き続き塩酸および硫酸の1種または2種と反応させるときは、反応マスに塩酸または硫酸の1種または2種を装入する。装入方法は滴下等により連続的に行っても良いし、一括で装入しても良い。
使用する塩酸は1〜36%の塩酸水または、塩化水素ガスを用いる。好ましくは10〜36%の塩酸水である。
使用する硫酸は1〜98%の硫酸であり、好ましくは5〜50%の硫酸水である。
In the present invention, the compounds of the general formulas (1) and (2) are reacted with the compound of the general formula (3) and then reacted with one or two of hydrochloric acid and sulfuric acid (aromatization reaction). A compound of general formula (4) is produced.
The aromatization reaction may or may not use a solvent. Moreover, the solvent which made the compound of General formula (1) and (2) react with the compound of General formula (3) can be used as it is. After reacting with the compound of the general formula (3) and subsequently reacting with one or two kinds of hydrochloric acid and sulfuric acid, the reaction mass is charged with one or two kinds of hydrochloric acid or sulfuric acid. The charging method may be performed continuously by dropping or the like, or may be charged in a lump.
As hydrochloric acid to be used, 1 to 36% hydrochloric acid water or hydrogen chloride gas is used. Preferably it is 10-36% hydrochloric acid water.
The sulfuric acid used is 1 to 98% sulfuric acid, preferably 5 to 50% sulfuric acid water.
本発明では文献5のようなα置換体が生じない。これは、一般式(1)と一般式(2)のR1およびR2が芳香族基であることによると推察する。具体的にはα位に相当する部位に水素を有しないため、塩酸との反応時にα位に相当する部分の水素を含む脱水と塩酸付加が生じないため主反応(還元と脱水)が優先すると推察する。 In the present invention, the α-substituted product as in Reference 5 does not occur. This is presumed that R 1 and R 2 in the general formula (1) and the general formula (2) are aromatic groups. Specifically, since there is no hydrogen at the position corresponding to the α-position, the main reaction (reduction and dehydration) is prioritized because the dehydration and hydrochloric acid addition of the hydrogen corresponding to the α-position does not occur during the reaction with hydrochloric acid. I guess.
芳香族化反応の時の反応温度は限定されないが、好ましくは―20℃〜120℃である。さらに好ましくは0℃〜100℃であり、良好な反応速度と高い目的物選択性を得ることができる。 The reaction temperature during the aromatization reaction is not limited, but is preferably -20 ° C to 120 ° C. More preferably, it is 0 degreeC-100 degreeC, and a favorable reaction rate and high target object selectivity can be obtained.
芳香族化反応が終了した後は、公知の方法を用いて目的物である一般式(4)の化合物を単離する。限定されないが、一般式(4)の化合物が反応マス中に結晶化して析出した場合は、濾過をして得ることができる。溶解した状態の場合は、冷却する方法や溶解性が低い溶媒を装入するなどして結晶を析出させた後に濾過をして得ても良い。溶媒や目的物を蒸留操作や昇華操作をして得ることもできる。 After the aromatization reaction is completed, the compound of general formula (4), which is the target product, is isolated using a known method. Although not limited, when the compound of General formula (4) crystallizes and precipitates in the reaction mass, it can obtain by filtering. In the dissolved state, it may be obtained by filtering after depositing crystals by cooling or charging a solvent having low solubility. A solvent or a target product can also be obtained by distillation or sublimation.
本発明の方法によれば目的のジ置換アントラセン化合物が高い収率で得られる。高い収率とはアントラキノン化合物に対して75モル%以上を指す。本発明による方法を用いた場合、目的物に対する高い反応選択性があること及び、取り出し操作において高い目的物回収率があるために高い収率が得られる。Grignard試薬と反応させた後に還元剤を用いて反応させる従来の方法に準じた場合、余剰還元剤や還元剤誘導物質を除去する必要があり、煩雑な取り出し操作となり、高い収率を得ることは困難である。 According to the method of the present invention, the target disubstituted anthracene compound can be obtained in high yield. High yield refers to 75 mol% or more based on the anthraquinone compound. When the method according to the present invention is used, a high yield can be obtained because of the high reaction selectivity for the target product and the high target product recovery rate in the removal operation. When the conventional method of reacting with a Grignard reagent and then using a reducing agent is applied, it is necessary to remove excess reducing agent and reducing agent-inducing substance, which is a complicated removal operation, and a high yield is obtained. Have difficulty.
以下に本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の各実施例中の純度が記載された化合物の純度の測定は、高速液体クロマトグラフィー(以下、「HPLC」と略記する。)に依った。
HPLC分析の条件は次のとおりである。
カラム: 株式会社ワイエムシィ製 YMC−Pack ODS−A A−312
カラムオーブン温度: 40℃
溶離液: THF:メタノール比=5:95の混合溶媒
検出波長: 254nm
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
In addition, the measurement of the purity of the compound in which the purity in each following Example was described was based on the high performance liquid chromatography (henceforth "HPLC").
The conditions for HPLC analysis are as follows.
Column: YMC-Pack ODS-A A-312 manufactured by YMC Co., Ltd.
Column oven temperature: 40 ° C
Eluent: THF: methanol ratio = 5: 95 mixed solvent Detection wavelength: 254 nm
[合成例1]
化合物(5)の合成
9,9―ジメチルフルオレン194.2gをo―ジクロロベンゼン1000gに溶解し、1塩化ヨウ素162.4gを装入し反応マスを100℃に4時間保った。o−ジクロロベンゼンを減圧蒸留により除去した後に、トルエン300gを装入して30℃で3時間攪拌した。反応マス中の結晶を減圧濾過により取り出し、メタノール100gで洗浄した。結晶を乾燥して下記式(5)の化合物144.1gを得た。HPLCで分析した結果、その純度は98%、収率は44%であった。式(5)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(5)の化合物であることを確認した。
元素分析結果 C H I FD−MS
(m/z)
化合物(5) 56.28 4.10 39.62 320
理論値(%) 56.27 4.09 39.64 320
[Synthesis Example 1]
Synthesis of Compound (5) 19,4.2 g of 9,9-dimethylfluorene was dissolved in 1000 g of o-dichlorobenzene, 162.4 g of iodine monochloride was charged, and the reaction mass was kept at 100 ° C. for 4 hours. After removing o-dichlorobenzene by distillation under reduced pressure, 300 g of toluene was charged and stirred at 30 ° C. for 3 hours. Crystals in the reaction mass were removed by vacuum filtration and washed with 100 g of methanol. The crystals were dried to obtain 144.1 g of a compound of the following formula (5). As a result of analysis by HPLC, the purity was 98%, and the yield was 44%. The elemental analysis results and FD-MS measurement results of the compound of the formula (5) are as follows, and it was confirmed that the compound was the compound of the formula (5).
Results of elemental analysis CHI FD-MS
(M / z)
Compound (5) 56.28 4.10 39.62 320
Theoretical value (%) 56.27 4.09 39.64 320
化合物(6)の合成
テトラヒドロフラン10.0gにマグネシウム1.9gを装入し65℃に温度調整した。化合物(5)24.0gをテトラヒドロフラン72.0gに溶解した液を装入し、2時間65℃に保った。次にアントラキノン7.1gを装入し、3時間65℃に保った。この反応マスに18%塩酸水31.2gを装入後、2時間65℃に保った。反応マスには白色の結晶が析出していた。濾過で結晶を取り出し、メタノールで洗浄後に乾燥した。下記化合物(6)15.3gを得た。HPLCで分析した結果、その純度は96%、収率は77%であった。式(6)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(6)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(6) 93.89 6.11 562
理論値(%) 93.91 6.09 562
Synthesis of Compound (6) 1.9 g of magnesium was charged into 10.0 g of tetrahydrofuran, and the temperature was adjusted to 65 ° C. A solution prepared by dissolving 24.0 g of compound (5) in 72.0 g of tetrahydrofuran was charged and kept at 65 ° C. for 2 hours. Next, 7.1 g of anthraquinone was charged and kept at 65 ° C. for 3 hours. The reaction mass was charged with 31.2 g of 18% aqueous hydrochloric acid and kept at 65 ° C. for 2 hours. White crystals were precipitated on the reaction mass. The crystals were removed by filtration, washed with methanol and dried. 15.3 g of the following compound (6) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 77%. The elemental analysis results and FD-MS measurement results of the compound of the formula (6) are as follows, and it was confirmed that the compound was the compound of the formula (6).
Elemental analysis results C H FD-MS
(M / z)
Compound (6) 93.89 6.11 562
Theoretical value (%) 93.91 6.09 562
化合物(7)の合成
テトラヒドロフラン10.0gにマグネシウム1.9gを装入し65℃に温度調整した。ヨードベンゼン15.3gをテトラヒドロフラン72.0gに溶解した液を装入し、2時間65℃に保った。次にアントラキノン7.1gを装入し、3時間65℃に保った。この反応マスに18%塩酸水31.2gを装入後、2時間65℃に保った。反応マスには白色の結晶が析出していた。濾過で結晶を取り出し、メタノールで洗浄後に乾燥した。下記化合物(7)10.1gを得た。HPLCで分析した結果、その純度は96%、収率は85%であった。式(7)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(7)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(7) 94.49 5.51 330
理論値(%) 94.51 5.49 330
Synthesis of Compound (7) 1.9 g of magnesium was charged into 10.0 g of tetrahydrofuran, and the temperature was adjusted to 65 ° C. A solution prepared by dissolving 15.3 g of iodobenzene in 72.0 g of tetrahydrofuran was charged, and kept at 65 ° C. for 2 hours. Next, 7.1 g of anthraquinone was charged and kept at 65 ° C. for 3 hours. The reaction mass was charged with 31.2 g of 18% aqueous hydrochloric acid and kept at 65 ° C. for 2 hours. White crystals were precipitated on the reaction mass. The crystals were removed by filtration, washed with methanol and dried. 10.1 g of the following compound (7) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 85%. The elemental analysis results and FD-MS measurement results of the compound of formula (7) are as follows, and it was confirmed that the compound was of the formula (7).
Elemental analysis results C H FD-MS
(M / z)
Compound (7) 94.49 5.51 330
Theoretical value (%) 94.51 5.49 330
化合物(7)の合成
東京化成株式会社製品フェニルマグネシウムヨージド(濃度2Mol/L エチルエーテル溶液)37.5mlを装入し、アントラキノン7.1gを装入した。昇温して3時間35℃に保った。この反応マスに18%塩酸水31.2gを装入後、2時間35℃に保った。反応マスには白色の結晶が析出していた。濾過で結晶を取り出し、メタノールで洗浄後に乾燥した。上記化合物(7)10.9gを得た。HPLCで分析した結果、その純度は96%、収率は92%であった。式(8)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(7)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(7) 94.53 5.47 330
理論値(%) 94.51 5.49 330
Synthesis of Compound (7) 37.5 ml of Phenyl Magnesium Iodide (concentration 2 Mol / L ethyl ether solution) was charged, and 7.1 g of anthraquinone was charged. The temperature was raised and maintained at 35 ° C. for 3 hours. The reaction mass was charged with 31.2 g of 18% hydrochloric acid and kept at 35 ° C. for 2 hours. White crystals were precipitated on the reaction mass. The crystals were removed by filtration, washed with methanol and dried. 10.9 g of the above compound (7) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 92%. The elemental analysis results and FD-MS measurement results of the compound of formula (8) are as follows, and it was confirmed that the compound was of the formula (7).
Elemental analysis results C H FD-MS
(M / z)
Compound (7) 94.53 5.47 330
Theoretical value (%) 94.51 5.49 330
化合物(8)の合成
テトラヒドロフラン10.0gにマグネシウム1.0gを装入し65℃に温度調整した。化合物(5)12.0gをテトラヒドロフラン36.0gに溶解した液を装入し、2時間65℃に保った。その反応マスにアントラキノン7.1gを装入し、2時間65℃に保った。東京化成株式会社製品フェニルマグネシウムヨージド(濃度2Mol/L エチルエーテル溶液)18.8mlを装入し2時間65℃に保った。この反応マスに18%塩酸水31.2gを装入後、2時間65℃に保った。反応マスには白色の結晶が析出していた。濾過で結晶を取り出し、メタノールで洗浄後に乾燥した。下記化合物(8)13.1gを得た。HPLCで分析した結果、その純度は95%、収率は82%であった。式(8)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(8)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(8) 94.12 5.88 446
理論値(%) 94.13 5.87 446
Synthesis of Compound (8) 1.0 g of magnesium was charged into 10.0 g of tetrahydrofuran, and the temperature was adjusted to 65 ° C. A solution prepared by dissolving 12.0 g of compound (5) in 36.0 g of tetrahydrofuran was charged, and kept at 65 ° C. for 2 hours. The reaction mass was charged with 7.1 g of anthraquinone and kept at 65 ° C. for 2 hours. 18.8 ml of phenylmagnesium iodide (concentration: 2 mol / L ethyl ether solution) manufactured by Tokyo Chemical Industry Co., Ltd. was charged and kept at 65 ° C. for 2 hours. The reaction mass was charged with 31.2 g of 18% aqueous hydrochloric acid and kept at 65 ° C. for 2 hours. White crystals were precipitated on the reaction mass. The crystals were removed by filtration, washed with methanol and dried. 13.1 g of the following compound (8) was obtained. As a result of analysis by HPLC, the purity was 95%, and the yield was 82%. The elemental analysis results and FD-MS measurement results of the compound of formula (8) are as follows, and it was confirmed that the compound was of the formula (8).
Elemental analysis results C H FD-MS
(M / z)
Compound (8) 94.12 5.88 446
Theoretical value (%) 94.13 5.87 446
化合物(9)の合成
アントラキノン7.1gの替わりに1,5―ジクロロアントラキノン9.4gを使用する以外は実施例1と同様に行った。下記化合物(9)17.9gを得た。HPLCで分析した結果、その純度は96%、収率は80%であった。式(9)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(9)の化合物であることを確認した。
元素分析結果 C H Cl FD−MS
(m/z)
化合物(9) 86.64 5.14 11.23 630
理論値(%) 86.67 5.11 11.23 630
Synthesis of Compound (9) The same procedure as in Example 1 was conducted except that 9.4 g of 1,5-dichloroanthraquinone was used instead of 7.1 g of anthraquinone. 17.9 g of the following compound (9) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 80%. The elemental analysis results and FD-MS measurement results of the compound of the formula (9) are as follows, and it was confirmed that the compound was the compound of the formula (9).
Elemental analysis results C H Cl FD-MS
(M / z)
Compound (9) 86.64 5.14 11.23 630
Theoretical value (%) 86.67 5.11 11.23 630
化合物(10)の合成
アントラキノン7.1gの替わりに1,2―ベンゾアントラキノン8.8gを使用する以外は実施例1と同様に行った。下記化合物(10)17.8gを得た。HPLCで分析した結果、その純度は95%、収率は81%であった。式(10)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(10)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(10)94.09 5.91 612
理論値(%) 94.08 5.92 612
Synthesis of Compound (10) The same procedure as in Example 1 was conducted except that 8.8 g of 1,2-benzoanthraquinone was used instead of 7.1 g of anthraquinone. 17.8 g of the following compound (10) was obtained. As a result of analysis by HPLC, the purity was 95%, and the yield was 81%. The elemental analysis results and FD-MS measurement results of the compound of the formula (10) are as follows, and it was confirmed that the compound was the compound of the formula (10).
Elemental analysis results C H FD-MS
(M / z)
Compound (10) 94.09 5.91 612
Theoretical value (%) 94.08 5.92 612
化合物(11)の合成
アントラキノン7.1gの替わりに2―Tertブチルアントラキノン9.0gを使用する以外は実施例1と同様に行った。下記化合物(11)18.8gを得た。HPLCで分析した結果、その純度は96%、収率は86%であった。式(11)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(11)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(11)93.17 6.83 618
理論値(%) 93.16 6.84 618
Synthesis of Compound (11) The same procedure as in Example 1 was conducted except that 9.0 g of 2-tertbutylanthraquinone was used instead of 7.1 g of anthraquinone. 18.8 g of the following compound (11) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 86%. The elemental analysis results and FD-MS measurement results of the compound of the formula (11) are as follows, and it was confirmed that the compound was the compound of the formula (11).
Elemental analysis results C H FD-MS
(M / z)
Compound (11) 93.17 6.83 618
Theoretical value (%) 93.16 6.84 618
化合物(12)の合成
アントラキノン7.1gの替わりに2,6―ジメトキシアントラキノン9.1gを使用する以外は実施例3と同様に行った。下記化合物(12)12.9gを得た。HPLCで分析した結果、その純度は96%、収率は93%であった。式(12)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(12)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(12)86.15 5.68 390
理論値(%) 86.13 5.68 390
Synthesis of Compound (12) The same procedure as in Example 3 was performed except that 9.1 g of 2,6-dimethoxyanthraquinone was used instead of 7.1 g of anthraquinone. 12.9 g of the following compound (12) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 93%. The elemental analysis results and FD-MS measurement results of the compound of the formula (12) are as follows, and it was confirmed that the compound was the compound of the formula (12).
Elemental analysis results C H FD-MS
(M / z)
Compound (12) 86.15 5.68 390
Theoretical value (%) 86.13 5.68 390
[比較例1]
化合物(7)の合成
アントラキノン7.1gを装入したフラスコに、東京化成品フェニルマグネシウムブロミド(濃度2Mol/L エチルエーテル溶液)37.5mlを装入した。昇温して3時間リフラックス状態に保った。この反応マスを塩化アンモニウムの飽和水溶液400g中に排出し、アルミナを充填したカラムクロマトグラフィーにより精製を行い、2.5gの結晶を得た。この結晶に470mlの蟻酸を装入し、昇温してリフラックス状態に18時間保った。蟻酸を留去し、アルミナを充填したカラムクロマトグラフィーを行い、ベンゼンとヘキサンを用いて再結晶を行った。上記化合物(7)0.8gを得た。HPLCで分析した結果、その純度は96%、収率は6.8%であった。式(7)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(7)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(7) 94.52 5.48 330
理論値(%) 94.51 5.49 330
[Comparative Example 1]
Synthesis of Compound (7) A flask charged with 7.1 g of anthraquinone was charged with 37.5 ml of Tokyo Chemicals phenylmagnesium bromide (concentration 2 mol / L ethyl ether solution). The temperature was raised and the reflux state was maintained for 3 hours. The reaction mass was discharged into 400 g of a saturated aqueous solution of ammonium chloride and purified by column chromatography packed with alumina to obtain 2.5 g of crystals. The crystals were charged with 470 ml of formic acid, heated and kept in the refluxed state for 18 hours. Formic acid was distilled off, column chromatography packed with alumina was performed, and recrystallization was performed using benzene and hexane. 0.8 g of the above compound (7) was obtained. As a result of analysis by HPLC, the purity was 96%, and the yield was 6.8%. The elemental analysis results and FD-MS measurement results of the compound of formula (7) are as follows, and it was confirmed that the compound was of the formula (7).
Elemental analysis results C H FD-MS
(M / z)
Compound (7) 94.52 5.48 330
Theoretical value (%) 94.51 5.49 330
[比較例2]
化合物(13)の合成
1Lのジエチルエーテル中でヨードベンゼン150gをマグネシウム12gと反応させGrignard試薬を調整した。この溶液を2−ベンゾアントアキノン6.6gと2Lの無水ベンゼンを混合した液に滴下した。反応マスを昇温し、リフラックス状態で10時間保温した。飽和塩化アンモニウム水溶液500mlと酢酸エチル1Lを加えて有機層を分取した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を留去した結晶を得た。結晶を1Lの酢酸エチルに溶解し、溶液の温度を0℃に保ちながら塩酸ガスを40分かけて吹き込んだ。2時間同温度で熟成した後、溶媒を留去した。残渣を200mlのテトラヒドロフランに溶解し、2gのLiAlH4を1.5Lのジエチルエーテルに分散したフラスコに室温で装入した。1時間後に飽和塩化アンモニア水溶液を加え、ジエチルエーテル層を無水硫酸ナトリウムで乾燥し、溶媒を留去して結晶を得た。結晶をシリカゲルを充填したカラムクロマトグラフィーにて精製し、化合物(13)3.1gを得た。HPLCで分析した結果、その純度は95%、収率は30%であった。式(13)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(13)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(13) 94.69 5.31 380
理論値(%) 94.70 5.30 380
[Comparative Example 2]
Synthesis of Compound (13) A Grignard reagent was prepared by reacting 150 g of iodobenzene with 12 g of magnesium in 1 L of diethyl ether. This solution was added dropwise to a mixture of 6.6 g of 2-benzoanthoaquinone and 2 L of anhydrous benzene. The reaction mass was heated and kept at reflux for 10 hours. 500 ml of saturated aqueous ammonium chloride solution and 1 L of ethyl acetate were added to separate the organic layer. The organic layer was dried over anhydrous sodium sulfate, and crystals obtained by removing the solvent were obtained. The crystals were dissolved in 1 L of ethyl acetate, and hydrochloric acid gas was blown in over 40 minutes while keeping the temperature of the solution at 0 ° C. After aging at the same temperature for 2 hours, the solvent was distilled off. The residue was dissolved in 200 ml of tetrahydrofuran, and charged in a flask in which 2 g of LiAlH4 was dispersed in 1.5 L of diethyl ether at room temperature. One hour later, a saturated aqueous solution of ammonium chloride was added, the diethyl ether layer was dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain crystals. The crystals were purified by column chromatography packed with silica gel to obtain 3.1 g of compound (13). As a result of analysis by HPLC, the purity was 95%, and the yield was 30%. The elemental analysis results and FD-MS measurement results of the compound of the formula (13) are as follows, and it was confirmed that the compound was the compound of the formula (13).
Elemental analysis results C H FD-MS
(M / z)
Compound (13) 94.69 5.31 380
Theoretical value (%) 94.70 5.30 380
[比較例3]
化合物(7)の合成
アントラキノン6.2gを400mlのベンゼンに混合し、Aldrichi製フェニルマグネシウムブロミドのジエチルエーテル溶液(濃度3Mol/L ジエチルエーテル溶液)を60mlを加えて16時間リフラックス状態に保温した。飽和塩化アンモニウム水溶液500mlと酢酸エチル1Lを加えて有機層を分取した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を留去して残渣。残渣をベンゼン100ml中で粉砕し、ヘキサン200mlで洗浄して結晶を得た。350mlのジエチルエーテルに19.6gの塩化スズ(II)と17.3gの濃塩酸を装入し、上記結晶を5分かけて加え、20分間攪拌した。この反応マスをアルミナを充填したカラムクロマトグラフィーで精製し、エタノールとジクロロメタンの混合溶媒で再結晶をして精製し、化合物(7)2.0gを得た。HPLCで分析した結果、その純度は94%、収率は18.9%であった。式(7)の化合物の元素分析結果およびFD―MS測定結果は次のとおりであり、式(7)の化合物であることを確認した。
元素分析結果 C H FD−MS
(m/z)
化合物(7) 94.50 5.50 330
理論値(%) 94.51 5.49 330
[Comparative Example 3]
Synthesis of Compound (7) 6.2 g of anthraquinone was mixed with 400 ml of benzene, and 60 ml of a diethyl ether solution (concentration: 3 mol / L diethyl ether solution) of phenyl magnesium bromide manufactured by Aldrich was added and kept in a reflux state for 16 hours. 500 ml of saturated aqueous ammonium chloride solution and 1 L of ethyl acetate were added to separate the organic layer. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off to give a residue. The residue was pulverized in 100 ml of benzene and washed with 200 ml of hexane to obtain crystals. 350 ml of diethyl ether was charged with 19.6 g of tin (II) chloride and 17.3 g of concentrated hydrochloric acid, and the above crystals were added over 5 minutes, followed by stirring for 20 minutes. This reaction mass was purified by column chromatography packed with alumina, and recrystallized with a mixed solvent of ethanol and dichloromethane to obtain 2.0 g of Compound (7). As a result of analysis by HPLC, the purity was 94%, and the yield was 18.9%. The elemental analysis results and FD-MS measurement results of the compound of formula (7) are as follows, and it was confirmed that the compound was of the formula (7).
Elemental analysis results C H FD-MS
(M / z)
Compound (7) 94.50 5.50 330
Theoretical value (%) 94.51 5.49 330
本発明の製造方法によれば、有用なジ置換アントラセン化合物を容易に収率良く得ることができる。還元剤、重金属を含む資材を用いる必要がない。 According to the production method of the present invention, a useful disubstituted anthracene compound can be easily obtained in a high yield. There is no need to use materials containing reducing agents and heavy metals.
Claims (4)
[式中、R1は炭素数3〜25の芳香族基を表し、X1はフッ素、塩素、臭素、ヨウ素から選ばれるハロゲン原子を表す。]で表される化合物および一般式(2)
〔式中、R2は炭素数3〜25の芳香族基を表し、X2はフッ素、塩素、臭素、ヨウ素から選ばれるハロゲン原子を表す。〕で表される化合物の1種または2種を、一般式(3)
〔式中R3〜R10はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、炭素数3〜25の芳香族基を表す。〕で表されるアントラセン化合物を反応させ、塩酸または硫酸から選択される1種または2種の酸を用いて反応させる、ことを特徴とする一般式(4)
[式中、R3〜R10は一般式(3)中のR3〜R10と同じ置換基を表し、R11,R12は各々独立にR1またはR2と同じ置換基を表す。]で表されるアントラセン化合物の製造方法。 General formula (1)
[Wherein R 1 represents an aromatic group having 3 to 25 carbon atoms, and X 1 represents a halogen atom selected from fluorine, chlorine, bromine and iodine. And a compound represented by the general formula (2)
[Wherein R 2 represents an aromatic group having 3 to 25 carbon atoms, and X 2 represents a halogen atom selected from fluorine, chlorine, bromine and iodine. Or a compound represented by general formula (3):
[Wherein R 3 to R 10 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or an aromatic group having 3 to 25 carbon atoms. The anthracene compound represented by the general formula (4) is reacted with one or two acids selected from hydrochloric acid or sulfuric acid.
Wherein, R 3 to R 10 in general formula (3) represents the same substituent as R 3 to R 10 in represents R 11, R 12 are each independently the same substituents as R 1 or R 2. ] The manufacturing method of the anthracene compound represented by this.
A compound of general formula (1) and / or general formula (2) is produced from an aromatic iodide having 3 to 25 carbon atoms and magnesium, and subsequently reacted with a compound of general formula (3) Item 4. The production method according to any one of Items 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006240020A JP2008063240A (en) | 2006-09-05 | 2006-09-05 | Method for producing anthracene compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006240020A JP2008063240A (en) | 2006-09-05 | 2006-09-05 | Method for producing anthracene compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008063240A true JP2008063240A (en) | 2008-03-21 |
Family
ID=39286252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006240020A Pending JP2008063240A (en) | 2006-09-05 | 2006-09-05 | Method for producing anthracene compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008063240A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009081776A1 (en) * | 2007-12-20 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Benzanthracene compound and organic electroluminescent device using the same |
WO2009081774A1 (en) * | 2007-12-20 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Benzanthracene compound and organic electroluminescent device using the same |
JP2009249378A (en) * | 2008-04-02 | 2009-10-29 | Gracel Display Inc | New organic electroluminescent compound, and organic electroluminescent element using the same |
US9312500B2 (en) | 2012-08-31 | 2016-04-12 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
-
2006
- 2006-09-05 JP JP2006240020A patent/JP2008063240A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009081776A1 (en) * | 2007-12-20 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Benzanthracene compound and organic electroluminescent device using the same |
WO2009081774A1 (en) * | 2007-12-20 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Benzanthracene compound and organic electroluminescent device using the same |
US8501329B2 (en) | 2007-12-20 | 2013-08-06 | Idemitsu Kosan Co., Ltd. | Benzanthracene compound and organic electroluminescent device using the same |
US8563969B2 (en) | 2007-12-20 | 2013-10-22 | Idemitsu Kosan Co., Ltd. | Benzanthracene compound and organic electroluminescence device using the same |
JP2009249378A (en) * | 2008-04-02 | 2009-10-29 | Gracel Display Inc | New organic electroluminescent compound, and organic electroluminescent element using the same |
US9312500B2 (en) | 2012-08-31 | 2016-04-12 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113402350B (en) | A kind of biaryl compound and its preparation method and application | |
CN109942433B (en) | A kind of chemical synthesis method of 3', 4', 5'-trifluoro-2-aminobiphenyl | |
JP2008063240A (en) | Method for producing anthracene compound | |
CN110577457B (en) | A kind of copper-catalyzed carboxylation method of arylboronic acid and carbon dioxide | |
CN110483420B (en) | A kind of preparation method of tetrahydroquinoxaline compound | |
WO2009136646A1 (en) | Method for producing unsaturated organic compound | |
JP5283494B2 (en) | Method for producing fluorene derivative | |
CN106632440B (en) | A kind of preparation method of aryl-boric acid ester and ene boric acid ester | |
CN116655503A (en) | Preparation method of 1-aryl-3-arylsulfinyl bicyclo [1.1.1] pentane | |
CN106278989B (en) | The synthetic method of 3- cyanogen radical indole compounds | |
JP5023683B2 (en) | Process for producing benzofluorene derivative and intermediate thereof | |
CN104119386A (en) | Preparation method of conjugated compound containing phosphorus-fluorene-containing structural unit | |
JP4104871B2 (en) | Method for purifying optically active 1,1'-bi-2-naphthols | |
TWI576349B (en) | Manufacturing method of borinic acid derivatives and novel borinic acid derivatives | |
JP4667593B2 (en) | Process for producing 2-alkyl-2-adamantyl (meth) acrylates | |
WO2001036359A1 (en) | Optically active fluorinated binaphthol derivative | |
JP4481589B2 (en) | Method for producing bisphosphine | |
JP5417708B2 (en) | Anthracene derivatives and anthraquinone derivatives | |
CN112250557A (en) | A kind of method for efficiently synthesizing 1,6-dien-3-one derivatives | |
CN111233616A (en) | A class of pyrene[4]helicene and its synthetic method and application | |
JP4258658B2 (en) | Method for producing acetylene compound | |
JP2004131399A (en) | Method for producing cis-hexahydroisoindoline | |
CN101279890A (en) | A kind of multi-substituted acene derivative and preparation method thereof | |
WO2019035453A1 (en) | Catalyst, method for forming amide bond, and method for producing amide compound | |
JP4389548B2 (en) | An inclusion compound of an arylamine derivative having a fluorene skeleton and an aromatic hydrocarbon, and a method for separating and purifying the arylamine derivative. |