JP2008060028A - Power storage device - Google Patents
Power storage device Download PDFInfo
- Publication number
- JP2008060028A JP2008060028A JP2006238665A JP2006238665A JP2008060028A JP 2008060028 A JP2008060028 A JP 2008060028A JP 2006238665 A JP2006238665 A JP 2006238665A JP 2006238665 A JP2006238665 A JP 2006238665A JP 2008060028 A JP2008060028 A JP 2008060028A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- negative electrode
- positive electrode
- lithium
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 62
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 86
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000007773 negative electrode material Substances 0.000 claims abstract description 24
- 239000007774 positive electrode material Substances 0.000 claims abstract description 20
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 14
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 10
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 10
- 230000000149 penetrating effect Effects 0.000 claims description 54
- 230000005611 electricity Effects 0.000 claims description 37
- 239000003125 aqueous solvent Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000000243 solution Substances 0.000 abstract description 5
- 239000002904 solvent Substances 0.000 abstract description 5
- 239000011149 active material Substances 0.000 description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 239000000758 substrate Substances 0.000 description 26
- 229920003026 Acene Polymers 0.000 description 22
- 238000000034 method Methods 0.000 description 22
- 239000004020 conductor Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- 239000011888 foil Substances 0.000 description 11
- -1 polytetrafluoroethylene Polymers 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000681 Silicon-tin Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
本発明は、簡便、かつ、実用的なプリドープ技術に基づき製造することが可能な、高エネルギー密度、高出力特性を有する蓄電デバイスに関する。 The present invention relates to an electricity storage device having high energy density and high output characteristics that can be manufactured based on a simple and practical pre-doping technique.
近年、携帯電話に代表される小型携帯機器用の電源、深夜電力貯蔵システム、太陽光発電に基づく家庭用分散型蓄電システム、電気自動車のための蓄電システムなどに関連して、各種の高エネルギー密度電池の開発が精力的に行われている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度を有すること、金属リチウムを負極として用いるリチウム二次電池に比べて、安全性、サイクル特性などの信頼性が優れることなどの理由により、小型携帯機器用の電源として、その市場が飛躍的に拡大している。リチウムイオン電池は、正極としてLiCoO2、LiMn2O4などに代表されるリチウム含有遷移金属酸化物を用い、負極として黒鉛に代表される炭素系材料を用いている。現在、リチウムイオン電池のより一層の高容量化が進められているが、正極酸化物及び負極炭素系材料の改良による高容量化は、ほぼ限界に達しており、機器側からの高エネルギー密度に対する要求を満たすことは困難である。また、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、エンジンあるいは燃料電池が最大効率で運転するためには、一定出力での運転が必須であり、負荷側の出力変動あるいはエネルギー回生に対応するために、蓄電システム側には高出力放電特性、高率充電特性が要求されている。この要求に対応するため、蓄電システムにおいては高エネルギー密度を特徴とするリチウムイオン電池の高出力化あるいは高出力を特徴とする電気二重層キャパシタの高エネルギー密度化に向けた研究開発が実施されている。 In recent years, various high energy densities related to power sources for small portable devices typified by mobile phones, midnight power storage systems, home-use distributed storage systems based on solar power generation, storage systems for electric vehicles, etc. Batteries are being developed vigorously. In particular, the lithium ion battery has a volume energy density exceeding 350 Wh / l, and is superior in reliability such as safety and cycle characteristics as compared with a lithium secondary battery using metallic lithium as a negative electrode. The market is rapidly expanding as a power source for small portable devices. The lithium ion battery uses a lithium-containing transition metal oxide typified by LiCoO 2 or LiMn 2 O 4 as a positive electrode and a carbon-based material typified by graphite as a negative electrode. Currently, further increase in capacity of lithium-ion batteries is being promoted, but the increase in capacity by improving positive electrode oxide and negative electrode carbon-based materials has almost reached its limit, and it has been able to cope with high energy density from the device side. It is difficult to meet the requirements. Also, in order to operate an engine or a fuel cell with maximum efficiency in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle). Therefore, an operation at a constant output is essential, and in order to cope with output fluctuation or energy regeneration on the load side, high output discharge characteristics and high rate charge characteristics are required on the power storage system side. In order to meet this demand, research and development has been carried out in power storage systems to increase the output of lithium ion batteries characterized by high energy density or to increase the energy density of electric double layer capacitors characterized by high output. Yes.
一方、リチウムイオン電池あるいはキャパシタなどの蓄電デバイスにおいて、活物質にあらかじめリチウムイオンを担持させること(以下、プリドープと呼ぶ)により、蓄電デバイスの高容量化、高電圧化する技術が注目されている。例えば非特許文献1、特許文献1、非特許文献2、非特許文献3などに記載されているポリアセン系骨格構造を含有する不溶不融性基体などの高容量材料に対し、このプリドープを適用することにより、非特許文献4に記載されているように、その特徴(高容量)を充分に活かした蓄電デバイス設計が可能となり、上記蓄電デバイスの高エネルギー密度化あるいは高出力化の要求に応えることが可能となる。プリドープは古くから実用化されている技術であり、例えば、非特許文献5、特許文献2には、リチウムを負極活物質であるポリアセン系骨格構造を含有する不溶不融性基体にプリドープさせた、高電圧かつ高容量な蓄電デバイスが開示されている。プリドープに関しては、あらかじめリチウムを担持させた電極を用いて蓄電デバイスに組み込む方法、リチウム金属などを電極成形時に混合する方法などが知られているが、簡便かつ実用的なプリドープ法に関しては、活物質を含有する電極にリチウム金属箔を接触させる方法がある。この技術は電極数が少なく、比較的厚い電極を用いるコイン型などに有効であるが、薄い電極を複数枚積層する積層型構造電池、あるいは、巻回型構造電池においては、工程が煩雑になる、あるいは、薄型リチウム金属の取り扱いなどに課題があり、簡便かつ実用的なプリドープ法が必要であった。 On the other hand, in a power storage device such as a lithium ion battery or a capacitor, attention has been paid to a technology for increasing the capacity and voltage of the power storage device by previously supporting lithium ions on the active material (hereinafter referred to as pre-doping). For example, this pre-doping is applied to a high-capacity material such as an insoluble infusible substrate containing a polyacene-based skeleton structure described in Non-Patent Document 1, Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, etc. Accordingly, as described in Non-Patent Document 4, it is possible to design an electricity storage device that fully utilizes its characteristics (high capacity), and meet the demand for higher energy density or higher output of the electricity storage device. Is possible. Pre-doping is a technology that has been practically used for a long time. For example, in Non-Patent Document 5 and Patent Document 2, lithium is pre-doped on an insoluble infusible substrate containing a polyacene skeleton structure as a negative electrode active material. A high voltage and high capacity power storage device is disclosed. Regarding pre-doping, a method of incorporating lithium in advance into an electricity storage device using a lithium-supported electrode, a method of mixing lithium metal or the like at the time of electrode formation, and the like are known, but for a simple and practical pre-doping method, an active material There is a method in which a lithium metal foil is brought into contact with an electrode that contains. This technique has a small number of electrodes and is effective for a coin type using relatively thick electrodes. However, the process is complicated in a stacked structure battery or a wound structure battery in which a plurality of thin electrodes are stacked. Or there was a problem in handling thin lithium metal, and a simple and practical pre-doping method was required.
この問題を解決する方法として、特許文献3には、表裏面を貫通する孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが負極あるいは正極と対向して配置されたリチウムとの電気化学的接触により担持され、かつ、該リチウムの対向面積が負極面積の40%以下であることを特徴とする有機電解質電池が開示されている。この電池では貫通孔を備えた集電体上に電極層を形成し、電池内に配置されたリチウム金属と負極を短絡することにより、リチウムイオンが集電体の貫通孔を通過し、すべての負極にドープされる。特許文献3の実施例には、貫通孔を備えた集電体にエキスパンドメタルを用い、正極活物質にLiCoO2、負極活物質にポリアセン系骨格構造を含有する不溶不融性基体を用いた有機電解質電池が開示されており、該負極活物質には、電池内に配置されたリチウム金属からリチウムイオンを簡便にプリドープすることができる。 As a method for solving this problem, Patent Document 3 includes a hole penetrating the front and back surfaces, the negative electrode active material can reversibly carry lithium, and the lithium derived from the negative electrode is disposed facing the negative electrode or the positive electrode. An organic electrolyte battery is disclosed, which is supported by electrochemical contact with lithium and has an opposing area of lithium of 40% or less of the negative electrode area. In this battery, an electrode layer is formed on a current collector provided with a through hole, and lithium metal and a negative electrode disposed in the battery are short-circuited, so that lithium ions pass through the current collector through-hole, Doped in the negative electrode. In an example of Patent Document 3, an expanded metal is used for a current collector having a through hole, an organic material using an insoluble infusible substrate containing LiCoO 2 as a positive electrode active material and a polyacene skeleton structure as a negative electrode active material. An electrolyte battery is disclosed, and the negative electrode active material can be easily pre-doped with lithium ions from lithium metal disposed in the battery.
特許文献4には、空隙率1%〜30%の表裏面を貫通する孔を有する集電体を用いることにより集電体からの電極の脱落は減少させることが開示されている。特許文献5には正極に比表面積が1900m2/gのポリアセン系骨格構造を含有する不溶不融性基体、負極にポリアセン系骨格構造を含有する不溶不融性基体を用い、これら活物質を、貫通孔を備えた集電体上に形成し、電池内に配置されたリチウム金属からリチウムイオンを負極活物質にプリドープしたキャパシタが開示されている。特許文献6には貫通孔を備えた集電体の孔を埋めることにより、電極層形成が容易であり、かつ、電極の脱落も防止できることが開示されている。特許文献3〜6の先行技術においては、複数の正極、負極をリチウムが透過しプリドープが進行させるため、正極及び負極の両方に貫通孔を備えた集電体を用いる必要があり、均一にプリドープさせるために必要な時間もかなり長いものである。(特許文献6にはプリドープ終了の確認まで14日間の放置)。 Patent Document 4 discloses that the dropout of the electrode from the current collector is reduced by using a current collector having holes penetrating the front and back surfaces with a porosity of 1% to 30%. Patent Document 5 uses an insoluble infusible substrate containing a polyacene skeleton structure having a specific surface area of 1900 m 2 / g as a positive electrode, an insoluble infusible substrate containing a polyacene skeleton structure as a negative electrode, and these active materials. A capacitor is disclosed which is formed on a current collector provided with a through hole and pre-doped with lithium ions from a lithium metal disposed in a battery into a negative electrode active material. Patent Document 6 discloses that by filling a hole of a current collector having a through hole, it is easy to form an electrode layer and to prevent the electrode from falling off. In the prior arts of Patent Documents 3 to 6, it is necessary to use a current collector having through holes in both the positive electrode and the negative electrode in order to allow lithium to permeate through a plurality of positive electrodes and negative electrodes and advance the pre-doping. The time required to do this is also quite long. (Patent Document 6 is left for 14 days until the end of pre-doping is confirmed).
上記のように簡便かつ実用的なプリドープ法として、貫通孔を備えた集電体上に電極層を形成し、電池内に配置されたリチウム金属と負極を短絡することにより、リチウムイオンが正極及び負極の集電体の貫通孔を通過し、電極活物質に担持させる技術が開示されている。しかし、製造上の観点から考えれば、特殊な貫通孔を備えた集電体の使用を控え、かつ、より短時間で均一にプリドープできる手法が望まれている。短時間で均一にプリドープするためには、実用的にはプリドープする活物質を含む電極表面全部にリチウム金属を貼付ける方法が好ましいが、上述の様に薄型リチウム金属が必要なこと、その取り扱いが難しいことなどの問題点を有していた。
リチウムイオン電池、キャパシタなどの蓄電デバイスにおける高エネルギー密度及び高出力への要求レベルは高い。この要求に応えるためには、高容量材料へのリチウムプリドープによる高容量化、あるいは、高電圧化によるエネルギー密度の向上、高出力化が今後の蓄電デバイス開発に必須技術であると考えられる。上記の貫通孔を備えた集電体を用いたプリドープ技術は、正極及び負極の両方に貫通孔を備えた集電体を用いる必要はあるものの、蓄電デバイスにおける高エネルギー密度及び高出力に貢献するものではある。しかし、製造上の観点から考えれば、特殊な貫通孔を備えた集電体の使用を控え、かつ、より短時間で均一にプリドープできる手法が望まれている。短時間で均一にプリドープするためには、実用的にはプリドープする活物質を含む電極表面全部にリチウム金属を貼付ける方法が好ましいが、上記のように薄型リチウム金属が必要なこと、その取り扱いが難しいことなどの問題点を有していた。従って、本発明はリチウム金属の貼付けによるプリドープ方法が適用可能であり、製造が容易で、かつ、短時間で均一にプリドープできる、実用的なプリドープが可能な蓄電デバイスを提供することにある。 There is a high level of demand for high energy density and high output in power storage devices such as lithium ion batteries and capacitors. In order to meet this demand, it is considered that increasing the capacity by lithium pre-doping of a high-capacity material, or improving the energy density and increasing the output by increasing the voltage are essential technologies for the future development of power storage devices. The above-described pre-doping technology using a current collector with a through hole contributes to high energy density and high output in an electricity storage device, although it is necessary to use a current collector with through holes in both the positive electrode and the negative electrode. It is a thing. However, from the viewpoint of manufacturing, there is a demand for a technique that refrains from using a current collector having a special through hole and that can be uniformly pre-doped in a shorter time. In order to pre-dope uniformly in a short time, practically, a method of sticking lithium metal to the entire electrode surface including the active material to be pre-doped is preferable, but the thin lithium metal is necessary as described above, and its handling is It had problems such as difficult things. Accordingly, an object of the present invention is to provide a power storage device capable of practical pre-doping that can be applied with a pre-doping method by attaching lithium metal, can be easily manufactured, and can be uniformly pre-doped in a short time.
本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、表裏面を貫通する孔を有する集電体を正極あるいは負極のいずれか一方のみに用いることにより、リチウム金属を貼付けによるプリドープ方法が適用可能であり、製造が容易で、かつ、短時間で均一にプリドープできることを見出し、本発明を完成するに至った。 As a result of conducting research while paying attention to the problems of the prior art as described above, the present inventor uses a current collector having a hole penetrating the front and back surfaces only for either the positive electrode or the negative electrode. The present inventors have found that a pre-doping method by sticking lithium metal can be applied, can be easily manufactured, and can be uniformly pre-doped in a short time, and the present invention has been completed.
上記請求項1に記載の蓄電デバイスは、リチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスにおいて、正極集電体が表裏面を貫通する孔を有さず、負極集電体が表裏面を貫通する孔を有することを特徴としている。 The electricity storage device according to claim 1 includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and an electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent. In the non-aqueous power storage device having the above, the positive electrode current collector does not have a hole penetrating the front and back surfaces, and the negative electrode current collector has a hole penetrating the front and back surfaces.
上記請求項2に記載の蓄電デバイスは、リチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスにおいて、正極集電体が表裏面を貫通する孔を有し、負極集電体が表裏面を貫通する孔を有さないことを特徴としている。 The electricity storage device according to claim 2 is a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent. In the non-aqueous power storage device having the above, the positive electrode current collector has a hole penetrating the front and back surfaces, and the negative electrode current collector does not have a hole penetrating the front and back surfaces.
上記請求項1あるいは2の構成によれば、リチウム金属を貼付けによるプリドープ方法が適用可能であり、製造が容易で、かつ、短時間で均一にプリドープすることが可能となる。 According to the configuration of the first or second aspect, a pre-doping method by sticking lithium metal can be applied, manufacturing is easy, and uniform pre-doping can be performed in a short time.
上記請求項3に記載の蓄電デバイスは、上記請求項1あるいは2に記載の貫通する孔を有する集電体の空隙率が10%以上90%以下であることを特徴としている。 The electricity storage device according to claim 3 is characterized in that the porosity of the current collector having the through-hole according to claim 1 or 2 is 10% or more and 90% or less.
本発明の蓄電デバイスは、表裏面を貫通する孔を有する集電体を正極あるいは負極のいずれか一方のみに用いることにより、リチウム金属の貼付けによるプリドープ方法が適用可能であり、製造が容易で、かつ、短時間で均一にプリドープできるという効果を奏する。 The electricity storage device of the present invention can be applied to a pre-doping method by attaching lithium metal by using a current collector having holes penetrating the front and back surfaces for either the positive electrode or the negative electrode. In addition, there is an effect that it can be pre-doped uniformly in a short time.
本発明の一実施形態について、説明すれば以下の通りである。 An embodiment of the present invention will be described as follows.
本発明の蓄電デバイスは表裏面を貫通する孔を有する集電体を正極あるいは負極のいずれか一方のみに用いる。請求項1に記載する構成は正極集電体が表裏面を貫通する孔を有さず、負極集電体が表裏面を貫通する孔を有する。また、請求項2に記載する構成は正極集電体が表裏面を貫通する孔を有し、負極集電体が表裏面を貫通する孔を有さない。 In the electricity storage device of the present invention, a current collector having holes penetrating the front and back surfaces is used only for either the positive electrode or the negative electrode. In the configuration described in claim 1, the positive electrode current collector does not have a hole penetrating the front and back surfaces, and the negative electrode current collector has a hole penetrating the front and back surfaces. In the configuration described in claim 2, the positive electrode current collector has a hole penetrating the front and back surfaces, and the negative electrode current collector does not have a hole penetrating the front and back surfaces.
本発明における表裏面を貫通する孔を有する集電体は、上記特許文献3〜6に記載されているが、集電体の表裏面を貫通する孔を備えており、例えば、パンチング、エッチングなどによる表裏面を貫通する孔を加工した導電性基体(パンチング箔、エッチング箔、穿孔箔など)、発泡導電性基体、導電性材料の網、導電性材料の不織布などが挙げられ、例えば、50μm以下、更には30μm以下のパンチング箔、エッチング箔、穿孔箔であることが好ましい。集電体の材質は金属、炭素などの高い導電性を有するものであり、例えば、集電体の導電性は100S/cm以上と電極の電気伝導性に比べ充分に高い電気伝導性を有するものである。集電体の材質は、本発明の蓄電デバイスの電圧・出力設計、集電体上に形成する電極層に含まれる活物質・導電材・バインダーの種類あるいは電解液などにより適宜決定されるものであり、特に限定しないが、請求項1に記載のように負極集電体が表裏面を貫通する孔を有する場合、すなわち、負極集電体としては銅が一般的であり、請求項2に記載のように正極集電体が表裏面を貫通する孔を有する場合、すなわち、正極集電体としてはアルミニウムが一般的である。 The current collector having a hole penetrating the front and back surfaces in the present invention is described in Patent Documents 3 to 6, but includes a hole penetrating the front and back surfaces of the current collector. For example, punching, etching, etc. Examples include conductive substrates (such as punching foils, etching foils, and perforated foils) with holes penetrating the front and back surfaces, foamed conductive substrates, conductive material nets, and non-woven fabrics of conductive materials. Further, a punching foil, etching foil or perforated foil of 30 μm or less is preferable. The current collector is made of metal, carbon or the like having high electrical conductivity. For example, the electrical conductivity of the current collector is 10 0 S / cm or more, which is sufficiently higher than the electrical conductivity of the electrode. It is what you have. The material of the current collector is appropriately determined depending on the voltage / output design of the electricity storage device of the present invention, the type of active material / conductive material / binder included in the electrode layer formed on the current collector, or the electrolyte. Yes, although not particularly limited, when the negative electrode current collector has a hole penetrating the front and back surfaces as described in claim 1, that is, copper is generally used as the negative electrode current collector. Thus, when the positive electrode current collector has holes penetrating the front and back surfaces, that is, the positive electrode current collector is generally aluminum.
本発明における表裏面を貫通する孔の形状は、特に限定されないが、表面あるいは裏面に見える形が、円、楕円、長方形、多角形など種々の形状が可能であり、孔は集電体中を直線的、曲線的、3次元的など種々の形状をもって集電体表裏面を貫通させることが可能である。 The shape of the hole penetrating the front and back surfaces in the present invention is not particularly limited, but various shapes such as a circle, an ellipse, a rectangle, and a polygon are possible as the shape visible on the front surface or the back surface. It is possible to penetrate the current collector front and back surfaces in various shapes such as linear, curved, and three-dimensional.
本発明における表裏面を貫通する孔を有する集電体の空隙率は、特に限定されないが、10%以上90%以下、更に好ましくは、30%を越え60%以下である。本発明で空隙率とは、集電体体積に占める表裏面を貫通する孔の体積割合を言う。具体的には、集電体面積をA(cm2)、マイクロメータ、のぎすなどで測定可能な集電体厚みをB(cm)、集電体重量をW(g)、集電体材質の比重ρ(g/cm3)とした場合、空隙率は「1−W/(A×B×ρ)」×100%であり、従来技術においては、貫通孔の割合、気孔率と呼ばれることもある。この空隙率は、プリドープの速度を速めるあるいはプリドープの均一性を高めるためには大きく設定することが好ましいが、大きすぎる場合、集電体上への電極層形成の容易さ、電極強度の観点から好ましくない。 The porosity of the current collector having holes penetrating the front and back surfaces in the present invention is not particularly limited, but is 10% or more and 90% or less, more preferably more than 30% and 60% or less. In the present invention, the porosity means the volume ratio of holes penetrating the front and back surfaces in the current collector volume. Specifically, the current collector area is A (cm 2 ), the current collector thickness is B (cm), the current collector weight is W (g), and the current collector material When the specific gravity ρ (g / cm 3 ) is used, the porosity is “1−W / (A × B × ρ)” × 100%, and in the prior art, this is called the ratio of through-holes, porosity. There is also. This porosity is preferably set large in order to increase the speed of pre-doping or improve the uniformity of pre-doping, but if it is too large, from the viewpoint of ease of electrode layer formation on the current collector and electrode strength It is not preferable.
本発明における表裏面を貫通する孔の幅は、特に限定しないが、1mm以下が好ましく、更に好ましくは0.7mm以下、特に好ましくは0.4mm以下である。孔の幅が大きすぎる場合、高出力負荷特性が得られにくくなる。また、下限については好ましくは0.05mm以上、更に好ましくは0.1mm以上であり、小さすぎる場合、集電体の製造が難しくなる。上記孔の幅とは、孔中のすべての点から集電体までの最短距離を考え、その中の最大値の2倍を本発明においては孔の幅と定義する。孔の断面が円の場合、孔中の点から集電体までの最短距離の最大値は半径となり、孔の幅は半径の2倍、すなわち、直径となる。孔の断面が長方形の場合、孔中の点から集電体までの最短距離の最大値は短辺の長さの1/2となり、孔の幅は孔の短辺の長さとなる。孔の断面が楕円の場合、孔中の点から集電体までの最短距離の最大値は短軸半径となり、孔の幅は短軸直径となる。また、不定形な孔である場合、各断面において上記のように孔の幅を求め、その80%以上が上記範囲に入ることが好ましい。 The width of the hole penetrating the front and back surfaces in the present invention is not particularly limited, but is preferably 1 mm or less, more preferably 0.7 mm or less, and particularly preferably 0.4 mm or less. When the width of the hole is too large, it is difficult to obtain high output load characteristics. Moreover, about a minimum, Preferably it is 0.05 mm or more, More preferably, it is 0.1 mm or more, and when too small, manufacture of an electrical power collector will become difficult. The hole width refers to the shortest distance from all points in the hole to the current collector, and twice the maximum value is defined as the hole width in the present invention. When the cross section of the hole is a circle, the maximum value of the shortest distance from the point in the hole to the current collector is the radius, and the width of the hole is twice the radius, that is, the diameter. When the cross section of the hole is rectangular, the maximum value of the shortest distance from the point in the hole to the current collector is ½ of the length of the short side, and the width of the hole is the length of the short side of the hole. When the cross section of the hole is elliptical, the maximum value of the shortest distance from the point in the hole to the current collector is the short axis radius, and the width of the hole is the short axis diameter. Further, in the case of an irregular hole, it is preferable that the width of the hole is obtained as described above in each cross section, and 80% or more thereof falls within the above range.
本発明の正極あるいは負極は、表裏面を貫通する孔を有する集電体上には活物質を含む電極層を形成されている。電極層は、貫通する孔を有する集電体の両面あるいは片面に形成され、集電体の孔中にも形成することができる。電極層とは活物質を主成分とし、必要に応じ、導電材、バインダーを用いて成形することができる。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、活物質の平均粒径、形状などにより適宜決定されるものであるが、例えば、活物質の重量の1%〜30%程度の割合とすることが好ましい。また、導電材の種類、量は、特に限定されるものではなく、活物質の電子伝導性、平均粒径、形状などにより適宜決定されるものであるが、材料としては、カーボンブラック、アセチレンブラック、黒鉛などの炭素材料、金属材料が例示される。導電材量は、特に限定されず、後述の電極の電気伝導性を得るために必要な量が添加される。本発明の蓄電デバイス用電極は、上記活物質、必要に応じ、導電材、バインダーを用いて、塗布成形、プレス成形、ロール成形など、公知の電極成形法を用いて、集電体上に形成し、製造することが可能である。 In the positive electrode or the negative electrode of the present invention, an electrode layer containing an active material is formed on a current collector having holes penetrating the front and back surfaces. The electrode layer is formed on both sides or one side of the current collector having a through-hole, and can also be formed in the current collector hole. The electrode layer contains an active material as a main component, and can be formed using a conductive material and a binder as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. . The amount of the binder is not particularly limited, and is appropriately determined depending on the average particle diameter, shape, and the like of the active material. For example, the ratio is preferably about 1% to 30% of the weight of the active material. In addition, the type and amount of the conductive material are not particularly limited, and are appropriately determined depending on the electronic conductivity, average particle size, shape, and the like of the active material. Examples of the material include carbon black and acetylene black. Examples thereof include carbon materials such as graphite and metal materials. The amount of the conductive material is not particularly limited, and an amount necessary for obtaining the electrical conductivity of the electrode described later is added. The electrode for the electricity storage device of the present invention is formed on the current collector using a known electrode molding method such as coating molding, press molding, roll molding, etc., using the above active material, if necessary, a conductive material and a binder. And can be manufactured.
本発明における表裏面を貫通する孔を有さない集電体は、例えば、従来のリチウムイオン電池、キャパシタなどに一般的に用いられる箔状、板状などの集電体であり、また、表面を粗面化する目的でエッチングした凹凸を有していても孔が表裏面を貫通していなければ用いることができる。表裏面を貫通する孔を有さない集電体に位置決め等の目的で、その一部に表裏面を貫通する孔が開いていても集電体の大部分に表裏面を貫通する孔を有さない場合、本発明において表裏面を貫通する孔を有さない集電体とすることができる。表裏面を貫通する孔を有さない集電体の材質は、本発明の蓄電デバイスの電圧・出力設計、集電体上に形成する電極層に含まれる活物質・導電材・バインダーの種類あるいは電解液などにより適宜決定されるものであり、特に限定しないが、請求項1に記載のように正極集電体が表裏面を貫通する孔を有さない場合、すなわち、正極集電体としてはアルミニウムが一般的であり、請求項2に記載のように負極集電体が表裏面を貫通する孔を有さない場合、すなわち、負極集電体としては銅が一般的である。 The current collector having no hole penetrating the front and back surfaces in the present invention is, for example, a foil-shaped or plate-shaped current collector generally used for conventional lithium ion batteries, capacitors, etc. Even if it has unevenness etched for the purpose of roughening the surface, it can be used as long as the hole does not penetrate the front and back surfaces. For the purpose of positioning, etc., on the current collector that does not have holes that penetrate the front and back surfaces, most of the current collectors have holes that penetrate the front and back surfaces, even if there are holes that penetrate the front and back surfaces. If not, a current collector having no holes penetrating the front and back surfaces in the present invention can be obtained. The material of the current collector that does not have holes penetrating the front and back surfaces is the voltage / output design of the electricity storage device of the present invention, the type of active material / conductive material / binder included in the electrode layer formed on the current collector, or It is appropriately determined depending on the electrolytic solution, and is not particularly limited. However, when the positive electrode current collector does not have a hole penetrating the front and back surfaces as described in claim 1, that is, as the positive electrode current collector, Aluminum is common, and when the negative electrode current collector does not have a hole penetrating the front and back surfaces as described in claim 2, that is, the negative electrode current collector is generally copper.
上記表裏面を貫通する孔を有さない集電体上には活物質を含む電極層を形成されている。電極層は、表裏面を貫通する孔を有さない集電体上の両面あるいは片面に形成される。電極層とは活物質を主成分とし、必要に応じ、導電材、バインダーを用いて成形することができる。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、活物質の平均粒径、形状などにより適宜決定されるものであるが、例えば、活物質の重量の1%〜30%程度の割合とすることが好ましい。また、導電材の種類、量は、特に限定されるものではなく、活物質の電子伝導性、平均粒径、形状などにより適宜決定されるものであるが、材料としては、カーボンブラック、アセチレンブラック、黒鉛などの炭素材料、金属材料が例示される。導電材量は、特に限定されず、後述の電極の電気伝導性を得るために必要な量が添加される。本発明の蓄電デバイス用電極は、上記活物質、必要に応じ、導電材、バインダーを用いて、塗布成形、プレス成形、ロール成形など、公知の電極成形法を用いて、集電体上に形成し、製造することが可能である。 An electrode layer containing an active material is formed on a current collector that does not have a hole penetrating the front and back surfaces. The electrode layer is formed on both sides or one side of a current collector that does not have a hole penetrating the front and back surfaces. The electrode layer contains an active material as a main component, and can be formed using a conductive material and a binder as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. . The amount of the binder is not particularly limited, and is appropriately determined depending on the average particle diameter, shape, and the like of the active material. For example, the ratio is preferably about 1% to 30% of the weight of the active material. In addition, the type and amount of the conductive material are not particularly limited, and are appropriately determined depending on the electronic conductivity, average particle size, shape, and the like of the active material. Examples of the material include carbon black and acetylene black. Examples thereof include carbon materials such as graphite and metal materials. The amount of the conductive material is not particularly limited, and an amount necessary for obtaining the electrical conductivity of the electrode described later is added. The electrode for the electricity storage device of the present invention is formed on the current collector using a known electrode molding method such as coating molding, press molding, roll molding, etc., using the above active material, if necessary, a conductive material and a binder. And can be manufactured.
本発明の蓄電デバイスのリチウムを吸蔵、放出可能な正極活物質は、特に限定されるものではないが、例えば、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体などの有機半導体、リチウムを吸蔵、放出可能な金属酸化物、金属硫化物など公知のものを用いることができる。金属酸化物としては、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、あるいはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系などのリチウムを含む金属酸化物だけでなく、五酸化バナジウム、二酸化マンガン、二硫化モリブデンなどのリチウムを吸蔵、放出可能であるがリチウムを含まない金属酸化物も、蓄電デバイスにおいて正極あるいは負極にリチウムをプリドープすることにより本発明に用いることが可能となる。 The positive electrode active material capable of occluding and releasing lithium in the electricity storage device of the present invention is not particularly limited. For example, activated carbon, an organic semiconductor such as an insoluble infusible substrate containing a polyacene skeleton structure, and lithium Known metal oxides and metal sulfides that can be occluded and released can be used. Examples of the metal oxide include lithium, such as lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, and a system in which one or more different metal elements are added to these composite oxides. In addition to metal oxides, metal oxides that can occlude and release lithium such as vanadium pentoxide, manganese dioxide, and molybdenum disulfide but do not contain lithium can also be obtained by pre-doping lithium into the positive electrode or negative electrode in power storage devices. It can be used in the present invention.
本発明の蓄電デバイスのリチウムを吸蔵、放出可能な負極活物質は、特に限定されるものではないが、例えば、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体などの有機半導体、黒鉛系物質、炭素系物質、錫酸化物、ケイ素酸化物、錫、ケイ素などの材料が挙げられる。特に、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体は出力特性に優れることから好ましい材料の一例である。 The negative electrode active material capable of occluding and releasing lithium in the electricity storage device of the present invention is not particularly limited. For example, activated carbon, an organic semiconductor such as an insoluble infusible substrate containing a polyacene skeleton structure, a graphite-based material Materials such as substances, carbon-based substances, tin oxide, silicon oxide, tin, and silicon can be mentioned. In particular, activated carbon and an insoluble and infusible substrate containing a polyacene skeleton structure are examples of preferable materials because of excellent output characteristics.
本発明の請求項1に記載の蓄電デバイスはリチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスにおいて、正極集電体が表裏面を貫通する孔を有さず、負極集電体が表裏面を貫通する孔を有することを特徴とする。図1には、本発明の請求項1に記載の蓄電デバイスを説明するための具体的な基本構成の一例を示している。図1中、負極集電体11は表裏面を貫通する孔を有し、その集電体上には負極活物質を含む電極層13が形成されている。図1では表裏面を貫通する孔を有する負極集電体11の両面に電極層13が形成されているが、負極集電体の片面に電極層を形成したものを2枚用いても構わない。一方、正極集電体12は表裏面を貫通する孔を有さず、その集電体上には正極活物質を含む電極層15が形成されている。図1では正極集電体12の片面に電極層15が形成されているが、集電体上に正極活物質を含む電極層を両面に形成し、図1に示す基本構成に基づき、正極、セパレータ、負極等から構成される電極ユニットを積層あるいは巻回し、蓄電デバイスを得ることもできる。
An electricity storage device according to claim 1 of the present invention is a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and an electrolysis obtained by dissolving a lithium salt in a non-aqueous solvent. In the non-aqueous power storage device having a liquid, the positive electrode current collector does not have a hole penetrating the front and back surfaces, and the negative electrode current collector has a hole penetrating the front and back surfaces. FIG. 1 shows an example of a specific basic configuration for explaining an electricity storage device according to claim 1 of the present invention. In FIG. 1, a negative electrode current collector 11 has holes penetrating the front and back surfaces, and an
請求項1に記載の構成における、リチウムのプリドープの具体例について説明する。請求項1に記載の構成によれば負極集電体のみが表裏面を貫通する孔を有しており、リチウムは負極集電体を通過することができる。例えば、図1において負極電極層13(両面分)に含まれる負極活物質にリチウムをプリドープする場合、両面分のプリドープに必要な所定量のリチウム金属を負極電極層13の片面のみに貼付け、デバイスを組み立て、電解液を注入すると、負極電極層13の片面に貼付けたリチウム金属は貼付けた側の電極層に含まれる負極活物質にプリドープされるとともに、表裏面を貫通する孔を有する負極集電体11を通過し、リチウム金属を貼付けていない電極層に含まれる負極活物質にもプリドープされる。また、貫通する孔を有する負極集電体の片面に電極層を形成したものを2枚用いる場合、1枚の負極集電体にリチウム金属を貼付けることも可能である。この場合、負極集電体はリチウムと合金化などの反応を生じない材料を選定することが望ましい。
A specific example of lithium pre-doping in the configuration according to claim 1 will be described. According to the configuration of the first aspect, only the negative electrode current collector has a hole penetrating the front and back surfaces, and lithium can pass through the negative electrode current collector. For example, when lithium is pre-doped in the negative electrode active material included in the negative electrode layer 13 (both sides) in FIG. 1, a predetermined amount of lithium metal necessary for pre-doping of both sides is pasted only on one side of the
請求項1に記載の構成において、図1において負極集電体11上に電極層が形成された負極の両側に配置された正極電極層15に含まれる正極活物質にリチウムをプリドープする場合、両側分の正極活物質へのプリドープに必要な所定量のリチウム金属を、正極電極層15のいずれか一方のみに貼付、デバイスを組み立て、電解液を注入すると、一方の正極電極層15に貼付けたリチウム金属は貼付けた側の電極層に含まれる正極活物質にプリドープされるとともに、表裏面を貫通する孔を有する負極集電体11を通過し、リチウム金属は貼付けていない電極層に含まれる正極活物質にもプリドープすることが可能である。当然のことながら負極集電体11上に電極層が形成された負極の両側に配置された各々の正極集電体12は電気的に接続されている。
In the configuration according to claim 1, when lithium is added to the positive electrode active material included in the
いずれの場合も、リチウムは1層の表裏面を貫通する孔を有する負極集電体を通過するのみであり、特許文献3〜6に記載されているように、複数層の表裏面を貫通する孔を有する集電体を通過する場合に比べ、短時間で均一にプリドープできる。また、負極が表裏面を貫通する孔を有さない場合に比べ、リチウム金属の厚みは2倍の厚みのものが使用でき、リチウム金属の取り扱い、製造面で容易となる。更には、特殊な貫通孔を有する集電体を負極側のみに用いるため、特許文献3〜6に記載されている正極と負極の両極に用いる場合に比べ、コスト上、製造上の観点からも有利となる。 In any case, lithium only passes through the negative electrode current collector having a hole penetrating the front and back surfaces of one layer, and penetrates the front and back surfaces of a plurality of layers as described in Patent Documents 3 to 6. Compared with the case of passing through a current collector having holes, it can be pre-doped uniformly in a short time. Moreover, compared with the case where a negative electrode does not have the hole which penetrates front and back, the thickness of a lithium metal can use the thing of double thickness, and it becomes easy by the handling and manufacturing surface of a lithium metal. Furthermore, since a current collector having a special through-hole is used only on the negative electrode side, compared to the case where it is used for both the positive electrode and the negative electrode described in Patent Documents 3 to 6, from the viewpoint of cost and production, It will be advantageous.
本発明の請求項2に記載の蓄電デバイスはリチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスにおいて、正極集電体が表裏面を貫通する孔を有し、負極集電体が表裏面を貫通する孔を有さないことを特徴とする。図2には、本発明の請求項2に記載の蓄電デバイスを説明するための具体的な基本構成の一例を示している。図2中、正極集電体22は表裏面を貫通する孔を有し、その集電体上には正極活物質を含む電極層25が形成されている。図2では表裏面を貫通する孔を有する正極集電体22の両面に電極層25が形成されているが、正極集電体の片面に電極層を形成したものを2枚用いても構わない。一方、負極集電体21は表裏面を貫通する孔を有さず、その集電体上には負極活物質を含む電極層23が形成されている。図2では負極集電体21の片面に電極層23が形成されているが、集電体上に負極活物質を含む電極層を両面に形成し、図2に示す基本構成に基づき、正極、セパレータ、負極等から構成される電極ユニットを積層あるいは巻回し、蓄電デバイスを得ることもできる。
The electricity storage device according to claim 2 of the present invention is a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and an electrolysis obtained by dissolving a lithium salt in a non-aqueous solvent. In a non-aqueous power storage device having a liquid, the positive electrode current collector has a hole penetrating the front and back surfaces, and the negative electrode current collector does not have a hole penetrating the front and back surfaces. FIG. 2 shows an example of a specific basic configuration for explaining the electricity storage device according to claim 2 of the present invention. In FIG. 2, the positive electrode current collector 22 has holes penetrating the front and back surfaces, and an
請求項2に記載の構成における、リチウムのプリドープの具体例について説明する。請求項2に記載の構成によれば正極集電体のみが表裏面を貫通する孔を有しており、リチウムは正極集電体を通過することができる。例えば、図2において正極電極層25(両面分)に含まれる正極活物質にリチウムをプリドープする場合、両面分のプリドープに必要な所定量のリチウム金属を正極電極層25の片面のみに貼付、デバイスを組み立て、電解液を注入すると、正極電極層25の片面に貼付けたリチウム金属は貼付けた側の電極層に含まれる正極活物質にプリドープされるとともに、表裏面を貫通する孔を有する正極集電体22を通過し、リチウム金属は貼付けていない電極層に含まれる正極活物質にもプリドープされる。また、貫通する孔を有する正極集電体の片面に電極層を形成したものを2枚用いる場合、1枚の正極集電体にリチウム金属を貼付けることも可能である。この場合、正極集電体はリチウムと合金化などの反応を生じない材料を選定することが望ましい。
A specific example of lithium pre-doping in the configuration according to claim 2 will be described. According to the configuration of the second aspect, only the positive electrode current collector has a hole penetrating the front and back surfaces, and lithium can pass through the positive electrode current collector. For example, when lithium is predoped in the positive electrode active material contained in the positive electrode layer 25 (both sides) in FIG. 2, a predetermined amount of lithium metal necessary for predoping of both sides is pasted only on one side of the
請求項2に記載の構成において、図2において正極集電体22上に電極層が形成された正極の両側に配置された負極電極層23に含まれる負極活物質にリチウムをプリドープする場合、両側分の負極活物質へのプリドープに必要な所定量のリチウム金属を、負極電極層23のいずれか一方のみに貼付け、デバイスを組み立て、電解液を注入すると、一方の負極電極層23に貼付けたリチウム金属は貼付けた側の電極層に含まれる負極活物質にプリドープされるとともに、表裏面を貫通する孔を有する正極集電体22を通過し、リチウム金属は貼付けていない電極層に含まれる負極活物質にもプリドープすることが可能である。当然のことながら正極集電体22上に電極層が形成された正極の両側に配置された各々の負極集電体21は電気的に接続されている。
3. In the configuration according to claim 2, when lithium is pre-doped into the negative electrode active material included in the
請求項2に記載の構成においても、リチウムは1層の表裏面を貫通する孔を有する正極集電体を通過するのみであり、特許文献3〜6に記載されているように、複数層の表裏面を貫通する孔を有する集電体を通過する場合に比べ、短時間で均一にプリドープできる。また、正極が表裏面を貫通する孔を有さない場合に比べ、リチウム金属の厚みは2倍の厚みのものが使用でき、リチウム金属の取り扱い、製造面で容易となる。更には、特殊な貫通孔を有する集電体を負極側のみに用いるため、特許文献3〜6に記載されている正極と負極の両極に用いる場合に比べ、コスト上、製造上の観点からも有利となる。 Even in the configuration according to claim 2, lithium only passes through the positive electrode current collector having holes penetrating the front and back surfaces of one layer, and as described in Patent Documents 3 to 6, Compared with the case of passing through a current collector having holes penetrating the front and back surfaces, it can be pre-doped uniformly in a short time. Moreover, compared with the case where a positive electrode does not have the hole which penetrates front and back, the thickness of a lithium metal can use a 2 times thickness, and it becomes easy by the handling and manufacturing surface of lithium metal. Furthermore, since a current collector having a special through-hole is used only on the negative electrode side, compared to the case where it is used for both the positive electrode and the negative electrode described in Patent Documents 3 to 6, from the viewpoint of cost and production, It will be advantageous.
請求項1に記載の構成あるいは請求項2に記載の構成のいずれを選択するかは、蓄電デバイス設計、期待するエネルギー密度、出力密度などにより適宜決定されるが、表裏面を貫通する孔を有する集電体を用いる場合、電極の電気伝導度は高い程、出力特性が向上することから、正極活物質、負極活物質を比較して、活物質の電気伝導性が高い極に表裏面を貫通する孔を有する集電体を用いる構成を選択することが好ましい。 Whether to select the configuration according to claim 1 or the configuration according to claim 2 is appropriately determined depending on the power storage device design, the expected energy density, the output density, etc., and has a hole penetrating the front and back surfaces. When using a current collector, the higher the electrical conductivity of the electrode, the better the output characteristics. Compared to the positive electrode active material and the negative electrode active material, the front and back surfaces of the active material have high electrical conductivity. It is preferable to select a configuration using a current collector having holes.
本発明の蓄電デバイスに用いるリチウム塩を非水系溶媒に溶解した電解液は、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF6、LiBF4、LiClO4などのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種又は2種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。また、公知のゲル電解質、固体電解質を用いることも可能である。 The electrolytic solution in which the lithium salt used in the electricity storage device of the present invention is dissolved in a non-aqueous solvent is appropriately determined according to the use conditions such as the type of the positive electrode material, the properties of the negative electrode material, and the charging voltage. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less. Moreover, it is also possible to use a well-known gel electrolyte and solid electrolyte.
本発明の蓄電デバイスにおいて、正極、負極の間に絶縁、電解液保持の目的でセパレータが配置される場合、このセパレータは、特に限定されるものではなく、ポリエチレン微多孔膜、ポリプロピレン微多孔膜、あるいはポリエチレンとポリプロピレンの積層膜、セルロース、ガラス繊維、アラミド繊維、ポリアクリルニトリル繊維などからなる織布、あるいは不織布などがあり、その目的と状況に応じ、適宜決定することが可能である。 In the electricity storage device of the present invention, when a separator is disposed between the positive electrode and the negative electrode for the purpose of insulation and electrolyte holding, the separator is not particularly limited, and a polyethylene microporous film, a polypropylene microporous film, Alternatively, there are a laminated film of polyethylene and polypropylene, a woven fabric made of cellulose, glass fiber, aramid fiber, polyacrylonitrile fiber, or a non-woven fabric, which can be appropriately determined according to the purpose and situation.
本発明の蓄電デバイスの形状は特に限定されるものではなく、コイン型、円筒型、角型、フィルム型など、その目的に応じ、適宜決定することが可能である。 The shape of the electricity storage device of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin shape, a cylindrical shape, a square shape, and a film shape.
以下に実施例を示し、本発明の特徴とするところをさらに明確化するが、本発明は実施例により何ら限定されるものではない。 EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to the examples.
(1)フェノール樹脂硬化体301gをステンレス製皿に入れ、この皿を角型炉(400mm×400mm×400mm)内に配置して、熱反応に供した。熱反応は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。熱反応は、1℃/分の速度で、炉内温が室温から630℃となるまで昇温し、同温度で4時間保持した後、自然冷却により、60℃まで冷却し、皿を炉から取り出し、本発明の不溶不融性基体を得た。収量は180gであった。 (1) A phenolic resin cured body 301 g was placed in a stainless steel dish, and the dish was placed in a square furnace (400 mm × 400 mm × 400 mm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. The thermal reaction was performed at a rate of 1 ° C./minute until the furnace temperature was raised from room temperature to 630 ° C., held at that temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and the dish was removed from the furnace. The insoluble and infusible substrate of the present invention was obtained. The yield was 180g.
(2)得られたポリアセン系骨格構造を含有する不溶不融性基体を遊星型ボールミルを用いて平均粒径5.4μmまで粉砕した。得られた不溶不融性基体材料について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400シリーズII」、CHNS/O)を行った。元素分析において水素原子/炭素原子の原子比が0.27であった。 (2) The insoluble and infusible substrate containing the resulting polyacene skeleton structure was pulverized to an average particle size of 5.4 μm using a planetary ball mill. The obtained insoluble and infusible substrate material was subjected to elemental analysis (measuring instrument: elemental analyzer “PE2400 series II” manufactured by PerkinElmer, Inc., CHNS / O). In the elemental analysis, the atomic ratio of hydrogen atoms / carbon atoms was 0.27.
(3)次いで、上記のポリアセン系骨格構造を含有する不溶不融性基体66.7重量部及び導電材アセチレンブラック19重量部及びPVdF(ポリフッ化ビニリデン)14.3重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、負極合材スラリーを得た。このスラリーを孔径0.3mm(円形であり本発明における孔の幅に相当する)、空隙率50%、厚さ14μmの銅のパンチング箔(本発明の貫通孔を備えた集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは62μmであり、電極層の密度は0.79g/cm3であった。得られた銅のパンチング箔の両面に電極層を形成した電極の電極表裏面を厚み方向に、銅製の直径2mmΦの円柱状の端子で挟み、2Kgf/cm2の圧力を印加し、上下端子間に電圧1Vを印加した時に流れる電流を測定し(以下、電気伝導度はこの方法で測定)、電極の電気伝導度を求めたところ1.0×10−1S/cmであった。 (3) Next, 66.7 parts by weight of the insoluble infusible substrate containing the above polyacene skeleton structure, 19 parts by weight of conductive material acetylene black, and 14.3 parts by weight of PVdF (polyvinylidene fluoride) were added to NMP (N-methyl). -2-pyrrolidone) was mixed with 230 parts by weight to obtain a negative electrode mixture slurry. This slurry was formed on both sides of a copper punching foil (current collector having through holes of the present invention) having a hole diameter of 0.3 mm (circular and corresponding to the width of the holes in the present invention), a porosity of 50%, and a thickness of 14 μm. After coating, drying, press working was performed to obtain an electrode. The thickness of the electrode was 62 μm, and the density of the electrode layer was 0.79 g / cm 3 . The electrode front and back surfaces of the electrode having electrode layers formed on both sides of the obtained copper punching foil are sandwiched between cylindrical terminals with a diameter of 2 mmΦ made of copper, and a pressure of 2 kgf / cm 2 is applied between the upper and lower terminals. The current flowing when a voltage of 1 V was applied to the electrode was measured (hereinafter, the electric conductivity was measured by this method), and the electric conductivity of the electrode was determined to be 1.0 × 10 −1 S / cm.
(4)市販活性炭93重量部及び導電材ケッチェンブラック7重量部及びPVdF17重量部をNMP355重量部と混合し、正極合材スラリーを得た。黒鉛系導電性塗料を予め塗布した厚さ30μmのアルミ箔(貫通孔を有さない集電体)に、正極合材スラリーを片面に塗布し、乾燥した後、プレス加工して、電極の厚み105μm、電極層密度0.60g/cm3の電極を得た。電極の電気伝導度は1.2×10−1S/cmであった。 (4) 93 parts by weight of commercially available activated carbon, 7 parts by weight of conductive material ketjen black and 17 parts by weight of PVdF were mixed with 355 parts by weight of NMP to obtain a positive electrode mixture slurry. The positive electrode mixture slurry is applied to one side of an aluminum foil (current collector having no through-holes) with a thickness of 30 μm, which has been preliminarily coated with a graphite-based conductive paint, dried, and then pressed to obtain the thickness of the electrode. An electrode having a thickness of 105 μm and an electrode layer density of 0.60 g / cm 3 was obtained. The electric conductivity of the electrode was 1.2 × 10 −1 S / cm.
(5)上記ポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を、貫通孔を有する集電体上に両面に形成した電極を負極とし、上記活性炭電極2枚を正極とし、図1に示すような基本構造を有する蓄電デバイスを組み立てた。ここで、ポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層の片側に厚さ30μmのリチウム金属(ポリアセン系骨格構造を含有する不溶不融性基体に対し、950mAh/g相当)を貼付けている。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液後、2日後セルを解体したところ貼付けたリチウム金属は完全に無くなっていた。特許文献6には正極及び負極の両方に貫通孔を備えた集電体を用いる場合、プリドープ終了の確認まで14日間の放置が必要とされているのに対し、本発明では短時間でプリドープを完了させることが可能となった。 (5) An electrode layer having an insoluble infusible substrate containing the polyacene skeleton structure as an active material and an electrode formed on both sides on a current collector having a through hole is used as a negative electrode, and the two activated carbon electrodes are used as a positive electrode. Thus, an electricity storage device having a basic structure as shown in FIG. 1 was assembled. Here, a lithium metal having a thickness of 30 μm on one side of an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure as an active material (950 mAh / g with respect to an insoluble infusible substrate containing a polyacene skeleton structure) Equivalent). After injecting a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l into a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a ratio of 3: 7 (volume ratio) as an electrolytic solution, the cell was disassembled two days later, and the attached lithium The metal was completely gone. In Patent Document 6, when using a current collector having through holes in both the positive electrode and the negative electrode, it is necessary to leave the pre-doping for 14 days until confirmation of completion of the pre-doping, whereas in the present invention, the pre-doping is performed in a short time. It became possible to complete.
(6)同様に作製したセルを500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、9.89mAhであった。続いて、上記と同様の充電後、100Cに相当する1Aの電流で放電した場合、容量は6.07mAhであった。 (6) A similarly fabricated cell was charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 9.89 mAh. Subsequently, after discharging in the same manner as described above, when discharging with a current of 1 A corresponding to 100 C, the capacity was 6.07 mAh.
(7)次に比較として、上記のポリアセン系骨格構造を含有する不溶不融性基体を66.7重量部及び導電材アセチレンブラック19重量部及びPVdF(ポリフッ化ビニリデン)14.3重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、負極合材スラリーを得た。このスラリーを厚さ14μmの銅箔(貫通孔を有していない集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは61μmであり、電極層の密度は0.8g/cm3であった。得られた電極の電気伝導度を求めたところ1.1×10−1S/cmであった。 (7) Next, as a comparison, 66.7 parts by weight of the insoluble infusible substrate containing the polyacene skeleton structure, 19 parts by weight of conductive material acetylene black, and 14.3 parts by weight of PVdF (polyvinylidene fluoride) are added to NMP. A negative electrode mixture slurry was obtained by mixing with 230 parts by weight of (N-methyl-2-pyrrolidone). This slurry was applied to both sides of a copper foil having a thickness of 14 μm (current collector having no through hole), dried, and then pressed to obtain an electrode. The thickness of the electrode was 61 μm, and the density of the electrode layer was 0.8 g / cm 3 . The electric conductivity of the obtained electrode was determined to be 1.1 × 10 −1 S / cm.
(8)上記で得られた電極は貫通孔を有していない集電体を用いているため、ポリアセン系骨格構造を含有する不溶不融性基体に対し950mAh/g相当のリチウムをリチウム金属を用いる貼付けプリドープする場合、厚さ15μmの金属リチウムを集電体両側の電極層に貼り付ける必要があるが、厚さ15μmの金属リチウムは製造することが難しく、また、試験的に得たリチウム金属で電極層に貼り付けることを試みたが強度的に弱く取り扱いが困難であった。そこで比較とし、貫通孔を有していない集電体の両面に電極層を形成した電極の両側にリチウム金属を配置し、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を用いて、電気化学セルを作製した。このセルを用いて活物質であるポリアセン系骨格構造を含有する不溶不融性基体の重量あたり1000mAh/gに相当する量をプリドープした。 (8) Since the electrode obtained above uses a current collector that does not have a through-hole, lithium metal equivalent to 950 mAh / g is used for an insoluble infusible substrate containing a polyacene skeleton structure. When pre-doping is used, it is necessary to apply 15 μm thick metal lithium to the electrode layers on both sides of the current collector. However, it is difficult to produce metal lithium having a thickness of 15 μm. However, it was difficult to handle because of its weakness in strength. Therefore, as a comparison, lithium metal is arranged on both sides of the electrode in which the electrode layer is formed on both sides of the current collector having no through hole, and ethylene carbonate and methyl ethyl carbonate are used as the electrolyte solution in a ratio of 3: 7 (volume ratio). An electrochemical cell was prepared using a solution in which LiPF 6 was dissolved in the solvent mixed in 1 to a concentration of 1 mol / l. Using this cell, an amount corresponding to 1000 mAh / g per weight of an insoluble infusible substrate containing a polyacene skeleton structure as an active material was pre-doped.
(9)上記でプリドープしたポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を貫通孔を有さない集電体上に両面に形成した電極を負極とし、上記で得られた厚さ106μm、電極層密度0.60g/cm3の活性炭電極2枚を正極(貫通孔を有さない集電体上に電極層が形成されている)を負極の両側に配置した。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を用いて、電気化学セル(比較セル)を作製した。 (9) An electrode in which an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure predoped as described above as an active material is formed on both sides on a current collector having no through-holes is used as a negative electrode. Two activated carbon electrodes having a thickness of 106 μm and an electrode layer density of 0.60 g / cm 3 were placed on both sides of the negative electrode with positive electrodes (electrode layers formed on a current collector having no through holes). An electrochemical cell (comparative cell) was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution.
(10)作製した比較セルを、同様に、500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、10.0mAhであった。続いて、上記と同様の充電後100Cに相当する1Aの電流で放電した場合、容量は6.57mAhであった。
負極集電体に貫通孔を有する集電体を用いた場合でも、集電体が貫通孔を有さない集電体を用いた電極に対し、同等の容量、出力が得られていることを確認した。
(10) Similarly, the prepared comparative cell was charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 10.0 mAh. Subsequently, when the battery was discharged with a current of 1 A corresponding to 100 C after charging as described above, the capacity was 6.57 mAh.
Even when a current collector having a through hole is used as the negative electrode current collector, the same capacity and output can be obtained as compared with an electrode using a current collector that does not have a through hole. confirmed.
(1)市販活性炭93重量部及び導電材ケッチェンブラック7重量部及びPVdF17重量部をNMP355重量部と混合し、正極合材スラリーを得た。このスラリーを黒鉛系導電性塗料を予め塗布した孔径0.3mm(円形であり本発明における孔の幅に相当する)、空隙率50%、厚さ20μmのアルミのパンチング箔(本発明の貫通孔を備えた集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは105μmであり、電極層の密度は0.60g/cm3であった。電極の電気伝導度は1.0×10−1S/cmであった。 (1) 93 parts by weight of commercially available activated carbon, 7 parts by weight of conductive material ketjen black and 17 parts by weight of PVdF were mixed with 355 parts by weight of NMP to obtain a positive electrode mixture slurry. This slurry was pre-coated with a graphite-based conductive paint and had a hole diameter of 0.3 mm (circular and corresponding to the width of the hole in the present invention), an aluminum punching foil having a porosity of 50% and a thickness of 20 μm (the through hole of the present invention). Was applied to both sides of the current collector), dried, and pressed to obtain an electrode. The thickness of the electrode was 105 μm, and the density of the electrode layer was 0.60 g / cm 3 . The electric conductivity of the electrode was 1.0 × 10 −1 S / cm.
(2)実施例1のポリアセン系骨格構造を含有する不溶不融性基体66.7重量部及び導電材アセチレンブラック19重量部及びPVdF(ポリフッ化ビニリデン)14.3重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、負極合材スラリーを得た。厚さ14μmの銅箔(貫通孔を有さない集電体)に、負極合材スラリーを片面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは61μmであり、電極層の密度0.80g/cm3であった。電極の電気伝導度は1.1×10−1S/cmであった。 (2) 66.7 parts by weight of an insoluble infusible substrate containing the polyacene skeleton structure of Example 1, 19 parts by weight of conductive material acetylene black, and 14.3 parts by weight of PVdF (polyvinylidene fluoride) were added to NMP (N-methyl). -2-pyrrolidone) was mixed with 230 parts by weight to obtain a negative electrode mixture slurry. A negative electrode mixture slurry was applied to one side of a 14 μm thick copper foil (current collector having no through-holes), dried, and pressed to obtain an electrode. The thickness of the electrode was 61 μm, and the density of the electrode layer was 0.80 g / cm 3 . The electric conductivity of the electrode was 1.1 × 10 −1 S / cm.
(3)上記、活性炭電極層を、貫通孔を有する集電体上に両面に形成した電極を正極とし、上記ポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極2枚を負極とし、図2に示すような基本構造を有する蓄電デバイスを組み立てた。ここで、ポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層の片側に厚さ30μmのリチウム金属(ポリアセン系骨格構造を含有する不溶不融性基体に対し、950mAh/g相当)を貼付けている。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液後、セルを室温で放置した。2日間放置したセルを解体したところ、貼付けたリチウム金属は完全に無くなっていた。 (3) Two electrodes using the activated carbon electrode layer as a positive electrode formed on both sides of a current collector having a through-hole and the insoluble infusible substrate containing the polyacene skeleton structure as an active material An electricity storage device having a basic structure as shown in FIG. 2 was assembled as a negative electrode. Here, a lithium metal having a thickness of 30 μm on one side of an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure as an active material (950 mAh / g with respect to an insoluble infusible substrate containing a polyacene skeleton structure) Equivalent). After pouring a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l into a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution, the cell was left at room temperature. When the cell left for 2 days was disassembled, the attached lithium metal was completely lost.
(4)同様に作製したセルを500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、9.95mAhであった。続いて、上記と同様の充電後、100Cに相当する1Aの電流で放電した場合、容量は5.95mAhであった。
正極集電体に貫通孔を有する集電体を用いた場合でも、集電体が貫通孔を有さない集電体を用いた電極に対し、同等の容量、出力が得られていることを確認した。
(4) A similarly fabricated cell was charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 9.95 mAh. Subsequently, after discharging in the same manner as described above, when discharging with a current of 1 A corresponding to 100 C, the capacity was 5.95 mAh.
Even when a current collector having a through hole is used as the positive electrode current collector, the same capacity and output are obtained as compared with an electrode using a current collector that does not have a through hole. confirmed.
本実施例は、正極に活性炭、負極にポリアセン系骨格構造を含有する不溶不融性基体を用いた蓄電デバイスを例示しているが、本発明の蓄電デバイスの活物質を限定するものではない。 In this example, an electricity storage device using an insoluble infusible substrate containing activated carbon as a positive electrode and a polyacene-based skeleton structure as a negative electrode is illustrated, but the active material of the electricity storage device of the present invention is not limited.
本発明の蓄電デバイス用電極及び蓄電デバイスは、例えば、携帯機器用電源、電気自動車、ハイブリッド電気自動車、燃料電池電気自動車などに用いられる蓄電デバイスの高エネルギー密度化及び高出力/高率充電特性への要求に応えるものであり、簡便かつ実用的なプリドープ法を可能とし、蓄電デバイスの高容量化、高電圧化によるエネルギー密度の向上、高出力化に貢献するものである。 The electrode for an electricity storage device and the electricity storage device of the present invention can be used for, for example, a power source for portable equipment, an electric vehicle, a hybrid electric vehicle, a fuel cell electric vehicle, etc. Therefore, a simple and practical pre-doping method is possible, which contributes to an increase in energy density and an increase in output by increasing the capacity and voltage of an electricity storage device.
11 負極集電体(貫通孔を有する)
12 正極集電体(貫通孔を有さない)
13 負極電極層
14 セパレータ
15 正極電極層
21 負極集電体(貫通孔を有さない)
22 正極集電体(貫通孔を有する)
23 負極電極層
24 セパレータ
25 正極電極層
11 Negative electrode current collector (having through holes)
12 Cathode current collector (no through hole)
13
22 Positive electrode current collector (having through holes)
23
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006238665A JP2008060028A (en) | 2006-09-04 | 2006-09-04 | Power storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006238665A JP2008060028A (en) | 2006-09-04 | 2006-09-04 | Power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008060028A true JP2008060028A (en) | 2008-03-13 |
Family
ID=39242500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006238665A Pending JP2008060028A (en) | 2006-09-04 | 2006-09-04 | Power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008060028A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010205769A (en) * | 2009-02-27 | 2010-09-16 | Fuji Heavy Ind Ltd | Wound-type storage device |
JP2011113667A (en) * | 2009-11-24 | 2011-06-09 | Sharp Corp | Non-aqueous electrolyte secondary battery |
JP2013243090A (en) * | 2012-05-22 | 2013-12-05 | Kaneka Corp | Nonaqueous electrolyte secondary battery |
JP2016152312A (en) * | 2015-02-17 | 2016-08-22 | 旭化成株式会社 | Nonaqueous lithium type power storage device and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09102328A (en) * | 1995-10-05 | 1997-04-15 | Kanebo Ltd | Organic electrolyte battery |
JPH11283676A (en) * | 1998-03-31 | 1999-10-15 | Fuji Film Celltec Kk | Nonaqueous electrolyte lithium secondary battery and its manufacture |
JP2004253243A (en) * | 2003-02-20 | 2004-09-09 | Ngk Spark Plug Co Ltd | Plate type battery and its manufacturing method |
JP2006286218A (en) * | 2005-03-31 | 2006-10-19 | Asahi Kasei Corp | Non-aqueous lithium storage element and method for manufacturing the same |
-
2006
- 2006-09-04 JP JP2006238665A patent/JP2008060028A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09102328A (en) * | 1995-10-05 | 1997-04-15 | Kanebo Ltd | Organic electrolyte battery |
JPH11283676A (en) * | 1998-03-31 | 1999-10-15 | Fuji Film Celltec Kk | Nonaqueous electrolyte lithium secondary battery and its manufacture |
JP2004253243A (en) * | 2003-02-20 | 2004-09-09 | Ngk Spark Plug Co Ltd | Plate type battery and its manufacturing method |
JP2006286218A (en) * | 2005-03-31 | 2006-10-19 | Asahi Kasei Corp | Non-aqueous lithium storage element and method for manufacturing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010205769A (en) * | 2009-02-27 | 2010-09-16 | Fuji Heavy Ind Ltd | Wound-type storage device |
JP2011113667A (en) * | 2009-11-24 | 2011-06-09 | Sharp Corp | Non-aqueous electrolyte secondary battery |
JP2013243090A (en) * | 2012-05-22 | 2013-12-05 | Kaneka Corp | Nonaqueous electrolyte secondary battery |
JP2016152312A (en) * | 2015-02-17 | 2016-08-22 | 旭化成株式会社 | Nonaqueous lithium type power storage device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7838150B2 (en) | Nonaqueous lithium secondary battery with carbon electrodes | |
JP5301090B2 (en) | Electrode for lithium ion capacitor and lithium ion capacitor using the same | |
JP5182477B2 (en) | Non-aqueous secondary battery | |
US10326136B2 (en) | Porous carbonized composite material for high-performing silicon anodes | |
JP6238251B2 (en) | Porous silicon-based negative electrode active material and lithium secondary battery including the same | |
JP5462445B2 (en) | Lithium ion secondary battery | |
JP4857073B2 (en) | Lithium ion capacitor | |
JP5797993B2 (en) | Nonaqueous electrolyte secondary battery | |
EP2575201A1 (en) | Non-aqueous electrolyte secondary battery comprising lithium vanadium phosphate and lithium nickel composite oxide as positive electrode active material | |
CN104170120B (en) | Lithium secondary battery and employ its electronic equipment, charging system and charging method | |
JP4738042B2 (en) | Non-aqueous lithium storage element and method for manufacturing the same | |
JP5341280B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
CN103918107A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same | |
JPWO2017158961A1 (en) | Positive electrode mixture for secondary battery, method for producing secondary battery positive electrode, and method for producing secondary battery | |
JP2013065453A (en) | Lithium secondary battery | |
CN108011126A (en) | Battery module for starting electric power equipment | |
JP2011003318A (en) | Lithium ion secondary battery | |
JP5214172B2 (en) | Electrode manufacturing method and storage device manufacturing method | |
TW201721941A (en) | Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery | |
JP2014127333A (en) | Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery | |
JP2013197052A (en) | Lithium ion power storage device | |
JP2008060028A (en) | Power storage device | |
CN112216878B (en) | Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile | |
CN112216879B (en) | Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile | |
CN118943280A (en) | Negative electrode sheet, secondary battery and electric device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120717 |