[go: up one dir, main page]

JP2008051273A - Fixed type constant velocity universal joint and method of manufacturing outer ring of the same - Google Patents

Fixed type constant velocity universal joint and method of manufacturing outer ring of the same Download PDF

Info

Publication number
JP2008051273A
JP2008051273A JP2006229694A JP2006229694A JP2008051273A JP 2008051273 A JP2008051273 A JP 2008051273A JP 2006229694 A JP2006229694 A JP 2006229694A JP 2006229694 A JP2006229694 A JP 2006229694A JP 2008051273 A JP2008051273 A JP 2008051273A
Authority
JP
Japan
Prior art keywords
outer ring
ball
constant velocity
universal joint
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006229694A
Other languages
Japanese (ja)
Inventor
Keisuke Sone
啓助 曽根
Kazuhiko Yoshida
和彦 吉田
Hirokazu Oba
浩量 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006229694A priority Critical patent/JP2008051273A/en
Publication of JP2008051273A publication Critical patent/JP2008051273A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the strength of an outer ring of a fixed type constant velocity universal joint at a high operation angle. <P>SOLUTION: The fixed type constant velocity universal joint includes the outer ring 10 having axially-extending ball grooves 20 formed at a plurality of positions in a circumferential direction of a spherical inner peripheral surface 18 of the outer ring 10, an inner ring 30 having axially-extending ball grooves 34 formed at a plurality of positions in a circumferential direction of a spherical outer peripheral surface 32 of the inner ring 30, balls 40 interposed between the ball grooves 20 of the outer ring 10 and the ball grooves 34 of the inner ring 30, and a cage 50 arranged between the spherical inner peripheral surface 18 of the outer ring 10 and the spherical outer peripheral surface 32 of the inner ring 30 so as to retain all the balls 40 in the same plane. Each ball groove 20 of the outer ring 10 comprises a circular arc part 20a on the bottom side of the outer ring 10 and a straight part 20b positioned on the large end face side and extending parallel to the axial line. An intersecting point P<SB>0</SB>of an extension line of the straight part 20b and a shaft chamfer tapered surface 22 is on the inner side of the large end face 16. A portion including the intersecting point P<SB>0</SB>and extending from the groove bottom to the large end face 16 is removed after quenching. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は固定式等速自在継手、より詳しくはアンダーカットフリータイプの固定式等速自在継手に関する。固定式等速自在継手は連結した駆動側と従動側の二軸間で角度変位のみを許容するタイプの等速自在継手であって、自動車や各種産業機械の動力伝達系において使用される。   The present invention relates to a fixed type constant velocity universal joint, and more particularly to an undercut free type fixed type constant velocity universal joint. The fixed type constant velocity universal joint is a constant velocity universal joint that allows only angular displacement between two connected drive and driven shafts, and is used in power transmission systems of automobiles and various industrial machines.

図5および図6に示すように、固定式等速自在継手は、外輪10のボール溝20と、内輪30のボール溝34との間にボール40を組み込み、ケージ50によってすべてのボール40を同一平面内に保持し、作動角θをとったときボール40を二等分面Pに配向せしめることで等速性を維持するようになっている。図6はアンダーカットフリータイプを示しており、外輪10のボール溝20の溝底が円弧部分20aと直線部分20bとからなり、内輪10のボール溝34の溝底が円弧部分34aと直線部分34bとからなっている。   As shown in FIGS. 5 and 6, in the fixed type constant velocity universal joint, a ball 40 is incorporated between the ball groove 20 of the outer ring 10 and the ball groove 34 of the inner ring 30, and all the balls 40 are made identical by the cage 50. The ball 40 is oriented in the bisecting plane P when it is held in a plane and the operating angle θ is taken, so that the constant velocity is maintained. FIG. 6 shows an undercut free type, in which the groove bottom of the ball groove 20 of the outer ring 10 is composed of an arc portion 20a and a straight portion 20b, and the groove bottom of the ball groove 34 of the inner ring 10 is an arc portion 34a and a straight portion 34b. It is made up of.

固定式等速自在継手においては、図7に示すように、外輪10の開口端における内径Dがケージ50の外径Dより小さいため、外輪10内に内輪30およびケージ50を組み込んだ後、内輪30およびケージ50を傾け、ケージ50のポケット56の1つを外輪10の開口端から外側に臨ませた状態で、そのポケット56内にボール40を組み込む必要がある。なお、外輪10に対する内輪30およびケージ50の組込みは、まず、図8に示すように、内輪30とケージ50を90°傾け、その状態でケージ50内に内輪30を挿入した後、ケージ50の軸心と内輪30の軸心とが一致する方向に両部品を相対的に90°回転させてケージ50内に内輪30を組み込む。次に、図9に示すように、ケージ付き内輪30と外輪10とを相対的に90°傾け、外輪10内にケージ付き内輪30を挿入した後、外輪10と内輪30の軸心が一致する方向に両部品を90°傾けて外輪10内にケージ付き内輪30を組み込む。 In the fixed type constant velocity universal joint, as shown in FIG. 7, since the inner diameter D 1 at the open end of the outer ring 10 is smaller than the outer diameter D 2 of the cage 50, the inner ring 30 and the cage 50 are assembled in the outer ring 10. The ball 40 needs to be incorporated into the pocket 56 with the inner ring 30 and the cage 50 tilted so that one of the pockets 56 of the cage 50 faces outward from the open end of the outer ring 10. As shown in FIG. 8, first, the inner ring 30 and the cage 50 are inclined by 90 °, and the inner ring 30 is inserted into the cage 50 in this state. The inner ring 30 is assembled in the cage 50 by rotating both parts relatively 90 ° in the direction in which the axis and the axis of the inner ring 30 coincide. Next, as shown in FIG. 9, the inner ring 30 with cage and the outer ring 10 are relatively inclined by 90 °, and after inserting the inner ring 30 with cage into the outer ring 10, the axes of the outer ring 10 and the inner ring 30 coincide. The inner ring 30 with cage is assembled in the outer ring 10 by tilting both parts by 90 ° in the direction.

ここで、固定式等速自在継手においては、作動角θをとって外輪10と内輪30との間でトルクを伝達するとき(図6参照)、ボール40はポケット56内においてケージ50の円周方向に移動する。そのボール40の移動量は作動角θに比例して大きくなる。外輪10に対するケージ50の傾き角度は、図7に示すようなボール40の組込み時に最大となり(このときの角度をボール組入れ角と呼ぶ。)、この時のボール40の移動量を基準としてポケット56の周方向の長さを決定する必要がある。そのため、ボール組入れ角が大きくなるほど、隣り合ったポケット56間の柱部58の幅(円周方向寸法)が小さくなり、ケージ50の球面状外周面52および球面状内周面54の面積も小さくなるという関係にある。
特開平11−101256号公報
Here, in the fixed type constant velocity universal joint, when the operating angle θ is taken and torque is transmitted between the outer ring 10 and the inner ring 30 (see FIG. 6), the ball 40 is surrounded by the circumference of the cage 50 in the pocket 56. Move in the direction. The amount of movement of the ball 40 increases in proportion to the operating angle θ. The inclination angle of the cage 50 with respect to the outer ring 10 is maximized when the ball 40 is assembled as shown in FIG. 7 (this angle is referred to as a ball assembly angle), and the pocket 56 is based on the amount of movement of the ball 40 at this time. It is necessary to determine the length in the circumferential direction. Therefore, as the ball assembly angle increases, the width (circumferential dimension) of the column portion 58 between the adjacent pockets 56 decreases, and the area of the spherical outer peripheral surface 52 and the spherical inner peripheral surface 54 of the cage 50 also decreases. It has a relationship of
Japanese Patent Laid-Open No. 11-101256

自動車等に使用される等速自在継手は、例えば前輪駆動車の駆動軸に使用される場合、デフ側にスライド式等速自在継手を配置し、車輪側に固定式等速自在継手を配置して、両者をシャフトで連結している。固定式等速自在継手はハンドルのステアリングの動きと連動し、車輪と同じ動きをするため、高作動角で作動する必要がある。このように固定式等速自在継手は高作動角で回転、トルクを伝達するため、十分な剛性と強度および耐久性が要求される。したがって、固定式等速自在継手の外輪10、内輪30、ボール40、ケージ50は浸炭、高周波等の熱処理により硬化して使用される。通常、高角作動時の固定式等速自在継手の最も弱い部品はケージ50である。ケージ50は高角になるにつれて外輪10の球面状内周面18、内輪30の球面状外周面32からオーバーハングする部分が増加し(図6参照)、さらにボール40の軸力が増加するため、ケージ50は高角になると急激に強度が低下する。   For example, when a constant velocity universal joint used in an automobile is used for a drive shaft of a front wheel drive vehicle, a slide type constant velocity universal joint is arranged on the differential side and a fixed type constant velocity universal joint is arranged on the wheel side. The two are connected by a shaft. The fixed type constant velocity universal joint is linked with the steering movement of the steering wheel and moves in the same way as the wheel, so it needs to operate at a high operating angle. As described above, the fixed type constant velocity universal joint rotates and transmits torque at a high operating angle, so that sufficient rigidity, strength and durability are required. Therefore, the outer ring 10, inner ring 30, ball 40 and cage 50 of the fixed type constant velocity universal joint are hardened and used by heat treatment such as carburizing and high frequency. Usually, the weakest part of the fixed type constant velocity universal joint during high-angle operation is the cage 50. As the cage 50 becomes higher in angle, the portion overhanging from the spherical inner peripheral surface 18 of the outer ring 10 and the spherical outer peripheral surface 32 of the inner ring 30 increases (see FIG. 6), and the axial force of the ball 40 further increases. When the cage 50 becomes a high angle, the strength rapidly decreases.

また、近時、車両の燃費向上が望まれているが、その対策として車両の軽量化が最も有力な手段であり、等速自在継手も軽量・コンパクト化が強く望まれている。固定式等速自在継手の軽量・コンパクト化にあたっては、高角作動時の最弱部品であるケージ50の高強度化が必須である。この対策として、材料の高強度化や、熱処理による高強度化等が提案されているが、いずれもコストの増加を伴うという問題がある。ケージ50の肉厚を増せば強度はアップするものの、外輪10および内輪30のボール溝深さが減少することになるため、許容負荷トルクが低下し、耐久性が著しく低下するという不合理を起こす。また、ケージ50の破断が起きやすい部位はボール40の入るポケット56とポケット56の間の柱部58である。それゆえ、柱部58の幅を増加させれば強度は向上する。このためには、ボール径を小さくする、ボールのPCDを大きくすることなどが考えられるが、前者は継手の耐久性を低下させ、後者は継手外径が大きくなるなど、いずれも好ましくない。   Recently, improvement in fuel efficiency of vehicles has been desired. However, as a countermeasure, weight reduction of vehicles is the most effective means, and constant velocity universal joints are also strongly desired to be lightweight and compact. In order to reduce the weight and size of the fixed type constant velocity universal joint, it is essential to increase the strength of the cage 50, which is the weakest part during high-angle operation. As countermeasures for this, increasing the strength of materials, increasing the strength by heat treatment, and the like have been proposed, but both have the problem of increasing costs. Increasing the thickness of the cage 50 increases the strength, but the ball groove depth of the outer ring 10 and the inner ring 30 decreases, so that the allowable load torque decreases and the durability significantly decreases. . Further, a portion where the breakage of the cage 50 easily occurs is a pocket 56 into which the ball 40 enters and a column portion 58 between the pockets 56. Therefore, if the width of the column part 58 is increased, the strength is improved. For this purpose, it is conceivable to reduce the ball diameter or increase the PCD of the ball. However, the former is not preferable because the durability of the joint is lowered and the outer diameter of the joint is increased.

図10は従来の固定式等速自在継手における外輪10のボール溝20の入口部分を示す。ボール溝20の入口部は、最大作動角θをとった時にシャフト38により規定されるテーパ面22で切られており(図6参照)、大端面16の位置は、ボール溝切り口断面を含むテーパ面22の外にあった。しかし、ボール40のPCDを小さくするなどしてコンパクト化を実現しようとするとき、特に多数個(7個以上)のボールを有する場合には、ケージ50の柱部58の幅を確保する必要性から、ボール40の組込みのためのボール組入れ角αを従来より小さく設定しなければならない。ところが、図11に示すように、ボール組入れ角αを小さくすると(α1 >α2 )、テーパ面22のトラック溝切り口断面の途中の位置に大端面16を設定しなければならなくなる。つまり、外輪10の大端面16が従来よりも後退することになる(A1 >A2 )。これは、このようなコンパクト化を狙った外輪形状のものは、従来のものに比べて、高作動角時の外輪強度が落ちてしまうことを意味する。 FIG. 10 shows an entrance portion of the ball groove 20 of the outer ring 10 in a conventional fixed type constant velocity universal joint. The inlet portion of the ball groove 20 is cut by a tapered surface 22 defined by the shaft 38 when the maximum operating angle θ is taken (see FIG. 6), and the position of the large end surface 16 is a taper including the ball groove cut section. It was outside the surface 22. However, it is necessary to secure the width of the column portion 58 of the cage 50 when a reduction in size is achieved by reducing the PCD of the ball 40, especially when a large number (seven or more) of balls are provided. Therefore, the ball assembly angle α for assembling the ball 40 must be set smaller than before. However, as shown in FIG. 11, when the ball assembly angle α is reduced (α 1 > α 2 ), the large end surface 16 must be set at a position in the middle of the track groove cut section of the tapered surface 22. That is, the large end surface 16 of the outer ring 10 is retracted more than before (A 1 > A 2 ). This means that the outer ring shape intended for downsizing as described above has a lower outer ring strength at a high operating angle than the conventional one.

また、高作動角時に繰り返しのトルク負荷を受けると外輪のボール溝の開口部溝底から亀裂が進展し、破損する。この発明の目的は、この破損強度を向上させ、さらなる小型化を可能にすることである。   In addition, when a repeated torque load is received at a high operating angle, a crack develops from the bottom of the opening groove of the ball ring of the outer ring and breaks. An object of the present invention is to improve the breaking strength and enable further miniaturization.

この発明の固定式等速自在継手は、球面状内周面の円周方向の複数位置に軸方向に延びるボール溝を形成した外輪と、球面状外周面の円周方向の複数位置に軸方向に延びるボール溝を形成した内輪と、外輪のボール溝と内輪のボール溝との間に介在させたボールと、外輪の球面状内周面と内輪の球面状外周面との間に介在してすべてのボールを同一平面内に保持するケージとを具備し、外輪のボール溝が、奥側の円弧部分と、大端面側に位置する軸線と平行な直線部分とからなり、前記直線部部分の溝底の延長線とシャフト面取りテーパ面との交点が大端面より内側にあり、前記交点を含み溝底から大端面にかけての部分を、焼入れ後除去したことを特徴とするものである。   The fixed type constant velocity universal joint of the present invention includes an outer ring formed with ball grooves extending in the axial direction at a plurality of circumferential positions on the spherical inner peripheral surface, and an axial direction at a plurality of circumferential positions on the spherical outer peripheral surface. An inner ring having a ball groove extending to the inner ring, a ball interposed between the ball groove of the outer ring and the ball groove of the inner ring, and a spherical inner peripheral surface of the outer ring and a spherical outer peripheral surface of the inner ring. A cage for holding all the balls in the same plane, and the ball groove of the outer ring is composed of an arc portion on the back side and a straight line portion parallel to the axis located on the large end surface side. The intersection of the groove bottom extension line and the shaft chamfered taper surface is on the inner side of the large end surface, and a portion from the groove bottom to the large end surface including the intersection is removed after quenching.

請求項2の発明は、請求項1の固定式等速自在継手において、前記交点より内側の位置のボール溝の溝底から大端面にかけて全周にわたり同じ断面形状で除去したことを特徴とするものである。   The invention of claim 2 is characterized in that in the fixed type constant velocity universal joint of claim 1, it is removed in the same cross-sectional shape over the entire circumference from the bottom of the ball groove to the large end surface at a position inside the intersection. It is.

請求項3の発明は、請求項1または2の固定式等速自在継手の外輪を製造する方法であって、前記交点を含むボール溝の溝底から大端面にかけての部分を、焼入れ後除去する工程を特徴とするものである。   The invention of claim 3 is a method for manufacturing the outer ring of the fixed type constant velocity universal joint of claim 1 or 2, wherein the portion from the groove bottom to the large end surface of the ball groove including the intersection is removed after quenching. It is characterized by a process.

請求項4の発明は、請求項3の固定式等速自在継手の製造方法において、外輪の球面状内周面と前記除去部を同じ工程で旋削することを特徴とするものである。   According to a fourth aspect of the present invention, in the method for manufacturing a fixed type constant velocity universal joint according to the third aspect, the spherical inner peripheral surface of the outer ring and the removal portion are turned in the same process.

この発明によれば、焼入れ後の面粗さが改善され、面上の凹部が除去され、繰り返しトルク負荷による強度が向上する。また、焼入れ後の除去加工(旋削または研削)により、除去面に圧縮残留応力が付与され、繰り返しトルク負荷による強度が向上する。したがって、この発明によれば、固定式等速自在継手の外輪の強度が向上し、コンパクト化が図れる。
また、ボールの組込み時の内輪の傾き角度が小さくなり、ケージの窓長さが小さくてすむので、ケージの強度向上になる。
さらに、除去部を外輪の球面状内周面と前記除去部を同じ旋削工程で加工することにより、低コストで実施できる。
According to the present invention, the surface roughness after quenching is improved, the concave portions on the surface are removed, and the strength due to repeated torque load is improved. Moreover, the removal process (turning or grinding) after quenching gives compressive residual stress to the removal surface, and the strength by repeated torque load is improved. Therefore, according to the present invention, the strength of the outer ring of the fixed type constant velocity universal joint is improved, and the compactness can be achieved.
In addition, the angle of inclination of the inner ring when the ball is assembled is reduced, and the cage window length can be reduced, thereby improving the strength of the cage.
Furthermore, the removal portion can be implemented at low cost by processing the spherical inner peripheral surface of the outer ring and the removal portion in the same turning process.

以下、図面に従ってこの発明の実施の形態を説明する。まず、固定式等速自在継手の基本的構成に関しては従来の技術と変わりがないので、再度、図6に従って述べると、固定式等速自在継手は、外側継手部材としての外輪10と、内側継手部材としての内輪30と、トルク伝達要素としてのボール40と、ボールを保持するためのケージ50とを主要な構成要素としている。   Embodiments of the present invention will be described below with reference to the drawings. First, since the basic configuration of the fixed type constant velocity universal joint is the same as that of the prior art, it will be described again with reference to FIG. 6. The fixed type constant velocity universal joint includes an outer ring 10 as an outer joint member, and an inner joint. The main components are an inner ring 30 as a member, a ball 40 as a torque transmission element, and a cage 50 for holding the ball.

ここでは外輪10はステム部12とマウス部14とからなる場合が例示してあり、ステム部12にて連結すべき2軸のうちの一方と結合するようになっている。マウス部14は一端にて開口したベル型で、符号16で指した端面を大端面と呼ぶこととする。マウス部14の内部は、球面状内周面18の円周方向に等間隔に、外輪10の軸方向に延びるボール溝20が形成してある。ボール溝20の溝底の縦断面形状は、外輪10の軸線X上に曲率中心Ooをもった円弧部分20aと、大端面16側の、軸線Xと平行な直線部分20bとからなっている。直線部分20bが存在することによってボール溝20にはアンダーカットがなく、この意味でこの種の等速自在継手はアンダーカットフリージョイント(UJ)と呼ばれる。ボール溝18の外端は大端面16に開口している。ボール溝20の入口部は、最大作動角θをとった時にシャフト38により規定されるテーパ面22で切られている。   Here, the case where the outer ring 10 is composed of a stem portion 12 and a mouse portion 14 is illustrated, and the stem portion 12 is coupled to one of the two shafts to be connected. The mouse part 14 has a bell shape opened at one end, and the end face indicated by reference numeral 16 is referred to as a large end face. Inside the mouse portion 14, ball grooves 20 extending in the axial direction of the outer ring 10 are formed at equal intervals in the circumferential direction of the spherical inner peripheral surface 18. The vertical cross-sectional shape of the groove bottom of the ball groove 20 includes an arc portion 20a having a center of curvature Oo on the axis X of the outer ring 10 and a straight portion 20b parallel to the axis X on the large end face 16 side. Due to the presence of the straight portion 20b, the ball groove 20 has no undercut. In this sense, this type of constant velocity universal joint is called an undercut free joint (UJ). The outer end of the ball groove 18 is open to the large end surface 16. The entrance of the ball groove 20 is cut by a tapered surface 22 defined by the shaft 38 when the maximum operating angle θ is taken.

内輪30は、連結すべき2軸のうちの他方すなわちここではシャフト38とスプライン結合するためのスプライン孔36をもっている。内輪30の球面状外周面32には、円周方向に等間隔に、外輪10のボール溝20と同数の、内輪30の軸方向に延びるボール溝34が形成してある。ボール溝34の溝底の縦断面形状は、内輪30の軸線Y上に曲率中心Oiをもった円弧部分34aと、外輪10の大端面16とは反対側の、内輪30の軸線Yと平行な直線部分34bとからなっている。   The inner ring 30 has a spline hole 36 for spline coupling with the other of the two shafts to be connected, that is, here the shaft 38. Ball grooves 34 extending in the axial direction of the inner ring 30 are formed on the spherical outer peripheral surface 32 of the inner ring 30 at equal intervals in the circumferential direction and the same number as the ball grooves 20 of the outer ring 10. The vertical cross-sectional shape of the groove bottom of the ball groove 34 is parallel to the axis Y of the inner ring 30 on the side opposite to the arc portion 34a having the center of curvature Oi on the axis Y of the inner ring 30 and the large end surface 16 of the outer ring 10. It consists of a straight part 34b.

外輪10のボール溝18と内輪30のボール溝34とは対をなし、各対のボール溝20,34間にボール40が組み込まれて外輪10と内輪30との間でトルクを伝達する。ボール溝20,34の横断面形状がゴシックアーチ状で、ボール40とアンギュラコンタクトをなす場合を図5(c)に例示してある。   The ball groove 18 of the outer ring 10 and the ball groove 34 of the inner ring 30 make a pair, and a ball 40 is incorporated between each pair of ball grooves 20 and 34 to transmit torque between the outer ring 10 and the inner ring 30. FIG. 5C illustrates an example in which the ball grooves 20 and 34 have a Gothic arch cross-sectional shape and form an angular contact with the ball 40.

図5(a)に示されているように、外輪10のボール溝20の曲率中心Ooと内輪30のボール溝34の曲率中心Oiは、ジョイント中心O(外輪の球面状内周面、内輪の球面状外周面の曲率中心でもある。)から互いに反対方向に軸方向に等距離オフセットしている。したがって、各対のボール溝20,34で構成されるボールトラックは、軸方向の一方から他方へ向かって徐々に広がったくさび状を呈する。図6のように継手が作動角θをとった状態でトルク伝達を行うと、くさび状のボールトラックの狭い方から広い方へ向けてボール40を移動させようとする軸力がボール40に作用する。この軸力によってボール40は作動角θの二等分線に垂直な平面P(図6参照)に配向せしめられ、継手の等速性が確保される。   As shown in FIG. 5 (a), the center of curvature Oo of the ball groove 20 of the outer ring 10 and the center of curvature Oi of the ball groove 34 of the inner ring 30 are the joint center O (the spherical inner peripheral surface of the outer ring, the inner ring It is also the center of curvature of the spherical outer peripheral surface. Therefore, the ball track formed by each pair of ball grooves 20 and 34 has a wedge shape that gradually spreads from one to the other in the axial direction. As shown in FIG. 6, when torque is transmitted with the joint at an operating angle θ, an axial force that moves the ball 40 from the narrower side to the wider side of the wedge-shaped ball track acts on the ball 40. To do. With this axial force, the ball 40 is oriented in a plane P (see FIG. 6) perpendicular to the bisector of the operating angle θ, and the constant velocity of the joint is ensured.

ケージ50は外輪10と内輪30との間に介在し、すべてのボール40を常に同一平面に保持する役割を果たす。ケージ50は、外輪10の球面状内周面22と球面接触する球面状外周面52と、内輪30の球面状外周面32と接する球面状内周面54を備えている。ケージ50の円周方向に等間隔に、ボール40を収容するためのポケット56が形成してある。ケージ50の軸方向におけるポケット56の寸法は、通常、ボール40に対して適度の締めしろを与える程度としてある。ポケット56の周方向長さは、図7に関連して既に述べたように、外輪10とケージ50とを相対的に傾斜させ、ポケット56を外輪10の開口端から外部に臨ませるボール組込み時のボールの周方向の移動量を考慮してそのボール40が干渉しない程度の長さとされる。このポケット56の周方向長さと取り合いの関係にあるのが、隣り合ったポケット56間の柱部58の幅である。   The cage 50 is interposed between the outer ring 10 and the inner ring 30 and plays a role of always holding all the balls 40 in the same plane. The cage 50 includes a spherical outer peripheral surface 52 that makes spherical contact with the spherical inner peripheral surface 22 of the outer ring 10, and a spherical inner peripheral surface 54 that contacts the spherical outer peripheral surface 32 of the inner ring 30. Pockets 56 for accommodating the balls 40 are formed at equal intervals in the circumferential direction of the cage 50. The dimension of the pocket 56 in the axial direction of the cage 50 is usually such that an appropriate margin is given to the ball 40. The circumferential length of the pocket 56 is as described above with reference to FIG. 7 when the ball is assembled so that the outer ring 10 and the cage 50 are relatively inclined so that the pocket 56 faces the outside from the open end of the outer ring 10. In consideration of the amount of movement of the ball in the circumferential direction, the length is such that the ball 40 does not interfere. The relationship between the circumferential length of the pockets 56 is the width of the column portion 58 between the adjacent pockets 56.

次に、本発明の実施の形態について述べると、図1および図2に示すように、外輪10のシャフト面取りテーパ面22と、ボール溝20の溝底の直線部分20bの延長線との交点Pが大端面16より内側にある開口形状をもち、交点Pを含み大端面16から深さAの範囲を焼入れ後除去してある。なお、ボール40の数は特に限定されるべきものではないが、図1(b)には8個の場合が例示してある。 Next, the embodiment of the present invention will be described. As shown in FIGS. 1 and 2, as shown in FIG. 1 and FIG. 2, the intersection P between the shaft chamfered tapered surface 22 of the outer ring 10 and the extended line of the straight portion 20 b of the groove bottom of the ball groove 20. 0 has an opening shape that is from the large end face 16 inwardly, the range of the depth a of the large end face 16 includes an intersection P 0 are removed after hardening. Although the number of balls 40 is not particularly limited, FIG. 1B illustrates the case of eight balls.

除去後のボール溝20の溝底の端部はPとなり、Pより奥側になるので、図3に示すように、ボール40を入れ込むためのケージ50の傾き角αは小さくなる。そのために、図4に示すケージ50のポケット56の周方向長さLを小さくでき、ポケット56とポケット56の間の柱58の幅を大きくできるので、ケージ50が強化される。ケージ50の柱58の断面積を他特性の低下を伴うことなく増加させるためには、ポケット56の周方向長さLを減少させることが必要である。その周方向長さLは、等速自在継手の組立上の要請により定まる。すなわち、外輪10、内輪30、ケージ50、ボール40を組み立てる際、最後のボール40を組み入れる時に大きな作動角(ボール組入れ角α)が必要となるが、これを許容するために十分な周方向長さが必要である。等速自在継手が作動角θを取るとそれぞれのボール40の位置はポケット56に対して円周方向に進んだり遅れたりする。ボール組入れ角αが大きくなるほどボール40の円周方向移動量は増加する。最後のボール40を組み込む時、このボール40の両隣のボール40の位置がポケット56に対して円周方向に最大の移動をし、ボール40とポケット56の柱58との干渉が生じる。したがって、最後のボール40を組み込むためのボール組入れ角αを低下させることができれば両隣のボール40と柱58との干渉が生じなくなり、ポケット56の周方向長さLを縮小でき、その結果、柱58の断面積が増加する。 End becomes P 1 of the groove bottom of the ball groove 20 after the removal, since the back side of the P 0, as shown in FIG. 3, the inclination angle α of the cage 50 in order to put the ball 40 decreases. Therefore, the circumferential length L of the pocket 56 of the cage 50 shown in FIG. 4 can be reduced, and the width of the column 58 between the pocket 56 and the pocket 56 can be increased, so that the cage 50 is strengthened. In order to increase the cross-sectional area of the column 58 of the cage 50 without lowering other characteristics, it is necessary to reduce the circumferential length L of the pocket 56. The circumferential length L is determined by a request for assembling the constant velocity universal joint. That is, when the outer ring 10, the inner ring 30, the cage 50, and the ball 40 are assembled, a large operating angle (ball assembly angle α) is required when the last ball 40 is assembled, but a sufficient circumferential length is allowed to allow this. Is necessary. When the constant velocity universal joint takes an operating angle θ, the position of each ball 40 advances or lags in the circumferential direction with respect to the pocket 56. As the ball assembly angle α increases, the amount of movement of the ball 40 in the circumferential direction increases. When the last ball 40 is assembled, the position of the ball 40 on both sides of the ball 40 moves maximum in the circumferential direction with respect to the pocket 56, and interference between the ball 40 and the column 58 of the pocket 56 occurs. Therefore, if the ball insertion angle α for incorporating the last ball 40 can be reduced, the interference between the adjacent balls 40 and the columns 58 does not occur, and the circumferential length L of the pocket 56 can be reduced. As a result, the columns The cross-sectional area of 58 increases.

外輪は、鍛造、旋削、転造、熱処理、研削及び旋削の工程を経て製造される。図2(b)および図3(b)は図2(a)および図3(a)と同じ断面に、ハッチングで熱処理部を表示したものである。図1(a)に符号Bで示してある外輪10の球面状内周面18と符号Aで示してある除去部24を、焼入れ後、同じ工程で(同じチャック状態で同じバイトで)切削することで、安価に実施できる。   The outer ring is manufactured through processes of forging, turning, rolling, heat treatment, grinding and turning. 2 (b) and 3 (b) show the heat treatment part by hatching in the same cross section as FIG. 2 (a) and FIG. 3 (a). In FIG. 1A, the spherical inner peripheral surface 18 of the outer ring 10 indicated by symbol B and the removal portion 24 indicated by symbol A are cut in the same process (with the same tool in the same chuck state) after quenching. Therefore, it can be implemented at low cost.

上記の構成から成る等速自在継手の組立ては、図7〜図9に従って既に述べた従来の場合と同様であるため、説明を省略する。   The assembly of the constant velocity universal joint having the above-described configuration is the same as that of the conventional case already described with reference to FIGS.

なお、本発明はボール数が6の場合のほかボール数が7以上の場合にも適用でき、ボール数が多くなるほどその効果は顕著なものとなる。   The present invention can be applied to the case where the number of balls is 7 or more in addition to the case where the number of balls is 6, and the effect becomes more remarkable as the number of balls increases.

(a)は実施の形態を示す外輪の縦断面図、(b)は端面図(A) is a longitudinal sectional view of the outer ring showing the embodiment, (b) is an end view. (a)は図1(a)の部分拡大図、(b)は熱処理部を示す図(A) is the elements on larger scale of FIG. 1 (a), (b) is a figure which shows a heat processing part. (a)はボール組込み過程を示す外輪とケージの縦断面図、(b)は熱処理部を示す図(A) is a longitudinal sectional view of the outer ring and the cage showing the ball assembly process, (b) is a diagram showing the heat treatment part ケージの平面図Cage top view (a)は固定式等速自在継手の縦断面図、(b)は横断面図、(c)は図5(b)の部分拡大図(A) is a longitudinal sectional view of a fixed type constant velocity universal joint, (b) is a transverse sectional view, and (c) is a partially enlarged view of FIG. 5 (b). 最大作動角時のアンダーカットフリータイプの固定式等速自在継手の縦断面図Longitudinal section of fixed constant velocity universal joint with undercut free type at maximum operating angle ボール組込み過程を示す縦断面図Longitudinal section showing the process of ball assembly 内輪とケージの組込み過程を示す縦断面図Longitudinal section showing the process of assembling the inner ring and cage ケージ付き内輪を外輪に組み込む過程を示す縦断面図Longitudinal section showing the process of incorporating the inner ring with cage into the outer ring (a)は外輪大端面の部分端面図、(b)は縦断面図である。(A) is a partial end view of the outer ring large end face, and (b) is a longitudinal sectional view. (a)は外輪大端面の部分端面図、(b)は縦断面図である。(A) is a partial end view of the outer ring large end face, and (b) is a longitudinal sectional view.

符号の説明Explanation of symbols

10 外輪
12 ステム部
14 マウス部
16 大端面
18 球面状内周面
20 ボール溝
20a 円弧部分
曲率中心
20b 直線部分
22 テーパ面
24 除去部
30 内輪
32 球面状外周面
34 ボール溝
34a 円弧部分
曲率中心
34b 直線部分
36 スプライン孔
38 シャフト
40 ボール
50 ケージ
52 球面状外周面
54 球面状内周面
56 ポケット
58 柱部
O ジョイント中心
P 二等分面
α ボール組入れ角
θ 作動角
DESCRIPTION OF SYMBOLS 10 Outer ring 12 Stem part 14 Mouse part 16 Large end surface 18 Spherical inner peripheral surface 20 Ball groove 20a Arc part O A Curvature center 20b Linear part 22 Tapered surface 24 Removal part 30 Inner ring 32 Spherical outer peripheral surface 34 Ball groove 34a Arc part O B center of curvature 34b straight portion 36 spline hole 38 shaft 40 ball 50 cage 52 spherical outer peripheral surface 54 spherical inner peripheral surface 56 pocket 58 column part O joint center P bisector α ball assembly angle θ working angle

Claims (4)

球面状内周面の円周方向の複数位置に軸方向に延びるボール溝を形成した外輪と、球面状外周面の円周方向の複数位置に軸方向に延びるボール溝を形成した内輪と、外輪のボール溝と内輪のボール溝との間に介在させたボールと、外輪の球面状内周面と内輪の球面状外周面との間に介在してすべてのボールを同一平面内に保持するケージとを具備し、
外輪のボール溝が、奥側の円弧部分と、大端面側に位置する軸線と平行な直線部分とからなり、前記直線部部分の延長線とシャフト面取りテーパ面との交点が大端面より内側にあり、前記交点を含み溝底から大端面にかけての部分を、焼入れ後除去した固定式等速自在継手。
An outer ring in which ball grooves extending in the axial direction are formed at a plurality of circumferential positions on the spherical inner peripheral surface, an inner ring in which ball grooves extending in the axial direction are formed in a plurality of circumferential positions on the spherical outer peripheral surface, and an outer ring A cage interposed between the ball groove of the inner ring and the ball groove of the inner ring and between the spherical inner peripheral surface of the outer ring and the spherical outer peripheral surface of the inner ring to hold all the balls in the same plane And
The ball groove of the outer ring is composed of an arc portion on the back side and a straight line portion parallel to the axis located on the large end surface side, and the intersection of the straight line portion extension line and the shaft chamfer taper surface is on the inner side of the large end surface. A fixed type constant velocity universal joint including a portion from the groove bottom to the large end surface including the intersection and removed after quenching.
前記交点より内側の位置のボール溝の溝底から大端面にかけて全周にわたり同じ断面形状で除去した請求項1の固定式等速自在継手。   The fixed constant velocity universal joint according to claim 1, wherein the fixed constant velocity universal joint is removed with the same cross-sectional shape from the bottom of the ball groove to the large end surface at a position inside the intersection. 請求項1または2の固定式等速自在継手の外輪を製造する方法であって、前記交点を含み溝底から大端面にかかる部分を、焼入れ後除去する工程を含む固定式等速自在継手の外輪の製造方法。   A method of manufacturing an outer ring of a fixed type constant velocity universal joint according to claim 1 or 2, wherein the portion including the intersection and extending from the groove bottom to the large end surface is removed after quenching. Manufacturing method of outer ring. 外輪の球面状内周面と前記除去部を同じ工程で旋削する請求項3の固定式等速自在継手の製造方法。   The method for manufacturing a fixed type constant velocity universal joint according to claim 3, wherein the spherical inner peripheral surface of the outer ring and the removal portion are turned in the same process.
JP2006229694A 2006-08-25 2006-08-25 Fixed type constant velocity universal joint and method of manufacturing outer ring of the same Withdrawn JP2008051273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229694A JP2008051273A (en) 2006-08-25 2006-08-25 Fixed type constant velocity universal joint and method of manufacturing outer ring of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229694A JP2008051273A (en) 2006-08-25 2006-08-25 Fixed type constant velocity universal joint and method of manufacturing outer ring of the same

Publications (1)

Publication Number Publication Date
JP2008051273A true JP2008051273A (en) 2008-03-06

Family

ID=39235519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229694A Withdrawn JP2008051273A (en) 2006-08-25 2006-08-25 Fixed type constant velocity universal joint and method of manufacturing outer ring of the same

Country Status (1)

Country Link
JP (1) JP2008051273A (en)

Similar Documents

Publication Publication Date Title
CN102575720B (en) Fixed type constant velocity universal joint
EP1705395B1 (en) Fixed-type constant-velocity universal joint
US6135891A (en) Constant velocity universal joint
US7883424B2 (en) Torque transmission device useful as a fixed constant velocity ball joint for drive shafts and method for producing such a joint
EP2192315B1 (en) Fixed constant velocity universal joint
JP4994689B2 (en) Fixed constant velocity universal joint
EP1512879B1 (en) Fixed type constant velocity universal joint
JP5214336B2 (en) Fixed constant velocity universal joint
JP5111816B2 (en) Fixed constant velocity universal joint
GB2155367A (en) Forming ball bearing tracks
CN100476227C (en) constant velocity joint
JP5355876B2 (en) Constant velocity universal joint
JP5602497B2 (en) Fixed constant velocity universal joint
JP2008069889A (en) Fixed type constant velocity universal joint
JP2008051273A (en) Fixed type constant velocity universal joint and method of manufacturing outer ring of the same
JP2009079684A (en) Fixed type constant velocity universal joint
JP2007064264A (en) Fixed type constant velocity universal joint
JP6796931B2 (en) Fixed constant velocity universal joint
JP5111817B2 (en) Fixed constant velocity universal joint
JP2010106890A (en) Fixed-type constant velocity universal joint
JP5143460B2 (en) Fixed constant velocity universal joint
JP5398968B2 (en) Fixed constant velocity universal joint
JP2008232293A (en) Constant velocity universal joint
JP4593408B2 (en) Fixed type constant velocity universal joint
JP2010159775A (en) Sliding type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD04 Notification of resignation of power of attorney

Effective date: 20091105

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100601