[go: up one dir, main page]

JP2008049455A - Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance - Google Patents

Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance Download PDF

Info

Publication number
JP2008049455A
JP2008049455A JP2006229875A JP2006229875A JP2008049455A JP 2008049455 A JP2008049455 A JP 2008049455A JP 2006229875 A JP2006229875 A JP 2006229875A JP 2006229875 A JP2006229875 A JP 2006229875A JP 2008049455 A JP2008049455 A JP 2008049455A
Authority
JP
Japan
Prior art keywords
component
hard coating
tool
coating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006229875A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Satoyuki Masuno
智行 益野
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006229875A priority Critical patent/JP2008049455A/en
Publication of JP2008049455A publication Critical patent/JP2008049455A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer showing superior chipping resistance and wear resistance in high speed heavy cutting of high hardness steel. <P>SOLUTION: The surface coated cutting tool has a composition variable (Al, Cr, Ti, Si) N layer coated on the surface of a tool base body made of tungsten carbide base cemented carbide or titanium carbonitride base cermet, The mean thickness of the composition variable (Al, Cr, Ti, Si) N layer is within the range from 1 to 8 μm, and a maximum containing point of Al-Cr and a maximum containing point of Ti-Si alternately exist at a specified interval in the direction of the layer thickness. The content rates of Al, Cr, Ti, and Si at the maximum containing points of Al-Cr are 0.35 to 0.50, 0.15 to 0.35, 0.25 to 0.45, and 0.03 to 0.10 respectively, and the content rates of Al, Cr, Ti, and Si at the maximum containing points of Ti-Si are 0.10 to 0.25, 0.10 to 0.25, 0.50 to 0.70, and 0.10 to 0.25 respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、硬質被覆層がすぐれた耐熱性、高温硬さおよび高温強度を具備し、したがって、特に、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼などの高い発熱を伴うとともに切刃に対して極めて大きな機械的負荷が加わる高速重切削加工に用いた場合にも、すぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention has a hard coating layer with excellent heat resistance, high temperature hardness and high temperature strength, and therefore is accompanied by high heat generation particularly in high hardness steel such as a hardened material of alloy tool steel and bearing steel and a cutting blade. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance even when used in high-speed heavy cutting where an extremely large mechanical load is applied.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

被覆工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、硬質被覆層として、AlとCrとSiの窒化物[以下、(Al,Cr,Si)Nで示す]層を物理蒸着してなる被覆工具、あるいは、AlとTiとSiの窒化物[以下、(Al,Ti,Si)Nで示す]層を物理蒸着してなる被覆工具、が知られており、そして、前記被覆工具の硬質被覆層は、すぐれた高温硬さ、耐熱性および高温強度を有し、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合には、すぐれた切削性能を発揮することが知られている。   As one of the coated tools, the surface of a tool base composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is coated with Al as a hard coating layer. A coated tool formed by physical vapor deposition of a nitride of Cr and Si [hereinafter referred to as (Al, Cr, Si) N], or a nitride of Al, Ti and Si [hereinafter referred to as (Al, Ti, Si) A coating tool formed by physical vapor deposition of a layer denoted N], and the hard coating layer of the coating tool has excellent high temperature hardness, heat resistance and high temperature strength under normal conditions. Thus, it is known that when it is used for cutting various general steels and ordinary cast iron, it exhibits excellent cutting performance.

さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Cr−Si(あるいは、Al−Ti−Si)カソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Al,Cr,Si)N層(あるいは(Al,Ti,Si)N層)からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開2004−106183号公報 特開平7−310174号公報
Further, the above-mentioned coated tool, for example, the above-mentioned tool base is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. Arc discharge is performed between the anode electrode and an Al—Cr—Si (or Al—Ti—Si) cathode electrode (evaporation source) having a predetermined composition, for example, at a current of 90 A while being heated to a temperature of At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa, while the tool substrate is applied with a bias voltage of, for example, −100 V on the surface of the tool substrate. It is also known that it is manufactured by vapor-depositing a hard coating layer composed of the (Al, Cr, Si) N layer (or (Al, Ti, Si) N layer).
JP 2004-106183 A JP 7-310174 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、特に合金工具鋼や軸受鋼の焼入れ材などのビッカース硬さ(Cスケール)で50以上の高い硬さを有する高硬度鋼などの切削加工を、高熱発生を伴い、かつ、切刃に対して極めて大きな機械的な負荷がかかる高速重切削加工条件で行うのに用いた場合には、硬質被覆層は切削時に発生する高熱によって過熱され、また、大きな機械的負荷がかかるため、硬質被覆層の高温強度、耐熱性不足が原因となり硬質被覆層にチッピングが発生したり、熱塑性変形による偏摩耗を生じたりする結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In the case of a coated tool, there is no problem when it is used for cutting under normal conditions, but in particular, a Vickers hardness (C scale) such as a hardened material of alloy tool steel or bearing steel has a high hardness of 50 or more. When used for high-hardness steel cutting with high heat generation and high-speed heavy cutting conditions that require a very large mechanical load on the cutting edge, the hard coating layer Since it is overheated by high heat generated during cutting and a large mechanical load is applied, chipping occurs in the hard coating layer due to the high temperature strength and insufficient heat resistance of the hard coating layer, or uneven deformation due to thermoplastic deformation. Results or cause the Worn, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、特に高速重切削加工で、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置とTiSi蒸着用マグネトロンスパッタリング装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Cr−Ti−Siカソード電極(蒸発源)を備えた(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置、他方側に、Ti−Siターゲット(蒸発源)を備えたTiSi蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置のAl−Cr−Ti−Siカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、それと同時に、対向配設したTiSi蒸着用マグネトロンスパッタリング装置のTi−Siターゲット(蒸発源)にパルス電圧を印加しTi、Siをスパッタすると、アークイオンプレーティングとスパッタリングによってAlとCrとTiとSiの窒化物層(以下、(Al,Cr,Ti,Si)N層で示す)が蒸着形成され、そして、上記窒化物層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Cr−Ti−Siカソード電極(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAlとCrの含有割合が最大となる領域(以下、Al−Cr最高含有点という)が形成され、また、前記工具基体が、上記他方側のTi−Siターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のTi、Siの含有割合が最大となる領域(以下、Ti−Si最高含有点という)が形成され、上記回転テーブルの回転によって層中には層厚方向に沿って、前記Al−Cr最高含有点とTi−Si最高含有点が回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al−Cr最高含有点から前記Ti−Si最高含有点、前記Ti−Si最高含有点から前記Al−Cr最高含有点へ、Al、Cr、Ti、Siの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Cr,Ti,Si)N層という)が形成されること。
In view of the above, the present inventors have developed the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer particularly in high-speed heavy cutting. As a result of conducting research with a focus on
(A) For example, an arc ion plating apparatus for depositing (Al, Cr, Ti, Si) N and a magnetron for depositing TiSi having the structure shown in FIG. 1 (a) in a schematic plan view and in FIG. Using a vapor deposition apparatus provided with a sputtering apparatus, a rotary table for mounting a tool base (for example, a carbide base) is provided in the center of the apparatus, and an Al—Cr—Ti— having a predetermined composition is provided on one side of the rotary table. An arc ion plating apparatus for (Al, Cr, Ti, Si) N deposition having a Si cathode electrode (evaporation source), and a magnetron sputtering apparatus for TiSi deposition having a Ti-Si target (evaporation source) on the other side. A plurality of tool bases are mounted in a ring shape on the rotary table for mounting the tool bases at a predetermined distance in the radial direction from the center axis of the rotary table. In this state, the atmosphere in the apparatus is changed to a nitrogen atmosphere, and while rotating the rotary table and rotating the tool base itself for the purpose of uniforming the thickness of the hard coating layer to be formed, the above (Al, Cr, Ti, A magnetron sputtering apparatus for TiSi vapor deposition that is disposed opposite to the arc discharge between the Al-Cr-Ti-Si cathode electrode (evaporation source) and the anode electrode of the arc ion plating apparatus for Si) N vapor deposition. When a pulse voltage is applied to the Ti-Si target (evaporation source) and Ti and Si are sputtered, a nitride layer of Al, Cr, Ti and Si (hereinafter referred to as (Al, Cr, Ti, Si) N (denoted by the N layer) is formed by vapor deposition, and the nitride layer is formed by the tool substrate disposed on the rotary table. A region where the content ratio of Al and Cr in the vapor deposition layer is relatively maximum at a position closest to the Al-Cr-Ti-Si cathode electrode (evaporation source) on one side (hereinafter, the highest Al-Cr content) In the position where the tool substrate is closest to the Ti-Si target (evaporation source) on the other side, the content ratio of Ti and Si in the deposited layer is relatively maximum. The region (hereinafter referred to as the Ti-Si highest content point) is formed, and the Al-Cr highest content point and the Ti-Si highest content point rotate along the layer thickness direction in the layer by the rotation of the rotary table. Appear alternately and repeatedly at predetermined intervals according to the rotation speed of the table, and from the Al-Cr highest content point to the Ti-Si highest content point, from the Ti-Si highest content point to the Al-Cr highest content point, Al , Cr A vapor deposition layer having a component concentration distribution structure (hereinafter referred to as composition change (Al, Cr, Ti, Si) N layer) in which the contents of Ti and Si are continuously changed is formed.

(ロ)従来の(Al,Cr,Si)N層あるいは(Al,Ti,Si)N層からなる硬質被覆層はすぐれた高温硬さと所定の高温強度、耐熱性を有するが、高い発熱を伴いかつ極めて大きな機械的負荷がかかる高硬度鋼の高速重切削加工下では、その高温強度、耐熱性が十分なものではないため、チッピング、熱塑性変形、偏摩耗などが発生し易いものであったが、上記組成変化(Al,Cr、Ti,Si)N層からなる硬質被覆層においては、そのAl成分は高温硬さおよび耐熱性を向上させ、Cr成分とTi成分は高温強度を向上させ、Si成分は耐熱性を向上させる作用があるため、硬質被覆層を、Al−Cr最高含有点とTi−Si最高含有点が交互に存在する組成変化(Al,Cr,Ti,Si)N層として構成することにより、従来の(Al,Cr,Si)N層あるいは(Al,Ti,Si)N層における高温強度特性、耐熱性特性がTi−Si最高含有点領域の存在によって補われ、硬質被覆層全体として、すぐれた高温硬さと、より一段とすぐれた高温強度およびより一段とすぐれた耐熱性とを具備するようになり、その結果として、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼などの切削加工を、高熱発生を伴うとともに極めて大きな機械的負荷がかかる高速重切削加工条件で行うのに用いた場合にも、硬質被覆層のチッピング、熱塑性変形、偏摩耗等の発生を抑えることができ、すぐれた耐チッピング性と耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) The conventional hard coating layer composed of (Al, Cr, Si) N layer or (Al, Ti, Si) N layer has excellent high temperature hardness, predetermined high temperature strength and heat resistance, but with high heat generation. And under high-speed heavy cutting of high hardness steel that is subject to extremely large mechanical load, its high temperature strength and heat resistance are not sufficient, so chipping, thermoplastic deformation, uneven wear, etc. are likely to occur. In the hard coating layer composed of the above composition change (Al, Cr, Ti, Si) N layer, the Al component improves the high temperature hardness and heat resistance, and the Cr component and the Ti component improve the high temperature strength, and Si Since the component has the effect of improving heat resistance, the hard coating layer is configured as a composition change (Al, Cr, Ti, Si) N layer in which Al-Cr highest content points and Ti-Si highest content points exist alternately By doing The high temperature strength and heat resistance characteristics of the existing (Al, Cr, Si) N layer or (Al, Ti, Si) N layer are supplemented by the existence of the Ti-Si highest content point region, and the hard coating layer as a whole is excellent. High-temperature hardness, better high-temperature strength, and even better heat resistance. As a result, cutting of high-hardness steel such as alloy tool steel and hardened material of bearing steel, etc. Even when used in high-speed heavy cutting conditions where high heat generation and extremely large mechanical load are required, chipping of the hard coating layer, thermoplastic deformation, uneven wear, etc. can be suppressed, which is excellent Demonstrate chipping resistance and wear resistance.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Ti−Siを、また、他方にターゲットとしてTi−Siを設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Ti−Siカソード電極側でのアークイオンプレーティングと、Ti−Siターゲット側でのスパッタリングにより、工具基体表面にAlとCrとTiとSiの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Ti−Siカソード電極近傍で形成されるAl−Cr最高含有点と前記Ti−Siターゲット近傍で形成されるTi−Si最高含有点とが0.03〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr最高含有点から前記Ti−Si最高含有点、前記Ti−Si最高含有点から前記Al−Cr最高含有点へと、Al、Cr、Ti、Siの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Ti−Siカソード電極近傍で形成される前記Al−Cr最高含有点におけるAl成分、Cr成分、Ti成分、Si成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、Xは0.35〜0.50、Yは0.15〜0.35、Qは0.25〜0.45、Rは0.03〜0.10で、かつ、X+Y+Q+R=1を満足し、
(d)前記Ti−Siターゲット近傍で形成される前記Ti−Si最高含有点におけるAl成分、Cr成分、Ti成分、Si成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、Xは0.10〜0.25、Yは0.10〜0.25、Qは0.50〜0.70、Rは0.10〜0.25で、かつ、X+Y+Q+R=1を満足する組成変化(Al,Cr,Ti,Si)N層を蒸着形成してなる、
特に高硬度鋼の高速重切削加工で、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具(表面被覆切削工具)」に特徴を有するものである。
This invention was made based on the above research results,
“A vapor deposition system comprising a tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, an Al—Cr—Ti—Si cathode electrode, and a Ti—Si target on the other. The surface of the tool base is placed on the rotary table, and the tool base is rotated on the rotary table while arc ion plating on the Al—Cr—Ti—Si cathode electrode side and sputtering on the Ti—Si target side. In a surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Ti, and Si is formed by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and the highest content of Al—Cr is formed in the vicinity of the Al—Cr—Ti—Si cathode electrode along the thickness direction of the hard coating layer. Points and Ti-Si highest content points formed in the vicinity of the Ti-Si target are alternately present at intervals of 0.03-0.1 μm,
(B) The content ratio of Al, Cr, Ti, and Si is continuous from the Al-Cr highest content point to the Ti-Si highest content point and from the Ti-Si highest content point to the Al-Cr highest content point. Has a component concentration distribution structure that changes periodically,
(C) Al component, Cr component, Ti component, Si component at the Al-Cr highest content point formed in the vicinity of the Al-Cr-Ti-Si cathode electrode, the content ratio (however, the atomic ratio), When represented by X, Y, Q, and R, X is 0.35 to 0.50, Y is 0.15 to 0.35, Q is 0.25 to 0.45, and R is 0.03. 0.10 and satisfy X + Y + Q + R = 1,
(D) The Al component, Cr component, Ti component, and Si component at the Ti-Si highest content point formed in the vicinity of the Ti-Si target have their content ratios (however, the atomic ratio) X, Y, When represented by Q and R, X is 0.10 to 0.25, Y is 0.10 to 0.25, Q is 0.50 to 0.70, R is 0.10 to 0.25, And, a composition change (Al, Cr, Ti, Si) N layer satisfying X + Y + Q + R = 1 is formed by vapor deposition.
In particular, it is characterized by a coated tool (surface coated cutting tool) that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting of high hardness steel.

つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Cr,Ti,Si)N層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the composition change (Al, Cr, Ti, Si) N layers constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)Al−Cr最高含有点のAl、Cr、Ti、Si含有割合
組成変化(Al,Cr,Ti,Si)N層におけるAlは、高温硬さおよび耐熱性を向上させ、同Cr及び同Tiは高温強度を向上させ、同Si成分は一段と耐熱性を向上させる作用がある。したがって相対的にAl成分とCr成分の含有割合が高いAl−Cr最高含有点ではすぐれた高温硬さと所定の高温強度、所定の耐熱性を備えるが、Alの含有割合(X値)が0.35未満の場合では、硬質被覆層として最小限要求される高温硬さを保持することができず、また、Crの含有割合(Y値)が0.15未満の場合には、高温強度が低下してしまい、そして、この高温強度の低下をTi含有割合(Q値)の増加によって補おうとすれば、Si含有割合(R値)が小さくなり、耐熱性向上効果が不十分になり、一方、Alの含有割合(X値)が0.50を超える場合には、相対的なCr、Ti、Siの含有割合の低下により、高温強度の向上、耐熱性の向上を期待できず、また、Crの含有割合(Y値)が0.35を超える場合には、相対的なAl、Ti、Siの含有割合の低下により、高温硬さの低下、耐熱性の低下を招くことから、Alの含有割合(X値)を0.35〜0.50、Crの含有割合(Y値)を0.15〜0.35(いずれも、原子比)に定めた。
また、Al−Cr最高含有点における、Tiの含有割合(Q値)とSiの含有割合(R値)は、高硬度鋼の高速重切削加工において最低限必要とされる高温強度の確保、耐熱性の確保という観点から、それぞれ、0.25〜0.45、0.03〜0.10に定めた。
(A) Al, Cr, Ti, Si content ratio of Al-Cr highest content point Al in the composition change (Al, Cr, Ti, Si) N layer improves the high temperature hardness and heat resistance, the same Cr and the same Ti improves the high temperature strength, and the Si component has the effect of further improving the heat resistance. Therefore, the Al-Cr highest content point where the content ratio of the Al component and the Cr component is relatively high has excellent high temperature hardness, predetermined high temperature strength, and predetermined heat resistance, but the Al content ratio (X value) is 0. If the ratio is less than 35, the minimum required high-temperature hardness for the hard coating layer cannot be maintained, and if the Cr content (Y value) is less than 0.15, the high-temperature strength decreases. If the decrease in high-temperature strength is to be compensated for by increasing the Ti content (Q value), the Si content (R value) becomes small, and the heat resistance improvement effect becomes insufficient. When the Al content ratio (X value) exceeds 0.50, due to the relative decrease in the Cr, Ti and Si content ratios, improvement in high-temperature strength and heat resistance cannot be expected. When the content ratio (Y value) exceeds 0.35 Since the relative decrease in Al, Ti, and Si content ratios causes a decrease in high-temperature hardness and heat resistance, the Al content ratio (X value) is 0.35 to 0.50. The content ratio (Y value) was set to 0.15 to 0.35 (both atomic ratios).
Also, the Ti content ratio (Q value) and Si content ratio (R value) at the highest Al-Cr content point ensure the high-temperature strength and heat resistance required for high-speed heavy cutting of high-hardness steel. From the viewpoint of securing the property, they were set to 0.25 to 0.45 and 0.03 to 0.10, respectively.

(b)Ti−Si最高含有点のAl、Cr、Ti、Si含有割合
硬質被覆層のTi−Si最高含有点において、組成変化(Al,Cr,Ti,Si,)N層は、すぐれた高温強度とより一段とすぐれた耐熱性を備えるが、Ti含有割合(Q値)が0.70を超えたり、Si含有割合(R値)が0.25を超えたりする場合には、(Al,Cr,Ti,Si)N層中のAl成分あるいはCr成分含有量の相対的な減少により、所定の高温硬さあるいは所定の高温強度を維持することができず、一方、Ti含有割合(Q値)が0.50未満、Si含有割合(R値)が0.10未満になると、(Al,Cr,Ti,Si)N層中のTiおよびSiの含有割合の減少により、十分な高温強度の確保と十分な耐熱性の確保ができなくなることから、Tiの含有割合(Q値)を0.50〜0.70、また、Siの含有割合(R値)を、0.10〜0.25(いずれも、原子比)に定めた。
また、Ti−Si最高含有点における、Alの含有割合(X値)とCrの含有割合(Y値)は、高硬度鋼の高速重切削加工において最低限必要とされる高温硬さと高温強度の確保という観点から、それぞれ、0.10〜0.25、0.10〜0.25に定めた。
(B) Al, Cr, Ti, Si content ratio at the highest Ti-Si content point At the Ti-Si highest content point of the hard coating layer, the composition change (Al, Cr, Ti, Si,) N layer has an excellent high temperature. It has higher strength and heat resistance, but if the Ti content (Q value) exceeds 0.70 or the Si content (R value) exceeds 0.25, (Al, Cr , Ti, Si) The relative high decrease in the Al component or Cr component content in the N layer cannot maintain the predetermined high-temperature hardness or the predetermined high-temperature strength, while the Ti content ratio (Q value). Is less than 0.50 and the Si content (R value) is less than 0.10, the sufficient content of high temperature is ensured by the decrease in the content of Ti and Si in the (Al, Cr, Ti, Si) N layer. And sufficient heat resistance cannot be secured. The content ratio (Q value) was set to 0.50 to 0.70, and the Si content ratio (R value) was set to 0.10 to 0.25 (both atomic ratios).
In addition, the content ratio of Al (X value) and the content ratio of Cr (Y value) at the highest Ti-Si content point are the high-temperature hardness and high-temperature strength required at the minimum in high-speed heavy cutting of high-hardness steel. From the viewpoint of ensuring, it was set to 0.10 to 0.25 and 0.10 to 0.25, respectively.

(c)Al−Cr最高含有点とTi−Si最高含有点間の間隔
この発明の硬質被覆層は、その層厚方向に亘って、窒化物を構成する成分の濃度が、Al−Cr最高含有点からTi−Si最高含有点へと、また、Ti−Si最高含有点からAl−Cr最高含有点へと連続的に変化するものであるため、例えば、成分濃度が不連続な変化をする複数層の積層構造からなる硬質被覆層に比べれば、複数層間での剥離等の恐れは無く硬質被覆層自体の密着強度・接合強度は非常にすぐれたものであるが、Al−Cr最高含有点とTi−Si最高含有点間の間隔が0.03μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、高温強度、耐熱性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちTi−Si最高含有点であれば高温硬さの不足、また、Al−Cr最高含有点であれば特に耐熱性の不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、また、摩耗進行が促進されるようになることから、その間隔を0.03〜0.1μmと定めた。
なお、Al−Cr最高含有点とTi−Si最高含有点間の間隔は、(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置とTiSi蒸着用マグネトロンスパッタリング装置を併設した蒸着装置を用い、アークイオンプレーティングとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができるので、回転テーブルの回転速度を適宜に設定することにより、Al−Cr最高含有点とTi−Si最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Cr,Ti,Si)N層を容易に形成することができる。
(C) Interval between Al-Cr highest content point and Ti-Si highest content point The hard coating layer of this invention has a concentration of the component constituting the nitride in the layer thickness direction so that the highest content of Al-Cr is contained. From the point to the Ti-Si highest content point, and from the Ti-Si highest content point to the Al-Cr highest content point, for example, a plurality of components concentration changes discontinuously, for example Compared to a hard coating layer composed of a laminated structure of layers, there is no fear of peeling between multiple layers, and the adhesion strength and bonding strength of the hard coating layer itself are very excellent, but the Al-Cr highest content point If the distance between the highest Ti-Si content points is less than 0.03 μm, it is difficult to clearly form each point with the above composition. As a result, the desired high-temperature hardness, high-temperature strength, heat resistance of each layer is difficult. Can not be secured, and in the meantime If the distance exceeds 0.1 μm, the disadvantage of each point, that is, if the Ti-Si highest content point, the high temperature hardness is insufficient, and if the Al-Cr highest content point, the heat resistance is particularly insufficient. Therefore, the chipping is likely to occur on the cutting edge, and the progress of wear is promoted. Therefore, the interval is set to 0.03 to 0.1 μm.
In addition, the interval between the Al-Cr highest content point and the Ti-Si highest content point is a vapor deposition device provided with an (Al, Cr, Ti, Si) N vapor deposition arc ion plating device and a TiSi vapor deposition magnetron sputtering device. When the vapor deposition film is formed by performing arc ion plating and sputtering at the same time, for example, it can be adjusted by controlling the rotation speed of the rotary table on which the tool base is mounted. By appropriately setting, the composition change (Al, Cr, Ti, Si) N layer in which the distance between the Al-Cr highest content point and the Ti-Si highest content point becomes a desired value within the above numerical range can be easily achieved. Can be formed.

(d)平均層厚
その平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、高温強度および耐熱性を長期に亘って確保することができず、その結果、高硬度鋼の高速切削における耐チッピング性、耐摩耗性の向上を期待することができず、一方、その平均層厚が8μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜8μmと定めた。
(D) Average layer thickness When the average layer thickness is less than 1 μm, the hard coating layer cannot secure desired high-temperature hardness, high-temperature strength and heat resistance over a long period of time. The improvement of chipping resistance and wear resistance in cutting cannot be expected. On the other hand, if the average layer thickness exceeds 8 μm, chipping tends to occur at the cutting edge. It was determined to be 8 μm.

この発明の被覆工具は、硬質被覆層を構成する組成変化(Al,Cr,Ti,Si)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性を具備することから、特に、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼を、大きな発熱を伴い、さらに、切刃部に極めておきな機械的負荷が加わる高速重切削条件下で加工した場合であっても、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものである。   In the coated tool of the present invention, since the composition change (Al, Cr, Ti, Si) N layer constituting the hard coating layer as a whole has excellent high temperature hardness, high temperature strength, and heat resistance, Even when hardened steels such as alloy tool steels and hardened materials for bearing steels are processed under high-speed heavy cutting conditions with large heat generation and extremely high mechanical loads on the cutting edge, It exhibits excellent chipping resistance and wear resistance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Ti−Si、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてTi−Siを装着し、またボンバード洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(b)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、
(c)また、それと同時に、TiSi焼結体のターゲットにパルス電源を用いて4.5kWのパルス電力を印加してTi、Siをスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に、表3,4に示される目標組成のAl−Cr最高含有点とTi−Si最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al−Cr最高含有点から前記Ti−Si最高含有点、前記Ti−Si最高含有点から前記Al−Cr最高含有点へと、Al、Cr、Ti、Siの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Cr,Ti,Si)N層からなる硬質被覆層を蒸着することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16をそれぞれ製造した。
なお、上記実施例では、Al−Cr最高含有点とTi−Si最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
Next, each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the inside of the vapor deposition apparatus provided with the arc ion plating apparatus and the magnetron sputtering apparatus shown in FIG. The Al—Cr—Ti—Si having various composition as the cathode electrode (evaporation source) of the arc ion plating apparatus on one side and the magnetron on the other side Ti-Si is attached as a target (evaporation source) of the sputtering apparatus, and metal Ti for bombard cleaning is also attached. After heating to ℃, a DC bias voltage of −1000 V is applied to the rotating tool base while rotating on the rotary table. To, by passing a 100A current between said metallic Ti and the anode electrode of the cathode electrode to generate arc discharge, a tool substrate surface was washed Ti bombardment with,
(B) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode An arc discharge is generated by passing a current of 90 A between the electrode and the anode electrode,
(C) At the same time, a pulse power of 4.5 kW is applied to the target of the TiSi sintered body using a pulse power source to sputter Ti and Si,
(D) Al-Cr highest content points and Ti-Si highest content points of the target compositions shown in Tables 3 and 4 are alternately formed on the surface of the tool base that rotates while rotating on the rotary table. , Repeatedly present at the target intervals shown in Table 4, and from the highest Al-Cr content point to the highest Ti-Si content point, from the highest Ti-Si content point to the highest Al-Cr content point, Al , Cr, Ti, Si have a component concentration distribution structure in which the content ratio changes continuously, and the compositional change in the target layer thickness (Al, Cr, Ti, Si) N shown in Tables 3 and 4 is also shown. By depositing a hard coating layer composed of layers, the inventive coated tools 1 to 16 having a throwaway tip shape defined in ISO · CNMG120408 were produced.
In addition, in the said Example, the target space | interval of Al-Cr highest content point and Ti-Si highest content point is a predetermined target space | interval by changing the rotational speed of a rotary table within the range of 0.5-10 rpm. It adjusted so that it might become a value.

また、比較の目的で、これら工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Ti−Siを装着し、さらにボンバード洗浄用金属Tiも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si)N層からなる硬質被覆層を蒸着することにより、同じくスローアウエイチップ形状の比較被覆工具1〜16をそれぞれ製造した。   Further, for the purpose of comparison, these tool bases A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and each was charged into a normal arc ion plating apparatus shown in FIG. As cathode electrode (evaporation source), Al-Cr-Ti-Si with various component compositions is attached, and metal timber for bombard cleaning is also attached, and the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less. However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was passed between the metal Ti and the anode electrode of the cathode electrode to generate an arc. A discharge was generated, and the tool base surface was cleaned with Ti bombardment. Then, nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa. The bias voltage applied to the substrate is lowered to −100 V, and a current of 90 A is caused to flow between the cathode electrode and the anode electrode to generate an arc discharge, whereby the respective surfaces of the tool substrates A1 to A10 and B1 to B6 Further, by depositing a hard coating layer composed of a compositionally uniform (Al, Cr, Ti, Si) N layer having a target composition and a target layer thickness shown in Tables 5 and 6, the shape of the throwaway tip is also obtained. Comparative coated tools 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・SUJ2(硬さ:65HRC)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 140 m/min.、
切り込み: 0.8 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)での軸受鋼の乾式高速高送り断続切削加工試験(通常の切削速度及び送りは、それぞれ、85m/min.、0.3mm/rev.)、
被削材:JIS・SKD61(硬さ:52HRC)の丸棒、
切削速度: 120 m/min.、
切り込み: 1.0 mm、
送り: 0.50 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)での合金工具鋼の乾式高速高送り連続切削加工試験(通常の切削速度及び送りは、それぞれ、70m/min.、0.3mm/rev.)、
被削材:JIS・SKD11(硬さ:60HRC)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 110 m/min.、
切り込み: 0.7 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での合金工具鋼の乾式高速高送り断続切削加工試験(通常の切削速度及び送りは、それぞれ、60m/min.、0.25mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / SUJ2 (Hardness: 65HRC) lengthwise equidistant four round grooved round bars,
Cutting speed: 140 m / min. ,
Cutting depth: 0.8 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed high-feed intermittent cutting test of bearing steel under the following conditions (cutting condition A) (normal cutting speed and feed are 85 m / min. And 0.3 mm / rev., Respectively),
Work material: JIS · SKD61 (hardness: 52HRC) round bar,
Cutting speed: 120 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed high-feed continuous cutting test of alloy tool steel under the conditions (cutting condition B) (normal cutting speed and feed are 70 m / min. And 0.3 mm / rev., Respectively),
Work material: JIS · SKD11 (hardness: 60HRC) in the longitudinal direction, four equally spaced round bars,
Cutting speed: 110 m / min. ,
Cutting depth: 0.7 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed high-feed intermittent cutting test of the alloy tool steel under the conditions (cutting condition C) (normal cutting speed and feed are 60 m / min. And 0.25 mm / rev., Respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl−Cr最高含有点とTi−Si最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al−Cr最高含有点から前記Ti−Si最高含有点、前記Ti−Si最高含有点から前記Al−Cr最高含有点へと、Al、Cr、Ti、Siの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Cr,Ti,Si)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. 1 were also provided. In the vapor deposition apparatus, under the same conditions as in Example 1 above, the Al-Cr highest content point and Ti-Si highest content point of the target composition shown in Table 9 along the layer thickness direction alternately, Repetitively present at the target intervals shown in Table 9, and from the highest Al-Cr content point to the highest Ti-Si content point, from the highest Ti-Si content point to the highest Al-Cr content point, Al, Cr A hard coating layer having a component concentration distribution structure in which the content ratio of Ti, Si continuously changes, and a composition change (Al, Cr, Ti, Si) N layer of the target layer thickness similarly shown in Table 9 Vapor deposition By forming the present invention coated end mills 1-8 as the present invention coated tool was produced, respectively.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆エンドミル1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the tool base (end mill) C-1 to C-8 is ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, the surfaces of the tool bases (end mills) C-1 to C-8 were uniformly compositionally provided with the target composition and target layer thickness shown in Table 10. Comparative coating end mills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer composed of an (Al, Cr, Ti, Si) N layer.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61(硬さ:52HRC)の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 0.3 mm、
テーブル送り: 120 mm/分、
の条件での合金工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度及び送りは、それぞれ、30m/min.、85mm/分)、
本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11(硬さ:60HRC)の板材、
切削速度: 80 m/min.、
溝深さ(切り込み): 0.5 mm、
テーブル送り: 130 mm/分、
の条件での合金工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度及び送りは、それぞれ、40m/min.、90mm/分)、
本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUJ2(硬さ:65HRC)の板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 1 mm、
テーブル送り: 80 mm/分、
の条件での軸受鋼の乾式高速高送り溝切削加工試験(通常の切削速度及び送り は、それぞれ、30m/min.、50mm/分)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8,
About this invention coated end mills 1-3 and comparative coated end mills 1-3,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS SKD61 (hardness: 52 HRC) plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 0.3 mm,
Table feed: 120 mm / min,
Dry high-speed high-feed grooving cutting test of alloy tool steel under the conditions (normal cutting speed and feed are 30 m / min and 85 mm / min, respectively)
About this invention coated end mills 4-6 and comparative coated end mills 4-6,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS SKD11 (hardness: 60 HRC) plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 0.5 mm,
Table feed: 130 mm / min,
Dry high-speed high-feed groove cutting test of alloy tool steel under the conditions (normal cutting speed and feed are 40 m / min. And 90 mm / min, respectively),
For the coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardness: 65 HRC) plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 1 mm,
Table feed: 80 mm / min,
Dry high-speed high-feed groove cutting test of bearing steel under the following conditions (normal cutting speed and feed are 30 m / min and 50 mm / min, respectively)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl−Cr最高含有点とTi−Si最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al−Cr最高含有点から前記Ti−Si最高含有点、前記Ti−Si最高含有点から前記Al−Cr最高含有点へと、Al、Cr、Ti、Siの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Cr、Ti,Si)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Then, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plating apparatus shown in FIG. A vapor deposition apparatus equipped with a magnetron sputtering apparatus was charged, and under the same conditions as in Example 1, the Al-Cr highest content point and Ti-Si highest content point of the target composition shown in Table 11 along the layer thickness direction. Are alternately present at the target intervals shown in Table 11, and from the Al-Cr highest content point to the Ti-Si highest content point, from the Ti-Si highest content point to the Al-Cr highest content point. The compositional change of the target layer thickness (Al, Cr, Ti, Si) N, which has a component concentration distribution structure in which the content ratio of Al, Cr, Ti, Si continuously changes and is also shown in Table 11 Layer By depositing it forms a hard coat layer of the present invention coated drill 1-8 as the present invention coated tool was produced, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆ドリル1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into an arc ion plating apparatus, and had the target composition and target layer thickness shown in Table 12 on the surfaces of the tool bases (drills) D-1 to D-8 under the same conditions as in Example 1. Comparative coating drills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer composed of a compositionally uniform (Al, Cr, Ti, Si) N layer.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、
本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11(硬さ:60HRC)の板材、
切削速度: 90 m/min.、
送り: 0.35 mm/rev、
穴深さ: 8 mm、
の条件での合金工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.、0.2mm/rev)、
本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUJ2(硬さ:65HRC)の板材、
切削速度: 80 m/min.、
送り: 0.38 mm/rev、
穴深さ: 12 mm、
の条件での軸受鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、45m/min.、0.16mm/rev)、
本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61(硬さ:52HRC)の板材、
切削速度: 70 m/min.、
送り: 0.35 mm/rev、
穴深さ: 24 mm、
の条件での合金工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、40m/min.、0.18mm/rev)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8,
About this invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS SKD11 (hardness: 60 HRC) plate material,
Cutting speed: 90 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 8 mm,
Wet high-speed high-feed drilling test of alloy tool steel under the conditions (normal cutting speed and feed are 50 m / min. And 0.2 mm / rev, respectively)
About this invention coated drill 4-6 and comparative coated drill 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardness: 65 HRC) plate material,
Cutting speed: 80 m / min. ,
Feed: 0.38 mm / rev,
Hole depth: 12 mm,
Wet high-speed high-feed drilling test of bearing steel under the conditions (normal cutting speed and feed are 45 m / min. And 0.16 mm / rev, respectively),
About this invention covering drills 7 and 8 and comparative covering drills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS SKD61 (hardness: 52 HRC) plate material,
Cutting speed: 70 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 24 mm,
Wet high-speed high-feed drilling test of alloy tool steel under the following conditions (normal cutting speed and feed are 40 m / min. And 0.18 mm / rev, respectively)
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2008049455
Figure 2008049455

Figure 2008049455
Figure 2008049455

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する組成変化(Al,Cr,Ti,Si)N層のAl−Cr最高含有点およびTi−Si最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl−Cr最高含有点およびTi−Si最高含有点と実質的に同じ組成を示した。また、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の硬質被覆層を構成する組成的に均一な(Al,Cr,Ti,Si)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the composition changes (Al, Cr, Ti) constituting the hard coating layers of the present coated tips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tools obtained as a result of the present invention. , Si) The composition of the highest Al-Cr content point and Ti-Si highest content point of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition was substantially the same as the content point and the highest content point of Ti-Si. Further, compositionally uniform (Al, Cr, Ti, Si) N constituting the hard coating layers of the comparative coating tips 1 to 16, the comparative coating end mills 1 to 8 and the comparative coating drills 1 to 8 as the comparative coating tool. The composition of the layers was measured by energy dispersive X-ray analysis using a transmission electron microscope, and each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7、9〜12に示される結果から、本発明被覆工具は、特に、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼を高い発熱を伴うとともに、切刃部に極めて大きな機械的負荷がかかる高速重切削加工に用いた場合にも、硬質被覆層を構成する組成変化(Al,Cr,Ti,Si)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性を備えていることによって、チッピングや偏摩耗等の発生がなく、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Cr,Ti,Si)N層で構成された比較被覆工具においては、高温強度の不足、耐熱性の不足により、チッピング、熱塑性変形、偏摩耗等が発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 and 9-12, the coated tool of the present invention is particularly hardened with high hardness steel, such as a hardened material of alloy tool steel or bearing steel, and has a very large mechanical load on the cutting edge. Even when used for high-speed heavy cutting, the composition change (Al, Cr, Ti, Si) N layer that constitutes the hard coating layer as a whole has excellent high-temperature hardness, high-temperature strength, and heat resistance. As a result, there is no occurrence of chipping or uneven wear, and excellent chipping resistance and wear resistance are exhibited over a long period of time, while the hard coating layer is compositionally uniform (Al, Cr, In comparative coated tools composed of (Ti, Si) N layers, chipping, thermoplastic deformation, partial wear, etc. occur due to insufficient high-temperature strength and insufficient heat resistance. It is clear that

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、大きな発熱を伴い、かつ、切刃に極めて大きな機械的負荷が加わる高硬度鋼の高速重切削加工に用いた場合でも、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only for cutting of general steel and ordinary cast iron, but also for high-speed heavy cutting of high-hardness steel accompanied by great heat generation and extremely high mechanical load on the cutting edge. Even when used for machining, it exhibits excellent chipping resistance and wear resistance over a long period of time, and exhibits excellent cutting performance. It is possible to cope with the reduction of cost and cost.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus which used together the arc ion plating apparatus and magnetron sputtering apparatus which were used for forming the hard coating layer which comprises the coating tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. It is. 従来被覆工具、比較被覆工具を構成する硬質被覆層を形成するのに用いられる通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used for forming the hard coating layer which comprises a conventional coated tool and a comparative coated tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Ti−Siを、また、他方にターゲットとしてTi−Siを設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Ti−Siカソード電極側でのアークイオンプレーティングと、Ti−Siターゲット側でのスパッタリングにより、工具基体表面にAlとCrとTiとSiの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Ti−Siカソード電極近傍で形成されるAl−Cr最高含有点と前記Ti−Siターゲット近傍で形成されるTi−Si最高含有点とが0.03〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr最高含有点から前記Ti−Si最高含有点、前記Ti−Si最高含有点から前記Al−Cr最高含有点へと、Al、Cr、Ti、Siの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Ti−Siカソード電極近傍で形成される前記Al−Cr最高含有点におけるAl成分、Cr成分、Ti成分、Si成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、Xは0.35〜0.50、Yは0.15〜0.35、Qは0.25〜0.45、Rは0.03〜0.10で、かつ、X+Y+Q+R=1を満足し、
(d)前記Ti−Siターゲット近傍で形成される前記Ti−Si最高含有点におけるAl成分、Cr成分、Ti成分、Si成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、Xは0.10〜0.25、Yは0.10〜0.25、Qは0.50〜0.70、Rは0.10〜0.25で、かつ、X+Y+Q+R=1を満足する組成変化(Al,Cr,Ti,Si)N層を蒸着形成してなる、
硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具。
Rotation of a vapor deposition system with a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, Al—Cr—Ti—Si as the cathode electrode on one side, and Ti—Si as the target on the other side Placed on the table, while rotating the tool base on the rotary table, on the tool base surface by arc ion plating on the Al-Cr-Ti-Si cathode electrode side and sputtering on the Ti-Si target side. In a surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Ti, and Si is formed by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and the highest content of Al—Cr is formed in the vicinity of the Al—Cr—Ti—Si cathode electrode along the thickness direction of the hard coating layer. Points and Ti-Si highest content points formed in the vicinity of the Ti-Si target are alternately present at intervals of 0.03-0.1 μm,
(B) The content ratio of Al, Cr, Ti, and Si is continuous from the Al-Cr highest content point to the Ti-Si highest content point and from the Ti-Si highest content point to the Al-Cr highest content point. Has a component concentration distribution structure that changes periodically,
(C) Al component, Cr component, Ti component, Si component at the Al-Cr highest content point formed in the vicinity of the Al-Cr-Ti-Si cathode electrode, the content ratio (however, the atomic ratio), When represented by X, Y, Q, and R, X is 0.35 to 0.50, Y is 0.15 to 0.35, Q is 0.25 to 0.45, and R is 0.03. 0.10 and satisfy X + Y + Q + R = 1,
(D) The Al component, Cr component, Ti component, and Si component at the Ti-Si highest content point formed in the vicinity of the Ti-Si target have their content ratios (however, the atomic ratio) X, Y, When represented by Q and R, X is 0.10 to 0.25, Y is 0.10 to 0.25, Q is 0.50 to 0.70, R is 0.10 to 0.25, And, a composition change (Al, Cr, Ti, Si) N layer satisfying X + Y + Q + R = 1 is formed by vapor deposition.
A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its hard coating layer.
JP2006229875A 2006-08-25 2006-08-25 Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance Withdrawn JP2008049455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229875A JP2008049455A (en) 2006-08-25 2006-08-25 Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229875A JP2008049455A (en) 2006-08-25 2006-08-25 Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance

Publications (1)

Publication Number Publication Date
JP2008049455A true JP2008049455A (en) 2008-03-06

Family

ID=39233965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229875A Withdrawn JP2008049455A (en) 2006-08-25 2006-08-25 Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance

Country Status (1)

Country Link
JP (1) JP2008049455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025977A1 (en) * 2016-08-01 2018-02-08 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
CN110408903A (en) * 2019-09-16 2019-11-05 济南大学 Preparation method of multiple multi-layer coating on tool surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025977A1 (en) * 2016-08-01 2018-02-08 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
US20190193165A1 (en) * 2016-08-01 2019-06-27 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
JP2019528183A (en) * 2016-08-01 2019-10-10 三菱マテリアル株式会社 Multi-layer hard coating coated cutting tool
EP3490745A4 (en) * 2016-08-01 2019-12-25 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
US11014167B2 (en) 2016-08-01 2021-05-25 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
JP7061603B2 (en) 2016-08-01 2022-04-28 三菱マテリアル株式会社 Multi-layer hard film coating cutting tool
CN110408903A (en) * 2019-09-16 2019-11-05 济南大学 Preparation method of multiple multi-layer coating on tool surface

Similar Documents

Publication Publication Date Title
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4535250B2 (en) Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2008173751A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP5035527B2 (en) Surface coated cutting tool
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP2008173755A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP2008173703A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2008173701A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2006289537A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110