[go: up one dir, main page]

JP2008042136A - Manufacturing method of solid-state electrolytic capacitor - Google Patents

Manufacturing method of solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2008042136A
JP2008042136A JP2006218415A JP2006218415A JP2008042136A JP 2008042136 A JP2008042136 A JP 2008042136A JP 2006218415 A JP2006218415 A JP 2006218415A JP 2006218415 A JP2006218415 A JP 2006218415A JP 2008042136 A JP2008042136 A JP 2008042136A
Authority
JP
Japan
Prior art keywords
aging
voltage
electrolytic capacitor
capacitor element
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218415A
Other languages
Japanese (ja)
Inventor
Takahiro Umehara
孝洋 梅原
Akihiro Matsuda
晃啓 松田
Yuichi Nakajima
雄一 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2006218415A priority Critical patent/JP2008042136A/en
Publication of JP2008042136A publication Critical patent/JP2008042136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid-state electrolytic capacitor having more stable electric properties and lower leakage currents than those of a conventional one. <P>SOLUTION: The solid-state electrolytic capacitor comprises, a capacitor element having: an anode foil with an anode oxidation coating thereon; and a cathode foil rolled with a separator interposed therebetween. The capacitor element is fixed by conductive polymer, and housed in a predetermined case, and then multiple aging processes are carried out with an aging voltage that is different each time and in such a way that an aging voltage on a next stage becomes higher than that on the previous stage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor.

従来、電解コンデンサの陽極電極は、アルミニウム、タンタル、ニオブ等の弁作用金属からなるが、この陽極電極はエッチングピットや微細孔を持ち、陽極電極表面に誘電体となる酸化皮膜層を形成し、この酸化皮膜層上に電解質層を形成し、電極を引き出して構成される。電解コンデンサにおける真の陰極は、この電解質層であり、この電解質層が、電解コンデンサの電気特性に大きな影響を及ぼすため、数々の形成方法が提案されている。   Conventionally, the anode electrode of an electrolytic capacitor is made of valve action metal such as aluminum, tantalum, niobium, etc., but this anode electrode has etching pits and fine holes, and forms an oxide film layer serving as a dielectric on the surface of the anode electrode. An electrolyte layer is formed on this oxide film layer, and an electrode is drawn out. The true cathode in the electrolytic capacitor is this electrolyte layer, and since this electrolyte layer has a great influence on the electrical characteristics of the electrolytic capacitor, a number of formation methods have been proposed.

固体電解コンデンサは、イオン伝導性であるために高周波領域でインピーダンス特性が悪化する液状の電解質に替えて、電子伝導性である固体の電解質を用いるもので、なかでも7,7,8,8−テトラシアノキノジメタン(TCNQ)錯体が知られており、このTCNQ錯体を熱溶融して陽極電極に浸漬、塗布し、固体電解層を形成している(例えば、特許文献1参照)。   The solid electrolytic capacitor uses a solid electrolyte that is electronically conductive instead of a liquid electrolyte that deteriorates impedance characteristics in a high-frequency region because it is ionically conductive. Among them, 7, 7, 8, 8- A tetracyanoquinodimethane (TCNQ) complex is known, and this TCNQ complex is melted by heat and immersed in an anode electrode and applied to form a solid electrolytic layer (for example, see Patent Document 1).

また、他の手法としてポリエチレンジオキシチオフェン(PEDT)等の導電性高分子を固体電解質として用いることが試みられている(例えば、特許文献2参照)。   As another method, an attempt has been made to use a conductive polymer such as polyethylenedioxythiophene (PEDT) as a solid electrolyte (for example, see Patent Document 2).

一般的に、コンデンサは、その漏れ電流を低くするために、ある一定の下で電圧を印加するエージング工程を行う。PEDTを固体電解質とした固体電解コンデンサは、他のコンデンサと比較して漏れ電流が大きいため、様々なエージング方法が検討されている(例えば、特許文献3および特許文献4参照)。   Generally, a capacitor performs an aging process in which a voltage is applied under a certain constant in order to reduce its leakage current. Since solid electrolytic capacitors using PEDT as a solid electrolyte have a larger leakage current than other capacitors, various aging methods have been studied (for example, see Patent Document 3 and Patent Document 4).

特開昭58−191414号公報JP 58-191414 A 特開平2−15611号公報JP-A-2-15611 特開2003−289019号公報JP 2003-289019 A 特開2005−109076号公報JP 2005-109076 A

上記PEDTを固体電解質とした固体電解コンデンサのエージング方法としては、高温下で定格電圧より高い電圧を印加する方法が種々検討されているが、定格電圧より高い電圧を製品に印加すると、酸化皮膜が修復される前に大電流が製品に流れてしまい、発熱が大きくなる。この発熱によって製品が設定している温度以上になり、製品の電気特性(特に、静電容量や等価直列抵抗(ESR))が悪化し、漏れ電流が絞れなかったりする現象が起こる。   Various methods of applying a voltage higher than the rated voltage at a high temperature have been studied as a method for aging a solid electrolytic capacitor using the above-mentioned PEDT as a solid electrolyte. A large current flows through the product before it is repaired, and heat generation increases. Due to this heat generation, the temperature exceeds the temperature set by the product, the electrical characteristics of the product (especially, capacitance and equivalent series resistance (ESR)) are deteriorated, and a phenomenon that the leakage current cannot be reduced occurs.

本発明は、上記技術的課題に鑑みなされたもので、従来の固体電解コンデンサに比して、漏れ電流が低く、かつ、電気特性が安定する、固体電解コンデンサの製造方法の提供を目的とする。   The present invention has been made in view of the above technical problem, and an object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor that has a lower leakage current and stable electrical characteristics than a conventional solid electrolytic capacitor. .

上記目的を達成するため、本発明は、表面に陽極酸化皮膜が形成された陽極箔と、陰極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子を形成してなるコンデンサ素子をケースに収納後、エージングを行う固体電解コンデンサの製造方法であって、エージング工程において、上記コンデンサ素子に、エージング電圧として前段階で印加したエージング電圧より高いエージング電圧を、次段階で印加するものである。   In order to achieve the above object, the present invention provides a capacitor element in which a conductive polymer is formed on a capacitor element in which an anode foil having an anodized film formed on the surface and a cathode foil are wound through a separator. A method of manufacturing a solid electrolytic capacitor in which aging is carried out after being stored in a case, and in the aging process, an aging voltage higher than the aging voltage applied in the previous stage is applied to the capacitor element as an aging voltage in the next stage. It is.

具体的には、最初に印加するエージング電圧は、定格電圧未満であり、かつ、最終に印加するエージング電圧は、定格電圧以上である。   Specifically, the aging voltage applied first is less than the rated voltage, and the aging voltage applied last is equal to or higher than the rated voltage.

上記の最初に印加するエージング電圧は、定格電圧の0.25〜1.0倍であり、かつ、上記の最終に印加するエージング電圧は、定格電圧の1.0〜1.5倍であることが好ましい。   The aging voltage applied first is 0.25 to 1.0 times the rated voltage, and the aging voltage applied last is 1.0 to 1.5 times the rated voltage. Is preferred.

また、上記エージング工程における雰囲気温度(エージング温度)は、100〜175℃であることが好ましい。   Moreover, it is preferable that the atmospheric temperature (aging temperature) in the said aging process is 100-175 degreeC.

なお、上記導電性高分子は、ポリアニリン、ポリピロール、ポリチオフェンまたはポリエチレンジオキシチオフェンである。   Note that the conductive polymer is polyaniline, polypyrrole, polythiophene, or polyethylenedioxythiophene.

表面に陽極酸化皮膜が形成された陽極箔と、陰極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子を形成し、当該コンデンサ素子をケースに収納した後にエージングを行う際に、エージング電圧として前段階で印加したエージング電圧より高いエージング電圧を、次段階で印加することにより、従来の固体電解コンデンサよりも、漏れ電流が低く、かつ、電気特性の安定した固体電解コンデンサを製造することができる。   When aging is performed after a conductive polymer is formed on a capacitor element in which an anode foil with an anodized film formed on the surface and a cathode foil are wound through a separator and the capacitor element is housed in a case By applying an aging voltage higher than the aging voltage applied in the previous stage as the aging voltage in the next stage, a solid electrolytic capacitor with lower leakage current and more stable electrical characteristics than conventional solid electrolytic capacitors is manufactured. can do.

特に、上記のエージングで最初に印加する電圧を、定格電圧未満の電圧を印加することで、大電流の発生を抑制し、製品の発熱を抑えることができるため、製品が過度な温度になることが無い。したがって、電気特性の安定した漏れ電流の低い固体電解コンデンサが得られることになる。   In particular, by applying a voltage lower than the rated voltage to the voltage initially applied in the above aging, the generation of a large current can be suppressed and the product heat generation can be suppressed. There is no. Therefore, a solid electrolytic capacitor having stable electric characteristics and low leakage current can be obtained.

以下、本発明の実施の形態について添付図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明の実施の形態に係る固体電解コンデンサ素子の分解斜視図である。同図において、1は陽極箔、2はセパレータ、3は陰極箔、4はコンデンサ素子、5は陽極リード線、6は陰極リード線である。   FIG. 1 is an exploded perspective view of a solid electrolytic capacitor element according to an embodiment of the present invention. In the figure, 1 is an anode foil, 2 is a separator, 3 is a cathode foil, 4 is a capacitor element, 5 is an anode lead wire, and 6 is a cathode lead wire.

陽極箔1は、アルミニウム等の弁作用金属箔をエッチング処理することにより表面を粗面化した後、陽極酸化処理して誘電体酸化皮膜が形成されている。他方、陰極箔3は、アルミニウム等の弁作用金属箔をエッチング処理することにより表面が粗面化されている。   The anode foil 1 has a dielectric oxide film formed by roughening the surface by etching a valve action metal foil such as aluminum and then anodizing. On the other hand, the surface of the cathode foil 3 is roughened by etching a valve action metal foil such as aluminum.

コンデンサ素子4は、陽極リード線5および陰極リード線6をそれぞれ接続した陽極箔1と陰極箔3とをセパレータ2を介して巻回してなる。   Capacitor element 4 is formed by winding anode foil 1 and cathode foil 3 each connected with anode lead wire 5 and cathode lead wire 6 with separator 2 interposed therebetween.

図2は本発明の実施の形態に係る固体電解コンデンサの製造方法の工程フローである。図2に示すように、本実施の形態に係る固体コンデンサの製造方法では、コンデンサ素子作製工程11、素子化成・酸化処理工程12、酸化剤含浸工程13、モノマー含浸工程14、固体電解質形成工程15、組立工程16およびエージング工程17の順で実行される。   FIG. 2 is a process flow of the manufacturing method of the solid electrolytic capacitor according to the embodiment of the present invention. As shown in FIG. 2, in the method of manufacturing a solid capacitor according to the present embodiment, a capacitor element manufacturing step 11, an element formation / oxidation treatment step 12, an oxidant impregnation step 13, a monomer impregnation step 14, a solid electrolyte formation step 15 The assembly process 16 and the aging process 17 are performed in this order.

特に、エージング工程17では、コンデンサ素子4に値の異なるエージング電圧が3回印加される。すなわち、エージング工程17には、第1のエージング電圧EV1を印加する第1のステップ、第2のエージング電圧EV2を印加する第2のステップ、および第3のエージング電圧EV3を印加する第3のステップが含まれる。   In particular, in the aging process 17, aging voltages having different values are applied to the capacitor element 4 three times. That is, the aging process 17 includes a first step of applying the first aging voltage EV1, a second step of applying the second aging voltage EV2, and a third step of applying the third aging voltage EV3. Is included.

以下、具体的な実施例について説明する。   Specific examples will be described below.

[実施例1]
(コンデンサ素子作製工程11)
アルミニウム等の弁作用金属からなる陽極箔1の表面をエッチングにより粗面化し、酸化皮膜層を形成した。同様に、陰極箔3の表面をエッチングにより粗面化した。その後、陽極箔1および陰極箔3にそれぞれ陽極リード線5および陰極リード線6を接続し、セパレータ2を介して巻回してコンデンサ素子4を作製した。
[Example 1]
(Capacitor element manufacturing step 11)
The surface of the anode foil 1 made of a valve action metal such as aluminum was roughened by etching to form an oxide film layer. Similarly, the surface of the cathode foil 3 was roughened by etching. Thereafter, the anode lead wire 5 and the cathode lead wire 6 were connected to the anode foil 1 and the cathode foil 3, respectively, and wound through the separator 2 to produce a capacitor element 4.

(素子化成・酸化処理工程12)
アジピン酸二アンモニウム水溶液中で、上記のコンデンサ素子4に電圧を印加して素子化成を行い、さらに当該素子化成済みのコンデンサ素子4に炭化処理を行い、コンデンサ素子4を重合前処理した。
(Element formation / oxidation treatment step 12)
In the aqueous solution of diammonium adipate, a voltage was applied to the capacitor element 4 to perform element formation, and the element element formed capacitor was carbonized, and the capacitor element 4 was pre-polymerized.

(酸化剤含浸工程13〜固体電解質形成工程15)
上記の重合前処理済みコンデンサ素子を、p−トルエンスルホン酸鉄溶液に浸漬後、100℃で30分間加熱して乾燥させた。その後、モノマー(3,4−エチレンジオキシチオフェン)を溶媒で1/2の濃度に希釈調合した液に当該コンデンサ素子4を浸漬し、100℃で60分間加熱して化学重合によるPEDTを含浸した。
(Oxidizing agent impregnation step 13 to solid electrolyte formation step 15)
The pre-polymerization-treated capacitor element was immersed in a p-toluenesulfonic acid iron solution and then dried by heating at 100 ° C. for 30 minutes. Thereafter, the capacitor element 4 was immersed in a solution prepared by diluting a monomer (3,4-ethylenedioxythiophene) to a concentration of ½ with a solvent, and heated at 100 ° C. for 60 minutes to impregnate PEDT by chemical polymerization. .

(組立工程16)
上記の固体電解質形成後のコンデンサ素子4を有底筒状の外装ケースに収納し、開口部をゴムパッキング等により密封した。
(Assembly process 16)
The capacitor element 4 after forming the solid electrolyte was housed in a bottomed cylindrical outer case, and the opening was sealed with rubber packing or the like.

(エージング工程17)
上記の組立済みコンデンサ素子4を125℃雰囲気下でエージング処理し、定格16V−82μFの固体電解コンデンサを作製した。具体的には、まず、第1のエージング電圧EV1として12Vを20分間印加した(第1のステップ)。続いて、第2のエージング電圧EV2として16Vを20分間印加した(第2のステップ)。さらに、第3のエージング電圧EV3として18Vを20分間印加した(第3のステップ)。
(Aging process 17)
The assembled capacitor element 4 was aged at 125 ° C. to produce a solid electrolytic capacitor rated at 16 V-82 μF. Specifically, first, 12 V was applied as the first aging voltage EV1 for 20 minutes (first step). Subsequently, 16 V was applied as the second aging voltage EV2 for 20 minutes (second step). Further, 18 V was applied as the third aging voltage EV3 for 20 minutes (third step).

<従来例1>
エージング工程17において、125℃雰囲気下でエージング電圧として18Vを60分間印加した以外は、実施例1と同様な方法で行い、同仕様の固体電解コンデンサを作製した。
<Conventional example 1>
A solid electrolytic capacitor having the same specifications was produced in the same manner as in Example 1 except that 18 V was applied as an aging voltage in an atmosphere of 125 ° C. for 60 minutes in the aging step 17.

上記の実施例1および従来例1について、それぞれの電気特性を測定した結果を表1に示す。サンプル数は各20個でデータは平均値である。   Table 1 shows the measurement results of the electrical characteristics of Example 1 and Conventional Example 1. The number of samples is 20, and the data is an average value.

Figure 2008042136
Figure 2008042136

表1から明らかなように、実施例1で作製した固体電解コンデンサは、従来例1の固体電解コンデンサと比較し、漏れ電流が低く、かつ、静電容量およびESRの良好な電流特性が得られた。   As is apparent from Table 1, the solid electrolytic capacitor produced in Example 1 has a lower leakage current and good current characteristics of capacitance and ESR compared to the solid electrolytic capacitor of Conventional Example 1. It was.

[実施例2〜4] エージング工程17において、コンデンサ素子4に対するエージング電圧印加処理を表2に示す電圧で処理した以外は、実施例1と同様な方法で行い、それぞれの電気特性を測定した。その結果を表2に示す。サンプル数は各20個でデータは平均値である。   [Examples 2 to 4] In the aging step 17, except that the aging voltage application process for the capacitor element 4 was processed with the voltage shown in Table 2, the electrical characteristics were measured in the same manner as in Example 1. The results are shown in Table 2. The number of samples is 20, and the data is an average value.

Figure 2008042136
Figure 2008042136

表2に示すように、実施例2では、第1のステップで第1のエージング電圧EV1として12V(定格電圧(16V)の0.75倍)を印加し、第2のステップで第2のエージング電圧EV2として14V(定格電圧(16V)の0.88倍)を印加し、第3のステップで第3のエージング電圧EV3として16V(定格電圧(16V)の1.00倍)を印加して、エージング処理を行った。電圧印加時間は各20分とし、実施例3、4も同様とした。   As shown in Table 2, in Example 2, 12V (0.75 times the rated voltage (16V)) is applied as the first aging voltage EV1 in the first step, and the second aging is performed in the second step. 14V (0.88 times the rated voltage (16V)) is applied as the voltage EV2, and 16V (1.00 times the rated voltage (16V)) is applied as the third aging voltage EV3 in the third step. Aging treatment was performed. The voltage application time was 20 minutes each, and the same applies to Examples 3 and 4.

実施例3では、第1のステップで第1のエージング電圧EV1として16V(定格電圧(16V)の1.00倍)を印加し、第2のステップで第2のエージング電圧EV2として12V(定格電圧(16V)の0.75倍)を印加し、第3のステップで第3のエージング電圧EV3として18V(定格電圧(16V)の1.13倍)を印加して、エージング処理を行った。   In Example 3, 16V (1.00 times the rated voltage (16V)) is applied as the first aging voltage EV1 in the first step, and 12V (rated voltage) as the second aging voltage EV2 in the second step. (0.75 times of 16V)) was applied, and in the third step, 18V (1.13 times the rated voltage (16V)) was applied as the third aging voltage EV3 to perform an aging treatment.

実施例4では、第1のステップで第1のエージング電圧EV1として17.0V(定格電圧(16V)の1.06倍)を印加し、第2のステップで第2のエージング電圧EV2として17V(定格電圧(16V)の1.06倍)を印加し、第3のステップで第3のエージング電圧EV3として18V(定格電圧(16V)の1.13倍)を印加して、エージング処理を行った。   In Example 4, 17.0 V (1.06 times the rated voltage (16 V)) is applied as the first aging voltage EV1 in the first step, and 17 V (the second aging voltage EV2 is 17 V in the second step). Aging process was performed by applying 18 V (1.13 times the rated voltage (16V)) as the third aging voltage EV3 in the third step. .

表2に示すように、実施例1と実施例3とを比較すると、各ステップのエージング電圧は、実施例1のように、前段階で印加した電圧より高い電圧を次段階で印加した方が漏れ電流が低いことが判明した。   As shown in Table 2, when Example 1 and Example 3 are compared, the aging voltage of each step is higher when the voltage applied in the next stage is higher than the voltage applied in the previous stage as in Example 1. It was found that the leakage current was low.

また、実施例1と実施例4を比較すると、実施例1のように、第1のステップで印加するエージング電圧EV1を定格電圧よりも低くするのではなく、実施例4のように、第1ステップで印加するエージング電圧EV1を定格電圧以上とすると、漏れ電流が高く、静電容量およびESRが悪化してしまうことが確認された。   Further, when Example 1 and Example 4 are compared, the aging voltage EV1 applied in the first step is not made lower than the rated voltage as in Example 1, but as in Example 4, the first It was confirmed that when the aging voltage EV1 applied in the step is set to the rated voltage or more, the leakage current is high and the capacitance and ESR are deteriorated.

実施例1、2のように、前ステップで印加したエージング電圧より高いエージング電圧を次ステップで印加し、かつ、最初に印加するエージング電圧を定格電圧未満とする一方で最終に印加するエージング電圧を定格電圧以上とすれば、漏れ電流が低く抑えられ、かつ、電気特性(特に、静電容量およびESR)が安定することが判明した。   As in Examples 1 and 2, an aging voltage higher than the aging voltage applied in the previous step is applied in the next step, and the aging voltage to be applied last is set to be lower than the rated voltage while the aging voltage to be applied first is less than the rated voltage. It has been found that when the voltage is higher than the rated voltage, the leakage current is kept low, and the electrical characteristics (particularly, capacitance and ESR) are stabilized.

なお、本発明は上記実施例に限定されるものではない。   In addition, this invention is not limited to the said Example.

例えば、上記実施例では、3ステップでエージング電圧印加処理を行ったが、これに限らず、2ステップ以上のエージング電圧印加処理を行うことで同様の効果が得られる。   For example, in the above embodiment, the aging voltage application process is performed in three steps. However, the present invention is not limited to this, and the same effect can be obtained by performing the aging voltage application process in two or more steps.

また、上記実施例では、PEDTを固体電解質に用いたが、公知の導電性高分子(ポリアニリン、ポリピロール、ポリチオフェン)を用いても同様の効果が得られる。   Moreover, in the said Example, although PEDT was used for the solid electrolyte, the same effect is acquired even if it uses a well-known electroconductive polymer (polyaniline, polypyrrole, polythiophene).

さらに、上記実施例では、酸化剤とモノマーをコンデンサ素子に別々に含浸する方法を採用したが、予め酸化剤とモノマーとを混合調合した溶液をコンデンサ素子に含浸する方法を採用しても同様の効果が得られる。   Further, in the above embodiment, the method of separately impregnating the capacitor element with the oxidizing agent and the monomer is adopted. However, the same method can be adopted even when the method of impregnating the capacitor element with a solution prepared by mixing and mixing the oxidizing agent and the monomer in advance is employed. An effect is obtained.

その他、本明細書に添付の特許請求の範囲内での種々の設計変更および修正を加え得ることは勿論である。   It goes without saying that various design changes and modifications can be made within the scope of the claims attached to this specification.

本発明では、作製した固体電解コンデンサの漏れ電流が低く、かつ、電気特性が安定するゆえ、固体電解コンデンサの製造方法として有用である。   In the present invention, the manufactured solid electrolytic capacitor has a low leakage current and has stable electric characteristics, and thus is useful as a method for manufacturing a solid electrolytic capacitor.

本発明の実施の形態に係る固体電解コンデンサ素子の分解斜視図1 is an exploded perspective view of a solid electrolytic capacitor element according to an embodiment of the present invention. 本発明の実施の形態に係る固体電解コンデンサの製造方法の工程フローProcess flow of manufacturing method of solid electrolytic capacitor according to embodiment of the present invention

符号の説明Explanation of symbols

1 陽極箔
2 セパレータ
3 陰極箔
4 コンデンサ素子本体
5 陽極リード線
6 陰極リード線
1 Anode foil 2 Separator 3 Cathode foil 4 Capacitor element body 5 Anode lead wire 6 Cathode lead wire

Claims (3)

表面に陽極酸化皮膜が形成された陽極箔と、陰極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子を形成してなるコンデンサ素子をケースに収納後、エージングを行う固体電解コンデンサの製造方法であって、
エージング工程において、上記コンデンサ素子に、エージング電圧として前段階で印加したエージング電圧より高いエージング電圧を、次段階で印加することを特徴とする固体電解コンデンサの製造方法。
Solid electrolysis in which an anodic oxide film formed on the surface and a cathode foil are wound through a separator and a capacitor element formed of a conductive polymer is housed in a capacitor element and then aged. A method for manufacturing a capacitor, comprising:
In the aging process, an aging voltage higher than the aging voltage applied in the previous stage is applied to the capacitor element in the next stage as an aging voltage.
最初に印加するエージング電圧は、定格電圧未満であり、かつ、最終に印加するエージング電圧は、定格電圧以上であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the aging voltage applied first is less than the rated voltage, and the aging voltage applied last is not less than the rated voltage. 上記導電性高分子は、ポリアニリン、ポリピロール、ポリチオフェンまたはポリエチレンジオキシチオフェンであることを特徴とする請求項1または2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive polymer is polyaniline, polypyrrole, polythiophene, or polyethylenedioxythiophene.
JP2006218415A 2006-08-10 2006-08-10 Manufacturing method of solid-state electrolytic capacitor Pending JP2008042136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218415A JP2008042136A (en) 2006-08-10 2006-08-10 Manufacturing method of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218415A JP2008042136A (en) 2006-08-10 2006-08-10 Manufacturing method of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2008042136A true JP2008042136A (en) 2008-02-21

Family

ID=39176764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218415A Pending JP2008042136A (en) 2006-08-10 2006-08-10 Manufacturing method of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2008042136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159062A1 (en) * 2019-01-29 2020-08-06 삼화전기주식회사 Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159062A1 (en) * 2019-01-29 2020-08-06 삼화전기주식회사 Method for manufacturing solid electrolytic condenser, and electrolytic solution for solid electrolytic condenser
KR20200093767A (en) * 2019-01-29 2020-08-06 삼화전기주식회사 Method of manufacturing solid electrolytic capacitor and electrolyte for solid electrolytic capacitor
KR102222650B1 (en) * 2019-01-29 2021-03-04 삼화전기주식회사 Method of manufacturing solid electrolytic capacitor and electrolyte for solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP5073947B2 (en) Winding capacitor and method of manufacturing the same
KR102104424B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2010129651A (en) Method for producing solid electrolytic capacitor
CN109074960B (en) Electrolytic capacitor and method for manufacturing the same
CN106471592A (en) The manufacture method of electrolysis condenser
CN102222567B (en) The manufacture method of electrolytic capacitor
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
CN106471591A (en) Manufacturing method of electrolytic capacitor
JP2008042136A (en) Manufacturing method of solid-state electrolytic capacitor
JP4909246B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010087344A (en) Manufacturing method of solid-state electrolytic capacitor and solid-state electrolytic capacitor
JP2009239139A (en) Method of manufacturing rolled solid electrolytic capacitor
JP5262238B2 (en) Manufacturing method of solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4486636B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008034440A (en) Method of manufacturing solid-state electrolytic capacitor
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JP4668140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2008060185A (en) Process for manufacturing solid-state electrolytic capacitor
JP3851294B2 (en) Electrolytic capacitor
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JP2008060186A (en) Process for manufacturing solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A02