[go: up one dir, main page]

JP2008039738A - Positioning method - Google Patents

Positioning method Download PDF

Info

Publication number
JP2008039738A
JP2008039738A JP2006218347A JP2006218347A JP2008039738A JP 2008039738 A JP2008039738 A JP 2008039738A JP 2006218347 A JP2006218347 A JP 2006218347A JP 2006218347 A JP2006218347 A JP 2006218347A JP 2008039738 A JP2008039738 A JP 2008039738A
Authority
JP
Japan
Prior art keywords
radio signal
station
base station
reference station
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218347A
Other languages
Japanese (ja)
Inventor
Hidenori Sekiguchi
英紀 関口
Akira Fujii
彰 藤井
Masafumi Asai
雅文 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006218347A priority Critical patent/JP2008039738A/en
Publication of JP2008039738A publication Critical patent/JP2008039738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of necessary base stations, concerning a positioning method. <P>SOLUTION: This method has a configuration including a process for transmitting a ranging radio signal from a reference station R whose position is known; a process wherein a plurality of base stations B whose positions are known measure each reception time of the ranging radio signal by each timepiece Cb in own station; a process for transmitting a response radio signal including delay time information by a timepiece Cm in own station from reception until reply after a moving terminal M receives the ranging radio signal; a process wherein the reference station R and each base station B measure each reception time of the response radio signal by each timepiece Cr, Cb in each own station; and a process for operating each distance from the reference station R and each base station B to the moving terminal M by erasing each deviation element between the timepieces Cm, Cb, Cr in each station based on each reception time of the response radio signal in the reference station R and each base station B, a transmission time of the ranging radio signal in the reference station R, the delay time information from a portable terminal, and known distance information between reference station R and each base station B. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、測位方法に関するものである。   The present invention relates to a positioning method.

移動端末と位置が既知の複数の基地局との間で無線信号による交信を行い、無線信号の到達時間を利用して移動端末の位置を求める測位方法としては、特許文献1に記載されたものが知られている。   Patent Document 1 discloses a positioning method in which a mobile terminal and a plurality of base stations whose positions are known are communicated by radio signals and the position of the mobile terminal is obtained using the arrival time of the radio signals. It has been known.

この従来例において、移動局は基地局(基準局)からの応答要求無線に応答して応答無線信号を送信する。応答無線信号は、基準局および適数個の受信装置(基地局)において受信され、受信時刻が計測される。   In this conventional example, the mobile station transmits a response radio signal in response to a response request radio from the base station (reference station). The response radio signal is received by the reference station and an appropriate number of receiving apparatuses (base stations), and the reception time is measured.

電波の伝搬速度と基準局、基地局間の距離は既知であるために、移動局の位置は、
||Pt - Pj| - |Pt - P1|| = c(R_{_m@j,1} - R{t_m@1,1})
但し、Ptは移動局の位置、P1は基準局の位置、
Pjは第j番目の基地局の位置、
R{t_m@1,1})は基準局における受信時刻、R_{_m@j,1}は第j番目の基地局での受信時刻
の関係式を連立させた解として与えられる。
特開2005-117440号公報
Since the propagation speed of the radio wave and the distance between the reference station and the base station are known, the position of the mobile station is
|| Pt-Pj |-| Pt-P1 || = c (R _ {_ m @ j, 1}-R {t_m @ 1,1})
Where Pt is the position of the mobile station, P1 is the position of the reference station,
Pj is the position of the jth base station,
R {t_m @ 1,1}) is given as a solution in which the relational expression of the reception time at the base station and R _ {_ m @ j, 1} are simultaneous with the reception time at the jth base station.
JP 2005-117440 A

しかし、上述した従来例における関係式は、基準局と移動局との距離に対する相対距離として与えられるために、解を求めるには、多数の基地局が必要になるという問題がある。例えば、移動局の2次元位置は、三辺測量によって、最低1個の基準局と、1個の基地局からの距離が解れば求めることができるが、上記解を求めるためには、最低でも1個の基準局と、2個の基地局が必要となる。   However, since the relational expression in the above-described conventional example is given as a relative distance with respect to the distance between the reference station and the mobile station, there is a problem that a large number of base stations are required to obtain a solution. For example, the two-dimensional position of the mobile station can be obtained if the distance from at least one reference station and one base station is obtained by triangulation, but at least 1 is required to obtain the above solution. One reference station and two base stations are required.

本発明は、以上の欠点を解消すべくなされたものであって、必要基地局数を低減させることのできる測位方法の提供を目的とする。   The present invention has been made to solve the above drawbacks, and an object of the present invention is to provide a positioning method capable of reducing the number of necessary base stations.

2点に配置された送受信局間の距離は、2局間で測距用無線信号を往復させ、各局における送受信時刻差を利用することに求めることができる。すなわち、端末a、b間の距離をLab、端末a、bにおける測距用無線信号の送信時刻をTa1、Tb2、受信時刻をTb1、Ta2、端末間の時計のオフセットをToab、光速をVc、とすると、
Tb1 + Toab = Ta1 + Lab/Vc
Ta2 = Tb2 + Toab + Lab/Vc
の関係が成立し、端末間距離は、Toabを消去した、
Lab = Vc {(Ta2 - Ta1) - (Tb2 - Tb1) }/2 (式1)
として求めることができる。
The distance between transmitting / receiving stations arranged at two points can be obtained by using a transmission / reception time difference at each station by reciprocating a ranging radio signal between the two stations. That is, the distance between terminals a and b is Lab, the transmission time of ranging radio signals at terminals a and b is Ta1 and Tb2, the reception time is Tb1 and Ta2, the clock offset between terminals is Toab, the speed of light is Vc, Then,
Tb1 + Toab = Ta1 + Lab / Vc
Ta2 = Tb2 + Toab + Lab / Vc
Is established, the inter-terminal distance is the Toab deleted,
Lab = Vc {(Ta2-Ta1)-(Tb2-Tb1)} / 2 (Formula 1)
Can be obtained as

したがって、端末aを位置が既知な基準局R、端末bを移動端末Mとし、基準局Rからの測距用無線信号に対する移動端末Mからの応答無線信号に(Tb2 - Tb1)、すなわち、携帯端末が応答無線信号を返信するまでの遅延時間を載せると、基準局Rにおいて携帯端末までの距離を求めることができる。   Therefore, the terminal a is a reference station R whose position is known, the terminal b is a mobile terminal M, and the response radio signal from the mobile terminal M to the ranging radio signal from the reference station R is (Tb2-Tb1), that is, the mobile terminal When the delay time until the response wireless signal is returned is included, the reference station R can determine the distance to the portable terminal.

例えば、位置既知点からの距離により任意点の2次元位置を知るためには、2箇所の位置既知点が必要であり、2箇所の基準局Rと移動端末Mとの間で上述した交信を行うことにより、移動端末Mの位置を求めることができる。   For example, in order to know the two-dimensional position of an arbitrary point based on the distance from the position known point, two position known points are necessary, and the above-described communication is performed between the two reference stations R and the mobile terminal M. Thus, the position of the mobile terminal M can be obtained.

しかし、この場合、2回の移動端末Mからの送信が必要となり、移動端末Mの電力消費量が大きくなる。   However, in this case, transmission from the mobile terminal M is required twice, and the power consumption of the mobile terminal M increases.

本発明は、この問題を解決するために、2局間での往復交信による測距方法を採用するとともに、基準局Rから送信される測距用無線信号を基地局Bで受信することにより基準局Rと基地局Bとの時計のずれを補正し、移動端末Mからの応答無線信号を基地局Bにより受信することにより、移動端末Mの測距を行う。   In order to solve this problem, the present invention employs a distance measurement method based on reciprocal communication between two stations, and receives a distance measurement radio signal transmitted from the reference station R at the base station B. The base station B corrects the time difference between the clock and the base station B, and receives the response radio signal from the mobile terminal M by the base station B, thereby measuring the distance of the mobile terminal M.

この結果、基準局Rおよび移動端末Mからの1回の電波送信により移動端末Mの測位を行うことができる。また、移動端末Mの2次元位置を測位する場合には、最低、1個の基準局Rと1個の基地局Bを用意するだけで足りる。   As a result, the positioning of the mobile terminal M can be performed by one radio wave transmission from the reference station R and the mobile terminal M. In order to measure the two-dimensional position of the mobile terminal M, it is sufficient to prepare at least one reference station R and one base station B.

本発明によれば、必要基地局数を低減させることができる。   According to the present invention, the number of necessary base stations can be reduced.

図1に本発明が適用された測位システムを示す。測位システムは、1個の基準局Rと、適数の基地局Bと、これら基準局R、基地局Bに有線LAN1を介して接続される測位サーバ2と、測位対象である移動端末Mとを有して構成される。基準局Rおよび基地局Bの位置は適宜手段により予め計測されている。   FIG. 1 shows a positioning system to which the present invention is applied. The positioning system includes one reference station R, an appropriate number of base stations B, a positioning server 2 connected to these reference stations R and base stations B via a wired LAN 1, and a mobile terminal M that is a positioning target. Configured. The positions of the reference station R and the base station B are measured in advance by appropriate means.

図2に示すように、基準局Rは測距用無線信号を送信するための送信部3rを有する。測位開始命令を受けると、基準局Rは、送信部3rに測距用無線信号をセットし、アンテナから送信する。測距用無線信号の送信時刻は基準局R内に用意された時計Crにより計測され、計測結果が測距用無線信号送信時刻保持部4rに格納される。   As shown in FIG. 2, the reference station R has a transmitter 3r for transmitting a ranging radio signal. When receiving the positioning start command, the reference station R sets a ranging radio signal in the transmitter 3r and transmits it from the antenna. The transmission time of the ranging radio signal is measured by a clock Cr prepared in the reference station R, and the measurement result is stored in the ranging radio signal transmission time holding unit 4r.

5rは受信部であり、移動端末Mからの応答無線信号を受信すると上記時計Crにより受信時刻を計測し、計測結果を応答無線信号受信時刻保持部6rに格納する。また、受信部5rにおいて受信した応答無線信号は、受信データ保持部7rに格納される。   A receiving unit 5r receives the response wireless signal from the mobile terminal M, measures the reception time with the clock Cr, and stores the measurement result in the response wireless signal reception time holding unit 6r. The response wireless signal received by the receiving unit 5r is stored in the received data holding unit 7r.

基地局Bは、上記基準局Rから送信される測距用無線信号と、移動端末Mから送信される応答無線信号を受信する受信部5bを備える。受信部5bが上記いずれかの無線信号を受信すると、内蔵された時計Cbにより受信時刻を計測し、受信信号が測距用無線信号である場合には、計測結果を測距用無線信号受信時刻保持部8bに、応答無線信号である場合には、応答無線信号受信時刻保持部6bに各々格納する。   The base station B includes a receiving unit 5b that receives the ranging radio signal transmitted from the reference station R and the response radio signal transmitted from the mobile terminal M. When the receiving unit 5b receives any one of the above radio signals, the reception time is measured by the built-in clock Cb. When the reception signal is a distance measurement radio signal, the measurement result is obtained as the distance measurement radio signal reception time. When it is a response radio signal in the holding unit 8b, it is stored in the response radio signal reception time holding unit 6b.

一方、移動端末Mは、基準局Rからの測距用無線信号を受信する受信部5mを備える。測距用無線信号を受信部5mが受信すると、内蔵の時計Cmにより受信時刻を計測し、計測結果を測距用無線信号受信時刻保持部8mに格納する。   On the other hand, the mobile terminal M includes a receiving unit 5m that receives a ranging radio signal from the reference station R. When the reception unit 5m receives the distance measurement radio signal, the reception time is measured by the built-in clock Cm, and the measurement result is stored in the distance measurement radio signal reception time holding unit 8m.

また、受信部5mが測距用無線信号を受信すると、図外の制御部は、送信データ作成部9mに応答無線信号をセットし、送信部3mから送信する。応答無線信号は、受信部5mにおいて測距用無線信号を受信してから応答無線信号を送信部3mから送信するまでの遅延時間情報を含んでおり、送信部3mにおける送信時刻は、応答無線信号送信時刻保持部10mに格納される。   When the receiving unit 5m receives the distance measurement radio signal, the control unit (not shown) sets a response radio signal in the transmission data creating unit 9m and transmits it from the transmitting unit 3m. The response radio signal includes delay time information from when the receiving unit 5m receives the distance measurement radio signal to when the response radio signal is transmitted from the transmission unit 3m. The transmission time at the transmission unit 3m is the response radio signal. It is stored in the transmission time holding unit 10m.

以上のシステムを使用した移動端末Mの測位方法を図1により説明する。なお、図1(a)において破線は無線による交信を、実線は有線LAN1による交信を示し、図中の小文字のローマ数字は以下に説明するステップ番号に対応する。   A positioning method of the mobile terminal M using the above system will be described with reference to FIG. In FIG. 1A, a broken line indicates wireless communication, a solid line indicates communication via the wired LAN 1, and lower-case Roman numerals in the figure correspond to step numbers described below.

まず、測位に際し、基準局Rから測距用無線信号を送信し(ステップS1)、送信時刻を測位サーバ2に転送する(ステップS2)。測距用無線信号は、移動端末Mと基地局Bにおいて受信され、基地局Bで計測された自局の時計Cbにより計測した受信時刻を測位サーバ2に転送される(ステップS3)。   First, at the time of positioning, a ranging radio signal is transmitted from the reference station R (step S1), and the transmission time is transferred to the positioning server 2 (step S2). The ranging radio signal is received by the mobile terminal M and the base station B, and the reception time measured by the clock Cb of the own station measured by the base station B is transferred to the positioning server 2 (step S3).

一方、測距用無線信号を受信した移動端末Mは、自局の時計Cmにより計時した受信時刻を測距用無線信号受信時刻保持部8mに保持した後、送信データ作成部9mで応答無線信号を生成し(ステップS4)、送信する(ステップS5)。上述したように、応答無線信号には、遅延時間情報が含まれる。   On the other hand, the mobile terminal M that has received the ranging radio signal holds the reception time measured by its own clock Cm in the ranging radio signal reception time holding unit 8m, and then transmits the response radio signal in the transmission data creation unit 9m. Is generated (step S4) and transmitted (step S5). As described above, the response wireless signal includes delay time information.

応答無線信号を受信した基準局Rは自局の時計Crにより計測した受信時刻と、移動端末Mから送信された遅延時間情報を、基地局Bは自局の時計Cbにより計測した受信時刻を測位サーバ2に転送する(ステップS6)。   The reference station R that has received the response radio signal receives the reception time measured by its own clock Cr and the delay time information transmitted from the mobile terminal M, and the base station B obtains the reception time measured by its own clock Cb. 2 (step S6).

基準局Rと基地局Bからデータ転送を受けた測位サーバ2は、測位計算部11において、以下の方法により移動端末Mと基準局R、基地局B間の距離を演算した後、これら距離情報に三辺測量の手法を適用して位置情報を演算する(ステップS7)。   The positioning server 2 that has received the data transfer from the reference station R and the base station B calculates the distance between the mobile terminal M, the reference station R, and the base station B in the positioning calculation unit 11 by the following method, The position information is calculated by applying the edge survey method (step S7).

すなわち、基準局Rの時計Crを基準として移動端末M、基地局Bの時計Cm、CbのずれをTom、Toa、Tob(以下、変数に付されたアルファベットの添え字は局種を、数字の添え字は信号種を示し、基準局Rには"r"、2個の基地局Bに対しては"a"、"b"、移動端末Mに対しては"m"を付す。また、数字"1"は測距用無線信号を、添え字"2"は応答無線信号を示す。)、距離をL(上述した添え字付与規則に従って、基準局Rと移動端末Mの距離はLmr、一方の基地局Bと移動端末Mの距離はLam、他方の基地局Bと移動端末Mの距離はLbm、基準局Rと基地局Bの距離はLar、Lbr)、送受信時刻T(基準局Rの測距用無線信号の送信時刻はTr1、測距用無線信号の移動端末M、基地局Bでの受信時刻はTm1、Ta1、Tb1、移動端末Mの応答無線信号の送信時刻はTm2、応答無線信号の基準局R、基地局Bでの受信時刻はTr2、Ta2、Tb2)とすると、
ステップS1における送受信パス長と電波到達時間の関係から、
Tm1 + Tom = Tr1 +Lmr/Vc
Ta1 + Toa = Tr1 + Lar/Vc
Tb1 + Tob = Tr1 + Lbr/Vc
(式2)が成立する。ただしVcは光速。
That is, the difference between the clock Cm and Cb of the mobile terminal M and the base station B with respect to the clock Cr of the reference station R is Tom, Toa, Tob (hereinafter, the alphabetic subscripts attached to the variables indicate the station type and the numerical subscripts). The letter indicates the signal type, "r" for the reference station R, "a", "b" for the two base stations B, and "m" for the mobile terminal M. Also, the numeral " 1 "indicates a ranging radio signal, subscript" 2 "indicates a response radio signal), and distance L (according to the subscript assignment rule described above, the distance between the reference station R and the mobile terminal M is Lmr, one base The distance between the station B and the mobile terminal M is Lam, the distance between the other base station B and the mobile terminal M is Lbm, the distance between the reference station R and the base station B is Lar, Lbr), and the transmission / reception time T (the distance measurement radio of the reference station R) The signal transmission time is Tr1, the distance measurement radio signal is received by the mobile terminal M, the base station B is Tm1, Ta1, Tb1, the response radio signal transmission time of the mobile terminal M is Tm2, and the response radio signal If the reference stations R, the reception time in the base station B Tr2, Ta2, Tb2) that,
From the relationship between the transmission / reception path length and the radio wave arrival time in step S1,
Tm1 + Tom = Tr1 + Lmr / Vc
Ta1 + Toa = Tr1 + Lar / Vc
Tb1 + Tob = Tr1 + Lbr / Vc
(Expression 2) is established. Vc is the speed of light.

また、ステップS5における送受信パス長と電波到達時間の関係から、
Tr2 = Tm2 + Tom + Lmr/Vc
Ta2 + Toa = Tm2 + Tom + Lam/Vc
Tb2 + Tob = Tm2 + Tom + Lbm/Vc
が成立する。
In addition, from the relationship between the transmission / reception path length and the radio wave arrival time in step S5,
Tr2 = Tm2 + Tom + Lmr / Vc
Ta2 + Toa = Tm2 + Tom + Lam / Vc
Tb2 + Tob = Tm2 + Tom + Lbm / Vc
Is established.

基準局R、および2個の基地局Bの位置は既知であるため、Lar、Lbrは既知で、上記6式の未知数は、Lmr、Lam、Lbm、Tom、Toa、Tobの5個となり、Lmr、Lam、Lbmは、Tom、Toa、Tobを消去した式
Lmr = Vc {(Tr2 - Tr1) - (Tm2 - Tm1) }/2
Lam = Lar + Vc(Ta2 - Ta1) - Vc {(Tr2 - Tr1) + (Tm2 - Tm1)}/2
Lbm = Lbr + Vc(Tb2 - Tb1) - Vc {(Tr2 - Tr1) + (Tm2 - Tm1)}/2
で与えられる。
Since the positions of the base station R and the two base stations B are known, Lar and Lbr are known, and the unknowns of the above six formulas are Lmr, Lam, Lbm, Tom, Toa and Tob, and Lmr, Lam and Lbm are expressions that delete Tom, Toa, and Tob.
Lmr = Vc {(Tr2-Tr1)-(Tm2-Tm1)} / 2
Lam = Lar + Vc (Ta2-Ta1)-Vc {(Tr2-Tr1) + (Tm2-Tm1)} / 2
Lbm = Lbr + Vc (Tb2-Tb1)-Vc {(Tr2-Tr1) + (Tm2-Tm1)} / 2
Given in.

この結果、移動端末Mの2次元座標(Xm,Ym)は、基準局R、基地局Bの座標を(Xr,Yr), (Xa,Ya), (Xb,Yb)とすると、
{(Xm - Xr)2 + (Ym - Yr)2}1/2 = Lmr
{(Xm - Xa)2 + (Ym - Ya)2}1/2 = Lam
{(Xm - Xb)2 + (Ym - Yb)2}1/2 = Lbm
により求められる。
As a result, if the two-dimensional coordinates (Xm, Ym) of the mobile terminal M are (Xr, Yr), (Xa, Ya), (Xb, Yb), the coordinates of the base station R and the base station B are
{(Xm-Xr) 2 + (Ym-Yr) 2 } 1/2 = Lmr
{(Xm-Xa) 2 + (Ym-Ya) 2 } 1/2 = Lam
{(Xm-Xb) 2 + (Ym-Yb) 2 } 1/2 = Lbm
Is required.

なお、最終式において、未知数Xm,Ymに対して式が3個あるため、式が冗長となるため、Xm,Ymは上記3本の式の最小自乗解として求められる。   In the final formula, since there are three formulas for the unknowns Xm and Ym, the formulas are redundant. Therefore, Xm and Ym are obtained as a least squares solution of the above three formulas.

また、上記実施の形態において、受信時刻を正確に計測するために、測距用無線信号、および応答無線信号にインパルス電波を使用することができ、この場合の送信データフォーマットを図3に、基準局Rの装置構成を図4に示す。   In the above embodiment, in order to accurately measure the reception time, an impulse radio wave can be used for the ranging radio signal and the response radio signal. In this case, the transmission data format is shown in FIG. The apparatus configuration of R is shown in FIG.

図3を参照して、送信データは、PN系列の一種である8値のリードソロモンRS系列でタイムホッピング(TH)されており、さらに、パルス位置変調でデータ変調されている。1チップ100nsの場合、RS系列として5763421を使用するとすると、1μsのパルス区間の内、最初のパルスは500nsの位置に、次のパルスは700nsの位置にタイムホッピングされている。同期用のデータ無変調のプリアンブル部は、7パルス7μsであり、その後に、データ部が来る。データ部も同じRS系列でタイムホッピングされているが、さらに、データが1の時には、1チップパルス位置がずれるパルス位置変調(PPM)されている。   Referring to FIG. 3, transmission data is time-hopped (TH) with an 8-value Reed-Solomon RS sequence, which is a kind of PN sequence, and further data-modulated with pulse position modulation. In the case of one chip of 100 ns, if 576421 is used as the RS sequence, the first pulse is time-hopped to the position of 500 ns and the next pulse is time-hopped to the position of 700 ns in the pulse section of 1 μs. The unmodulated preamble portion for data synchronization is 7 pulses 7 μs, followed by the data portion. The data portion is also time-hopped with the same RS sequence, but when the data is 1, pulse position modulation (PPM) is performed in which the position of one chip pulse is shifted.

例えば、0110のデータの場合、5763・・・のRS系列は5873・・・と変調され、500ns、800ns、700ns、300ns位置にパルスがホッピングされる。   For example, in the case of 0110 data, the 5763... RS sequence is modulated as 5873..., And pulses are hopped at 500 ns, 800 ns, 700 ns, and 300 ns positions.

図4を参照して、上記RS系列はPN系列発生部12で生成され、PPMデータ変調部13において送信データの1、0に従ったPPMデータ変調が行われ、インパルス生成部14にパルスが送られる。インパルス生成部14は、ステップリカバリダイオードにより、パルスの立ち上がり部で非常に細いインパルスを生成する。   Referring to FIG. 4, the RS sequence is generated by PN sequence generation unit 12, PPM data modulation unit 13 performs PPM data modulation according to transmission data 1 and 0, and sends a pulse to impulse generation unit 14. It is done. The impulse generator 14 generates a very thin impulse at the rising edge of the pulse by the step recovery diode.

生成したインパルスは非常に広い帯域を有しているが、例えば、電波法のマスクに適合するように、3.1GHz〜5GHzのバンドパスフィルタ(BPF)を通すことで、不要な3.1GHz以下の成分と5GHzを以上の成分を除去する。バンドパスフィルタ(BPF)通過後、パワーアンプ(PA)で増幅し、アンテナから電波が放射される。データを送信する時に、プリアンブル後の最初のパルスを発生する時刻を測距用無線送信時刻保持部4rで保存する。   The generated impulse has a very wide band, but, for example, an unnecessary component of 3.1 GHz or less is passed through a bandpass filter (BPF) of 3.1 GHz to 5 GHz so as to conform to the mask of the Radio Law. And remove components above 5GHz. After passing through the band pass filter (BPF), it is amplified by a power amplifier (PA), and radio waves are radiated from the antenna. When transmitting data, the time for generating the first pulse after the preamble is stored in the distance measurement radio transmission time holding unit 4r.

一方、受信側では、アンテナで受信されたインパルス電波は、バンドパスフィルタ(BPF)で不要な周波数成分除去後、低雑音アンプ(LNA)で増幅され、パルスの有無が検出される。パルス検出部15は、公知のダイオードによる包絡線検波回路とコンパレータ等で実現できる。検出されたパルスは、PN系列発生部12で発生したRS系列とデジタルマッチドフィルタによる相関器16で比較される。   On the other hand, on the receiving side, the impulse radio wave received by the antenna is amplified by a low noise amplifier (LNA) after unnecessary frequency components are removed by a band pass filter (BPF), and the presence or absence of a pulse is detected. The pulse detection unit 15 can be realized by a known diode envelope detection circuit and a comparator. The detected pulse is compared with the RS sequence generated by the PN sequence generator 12 by the correlator 16 using a digital matched filter.

相関器16によりプリアンブル部が検出されると、同期が確立されたとして、PPMデータ復調部17において次に続くデータ部のPPMを復調し、受信データを生成する。また、データ部の最初のパルスを検出したならば、その時刻を応答無線信号受信時刻保持部6rに保持する。   When the preamble part is detected by the correlator 16, it is assumed that synchronization has been established, and the PPM data demodulator 17 demodulates the PPM of the next data part to generate received data. If the first pulse of the data part is detected, the time is held in the response wireless signal reception time holding part 6r.

なお、図3においては、基準局Rの装置構成を示したが、各基地局Bは、基準局Rの装置構成から送信部3rを除いたものであるために図示を省略する。また、移動端末Mの装置構成は、基準局Rの装置構成から有線LANインタフェースを除いたものであるために図示を省略する。   Although FIG. 3 shows the apparatus configuration of the reference station R, each base station B is omitted from the apparatus configuration of the reference station R because the transmitter 3r is excluded from the apparatus configuration of the reference station R. Further, since the device configuration of the mobile terminal M is the device configuration of the reference station R excluding the wired LAN interface, the illustration is omitted.

さらに、上述した実施の形態において、基準局R、基地局Bからのデータは有線LAN1を経由して測位サーバ2に集積させ、測位計算部11において演算する場合を示したが、図5、6に示すように、測位計算部11を基準局Rにおくことができる。この場合、図1におけるステップS2、S3は取り除から、ステップS6として、各基地局Bは応答無線信号を受信した後、基準局Rに受信時刻差を基地局無線信号として送信する。   Furthermore, in the above-described embodiment, the case where the data from the reference station R and the base station B is accumulated in the positioning server 2 via the wired LAN 1 and is calculated by the positioning calculation unit 11 is shown in FIGS. As shown, the positioning calculator 11 can be placed in the reference station R. In this case, steps S2 and S3 in FIG. 1 are removed, and in step S6, each base station B transmits a response radio signal to the reference station R as a base station radio signal after receiving the response radio signal.

この結果、基準局Rには上述したLmr、Lam、Lbmを求める全ての情報が集まり、測位計算部11において必要な演算がなされる。   As a result, all the information for obtaining the above-mentioned Lmr, Lam, and Lbm is collected in the reference station R, and a necessary calculation is performed in the positioning calculation unit 11.

図6を参照すると、基地局Bは、測距用無線信号受信時刻と応答無線信号受信時刻とから送信データ作成部9bで基地局無線信号を作成し、送信部3bから基準局Rにデータ送信する。なお、以下の説明において、上述した実施の形態と実質的に同一の構成要素は、図中に同一符号を付して説明を省略する。   Referring to FIG. 6, the base station B creates a base station radio signal by the transmission data creation unit 9b from the distance measurement radio signal reception time and the response radio signal reception time, and transmits data to the reference station R from the transmission unit 3b. . In the following description, components that are substantially the same as those of the above-described embodiment are denoted by the same reference numerals in the drawings, and description thereof is omitted.

このように構成すると、基地局B、基準局R間に有線LAN1を敷設する必要がなくなり、構成が簡単になる。   With this configuration, it is not necessary to install the wired LAN 1 between the base station B and the reference station R, and the configuration is simplified.

図7に本発明の第2の実施の形態を示す。この実施の形態は、各局毎のクロックの周波数差による内蔵時計Cm、Cb、Crの進み方の誤差(スケール誤差)を解消するための有効な手段を提供する、
例えば、基準局Rと移動端末Mとの間で測距用無線信号と応答無線信号を往復させ、式(1)に基づいて測距しようとした場合、 (Tam2-Tam1) が長くなると、スケール誤差が無視できなくなる。本例において、10ppmのクロック周波数差があった場合、(Tam2-Tam1)=1ms とすると、1ms×10-5/2=5ns=となり、これは距離換算で1.5mの誤差となる。そこで、返信に時間がかかるような場合には、図7に示すように、基準局Rからさらにクロック誤差検出用無線信号(以下、本信号に関する変数には添え字"3"を付す。)を送信する(ステップS1’)。
FIG. 7 shows a second embodiment of the present invention. This embodiment provides an effective means for eliminating an error (scale error) in how the built-in clocks Cm, Cb, Cr progress due to the frequency difference of the clocks for each station.
For example, when a distance measurement radio signal and a response radio signal are reciprocated between the reference station R and the mobile terminal M and an attempt is made to perform distance measurement based on the equation (1), if (Tam2-Tam1) becomes longer, a scale error will occur. Cannot be ignored. In this example, when there is a clock frequency difference of 10 ppm, if (Tam2-Tam1) = 1 ms, 1 ms × 10 −5 / 2 = 5 ns =, which is an error of 1.5 m in terms of distance. Therefore, when it takes a long time to reply, as shown in FIG. 7, a radio signal for clock error detection is further transmitted from the reference station R (hereinafter, a variable related to this signal is given a subscript “3”). (Step S1 ′).

測距用無線信号とクロック誤差検出用無線信号の基準局Rでの送信時間間隔と移動端末M、基地局Bでの受信時間間隔との比が周波数差となるため、周波数差を求めて補正することができる。   Since the ratio between the transmission time interval of the distance measurement radio signal and the clock error detection radio signal at the reference station R and the reception time interval at the mobile terminal M and the base station B is a frequency difference, the frequency difference is obtained and corrected. be able to.

基準局Rに対する移動端末M、基地局Bの時計Cm、Cb、CrのスケールをSm、Sa、Sbとすると、式(2)は、
Sm(Tm1 + Tom) = Tr1 +Lmr/Vc
Sm(Tm3 + Tom) = Tr3 + Lmr/Vc
Tr2 = Sm(Tm2 + Tom) + Lmr/Vc
Sa(Ta1 + Toa) = Tr1 + Lar/Vc
Sa(Ta3 + Toa) = Tr3 + Lar/Vc
Sb(Tb1 + Tob) = Tr1 + Lbr/Vc
Sb(Tb3 + Tob) = Tr3 + Lbr/Vc
Sa(Ta2 + Toa) = Sm(Tm2 + Tom) + Lam/Vc
Sb(Tb2 + Tob) = Sm(Tm2 + Tom) + Lbm/Vc
(式3)
と変形することができる。(式3)の連立方程式において、未知数Lmr、Lam、Lbm、Tom、Toa、Tob、Sm、Sa、Sbを求めると。
Assuming that the scales of the clocks Cm, Cb, and Cr of the mobile terminal M and the base station B with respect to the reference station R are Sm, Sa, and Sb, Equation (2) is
Sm (Tm1 + Tom) = Tr1 + Lmr / Vc
Sm (Tm3 + Tom) = Tr3 + Lmr / Vc
Tr2 = Sm (Tm2 + Tom) + Lmr / Vc
Sa (Ta1 + Toa) = Tr1 + Lar / Vc
Sa (Ta3 + Toa) = Tr3 + Lar / Vc
Sb (Tb1 + Tob) = Tr1 + Lbr / Vc
Sb (Tb3 + Tob) = Tr3 + Lbr / Vc
Sa (Ta2 + Toa) = Sm (Tm2 + Tom) + Lam / Vc
Sb (Tb2 + Tob) = Sm (Tm2 + Tom) + Lbm / Vc
(Formula 3)
And can be transformed. When the unknown numbers Lmr, Lam, Lbm, Tom, Toa, Tob, Sm, Sa, and Sb are obtained in the simultaneous equations of (Expression 3).

Lmr = Vc {(Tr2 - Tr1) - (Tr3 - Tr1)(Tm2 - Tm1)/(Tm3 - Tm1) }/2
Lam = Lar + Vc(Ta2 - Ta1)(Tr3 - Tr1)/(Ta3 - Ta1) - Vc {(Tr2 - Tr1) + (Tm2 - Tm1)(Tr3 - Tr1)/(Tm3 - Tm1)}/2
Lbm = Lbr + Vc(Tb2 - Tb1) (Tr3 - Tr1)/(Tb3 - Tb1)- Vc {(Tr2 - Tr1) + (Tm2 - Tm1) (Tr3 - Tr1)/(Tm3 - Tm1)}/2
(式4)
となる。
Lmr = Vc {(Tr2-Tr1)-(Tr3-Tr1) (Tm2-Tm1) / (Tm3-Tm1)} / 2
Lam = Lar + Vc (Ta2-Ta1) (Tr3-Tr1) / (Ta3-Ta1)-Vc {(Tr2-Tr1) + (Tm2-Tm1) (Tr3-Tr1) / (Tm3-Tm1)} / 2
Lbm = Lbr + Vc (Tb2-Tb1) (Tr3-Tr1) / (Tb3-Tb1)-Vc {(Tr2-Tr1) + (Tm2-Tm1) (Tr3-Tr1) / (Tm3-Tm1)} / 2
(Formula 4)
It becomes.

この実施例では、時計Cm、Cb、Crの差を1次式(周波数差とオフセット)で表現するため、基準局Rから送信する電波は最低2個あれば良いが、2次式以上で表現する場合や統計的に求める場合には、基準局Rから複数のクロック誤差検出用無線信号を送信してもよい。   In this embodiment, since the difference between the clocks Cm, Cb, and Cr is expressed by a primary expression (frequency difference and offset), it is sufficient that at least two radio waves are transmitted from the reference station R. In some cases or statistically, a plurality of clock error detection radio signals may be transmitted from the reference station R.

図8に本発明の第3の実施の形態を示す。この実施の形態は、移動端末Mが複数ある場合の効率的な測位方法を提供するもので、基準局Rは、少なくとも、移動端末Mが加わったことによる未知数(スケール誤差、距離)を求めるために必要な本数以上の連立方程式をたてることができる回数に渡って測距用無線信号とクロック誤差検出用無線信号とを送信する。   FIG. 8 shows a third embodiment of the present invention. This embodiment provides an efficient positioning method when there are a plurality of mobile terminals M, and the reference station R obtains at least unknowns (scale error, distance) due to the addition of the mobile terminal M. The distance measurement radio signal and the clock error detection radio signal are transmitted over the number of times that the simultaneous equations more than the necessary number can be established.

2個の移動端末Mを測位するこの実施の形態において、図8(b)に示すように、基準局Rからの電波A、B、Cを移動端末Ma、基地局Ba、Bbが受信する。電波Cに対して、移動端末Maは電波Dで応答するが、この時の電波Dは、基準局R、基地局Ba、Bbで受信する。一方、基準局Rからの電波B、Cは移動端末Mbでも受信する。そして、基準局Rからの電波Eに対して、移動端末Mbは電波Fで応答するが、この時の電波Fは、基準局R、基地局Ba、Bbで受信する。   In this embodiment for positioning two mobile terminals M, as shown in FIG. 8 (b), the mobile terminals Ma and base stations Ba and Bb receive radio waves A, B and C from the reference station R. The mobile terminal Ma responds to the radio wave C with the radio wave D, and the radio wave D at this time is received by the reference station R and the base stations Ba and Bb. On the other hand, the radio waves B and C from the reference station R are also received by the mobile terminal Mb. The mobile terminal Mb responds to the radio wave E from the reference station R with the radio wave F. At this time, the radio wave F is received by the reference station R and the base stations Ba and Bb.

このように、電波B、Cを移動端末Ma、Mbで兼ねることで、基準局Rから送信するトータルの電波を減らすことができる。特に、本実施の形態のように基準局Rからの電波を2個以上使用する場合には効果が顕著になる。これは移動端末Mが3個以上の場合も同様であり、こうすることで、移動端末Mが多数あっても測位にかかる時間があまり増えなくて済む。
(付記1)
位置が既知の基準局から測距用無線信号を送信する工程と、
複数の位置が既知の基地局が測距用無線信号の受信時刻を自局の時計により計測する工程と、
移動端末が測距用無線信号を受信後、受信から返信までの自局の時計による遅れ時間情報を含む応答無線信号を送信する工程と、
前記基準局および基地局が応答無線信号の受信時刻を自局の時計で計測する工程と、
前記基準局および基地局での応答無線信号の受信時刻、基準局での測距用無線信号の送信時刻、携帯端末からの遅れ時間情報、および基準局と基地局間の既知距離情報に基づいて各局での時計のずれ要素を消去して基準局および各基地局と移動端末との距離を演算する工程と、
を含む測位方法。
(付記2)
前記基準局が測距用無線信号の送信時刻と異なった時刻にクロック誤差検出用無線信号を送信するとともに、各基地局において受信時刻を自局の時計により計測し、
測距用無線信号とクロック誤差検出用無線信号との到達時間差により基準局に対する各基地局のクロックの周波数差を補正する付記1記載の測位方法。
(付記3)
前記クロック誤差検出用無線信号を測位動作中の複数の移動端末で共有する付記2記載の測位方法。
(付記4)
測距用無線信号、および返信用無線信号にインパルス無線信号が使用される付記1、2または3に記載の測位方法。
(付記5)
前記各基地局における取得データは、無線により測位サーバに送信され、
測位サーバにより演算工程が実行される付記1から4のいずれかに記載の測位方法。
(付記6)
移動端末に測距用無線信号を送信するとともに、測距用無線信号を受信した移動端末から送信され、移動端末における受信から送信までの自局の時計による遅れ時間情報を含む応答無線信号を受信する位置が既知の基準局と、
前記移動端末と基準局との交信を受信する位置が既知の適数個の基地局と、
前記基準局および基地局での応答無線信号の受信時刻、基準局での測距用無線信号の送信時刻、携帯端末からの遅れ時間情報、および基準局と基地局間の既知距離情報に基づいて各局での時計のずれ要素を消去して基準局および各基地局と移動端末との距離を演算して移動端末の位置を求める測位サーバと、
を有する測位システム。
(付記7)
前記基地局は、前記送受信パス数が、基準局および基地局と移動端末間の距離、並びに基地局と移動端末における基準局に対する時計のずれを未知数とし、未知数の個数に対して本数が過剰な距離ー電波到達時間関係式を導出可能な個数だけ用意され、
前記移動端末との距離が、前記連立方程式の最小自乗解として求められる付記6記載の測位システム。
Thus, the total radio waves transmitted from the reference station R can be reduced by combining the radio waves B and C with the mobile terminals Ma and Mb. In particular, when two or more radio waves from the reference station R are used as in the present embodiment, the effect becomes remarkable. The same applies to the case where there are three or more mobile terminals M. By doing so, the time required for positioning does not increase much even if there are many mobile terminals M.
(Appendix 1)
Transmitting a ranging radio signal from a reference station having a known position;
A step of measuring a reception time of a radio signal for ranging by a base station having a plurality of known positions with a clock of the own station;
After the mobile terminal receives the ranging radio signal, a step of transmitting a response radio signal including delay time information by the clock of the own station from reception to reply;
Measuring the reception time of the response radio signal by the reference station and the base station with its own clock;
Based on the reception time of the response radio signal at the reference station and the base station, the transmission time of the distance measurement radio signal at the reference station, the delay time information from the mobile terminal, and the known distance information between the reference station and the base station, Calculating the distance between the base station and each base station and the mobile terminal by eliminating the clock deviation element;
Positioning method including.
(Appendix 2)
The base station transmits a clock error detection radio signal at a time different from the transmission time of the distance measurement radio signal, and at each base station, the reception time is measured by its own clock,
The positioning method according to supplementary note 1, wherein the frequency difference of the clock of each base station with respect to the reference station is corrected based on the arrival time difference between the ranging radio signal and the clock error detecting radio signal.
(Appendix 3)
The positioning method according to supplementary note 2, wherein the clock error detection radio signal is shared by a plurality of mobile terminals during positioning operation.
(Appendix 4)
4. The positioning method according to appendix 1, 2, or 3, wherein an impulse radio signal is used as a distance measurement radio signal and a reply radio signal.
(Appendix 5)
The acquired data in each base station is transmitted to the positioning server by radio,
The positioning method according to any one of supplementary notes 1 to 4, wherein the calculation process is executed by the positioning server.
(Appendix 6)
Transmits a ranging radio signal to the mobile terminal and receives a response radio signal transmitted from the mobile terminal that has received the ranging radio signal and including delay time information from the local station's clock from reception to transmission at the mobile terminal A reference station whose position is known,
An appropriate number of base stations whose positions for receiving communication between the mobile terminal and the reference station are known;
Based on the reception time of the response radio signal at the reference station and the base station, the transmission time of the distance measurement radio signal at the reference station, the delay time information from the mobile terminal, and the known distance information between the reference station and the base station, A positioning server that calculates the position of the mobile terminal by calculating the distance between the mobile terminal and the base station and each base station by eliminating the clock deviation element;
Positioning system with.
(Appendix 7)
In the base station, the number of transmission / reception paths is such that the distance between the reference station and the base station and the mobile terminal, and the time difference between the base station and the mobile terminal with respect to the reference station are unknown, and the number is excessive with respect to the number of unknowns. The number of radio wave arrival time relational expressions that can be derived is prepared,
The positioning system according to appendix 6, wherein a distance from the mobile terminal is obtained as a least squares solution of the simultaneous equations.

本発明を示す図で、(a)は測位方法を示す図、(b)は手順を示す図である。It is a figure which shows this invention, (a) is a figure which shows the positioning method, (b) is a figure which shows a procedure. 測位システムのシステム構成図である。It is a system configuration figure of a positioning system. 基準局の装置構成を示す図である。It is a figure which shows the apparatus structure of a reference station. 送受信データのデータフォーマットを示す図である。It is a figure which shows the data format of transmission / reception data. 図1の変形例を示す図である。It is a figure which shows the modification of FIG. 図5の装置構成図である。It is a device block diagram of FIG. 本発明の第2の実施の形態を示す図である。It is a figure which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す図である。It is a figure which shows the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

R 基準局
Cr 時計
B 基地局
Cb 時計
M 移動端末
Cm 時計
R Base station Cr clock B Base station Cb clock M Mobile terminal Cm clock

Claims (5)

位置が既知の基準局から測距用無線信号を送信する工程と、
複数の位置が既知の基地局が測距用無線信号の受信時刻を自局の時計により計測する工程と、
移動端末が測距用無線信号を受信後、受信から返信までの自局の時計による遅れ時間情報を含む応答無線信号を送信する工程と、
前記基準局および基地局が応答無線信号の受信時刻を自局の時計で計測する工程と、
前記基準局および基地局での応答無線信号の受信時刻、基準局での測距用無線信号の送信時刻、携帯端末からの遅れ時間情報、および基準局と基地局間の既知距離情報に基づいて各局での時計のずれ要素を消去して基準局および各基地局と移動端末との距離を演算する工程と、
を含む測位方法。
Transmitting a ranging radio signal from a reference station having a known position;
A step of measuring a reception time of a radio signal for ranging by a base station having a plurality of known positions with a clock of the own station;
After the mobile terminal receives the ranging radio signal, a step of transmitting a response radio signal including delay time information by the clock of the own station from reception to reply;
Measuring the reception time of the response radio signal by the reference station and the base station with its own clock;
Based on the reception time of the response radio signal at the reference station and the base station, the transmission time of the distance measurement radio signal at the reference station, the delay time information from the mobile terminal, and the known distance information between the reference station and the base station, Calculating the distance between the base station and each base station and the mobile terminal by eliminating the clock deviation element;
Positioning method including.
前記基準局が測距用無線信号の送信時刻と異なった時刻にクロック誤差検出用無線信号を送信するとともに、各基地局において受信時刻を自局の時計により計測し、
測距用無線信号とクロック誤差検出用無線信号との到達時間差により基準局に対する各基地局のクロックの周波数差を補正する請求項1記載の測位方法。
The base station transmits a clock error detection radio signal at a time different from the transmission time of the distance measurement radio signal, and at each base station, the reception time is measured by its own clock,
2. The positioning method according to claim 1, wherein the frequency difference of the clock of each base station with respect to the reference station is corrected based on the arrival time difference between the distance measurement radio signal and the clock error detection radio signal.
前記クロック誤差検出用無線信号を測位動作中の複数の移動端末で共有する請求項2記載の測位方法。   3. The positioning method according to claim 2, wherein the clock error detection radio signal is shared by a plurality of mobile terminals that are performing a positioning operation. 測距用無線信号、および返信用無線信号にインパルス無線信号が使用される請求項1、2または3に記載の測位方法。   The positioning method according to claim 1, 2, or 3, wherein an impulse radio signal is used for the distance measurement radio signal and the reply radio signal. 前記各基地局における取得データは、無線により基準局に送信され、
基準局において演算工程が実行される請求項1から4のいずれかに記載の測位方法。


The acquired data in each base station is transmitted to the reference station by radio,
The positioning method according to claim 1, wherein the calculation step is executed at the reference station.


JP2006218347A 2006-08-10 2006-08-10 Positioning method Pending JP2008039738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218347A JP2008039738A (en) 2006-08-10 2006-08-10 Positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218347A JP2008039738A (en) 2006-08-10 2006-08-10 Positioning method

Publications (1)

Publication Number Publication Date
JP2008039738A true JP2008039738A (en) 2008-02-21

Family

ID=39174899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218347A Pending JP2008039738A (en) 2006-08-10 2006-08-10 Positioning method

Country Status (1)

Country Link
JP (1) JP2008039738A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089315A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Positioning system, detection apparatus, positioning apparatus, positioning method for positioning system, detection method for detection apparatus, positioning method for positioning apparatus, detection program for detection apparatus, and positioning program for positioning apparatus
JP2009150872A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Research Laboratories Inc Method and system for presuming relative clock frequency difference in order to raise bi-directional radio distance measuring accuracy
JP2010019597A (en) * 2008-07-08 2010-01-28 Fujitsu Ltd Positioning system and positioning base station group
JP2010281798A (en) * 2009-06-08 2010-12-16 Fujitsu Ltd Wireless ranging system, ranging device, ranging method and ranging program
JP2012510056A (en) * 2008-11-25 2012-04-26 クアルコム,インコーポレイテッド Method and apparatus for bidirectional ranging
JP2012088125A (en) * 2010-10-18 2012-05-10 Denso Wave Inc Wireless tag distance calculation system and wireless tag reader
US8750267B2 (en) 2009-01-05 2014-06-10 Qualcomm Incorporated Detection of falsified wireless access points
JP2014515112A (en) * 2011-04-29 2014-06-26 オアソトロン カンパニー リミテッド Distance measuring method and apparatus, and positioning method
US8768344B2 (en) 2008-12-22 2014-07-01 Qualcomm Incorporated Post-deployment calibration for wireless position determination
US8781492B2 (en) 2010-04-30 2014-07-15 Qualcomm Incorporated Device for round trip time measurements
US8892127B2 (en) 2008-11-21 2014-11-18 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
JP2015514963A (en) * 2012-02-10 2015-05-21 クアルコム,インコーポレイテッド Estimated flight time ranging
US9213082B2 (en) 2008-11-21 2015-12-15 Qualcomm Incorporated Processing time determination for wireless position determination
JP2016011927A (en) * 2014-06-30 2016-01-21 株式会社日本ジー・アイ・ティー Ultra-high sensitive location measurement system
US9645225B2 (en) 2008-11-21 2017-05-09 Qualcomm Incorporated Network-centric determination of node processing delay
JP2017096945A (en) * 2015-11-18 2017-06-01 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Beacon localization method
US9678194B2 (en) 2012-08-14 2017-06-13 Qualcomm Incorporated Positioning using observer-based time-of-arrival measurements
JP2018508757A (en) * 2015-02-04 2018-03-29 コグニティヴ システムズ コーポレイション Wireless signal source positioning

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114987U (en) * 1981-01-07 1982-07-16
JPH09297175A (en) * 1996-05-08 1997-11-18 Mitsubishi Electric Corp Tracking radar equipment
JPH1164507A (en) * 1997-08-13 1999-03-05 Toyo Commun Equip Co Ltd Range finder method
JPH11271418A (en) * 1998-03-20 1999-10-08 Fujitsu Ltd Radio position locating system, device and method
JP2002098747A (en) * 2000-08-11 2002-04-05 Alcatel Usa Sourcing Lp System and method for searching for mobile device
JP2004101254A (en) * 2002-09-06 2004-04-02 Hitachi Ltd Wireless system and its server and its base station
JP2004350088A (en) * 2003-05-23 2004-12-09 Nec Corp Location estimation system of radio station
WO2005017555A2 (en) * 2003-08-14 2005-02-24 Sensis Corporation Target localization using tdoa distributed antenna
JP2005117440A (en) * 2003-10-09 2005-04-28 Hitachi Ltd Wireless position detection method and system
WO2006059296A2 (en) * 2004-12-02 2006-06-08 Koninklijke Philips Electronics N.V. Measuring the distance between devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114987U (en) * 1981-01-07 1982-07-16
JPH09297175A (en) * 1996-05-08 1997-11-18 Mitsubishi Electric Corp Tracking radar equipment
JPH1164507A (en) * 1997-08-13 1999-03-05 Toyo Commun Equip Co Ltd Range finder method
JPH11271418A (en) * 1998-03-20 1999-10-08 Fujitsu Ltd Radio position locating system, device and method
JP2002098747A (en) * 2000-08-11 2002-04-05 Alcatel Usa Sourcing Lp System and method for searching for mobile device
JP2004101254A (en) * 2002-09-06 2004-04-02 Hitachi Ltd Wireless system and its server and its base station
JP2004350088A (en) * 2003-05-23 2004-12-09 Nec Corp Location estimation system of radio station
WO2005017555A2 (en) * 2003-08-14 2005-02-24 Sensis Corporation Target localization using tdoa distributed antenna
JP2005117440A (en) * 2003-10-09 2005-04-28 Hitachi Ltd Wireless position detection method and system
WO2006059296A2 (en) * 2004-12-02 2006-06-08 Koninklijke Philips Electronics N.V. Measuring the distance between devices

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089315A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Positioning system, detection apparatus, positioning apparatus, positioning method for positioning system, detection method for detection apparatus, positioning method for positioning apparatus, detection program for detection apparatus, and positioning program for positioning apparatus
JP2009150872A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Research Laboratories Inc Method and system for presuming relative clock frequency difference in order to raise bi-directional radio distance measuring accuracy
JP2010019597A (en) * 2008-07-08 2010-01-28 Fujitsu Ltd Positioning system and positioning base station group
US9213082B2 (en) 2008-11-21 2015-12-15 Qualcomm Incorporated Processing time determination for wireless position determination
US9291704B2 (en) 2008-11-21 2016-03-22 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
US9645225B2 (en) 2008-11-21 2017-05-09 Qualcomm Incorporated Network-centric determination of node processing delay
US8892127B2 (en) 2008-11-21 2014-11-18 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
JP2012510056A (en) * 2008-11-25 2012-04-26 クアルコム,インコーポレイテッド Method and apparatus for bidirectional ranging
US9125153B2 (en) 2008-11-25 2015-09-01 Qualcomm Incorporated Method and apparatus for two-way ranging
US8768344B2 (en) 2008-12-22 2014-07-01 Qualcomm Incorporated Post-deployment calibration for wireless position determination
US8831594B2 (en) 2008-12-22 2014-09-09 Qualcomm Incorporated Post-deployment calibration of wireless base stations for wireless position determination
US9002349B2 (en) 2008-12-22 2015-04-07 Qualcomm Incorporated Post-deployment calibration for wireless position determination
US8750267B2 (en) 2009-01-05 2014-06-10 Qualcomm Incorporated Detection of falsified wireless access points
US8823588B2 (en) 2009-06-08 2014-09-02 Fujitsu Limited Radio positioning and ranging system and positioning and ranging program
JP2010281798A (en) * 2009-06-08 2010-12-16 Fujitsu Ltd Wireless ranging system, ranging device, ranging method and ranging program
US8781492B2 (en) 2010-04-30 2014-07-15 Qualcomm Incorporated Device for round trip time measurements
US9137681B2 (en) 2010-04-30 2015-09-15 Qualcomm Incorporated Device for round trip time measurements
US9247446B2 (en) 2010-04-30 2016-01-26 Qualcomm Incorporated Mobile station use of round trip time measurements
JP2012088125A (en) * 2010-10-18 2012-05-10 Denso Wave Inc Wireless tag distance calculation system and wireless tag reader
JP2014515112A (en) * 2011-04-29 2014-06-26 オアソトロン カンパニー リミテッド Distance measuring method and apparatus, and positioning method
US9201140B2 (en) 2011-04-29 2015-12-01 Orthotron Co., Ltd. Method and apparatus for measuring distances, and method for determining positions
KR101836427B1 (en) * 2011-04-29 2018-03-09 오소트론 주식회사 Ranging Method and Apparatus, and Positioning Method
JP2015514963A (en) * 2012-02-10 2015-05-21 クアルコム,インコーポレイテッド Estimated flight time ranging
US9678194B2 (en) 2012-08-14 2017-06-13 Qualcomm Incorporated Positioning using observer-based time-of-arrival measurements
JP2016011927A (en) * 2014-06-30 2016-01-21 株式会社日本ジー・アイ・ティー Ultra-high sensitive location measurement system
JP2018508757A (en) * 2015-02-04 2018-03-29 コグニティヴ システムズ コーポレイション Wireless signal source positioning
JP2019158896A (en) * 2015-02-04 2019-09-19 コグニティヴ システムズ コーポレイション Locating of wireless signal source
JP2017096945A (en) * 2015-11-18 2017-06-01 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Beacon localization method

Similar Documents

Publication Publication Date Title
JP2008039738A (en) Positioning method
KR101116218B1 (en) Receiver, frequency deviation measuring unit and posintioning and ranging system
JP5023508B2 (en) Wireless positioning system, wireless positioning method, and program for wireless positioning
US10859666B1 (en) Method and system for radiofrequency localization of transmitting devices via a mesh network
KR102145095B1 (en) Partially synchronized multilateration or trilateration method and system for positional finding using rf
US7558583B2 (en) System and methods of radio interference based localization in sensor networks
CN105122080B (en) Ranging and alignment system
Gonzalez et al. High-precision robust broadband ultrasonic location and orientation estimation
US8179816B1 (en) System and method for high resolution indoor positioning using a narrowband RF transceiver
CN102124369B (en) Two-way ranging with inter-pulse transmission and reception
JP4854003B2 (en) Ranging system
US11658798B1 (en) Methods for time synchronization and localization in a mesh network
JP2009229393A (en) Radio determination system and radio determination method
US20040235499A1 (en) Ranging and positioning system, ranging and positioning method, and radio communication apparatus
JP4992839B2 (en) Positioning system
JP5634054B2 (en) Wireless terminal device and wireless base station device
US7295159B1 (en) Method for measuring time of arrival of signals in a communications network
JP2009505060A (en) Device, method and protocol for concealed UWB ranging
RU2717231C1 (en) Difference-ranging method of determining coordinates of a radio-frequency source
JP7591161B2 (en) A method for time synchronization and localization in mesh networks
US10616028B2 (en) Apparatus for a radio device
JP7499773B2 (en) Distance measuring device and method
US20250067833A1 (en) Method and system for radiofrequency localization of transmitting devices via a mesh network
Vashistha et al. Self calibration of the anchor nodes for UWB-IR TDOA based indoor positioning system
CN102752713A (en) Wireless locating method based on long-term evolution signal system, and terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904