[go: up one dir, main page]

JP2008039394A - Electromagnetic induction sensor for metal detector - Google Patents

Electromagnetic induction sensor for metal detector Download PDF

Info

Publication number
JP2008039394A
JP2008039394A JP2004344964A JP2004344964A JP2008039394A JP 2008039394 A JP2008039394 A JP 2008039394A JP 2004344964 A JP2004344964 A JP 2004344964A JP 2004344964 A JP2004344964 A JP 2004344964A JP 2008039394 A JP2008039394 A JP 2008039394A
Authority
JP
Japan
Prior art keywords
coil
metal piece
detection
electromagnetic induction
induction sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004344964A
Other languages
Japanese (ja)
Inventor
Hiroshi Hoshikawa
洋 星川
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2004344964A priority Critical patent/JP2008039394A/en
Priority to PCT/JP2005/021903 priority patent/WO2006057409A1/en
Publication of JP2008039394A publication Critical patent/JP2008039394A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】 金属片検知装置の金属片検知センサにおいて、被検査物に金属片が混入しているときのみ、金属片検知信号を発生する電磁誘導センサを提供すること。
【解決手段】 電磁誘導センサは、励磁コイル21と検出コイル22からなり、両コイルは、コイル面が直交するように配置してある。電磁誘導センサは、被検査物31に対して、励磁コイル21のコイル面が垂直になり、検出コイル22のコイル面が並行になるように上置してある。励磁コイル21は、被検査物31に一様磁界を発生する。したがって検出コイル22には、被検査物31に金属片が混入しているときのみ、金属片検知信号を発生する
【選択図】 図1
PROBLEM TO BE SOLVED: To provide an electromagnetic induction sensor that generates a metal piece detection signal only when a metal piece is mixed in an object to be inspected in a metal piece detection sensor of a metal piece detection device.
An electromagnetic induction sensor includes an excitation coil and a detection coil. Both coils are arranged so that their coil surfaces are orthogonal to each other. The electromagnetic induction sensor is placed so that the coil surface of the excitation coil 21 is perpendicular to the object to be inspected 31 and the coil surface of the detection coil 22 is parallel. The exciting coil 21 generates a uniform magnetic field on the inspection object 31. Therefore, the metal detection signal is generated in the detection coil 22 only when the metal piece is mixed in the inspection object 31. [Selection]

Description

本願発明は、食品、工業材料、衣服、郵便物等に混入或いは潜在する金属片の検知装置、地雷検知装置等に使用する電磁誘導センサに関する。   The present invention relates to an electromagnetic induction sensor used in a detection device, a landmine detection device, or the like for a metal piece mixed in or latent in food, industrial materials, clothes, mail, or the like.

従来食品、工業材料等に混入する金属片の検知装置には、電磁センサが使用されている。
図7により従来の電磁センサを説明する(例えば特許文献1参照)。
図7は、被検査物の上に配置した電磁センサを示し、図7(a)は、平面図、図7(b)は、図7(a)のX1部分の矢印方向の断面図、図7(c)は、電磁センサの裏面の平面図である。
図7において、11は、電磁センサ、13は、被検査物12を搬送するベルトコンベアのベルトである。電磁センサ11は、断面がE文字状の鉄心111にセンサーコイル112を巻き、中央に永久磁石113を取り付けてある。電磁センサ11のセンサーコイル112は、交流電源(図示せず)と検出回路(図示せず)に接続されている。被検査物12は、ベルト13によってX2方向へ搬送され、電磁センサ11の下を通って移動する。
センサーコイル112に交流電源を接続すると、センサーコイル112に交流電流が流れて交番磁界を発生し、センサーコイル112の磁束は、ベルト13を含む磁路を通過する。被検査物12に金属片が混入しているときは、被検査物12が、図7のように電磁センサ11の下に移動すると、センサーコイル112の磁路の磁気特性が変わるため、センサーコイル112の交流電流の振幅が変化する。その振幅の変化分を検出回路で抽出して、被検査物12に混入している金属片を検知する。
Conventionally, an electromagnetic sensor is used in a detection device for a metal piece mixed in food, industrial material, or the like.
A conventional electromagnetic sensor will be described with reference to FIG. 7 (see, for example, Patent Document 1).
FIG. 7 shows an electromagnetic sensor arranged on the object to be inspected, FIG. 7 (a) is a plan view, FIG. 7 (b) is a cross-sectional view in the arrow direction of the X1 portion of FIG. 7 (c) is a plan view of the back surface of the electromagnetic sensor.
In FIG. 7, 11 is an electromagnetic sensor, and 13 is a belt of a belt conveyor that conveys the inspection object 12. In the electromagnetic sensor 11, a sensor coil 112 is wound around an iron core 111 having an E-shaped cross section, and a permanent magnet 113 is attached to the center. The sensor coil 112 of the electromagnetic sensor 11 is connected to an AC power source (not shown) and a detection circuit (not shown). The inspection object 12 is conveyed in the X2 direction by the belt 13 and moves under the electromagnetic sensor 11.
When an AC power source is connected to the sensor coil 112, an AC current flows through the sensor coil 112 to generate an alternating magnetic field, and the magnetic flux of the sensor coil 112 passes through a magnetic path including the belt 13. When a metal piece is mixed in the inspection object 12, if the inspection object 12 moves below the electromagnetic sensor 11 as shown in FIG. 7, the magnetic characteristics of the magnetic path of the sensor coil 112 change. The amplitude of the alternating current 112 changes. The change in the amplitude is extracted by the detection circuit, and the metal piece mixed in the inspection object 12 is detected.

特開2004−85439号公報JP 2004-85439 A

図7の従来の電磁センサ11は、1個のセンサーコイル112を励磁コイルと検出コイルに使用しているから、検出コイル(センサーコイル112)には、被検査物12に金属片が混入していないときも電流が流れている。即ち金属片が混入していないときも、検出コイルに検出信号が発生する。したがって金属片を検知するには、金属片が混入していないときの検出信号と金属片が混入しているときの検出信号から、両検出信号の振幅差を金属片検知信号として抽出しなければならない。そのため金属片検知信号の抽出には、ブリッジ回路(平衡回路)等からなる複雑な回路を用いて、複雑な信号処理を行わなければならないから、金属片の検知装置が複雑になる。また被検査物12とセンサーコイル112の距離(間隔)が大きくなると、前記両検出信号は小さくなり、両検出信号の振幅差も小さくなるから、金属片の検出精度や検出感度が低下する。   Since the conventional electromagnetic sensor 11 of FIG. 7 uses one sensor coil 112 as an excitation coil and a detection coil, a metal piece is mixed in the inspection object 12 in the detection coil (sensor coil 112). Even when there is no current. That is, even when no metal piece is mixed, a detection signal is generated in the detection coil. Therefore, in order to detect a metal piece, an amplitude difference between both detection signals must be extracted as a metal piece detection signal from a detection signal when the metal piece is not mixed and a detection signal when the metal piece is mixed. Don't be. For this reason, the extraction of the metal piece detection signal requires complicated signal processing using a complex circuit such as a bridge circuit (balanced circuit), which complicates the metal piece detection device. Further, when the distance (interval) between the object to be inspected 12 and the sensor coil 112 is increased, both the detection signals are reduced, and the amplitude difference between the two detection signals is also reduced.

また従来の電磁センサは、被検査物12に金属片が混入している場合、センサーコイル112と被検査物12の間隔(距離)が変化すると検出コイルの電流も変化するため、その変化は、金属片検知信号に影響し、金属片の検出精度や検出感度を低下させる。センサーコイル112と被検査物12の間隔(距離)の変化は、センサーコイル112の位置の上下動や被検査物12に混入する金属片の位置の相違(例えば、金属片が被検査物12のセンサーコイル112に近い位置にあるか、遠い位置にあるかの相違)によって起きる。
本願発明は、従来の磁気センサの前記問題点を解決するため、被検査物に金属片が混入しているときにのみ検出コイルに検出信号を発生する(金属検知信号を発生する)電磁誘導センサを提供することを目的とする。
Further, in the conventional electromagnetic sensor, when a metal piece is mixed in the inspection object 12, the current of the detection coil also changes when the distance (distance) between the sensor coil 112 and the inspection object 12 changes. It affects the metal piece detection signal and lowers the detection accuracy and detection sensitivity of the metal piece. The change in the distance (distance) between the sensor coil 112 and the object to be inspected 12 is caused by the vertical movement of the position of the sensor coil 112 or the difference in the position of the metal piece mixed in the object to be inspected 12 (e.g. This is caused by a difference between whether the sensor coil 112 is close to or far from the sensor coil 112.
In order to solve the above-described problems of the conventional magnetic sensor, the present invention generates a detection signal in the detection coil (generates a metal detection signal) only when a metal piece is mixed in the object to be inspected. The purpose is to provide.

本願発明は、その目的を達成するため、請求項1に記載の金属検知装置の電磁誘導センサは、励磁コイルと検出コイルを両コイルのコイル面が交差するように配置し、検出コイルのコイル面を被検査物に並行に配置してあることを特徴とする。
請求項2に記載の金属検知装置の電磁誘導センサは、請求項1に記載の金属検知装置の電磁誘導センサにおいて、前記検出コイルは複数個の検出コイルを並置してなることを特徴とする。
請求項3に記載の金属検知方法は、励磁コイルと検出コイルを両コイルのコイル面が交差するように配置した電磁誘導センサの検出コイルのコイル面が被検査物と並行するように、電磁誘導センサ又は被検査物を移動して被検査物の金属片を検知することを特徴とする。
請求項4記載の金属検知方法は、請求項3に記載の金属検知方法において、前記検出コイルは複数個の検出を並置してなることを特徴とする。
In order to achieve the object of the present invention, in the electromagnetic induction sensor of the metal detection device according to claim 1, the excitation coil and the detection coil are arranged so that the coil surfaces of both coils intersect, and the coil surface of the detection coil Are arranged in parallel to the object to be inspected.
The electromagnetic induction sensor of the metal detection device according to claim 2 is the electromagnetic induction sensor of the metal detection device according to claim 1, wherein the detection coil is formed by juxtaposing a plurality of detection coils.
According to a third aspect of the present invention, in the metal detection method, the induction coil and the detection coil are arranged so that the coil surfaces of the two coils cross each other, so that the coil surface of the detection coil of the electromagnetic induction sensor is parallel to the object to be inspected. A metal piece of the inspection object is detected by moving the sensor or the inspection object.
A metal detection method according to a fourth aspect of the present invention is the metal detection method according to the third aspect, wherein the detection coil includes a plurality of detections juxtaposed.

本願発明の電磁誘導センサの検出コイルには、被検査物に金属片が混入しているときにのみ、検出信号が発生し(即ち金属片検知信号が発生し)、金属片が混入していないときは、検出信号を発生しないから、例え金属片検知信号の振幅が小さいときにも金属片を確実に検知できる。したがって従来の金属片検地センサよりも高精度、高感度で金属片を検知できる。また本願発明の電磁誘導センサを用いた金属検知装置は、金属片検知信号の抽出が容易になるから、金属片検知信号の抽出回路を簡単に構成できる。   The detection coil of the electromagnetic induction sensor of the present invention generates a detection signal only when a metal piece is mixed in the object to be inspected (that is, a metal piece detection signal is generated), and no metal piece is mixed. Since no detection signal is generated, the metal piece can be reliably detected even when the amplitude of the metal piece detection signal is small. Therefore, the metal piece can be detected with higher accuracy and sensitivity than the conventional metal piece detection sensor. Moreover, since the metal detection apparatus using the electromagnetic induction sensor according to the present invention can easily extract the metal piece detection signal, the extraction circuit for the metal piece detection signal can be easily configured.

本願発明の電磁誘導センサの金属片検知信号は、金属片の寸法によって振幅の大きさが異なるから、金属片の種類(材質)が同じ場合には、金属片検知信号の振幅の大小によって金属片の大きさを推定することができる。また金属片検出信号の位相は、金属片の寸法に関係なく、金属片の種類(材質)によって決まるから、金属片検出信号の位相によって金属片の種類(材質)を推定することができる。
本願発明の電磁誘導センサは、電磁誘導センサと金属片の距離(間隔)が変化して金属片検出信号の振幅が変動しても、その振幅の変動は、金属片有無の判別に関係しないから、その金属片検出信号の振幅の変動によって金属片有無の判別を誤ることがない。
Since the amplitude of the metal piece detection signal of the electromagnetic induction sensor of the present invention varies depending on the size of the metal piece, when the type (material) of the metal piece is the same, the metal piece detection signal varies depending on the amplitude of the metal piece detection signal. Can be estimated. Further, since the phase of the metal piece detection signal is determined by the type (material) of the metal piece regardless of the dimension of the metal piece, the type (material) of the metal piece can be estimated from the phase of the metal piece detection signal.
In the electromagnetic induction sensor of the present invention, even if the distance (interval) between the electromagnetic induction sensor and the metal piece changes to change the amplitude of the metal piece detection signal, the change in the amplitude is not related to the determination of the presence or absence of the metal piece. The presence / absence of the metal piece is not erroneously determined by the fluctuation of the amplitude of the metal piece detection signal.

図1〜図6により本願発明の実施例を説明する。なお各図に共通の部分は、同じ符号を使用している。
図1は、被検査物の上に配置した電磁誘導センサを示す。図1(a)は、平面図、図1(b)は、図1(a)のY2方向の側面図、図1(c)は、図1(a)のY1部分の矢印方向の断面図である。
図1において、21は、電磁誘導センサの励磁コイル、22は、電磁誘導センサの検出コイル、31は、被検査物である。
励磁コイル21は、矩形状(四角形状)のコイルであり、検出コイル22は、パンケーキ状(ドーナツ状)のコイルである。電磁誘導センサは、励磁コイル21と検出コイル22からなり、励磁コイル21と検出コイル22は、夫々のコイルのコイル面が直交する(交差する)ように配置し、励磁コイル21は、そのコイル面が被検査物31と直交するように設置してある。したがって検出コイル22のコイル面は、被検査物と平行になる。
ここでコイル面は、コイルの中心軸と直交する面(巻線に囲まれた開口面)である。以下本願において同様である。
An embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to each figure.
FIG. 1 shows an electromagnetic induction sensor arranged on an object to be inspected. 1A is a plan view, FIG. 1B is a side view in the Y2 direction of FIG. 1A, and FIG. 1C is a cross-sectional view of the Y1 portion of FIG. It is.
In FIG. 1, 21 is an excitation coil of the electromagnetic induction sensor, 22 is a detection coil of the electromagnetic induction sensor, and 31 is an object to be inspected.
The exciting coil 21 is a rectangular (rectangular) coil, and the detection coil 22 is a pancake (donut-shaped) coil. The electromagnetic induction sensor includes an excitation coil 21 and a detection coil 22. The excitation coil 21 and the detection coil 22 are arranged so that the coil surfaces of the respective coils are orthogonal (intersect), and the excitation coil 21 has its coil surface. Is installed so as to be orthogonal to the inspection object 31. Therefore, the coil surface of the detection coil 22 is parallel to the inspection object.
Here, the coil surface is a surface orthogonal to the central axis of the coil (opening surface surrounded by the windings). The same applies hereinafter.

図2は、励磁コイル21が発生する磁束の方向、及び被検査物中の金属片と検出コイルの位置関係を説明する図である。
励磁コイル21に電流を流すと、図2(a)のように、励磁コイル21は、その巻線方向と直交する方向(コイル面と直交する方向)に一様磁界を発生し、平行で方向が同じ磁束Mfを発生する。検出コイル22は、図2(b)のように、一様磁界に置かれているから、磁束Mfにより起電力が誘導される。その際検出コイル22は、そのコイルの磁束Mfと平行な中心線Y3の両側の部分22l、22rは、左右対称であるから、図2(b)のように被検査物31に金属片32が混入していないときには、検出コイル22の左側の部分22lに誘導する起電力と右側の部分22rに誘導する起電力は、大きさが同じで方向が逆になる。したがって左側の部分22lに誘導する起電力と右側の部分22rに誘導する起電力は、打消し合い、検出コイル22には、検出信号は発生しない。即ち一様な磁界中に金属片が存在しないときは、検出コイル22には、検出信号は発生しない。
FIG. 2 is a diagram for explaining the direction of the magnetic flux generated by the exciting coil 21 and the positional relationship between the metal piece in the inspection object and the detection coil.
When a current is passed through the exciting coil 21, as shown in FIG. 2A, the exciting coil 21 generates a uniform magnetic field in a direction perpendicular to the winding direction (direction perpendicular to the coil surface), and the direction is parallel. Generate the same magnetic flux Mf. Since the detection coil 22 is placed in a uniform magnetic field as shown in FIG. 2B, an electromotive force is induced by the magnetic flux Mf. At this time, the detection coil 22 has symmetrical portions 22l and 22r on both sides of the center line Y3 parallel to the magnetic flux Mf of the coil. Therefore, as shown in FIG. When not mixed, the electromotive force induced in the left portion 22l of the detection coil 22 and the electromotive force induced in the right portion 22r have the same magnitude and opposite directions. Therefore, the electromotive force induced in the left portion 22 l and the electromotive force induced in the right portion 22 r cancel each other, and no detection signal is generated in the detection coil 22. That is, when no metal piece is present in the uniform magnetic field, no detection signal is generated in the detection coil 22.

他方被検査物31に金属片が混入しているとき、例えば、図2(c)のように、被検査物31に金属片32が混入しているときには、金属片32には、磁束Mfによって渦電流iが発生する。そのため、金属片32近傍の空間磁界は、渦電流iが発生する磁界の影響を受けて、一様磁界に乱れを生じる。なお渦電流iは、金属片32の前端部分32aと後端部分32bとで逆方向に流れる。   On the other hand, when a metal piece is mixed in the inspection object 31, for example, as shown in FIG. 2C, when a metal piece 32 is mixed in the inspection object 31, the metal piece 32 is caused by the magnetic flux Mf. Eddy current i is generated. Therefore, the spatial magnetic field in the vicinity of the metal piece 32 is affected by the magnetic field generated by the eddy current i, and the uniform magnetic field is disturbed. The eddy current i flows in the opposite direction between the front end portion 32 a and the rear end portion 32 b of the metal piece 32.

図2(c)の場合、検出コイル22は、金属片32から離れた位置にあるため、金属片32の近傍の空間磁界が乱れてもその影響は受けない。即ち検出コイル22には、検出信号は発生しない。次に電磁誘導センサを、被検査物31に対して矢印Y4方向へ移動して、図2(d)のように、検出コイル22が金属片32の前端部分32aまで進むと、検出コイル22は、渦電流iの発生する磁界の影響を受けるから、起電力が誘導される。即ち検出コイル22には、金属片検知信号が発生する。検出コイル22がさらに進み、図2(e)のように、金属片32の真上まで進むと、検出コイル22は、金属片32の前端部分32aと後端部分32bの渦電流iが発生する磁界の影響を受ける。その際、前端部分32aと後端部分32bの渦電流iの方向は逆であるから、検出コイル22には、検出信号は発生しない。検出コイル22が図2(f)の位置まで進むと、検出コイル22は、金属片32の後端部分32bの渦電流iが発生する磁界の影響を受けるから、検出コイル22には、起電力が誘導される。即ち検出コイル22には、金属片検知信号が発生する。その場合、金属片検知信号は、図2(d)の金属片検知信号と極性が逆になる。   In the case of FIG. 2C, the detection coil 22 is located away from the metal piece 32, so that even if the spatial magnetic field near the metal piece 32 is disturbed, it is not affected. That is, no detection signal is generated in the detection coil 22. Next, when the electromagnetic induction sensor is moved in the arrow Y4 direction with respect to the inspection object 31, and the detection coil 22 advances to the front end portion 32a of the metal piece 32 as shown in FIG. Because of the influence of the magnetic field generated by the eddy current i, an electromotive force is induced. That is, a metal piece detection signal is generated in the detection coil 22. When the detection coil 22 further advances and as shown in FIG. 2 (e), the detection coil 22 generates an eddy current i in the front end portion 32a and the rear end portion 32b of the metal piece 32. Influenced by magnetic field. At this time, since the directions of the eddy currents i of the front end portion 32a and the rear end portion 32b are opposite, no detection signal is generated in the detection coil 22. When the detection coil 22 advances to the position of FIG. 2F, the detection coil 22 is affected by the magnetic field generated by the eddy current i of the rear end portion 32b of the metal piece 32. Is induced. That is, a metal piece detection signal is generated in the detection coil 22. In that case, the polarity of the metal piece detection signal is opposite to that of the metal piece detection signal of FIG.

以上のように図1の電磁誘導センサの検出コイル22には、被検査物31に金属片32が混入しているときのみ、金属片検知信号が発生し、金属片32が混入していないときには検出信号が発生しない。即ち検出コイル22の検出信号=金属片検知信号となる。したがって図1の電磁誘導センサは、従来の電磁センサのように、金属片32が混入していないときの検出信号と金属片32が混入しているときの検出信号との振幅差を抽出して金属片検知信号を抽出する必要がない。また図1の電磁誘導センサは、被検査物31に金属片32が混入しているときのみ金属片検知信号を発生するから、検出コイル22と金属片32の距離(間隔)が変化して金属片検知信号の振幅が変動しても、その振幅の変動は、金属片有無の検出に関係しないから、金属片有無の判別を誤ることがない。
図2は、電磁誘導センサを矢印Y4方向へ移動する例について説明したが、電磁誘導センサを移動する代わりに被検査物31を移動させてもよい。
As described above, the detection coil 22 of the electromagnetic induction sensor of FIG. 1 generates a metal piece detection signal only when the metal piece 32 is mixed in the inspection object 31, and when the metal piece 32 is not mixed. No detection signal is generated. That is, the detection signal of the detection coil 22 = the metal piece detection signal. Therefore, the electromagnetic induction sensor of FIG. 1 extracts the amplitude difference between the detection signal when the metal piece 32 is not mixed and the detection signal when the metal piece 32 is mixed, as in the conventional electromagnetic sensor. There is no need to extract a metal piece detection signal. The electromagnetic induction sensor of FIG. 1 generates a metal piece detection signal only when the metal piece 32 is mixed in the object 31 to be inspected. Even if the amplitude of the piece detection signal fluctuates, the fluctuation of the amplitude is not related to the detection of the presence or absence of the metal piece, and therefore the determination of the presence or absence of the metal piece does not occur.
Although FIG. 2 demonstrated the example which moves an electromagnetic induction sensor to the arrow Y4 direction, you may move the to-be-inspected object 31 instead of moving an electromagnetic induction sensor.

ここで、図1の電磁誘導センサの試験結果について説明する。
電磁誘導センサの試験は、金属片上に図1の電磁誘導センサを設置し、励磁コイル21へ高周波信号を印加し、電磁誘導センサを移動して、検出コイル22に誘導された電圧を測定した。なお金属片がないときは、検出コイル22に電圧は誘導されなかった。
図5は、検出コイル22に誘導した電圧を示す。図5において、横軸は、検出コイルに誘導した電圧の同相成分(励磁電流と同相の成分)を示し、縦軸は、90度進相成分(励磁電流と90度進相成分)を示す。なお図5は、正規化した電圧を示す。
Here, the test result of the electromagnetic induction sensor of FIG. 1 will be described.
In the test of the electromagnetic induction sensor, the electromagnetic induction sensor of FIG. 1 was installed on a metal piece, a high frequency signal was applied to the excitation coil 21, the electromagnetic induction sensor was moved, and the voltage induced in the detection coil 22 was measured. When no metal piece was present, no voltage was induced in the detection coil 22.
FIG. 5 shows the voltage induced in the detection coil 22. In FIG. 5, the horizontal axis indicates the in-phase component of the voltage induced in the detection coil (the component in phase with the excitation current), and the vertical axis indicates the 90-degree phase advance component (excitation current and 90-degree phase advance component). FIG. 5 shows the normalized voltage.

金属片は、図6のボルト(図6(a))、クリップ(図6(b))、ホッチキス針(図6(c))を用いた。クリップとホッチキス針は、略同じ種類(材料)であるが、ボルトは、それらと種類(材料)が異なる。
励磁コイル21の寸法は、長さ(被検査物に対向する部分のコイルの中心軸と直交する方向の寸法)160mm、高さ30mm、幅(被検査物に対向する部分のコイルの中心軸と平行する方向の寸法)150mmであり、検出コイル22の寸法は、外径70mm、巻幅10mm、巻厚1mmである。
ボルト等の寸法は、ボルトが長さ50mm、頭部径16mm、ネジ部径10mm、クリップ(イ)が長さ50mm、幅10mm、クリップ(ロ)が長さ28mm、幅8mm、クリップ(ハ)が長さ21mm、幅5mm、ホッチキス針が長さ9mm、幅1mmである。
The metal pieces used were the bolts (FIG. 6 (a)), clips (FIG. 6 (b)), and staples (FIG. 6 (c)) of FIG. Clips and staples are of substantially the same type (material), but bolts are different in type (material).
The exciting coil 21 has a length (a dimension in a direction perpendicular to the central axis of the coil facing the object to be inspected) 160 mm, a height of 30 mm, and a width (a central axis of the coil facing the object to be inspected). The dimensions of the detection coil 22 are an outer diameter of 70 mm, a winding width of 10 mm, and a winding thickness of 1 mm.
The dimensions of the bolts are as follows: the bolt is 50 mm long, the head diameter is 16 mm, the screw diameter is 10 mm, the clip (b) is 50 mm long, the width is 10 mm, the clip (b) is 28 mm long, the width is 8 mm, and the clip (c) Has a length of 21 mm, a width of 5 mm, and a stapler needle having a length of 9 mm and a width of 1 mm.

図5(a)は、ボルトの金属片検知信号とクリップ(イ)の金属片検知信号を示す。ボルトの金属片検知信号とクリップ(イ)の金属片検知信号は、振幅が相違するとともに、位相も相違している。
図5(b)は、クリップ(イ)〜(ハ)の金属片検知信号を示す。クリップ(イ)〜(ハ)の金属片検知信号は、クリップの寸法が小さくなるほど、振幅は小さくなるが、位相は同じである。即ち金属片の寸法が変わると、金属片検知信号の振幅は変わるが、位相は変わらない。
FIG. 5A shows a metal piece detection signal of a bolt and a metal piece detection signal of a clip (A). The bolt metal piece detection signal and the clip (A) metal piece detection signal have different amplitudes and different phases.
FIG. 5B shows metal piece detection signals of clips (A) to (C). The metal piece detection signals of the clips (A) to (C) have smaller amplitude but smaller phase as the size of the clip is smaller. That is, when the size of the metal piece changes, the amplitude of the metal piece detection signal changes, but the phase does not change.

図5(c)は、ホッチキス針の金属片検知信号を示す。ホッチキス針の場合には、金属片検知信号の振幅は小さくなるが、ボルトやクリップと同様に高感度で検出できる。なお位相は、クリップと同じになる。
図5の試験結果によると、検出コイルは、金属片があるときのみ金属片検知信号を発生するから、振幅が小さいときも金属片を確実に検知することができる。また金属片検知信号の振幅は、金属片の寸法によって変わるが、位相は、変わらない(同じである)ことが分かる。そして金属片検知信号の位相は、金属片の種類(材質)によって変わることが分かる。このことから、金属片の種類(材質)が同じ場合には、金属片検知信号の振幅の大小により金属片の大きさを推定することができ、金属片検知信号の位相によって金属片の種類(材質)を推定することができる。
FIG.5 (c) shows the metal piece detection signal of a staple. In the case of a staple, the amplitude of the metal piece detection signal is small, but it can be detected with high sensitivity like a bolt or a clip. The phase is the same as that of the clip.
According to the test result of FIG. 5, since the detection coil generates a metal piece detection signal only when there is a metal piece, the metal piece can be reliably detected even when the amplitude is small. It can also be seen that the amplitude of the metal piece detection signal varies depending on the size of the metal piece, but the phase does not change (the same). And it turns out that the phase of a metal piece detection signal changes with the kind (material) of a metal piece. From this, when the type (material) of the metal piece is the same, the size of the metal piece can be estimated from the amplitude of the metal piece detection signal, and the type of metal piece ( Material) can be estimated.

次に図3により検出コイルの巻線方向と検出コイルの形状について説明する。
図3(a)の励磁コイル21の巻線は、図1の励磁コイル21と同じように、電磁誘導センサの移動方向Y4と直交する方向に巻いてある。また図3(b)の励磁コイル21の巻線は、電磁誘導センサの移動方向Y4と平行する方向に巻いてある。金属片検知信号は、被検査物に混入する金属片の形状や方向によって相違することがあるから、図3(a)の電磁誘導センサと図3(b)の電磁誘導センサを組み合わせて(並置して)使用すると、より安定した金属片検知信号を得ることができる。
検出コイル22は、パンケーキ状の外、図3(c)のように矩形(四角形)状であってもよい。
Next, the winding direction of the detection coil and the shape of the detection coil will be described with reference to FIG.
The winding of the exciting coil 21 in FIG. 3A is wound in a direction orthogonal to the moving direction Y4 of the electromagnetic induction sensor, like the exciting coil 21 in FIG. Further, the winding of the exciting coil 21 in FIG. 3B is wound in a direction parallel to the moving direction Y4 of the electromagnetic induction sensor. Since the metal piece detection signal may differ depending on the shape and direction of the metal piece mixed into the object to be inspected, the electromagnetic induction sensor of FIG. 3A and the electromagnetic induction sensor of FIG. When used, a more stable metal piece detection signal can be obtained.
The detection coil 22 may have a rectangular (quadrangle) shape as shown in FIG.

図4は、被検査物の広い範囲を一度に検査できる電磁誘導センサの例を示す。
図4(a)の電磁誘導センサは、検出コイル22の巻線方向に複数個のパンケーキ状の検出コイル22を並置してある。図4(a)の電磁誘導センサは、被検査物31の全幅の広い範囲を一度に検査でき、また金属片検知信号が検出された検出コイル22によって金属片が混入している位置を判別することができる。図4(b)の電磁誘導センサは、図4(a)の複数個の検出コイル22に代えて、1個の長い矩形状の検出コイル22を用いた例である。図4(b)の電磁誘導センサは、1個の検出コイルで被検査物の広い範囲を検査できるが、金属片の位置の判別はできない。
図4(c)の電磁誘導センサは、図4(a)の電磁誘導センサと励磁コイルの巻線の方向が異なる外は図4(a)の電磁誘導センサと同じである。
FIG. 4 shows an example of an electromagnetic induction sensor that can inspect a wide range of an object to be inspected at a time.
In the electromagnetic induction sensor of FIG. 4A, a plurality of pancake-like detection coils 22 are juxtaposed in the winding direction of the detection coil 22. The electromagnetic induction sensor shown in FIG. 4A can inspect a wide range of the entire width of the inspection object 31 at a time, and determines the position where the metal piece is mixed by the detection coil 22 from which the metal piece detection signal is detected. be able to. The electromagnetic induction sensor in FIG. 4B is an example in which one long rectangular detection coil 22 is used instead of the plurality of detection coils 22 in FIG. The electromagnetic induction sensor shown in FIG. 4B can inspect a wide range of the inspection object with one detection coil, but cannot determine the position of the metal piece.
The electromagnetic induction sensor in FIG. 4C is the same as the electromagnetic induction sensor in FIG. 4A except that the electromagnetic induction sensor in FIG.

本願発明の実施例に係る電磁誘導センサの平面図、側面図及び断面図である。It is the top view of the electromagnetic induction sensor which concerns on the Example of this invention, a side view, and sectional drawing. 図1の電磁誘導センサの励磁コイルが発生する磁束の方向、及び被検査物中の金属片と検出コイルの位置関係を説明する図である。It is a figure explaining the positional relationship of the direction of the magnetic flux which the exciting coil of the electromagnetic induction sensor of FIG. 1 generate | occur | produces, and the metal piece and detection coil in a to-be-inspected object. 図1の電磁誘導センサの励磁コイルの巻線の方向を変えた例と検出コイルの形状を変えた例を示す。The example which changed the direction of the winding of the exciting coil of the electromagnetic induction sensor of FIG. 1 and the example which changed the shape of the detection coil are shown. 図1の電磁誘導センサの変形例で、一度に広範囲の検査が可能な電磁誘導センサを示す。FIG. 1 shows a modification of the electromagnetic induction sensor of FIG. 1 and an electromagnetic induction sensor capable of performing a wide range of inspections at once. 図1の電磁誘導センサの試験結果を示す。The test result of the electromagnetic induction sensor of FIG. 1 is shown. 図5の試験に用いた金属片の形状を示す。The shape of the metal piece used for the test of FIG. 5 is shown. 従来の電磁センサの平面図、側面図及び断面図である。It is the top view, side view, and sectional drawing of the conventional electromagnetic sensor.

符号の説明Explanation of symbols

21 電磁誘導センサの励磁コイル
22 電磁誘導センサの検出コイル
22l 検出コイル22の左側の部分
22r 検出コイル22の右側の部分
31 被検査物
32 被検査物に混入している金属片
32a 金属片32の前端部分
32b 金属片32の後端部分
Mf 励磁コイル21が発生する磁束
i 渦電流
21 Excitation coil 22 of electromagnetic induction sensor Detection coil 22l of electromagnetic induction sensor 22l Left side portion 22r of detection coil 22 Right side portion 31 of detection coil 22 Inspected object 32 Metal piece 32a mixed in inspected object Front end portion 32b Rear end portion Mf of metal piece 32 Magnetic flux i generated by exciting coil 21 Eddy current

Claims (4)

励磁コイルと検出コイルを両コイルのコイル面が交差するように配置し、検出コイルのコイル面を被検査物に並行に配置してあることを特徴とする金属検知装置の電磁誘導センサ。   An electromagnetic induction sensor for a metal detector, wherein an excitation coil and a detection coil are disposed so that the coil surfaces of both coils intersect, and the coil surface of the detection coil is disposed in parallel with an object to be inspected. 請求項1に記載の金属検知装置の電磁誘導センサにおいて、前記検出コイルは複数個の検出コイルを並置してなることを特徴とする金属検知装置の電磁誘導センサ。   The electromagnetic induction sensor of the metal detection apparatus according to claim 1, wherein the detection coil is formed by juxtaposing a plurality of detection coils. 励磁コイルと検出コイルを両コイルのコイル面が交差するように配置した電磁誘導センサの検出コイルのコイル面が被検査物と並行するように、電磁誘導センサ又は被検査物を移動して被検査物の金属片を検知することを特徴とする金属検知方法。   Inspected by moving the electromagnetic induction sensor or the inspection object so that the coil surface of the detection coil of the electromagnetic induction sensor is arranged so that the coil surfaces of the excitation coil and the detection coil intersect each other. A metal detection method for detecting a metal piece of an object. 請求項3に記載の金属検知方法において、前記検出コイルは複数個の検出を並置してなることを特徴とする金属検知方法。   The metal detection method according to claim 3, wherein the detection coil is formed by juxtaposing a plurality of detections.
JP2004344964A 2004-11-29 2004-11-29 Electromagnetic induction sensor for metal detector Pending JP2008039394A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004344964A JP2008039394A (en) 2004-11-29 2004-11-29 Electromagnetic induction sensor for metal detector
PCT/JP2005/021903 WO2006057409A1 (en) 2004-11-29 2005-11-29 Electromagnetic induction sensor for metal detector and metal searching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344964A JP2008039394A (en) 2004-11-29 2004-11-29 Electromagnetic induction sensor for metal detector

Publications (1)

Publication Number Publication Date
JP2008039394A true JP2008039394A (en) 2008-02-21

Family

ID=36498142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344964A Pending JP2008039394A (en) 2004-11-29 2004-11-29 Electromagnetic induction sensor for metal detector

Country Status (2)

Country Link
JP (1) JP2008039394A (en)
WO (1) WO2006057409A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865954A (en) * 2010-06-21 2010-10-20 天津大学 Measuring device and method for dangerous goods in envelope based on capacitive sensor
JP2012168011A (en) * 2011-02-14 2012-09-06 Toyota Motor Corp Eddy current measuring sensor and eddy current measurement method
JP2015210235A (en) * 2014-04-30 2015-11-24 マイクロマグネ有限会社 Foreign object detection device
JP2016033783A (en) * 2014-07-31 2016-03-10 グローリー株式会社 Paper sheet processor and paper sheet processing method
WO2017042968A1 (en) * 2015-09-11 2017-03-16 グローリー株式会社 Paper sheet processing device and paper sheet processing method
WO2017061156A1 (en) * 2015-10-09 2017-04-13 株式会社Ihi Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
JP2018031768A (en) * 2016-06-22 2018-03-01 メトラー−トレド・セーフライン・リミテッド Metal detection device
CN109752286A (en) * 2018-11-20 2019-05-14 浙江南都电源动力股份有限公司 Pulp of lithium ion battery disperses homogeneity on-line measuring device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636634B (en) 2010-02-08 2018-09-21 荷蘭商飛利浦智財投資公司 Input parasitic metal detection and mathod for same
CN108415088A (en) * 2018-02-09 2018-08-17 李法利 Waveforms detection method based on metal detection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827163B2 (en) * 1989-07-11 1996-03-21 日本電気株式会社 Magnetic detector
JP3041026B2 (en) * 1990-09-07 2000-05-15 アンリツ株式会社 Metal detector
JP2943033B2 (en) * 1992-03-13 1999-08-30 アンリツ株式会社 Metal detector
JP3348766B2 (en) * 1996-09-19 2002-11-20 日本電信電話株式会社 Electromagnetic induction sensor for detecting metal objects

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865954A (en) * 2010-06-21 2010-10-20 天津大学 Measuring device and method for dangerous goods in envelope based on capacitive sensor
JP2012168011A (en) * 2011-02-14 2012-09-06 Toyota Motor Corp Eddy current measuring sensor and eddy current measurement method
JP2015210235A (en) * 2014-04-30 2015-11-24 マイクロマグネ有限会社 Foreign object detection device
JP2016033783A (en) * 2014-07-31 2016-03-10 グローリー株式会社 Paper sheet processor and paper sheet processing method
WO2017042968A1 (en) * 2015-09-11 2017-03-16 グローリー株式会社 Paper sheet processing device and paper sheet processing method
WO2017061156A1 (en) * 2015-10-09 2017-04-13 株式会社Ihi Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
CN107850575A (en) * 2015-10-09 2018-03-27 株式会社Ihi The fiber alignment of conductive composite material chaotic detection method and detection means
EP3321672A4 (en) * 2015-10-09 2019-01-23 IHI Corporation DETERGENT FIBER ARRAY DETECTION METHOD IN CONDUCTIVE COMPOSITE MATERIAL, AND DEDICATED FIBER ARRAY DETECTION DEVICE IN CONDUCTIVE COMPOSITE MATERIAL
US10656121B2 (en) 2015-10-09 2020-05-19 Ihi Corporation Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
JP2018031768A (en) * 2016-06-22 2018-03-01 メトラー−トレド・セーフライン・リミテッド Metal detection device
CN109752286A (en) * 2018-11-20 2019-05-14 浙江南都电源动力股份有限公司 Pulp of lithium ion battery disperses homogeneity on-line measuring device and method
CN109752286B (en) * 2018-11-20 2021-07-13 浙江南都电源动力股份有限公司 Online detection device and method for dispersion uniformity of lithium ion battery slurry

Also Published As

Publication number Publication date
WO2006057409A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US8704513B2 (en) Shielded eddy current coils and methods for forming same on printed circuit boards
KR101551514B1 (en) Magnetic sensor device
JP6825998B2 (en) Metal detector
US9291599B2 (en) Magnetic testing method and apparatus
JP2008039394A (en) Electromagnetic induction sensor for metal detector
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
RU2442151C2 (en) Method for subsurface flaw detection in ferromagnetic objects
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect of magnetic metal specimen
JP2013072667A (en) Probe for eddy current flaw detection
ATE371236T1 (en) COIN DISTINCTION DEVICE IN WHICH FREQUENCIES OF EDDY CURRENTS ARE MEASURED
JP5779273B1 (en) Metal detector sensor and metal detector
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
JP2014010118A (en) Magnetic sensor device
US6404090B1 (en) Apparatus for obtaining certain characteristics of an article
JP4192708B2 (en) Magnetic sensor
US4675605A (en) Eddy current probe and method for flaw detection in metals
US20240142404A1 (en) Detection device
JP5242205B2 (en) Metal disc identification device
JP2008232745A (en) Iron piece detector
Enokizono et al. Non-destructive testing with magnetic sensor using rotational magnetic flux
CN111796223B (en) Device and method for measuring magnetic properties of ferromagnetic ring belt
JP2021106227A (en) Orientation detection device and orientation detection method for unmagnetized magnet
JP3326550B2 (en) Detection head for metal detector
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JP2012083137A (en) Metal detector