[go: up one dir, main page]

JP2008038605A - Cylindrical wind power generator levitated by a high-temperature superconductor - Google Patents

Cylindrical wind power generator levitated by a high-temperature superconductor Download PDF

Info

Publication number
JP2008038605A
JP2008038605A JP2006209590A JP2006209590A JP2008038605A JP 2008038605 A JP2008038605 A JP 2008038605A JP 2006209590 A JP2006209590 A JP 2006209590A JP 2006209590 A JP2006209590 A JP 2006209590A JP 2008038605 A JP2008038605 A JP 2008038605A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical
temperature superconductor
levitation
levitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006209590A
Other languages
Japanese (ja)
Inventor
Hitoshi Osaku
仁司 尾作
Yusuke Fukumoto
祐介 福本
Takeshi Morita
岳 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006209590A priority Critical patent/JP2008038605A/en
Publication of JP2008038605A publication Critical patent/JP2008038605A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Wind Motors (AREA)

Abstract

【課題】円筒形羽根車を磁気浮上させた回転体とすることにより、x、y、zの主慣性モーメントを等しい方向に近づけることができ、いわゆる球こまに近い安定性を得ることができる高温超電導体により浮上させた円筒型風力発電機を提供する。
【解決手段】円形状の浮上用磁石1と、この円形状の浮上用磁石1の上部に固定され、この円形状の浮上用磁石1に垂直な方向に軸を有する円筒形羽根車2と、この円筒形羽根車2の上部に交互に極が一列に配置された発電用磁石3と、この発電用磁石3に対向して配置される発電用コイル9と、円形状の浮上用磁石1とギャップを有して対向する円形状の浮上用高温超電導体4とを具備し、円形状の浮上用磁石1を有する円筒形羽根車2を、冷却以前の浮上用高温超電導体4との間にギャップを持たせた後、浮上用高温超電導体4を冷却し、円筒形羽根車2を浮上させ、円筒形羽根車2に一定の回転力を与えた後は円筒形羽根車2の惰性で回転させ、発電用磁石3の回転により、発電用コイル9で発電する。
【選択図】図1
By using a rotary impeller that magnetically levitates a cylindrical impeller, the main moments of inertia of x, y, and z can be made to approach in the same direction, and a high temperature that can achieve stability close to a so-called spherical top. A cylindrical wind power generator levitated by a superconductor is provided.
A circular levitation magnet 1 and a cylindrical impeller 2 fixed to an upper portion of the circular levitation magnet 1 and having an axis in a direction perpendicular to the circular levitation magnet 1. A power generation magnet 3 in which poles are alternately arranged in a row on the upper portion of the cylindrical impeller 2, a power generation coil 9 disposed opposite to the power generation magnet 3, a circular levitation magnet 1, and A cylindrical levitation high-temperature superconductor 4 having a circular levitation magnet 1 and a circular levitation high-temperature superconductor 4 facing each other with a gap between the levitation high-temperature superconductor 4 before cooling After giving the gap, the high-temperature superconductor 4 for levitation is cooled, the cylindrical impeller 2 is levitated, and after a constant rotational force is applied to the cylindrical impeller 2, it rotates with the inertia of the cylindrical impeller 2 The power generation magnet 3 generates power by the rotation of the power generation magnet 3.
[Selection] Figure 1

Description

本発明は、高温超電導体により浮上させた円筒型風力発電機に関するものである。   The present invention relates to a cylindrical wind power generator levitated by a high-temperature superconductor.

現在開発されている超電導フライホイールは装置全体を真空にしている。また、フライホイールはコマ型である。このためオイラーの運動方程式により、回転軸のぶれが起こり易い。更に、従来の装置は大型で構造が複雑であるといった問題があった。   The superconducting flywheel currently being developed places the entire device in a vacuum. The flywheel is a top type. For this reason, the rotation axis is likely to be shaken by the Euler equation of motion. Further, the conventional apparatus has a problem that it is large and complicated in structure.

また、鉛直状の回転体を制御型ラジアル磁気軸受と、制御型アキシャル磁気軸受で安定回転位置に支持した状態で、超電導体を冷却して超電導軸受を作動状態にし、超電導軸受とラジアル磁気軸受で回転体を安定回転位置に支持し、回転体を回転させて運転を開始するようにした超電導軸受装置が提案されている(下記特許文献1参照)。
特開平10−231840号公報 特開2001−339995号公報
Also, with the vertical rotating body supported at the stable rotational position by the control type radial magnetic bearing and the control type axial magnetic bearing, the superconductor is cooled and the superconducting bearing is activated, and the superconducting bearing and the radial magnetic bearing are used. There has been proposed a superconducting bearing device in which a rotating body is supported at a stable rotational position and the operation is started by rotating the rotating body (see Patent Document 1 below).
JP-A-10-231840 JP 2001-339995 A

しかしながら、従来の装置は、構造が大型で、かつ複雑であり、コストが上昇するといった問題があった。   However, the conventional apparatus has a problem that the structure is large and complicated, and the cost increases.

本発明は、上記状況に鑑みて、円筒形羽根車を磁気浮上させた回転体とすることにより、x、y、zの主慣性モーメントを等しい方向に近づけることができ、いわゆる球こまに近い安定性を得ることができる高温超電導体により浮上させた円筒型風力発電機を提供することを目的とする。   In view of the above situation, the present invention can bring the main moments of inertia of x, y, and z in the same direction by making a cylindrical impeller magnetically levitated, and can stabilize the so-called spherical top. It is an object of the present invention to provide a cylindrical wind power generator levitated by a high-temperature superconductor capable of obtaining the characteristics.

本発明は、上記目的を達成するために、
〔1〕高温超電導体により浮上させた円筒型風力発電機において、円形状の浮上用磁石と、この円形状の浮上用磁石の上部に固定され、この円形状の浮上用磁石の垂直な方向に軸を有する円筒形羽根車と、この円筒形羽根車の上部に交互に極が一列に配置された発電用磁石と、この発電用磁石に対向して配置される発電用コイルと、前記円形状の浮上用磁石とギャップを有して対向する円形状の浮上用高温超電導体とを具備し、前記円形状の浮上用磁石を有する円筒形羽根車を、冷却以前の前記浮上用高温超電導体との間にギャップを持たせた後、前記浮上用高温超電導体を冷却し、前記円筒形羽根車を浮上させ、前記円筒形羽根車に一定の回転力を与えた後は前記円筒形羽根車の惰性で回転させ、前記発電用磁石の回転により、前記発電用コイルで発電することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a cylindrical wind power generator levitated by a high-temperature superconductor, a circular levitation magnet and an upper portion of the circular levitation magnet are fixed to the vertical direction of the circular levitation magnet. A cylindrical impeller having a shaft, a power generating magnet in which poles are alternately arranged in a row on the top of the cylindrical impeller, a power generating coil disposed to face the power generating magnet, and the circular shape A levitation magnet and a circular levitation high-temperature superconductor facing each other with a gap between the levitation high-temperature superconductor before cooling and the cylindrical impeller having the circular levitation magnet. After the gap is provided, the levitation high-temperature superconductor is cooled, the cylindrical impeller is levitated, and a constant rotational force is applied to the cylindrical impeller. It is rotated by inertia and the power generation magnet is rotated by rotation of the power generation magnet. Characterized by power generation yl.

〔2〕上記〔1〕記載の高温超電導体により浮上させた円筒型風力発電機において、前記円筒形羽根車の径を前記円形状の浮上用高温超電導体の径とほぼ同じか小さくすることにより、ピンニング作用で安定した回転運動を得ることを特徴とする。   [2] In the cylindrical wind power generator levitated by the high-temperature superconductor described in [1] above, by making the diameter of the cylindrical impeller substantially the same as or smaller than the diameter of the circular levitating high-temperature superconductor It is characterized by obtaining a stable rotational motion by a pinning action.

〔3〕上記〔1〕記載の高温超電導体により浮上させた円筒型風力発電機において、前記円筒形羽根車と冷却以前の前記円形状の浮上用高温超電導体との間にギャップを持たせる手段は、前記円筒形羽根車の上部に前記極が一列に配置された発電用磁石の側面に配列した極配列と同じ配列の極を有する扛重用磁石により磁力吸引し、前記円筒形羽根車の上部の前記扛重用磁石により前記円筒形羽根車を持ち上げるか、前記円筒形羽根車中に機械的に持ち上げる機構を設置することを特徴とする。   [3] In the cylindrical wind power generator levitated by the high-temperature superconductor described in [1], means for providing a gap between the cylindrical impeller and the circular levitation high-temperature superconductor before cooling. Is magnetically attracted by a double magnet having poles in the same arrangement as the pole arrangement arranged on the side surface of the magnet for power generation in which the poles are arranged in a row at the upper part of the cylindrical impeller, and the upper part of the cylindrical impeller The cylindrical impeller is lifted by the magnet for heavy load, or a mechanism for mechanically lifting is installed in the cylindrical impeller.

〔4〕上記〔1〕記載の高温超電導体により浮上させた円筒型風力発電機において、前記発電用コイルは複数個を円周上に配置することを特徴とする。   [4] The cylindrical wind power generator levitated by the high-temperature superconductor described in [1] above, wherein a plurality of the power generating coils are arranged on a circumference.

〔5〕上記〔1〕記載の高温超電導体により浮上させた円筒型風力発電機において、前記円筒形羽根車の惰性回転は夜間時間(16時間)回転していれば、日中の外部供給電源をソーラー発電に依存して、外部供給電源費用をなくすようにすることを特徴とする。   [5] In the cylindrical wind power generator levitated by the high-temperature superconductor described in [1] above, if the inertial rotation of the cylindrical impeller rotates at night time (16 hours), the external power supply during the day Rely on solar power generation to eliminate the cost of external power supply.

すなわち、
〔A〕円筒形羽根車を、冷却以前の高温超電導体(イットリウム系、ガドリニウム系、サマリウム系、ネオジウム系などの臨界温度が液体窒素以上であること)との間にギャップを持たせた後、高温超電導体を冷却し、円筒形羽根車を浮上させ、円筒形羽根車の上部には極を交互に一列に配置された発電用磁石を設け、その発電用磁石を回転させ、一定の回転力を与えた後は円筒形羽根車の惰性(完全真空中なら慣性)で回転させ、前記発電用磁石の外部に固定された発電用コイルにより発電する。主に家庭用自己発電程度としてのものであるが、システム全体あるいは部分的に大型システムとしてもよい。
That is,
[A] After making a gap between the cylindrical impeller and the high-temperature superconductor before cooling (the critical temperature of yttrium, gadolinium, samarium, neodymium, etc. is higher than liquid nitrogen), The high-temperature superconductor is cooled, the cylindrical impeller is levitated, and a power generation magnet with alternating poles arranged in a row is provided at the top of the cylindrical impeller. Then, the power is rotated by the inertia of the cylindrical impeller (inertia in a complete vacuum), and power is generated by the power generating coil fixed outside the power generating magnet. Although it is mainly intended for home self-power generation, the entire system or a part of the system may be a large system.

〔B〕円筒形羽根車の径が円形状の高温超電導体の径と同じか小さいことにより、ピンニング作用で安定した回転運動を得ることができる。円筒形羽根車は、導体あるいは絶縁体のどちらでも良いが下部浮上用磁石と発電用磁石の磁力の関係を配慮する必要がある。回転体内部は空洞でもよい。ただし、回転慣性は自重に比例するので、浮上力と目標回転数を考慮する必要がある。   [B] Since the diameter of the cylindrical impeller is equal to or smaller than the diameter of the circular high-temperature superconductor, a stable rotational motion can be obtained by a pinning action. The cylindrical impeller may be either a conductor or an insulator, but it is necessary to consider the relationship between the magnetic force of the lower levitation magnet and the power generation magnet. The inside of the rotating body may be a cavity. However, since the rotational inertia is proportional to its own weight, it is necessary to consider the levitation force and the target rotational speed.

〔C〕円形状の浮上用磁石と冷却以前の円形状の高温超電導体との間にギャップを持たせる方法は、発電用磁石の配列した磁石配列と対になる配列の磁石により磁力吸引し、発電用磁石を持ち上げるか、または、機械的に持ち上げる機構を設置してもよい。   [C] A method of providing a gap between the circular levitation magnet and the circular high-temperature superconductor before cooling includes attracting magnetic force by a magnet in a pair with a magnet arrangement in which power generation magnets are arranged, A mechanism for lifting the power generation magnet or mechanically lifting it may be installed.

〔D〕発電用コイルは複数を円周上に配置してもよい。発電用コイルを浮上用高温超電導体の冷却システムの寒剤蒸気あるいは冷却空気により冷却しても良い。発電用コイルを高温超電導線材(現在ではイットリウム系)としてもよい。この場合、冷却は浮上用高温超電導体の冷却システムを利用できる。コイル系を高温超電導線材を用いることにより、抵抗ロスと発熱をほぼなくすことができる。   [D] A plurality of power generating coils may be arranged on the circumference. The coil for power generation may be cooled by cryogen vapor or cooling air of a cooling system for a high temperature superconductor for levitation. The power generation coil may be a high-temperature superconducting wire (currently yttrium-based). In this case, cooling can use a cooling system for a high temperature superconductor for levitation. By using a high-temperature superconducting wire for the coil system, resistance loss and heat generation can be almost eliminated.

〔E〕円筒形羽根車の惰性回転は夜間時間(16時間)回転していれば、日中の外部供給電源をソーラー発電に依存して、外部供給電源費用をなくすことができる。風力とのハイブリッド発電も用いれば、回転体の回転を風力発電で補助しつつ、高速一定に維持することも可能である。   [E] If the inertial rotation of the cylindrical impeller rotates at night time (16 hours), the external power supply cost can be eliminated by relying on solar power for daytime external power supply. If hybrid power generation with wind power is also used, it is possible to keep the rotating body constant at high speed while assisting the rotation of the rotating body with wind power generation.

〔F〕磁界漏れの発生を防ぎたい場合には、システムが小型であるのでシステム全体をシールドすればよい。   [F] If it is desired to prevent the occurrence of magnetic field leakage, the entire system may be shielded because the system is small.

〔G〕発電用磁石は、円筒形羽根車の上部に配置する場合には回転体の遠心力による回転体からの離脱、内側に配置する場合には磁石相互の吸引力による回転体からの離脱を防止するための外枠(円筒)あるいは内枠(円筒)が必要となる。   [G] When the magnet for power generation is arranged at the upper part of the cylindrical impeller, it is detached from the rotating body by the centrifugal force of the rotating body, and when it is arranged inside, it is detached from the rotating body by the mutual attractive force of the magnets. Therefore, an outer frame (cylinder) or an inner frame (cylinder) is required to prevent this.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(1)簡素な構成でエネルギーの損失を低減できる円筒型風力発電機を提供することができる。   (1) A cylindrical wind power generator capable of reducing energy loss with a simple configuration can be provided.

(2)羽根を円筒形回転体とすることにより、x、y、zの主慣性モーメントを等しい方向に近づけることができ、いわゆる球こまに近い安定性を得ることができる。   (2) By making the blade into a cylindrical rotating body, the main moments of inertia of x, y, and z can be made to approach in the same direction, and so-called spherical top stability can be obtained.

本発明の高温超電導体により浮上させた円筒型風力発電機は、円形状の浮上用磁石と、この円形状の浮上用磁石の上部に固定され、この円形状の浮上用磁石に垂直な方向に軸を有する円筒形羽根車と、この円筒形羽根車の上部に交互に極が一列に配置された発電用磁石と、この発電用磁石に対向して配置される発電用コイルと、前記円形状の浮上用磁石とギャップを有して対向する円形状の浮上用高温超電導体(イットリウム系、ガドリニウム系、サマリウム系、ネオジウム系などの臨界温度が液体窒素以上であること)とを具備し、前記円形状の浮上用磁石を有する円筒形羽根車を、冷却以前の前記浮上用高温超電導体との間にギャップを持たせた後、前記浮上用高温超電導体を冷却し、前記円筒形羽根車を浮上させ、前記円筒形羽根車に一定の回転力を与えた後は前記円筒形羽根車の惰性で回転させ、前記発電用磁石の回転により、前記発電用コイルで発電する。   The cylindrical wind power generator levitated by the high-temperature superconductor of the present invention is fixed to a circular levitation magnet and an upper portion of the circular levitation magnet, and in a direction perpendicular to the circular levitation magnet. A cylindrical impeller having a shaft, a power generating magnet in which poles are alternately arranged in a row on the top of the cylindrical impeller, a power generating coil disposed to face the power generating magnet, and the circular shape A high-temperature superconductor for levitation that is opposed to the levitation magnet with a gap (the critical temperature of yttrium-based, gadolinium-based, samarium-based, neodymium-based, etc. is liquid nitrogen or higher), and A cylindrical impeller having a circular levitation magnet is provided with a gap between the levitation high-temperature superconductor before cooling, the levitation high-temperature superconductor is cooled, and the cylindrical impeller is Levitated to the cylindrical impeller After giving a constant rotational force rotates by inertia of the cylindrical impeller, the rotation of the generator magnet and the power generation by the power generating coil.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す高温超電導体により浮上させた円筒型風力発電機の模式図である。   FIG. 1 is a schematic view of a cylindrical wind power generator levitated by a high-temperature superconductor according to a first embodiment of the present invention.

この図において、1は円形状の浮上用磁石、2はその浮上用磁石1の上部に固定され、かつ風力Fの方向に垂直な方向に軸を有する円筒形羽根車、3はその円筒形羽根車2の上部に配置される極を交互に一列に配置された発電用磁石である。その円形状の円形状の浮上用磁石1の下部に対向配置される円形状の浮上用高温超電導体4と、発電用磁石3に対向する位置に配置される発電用コイル9とを具備し、円形状の浮上用磁石1を、冷却以前の円形状の浮上用高温超電導体4との間にギャップを持たせた後、円形状の浮上用高温超電導体4を冷却し、円形状の浮上用磁石1を浮上させ、発電用磁石3を回転させ、円筒形羽根車2に一定の回転力を与えた後は円筒形羽根車2の惰性で回転させ、発電用磁石3の回転により、発電用磁石3の外部に設置した発電用コイル9で発電する。なお、5は冷却容器、6はその冷却容器5に充填される液体窒素あるいは液体窒素蒸気の導入管、7はその冷却容器5からの蒸発ガスの導出管、8は断熱層、10発電用コイル9から発電される電力の測定装置である。   In this figure, 1 is a circular levitation magnet, 2 is a cylindrical impeller fixed to the top of the levitation magnet 1, and has an axis in a direction perpendicular to the direction of wind force F, 3 is its cylindrical blade It is a magnet for power generation in which poles arranged at the top of the vehicle 2 are alternately arranged in a line. A circular levitation high-temperature superconductor 4 disposed opposite to the lower portion of the circular levitation magnet 1, and a power generation coil 9 disposed at a position facing the power generation magnet 3. After providing a gap between the circular levitation magnet 1 and the circular levitation high-temperature superconductor 4 before cooling, the circular levitation high-temperature superconductor 4 is cooled to obtain a circular levitation The magnet 1 is levitated, the power generation magnet 3 is rotated, and after giving a certain rotational force to the cylindrical impeller 2, it is rotated by the inertia of the cylindrical impeller 2. Power is generated by a power generation coil 9 installed outside the magnet 3. In addition, 5 is a cooling container, 6 is an introduction pipe for liquid nitrogen or liquid nitrogen vapor filled in the cooling container 5, 7 is a lead-out pipe for evaporating gas from the cooling container 5, 8 is a heat insulating layer, 10 a coil for power generation 9 is a measuring device for the electric power generated from 9.

この図において、円筒形羽根車2と円形状の浮上用磁石1とは完全に固定されている。また、円筒形羽根車2と発電用磁石3も完全に固定されている。   In this figure, the cylindrical impeller 2 and the circular levitation magnet 1 are completely fixed. The cylindrical impeller 2 and the power generation magnet 3 are also completely fixed.

また、円筒形羽根車2の径は円形状の浮上用高温超電導体4の径とほぼ同じか若干小さくすることにより、ピンニング作用で安定した回転運動を得るように構成することが望ましい。   Further, it is desirable that the diameter of the cylindrical impeller 2 is approximately the same as or slightly smaller than the diameter of the circular levitation high-temperature superconductor 4 so as to obtain a stable rotational motion by a pinning action.

円筒形羽根車2の浮上は、円形状の浮上用磁石1と円形状の浮上用高温超電導体4の間にギャップを持たせた後、円形状の浮上用高温超電導体4を冷却した後、ギャップを取り去ることにより得ることができる。   The floating of the cylindrical impeller 2 is performed by providing a gap between the circular levitation magnet 1 and the circular levitation high-temperature superconductor 4 and then cooling the circular levitation high-temperature superconductor 4. It can be obtained by removing the gap.

ギャップを持たせる方法は、機械的でも、後述するように上部からの磁石による磁力によってもよい。   The method for providing the gap may be mechanical or may be a magnetic force from a magnet from above as described later.

羽根車の形状は円筒形でよい。超電導体のピンニング作用を利用するので、SMESのようなコマ型よりも安定する。円筒形羽根車の寸法は、浮上用磁石と発電用磁石との影響がないようにし、かつ安定な回転を得られるようにするには、直径と高さの比は1:1程度が望ましい。ただし、装置を小型にする場合には高さの比が直径を上回っても、ピンニング力が勝るならば安定した回転を得ることができる。   The shape of the impeller may be cylindrical. Since the pinning action of the superconductor is used, it is more stable than the coma type like SMES. As for the dimensions of the cylindrical impeller, the ratio of the diameter and the height is preferably about 1: 1 in order to avoid the influence of the levitation magnet and the power generation magnet and to obtain a stable rotation. However, when the device is downsized, even if the height ratio exceeds the diameter, stable rotation can be obtained if the pinning force is superior.

円筒形羽根車の初期の回転は羽根への風の吹きつけにより行うことができる。   The initial rotation of the cylindrical impeller can be performed by blowing wind onto the blades.

図2は本発明の第2実施例を示す高温超電導体により浮上させた円筒型風力発電機の上面図である。   FIG. 2 is a top view of a cylindrical wind power generator levitated by a high temperature superconductor according to a second embodiment of the present invention.

この図において、11は発電用磁石、12は円筒外枠、13は円筒内枠、14は発電用コイル支持板、15〜18は発電用コイル支持板14上に周期的に配列される発電用コイル、19は発電用コイル15〜18からの出力される電力の測定装置である。なお、発電用コイル支持板14の下部に羽根車(図示なし)が配置される。   In this figure, 11 is a power generation magnet, 12 is a cylindrical outer frame, 13 is a cylindrical inner frame, 14 is a power generation coil support plate, and 15 to 18 are periodically arranged on the power generation coil support plate 14. A coil 19 is a measuring device for the electric power output from the power generating coils 15-18. An impeller (not shown) is disposed below the power generation coil support plate 14.

図3は本発明の第3実施例を示す円筒形羽根車を持ち上げる方法を示す模式図である。   FIG. 3 is a schematic view showing a method for lifting a cylindrical impeller according to a third embodiment of the present invention.

この図において、21は発電用磁石、22は発電用磁石21が固定される円筒形羽根車、23は円筒形羽根車22の下部に固定される円形状の浮上用磁石、24は発電用磁石21の極と対応する極を有する円筒形羽根車22を持ち上げるための扛重用磁石であり、この扛重用磁石24の持ち上げにより、円形状の浮上用磁石23と浮上用高温超電導体(図示なし)との間にギャップを持たせることができる。   In this figure, 21 is a power generating magnet, 22 is a cylindrical impeller to which the power generating magnet 21 is fixed, 23 is a circular levitation magnet fixed to the lower part of the cylindrical impeller 22, and 24 is a power generating magnet. This is a hoisting magnet for lifting a cylindrical impeller 22 having poles corresponding to 21 poles. By lifting this hoisting magnet 24, a circular levitation magnet 23 and a levitation high-temperature superconductor (not shown) There can be a gap between them.

なお、このような磁気力により持ち上げ機構に限定されるものではなく、機械的な持ち上げ機構によってギャップを持たせるようにすることもできる。   Note that the magnetic force is not limited to the lifting mechanism, and a gap may be provided by a mechanical lifting mechanism.

このようにして、発電用磁石21の側面に配列した磁石配列と対になる配列の扛重用磁石24により磁力吸引し、円筒形羽根車22を持ち上げることにより、円形状の浮上用磁石23と円形状の浮上用高温超電導体(図示なし)との間にギャップを持たせることができる。   In this way, by attracting the magnetic force with the magnet 24 for the counterweight arranged in a pair with the magnet arrangement arranged on the side surface of the power generation magnet 21 and lifting the cylindrical impeller 22, the circular levitation magnet 23 and the circular A gap can be provided between the floating high-temperature superconductor (not shown).

また、円筒形羽根車22中に機械的に持ち上げる機構を設置するようにしてもよい。   Further, a mechanical lifting mechanism may be installed in the cylindrical impeller 22.

そして、円筒形羽根車22の浮上は、円形状の浮上用磁石23と浮上用超電導体の間にギャップを持たせた後、浮上用超電導体を冷却した後、ギャップを取り去ることにより得る。   The floating of the cylindrical impeller 22 is obtained by providing a gap between the circular levitation magnet 23 and the levitation superconductor, cooling the levitation superconductor, and then removing the gap.

図4は本発明の第4実施例を示す冷却システムの模式図である。   FIG. 4 is a schematic view of a cooling system showing a fourth embodiment of the present invention.

この図において、発電用コイル9を浮上用高温超電導体の冷却システム31の寒剤蒸気あるいは冷却空気により冷却するようにした。   In this figure, the power generating coil 9 is cooled by the cryogen vapor or the cooling air of the cooling system 31 for the high temperature superconductor for levitation.

更に、発電用コイル9を高温超電導線材32とするように構成する。   Further, the power generating coil 9 is configured to be a high temperature superconducting wire 32.

このように、構成することにより、発電用コイルでの電力損失を大幅に低減し、電力の高出力化を図ることができる。   By configuring in this way, it is possible to significantly reduce the power loss in the power generating coil and increase the power output.

上記したように、風力による円筒形羽根車の回転により、円筒形羽根車と一体化されている発電用磁石も回転し、この発電用磁石の回転により、固定されている発電用コイルで発電を行うことができる。そのようにして得られた発電電力の変動は、円筒形羽根車の回転に応じて発電出力の一部を充放電するフライホイール装置の回転を制御する(上記特許文献2参照)などの手だてを施すことにより安定化させることができる。   As described above, the power generation magnet integrated with the cylindrical impeller is also rotated by the rotation of the cylindrical impeller by wind power, and the rotation of the power generation magnet generates power with the fixed power generation coil. It can be carried out. The fluctuation of the generated power thus obtained is a measure such as controlling the rotation of the flywheel device that charges and discharges part of the generated output according to the rotation of the cylindrical impeller (see Patent Document 2). It can be stabilized by applying.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の高温超電導体により浮上させた円筒型風力発電機は、羽根車の回転が始まると、浮上力及びピンニングによりロスがなく、回転することができる円筒型風力発電機として利用可能である。   The cylindrical wind power generator levitated by the high-temperature superconductor of the present invention can be used as a cylindrical wind power generator that can rotate without any loss due to levitation force and pinning when the impeller starts to rotate.

本発明の第1実施例を示す高温超電導体により浮上させた円筒型風力発電機の模式図である。1 is a schematic view of a cylindrical wind power generator levitated by a high-temperature superconductor according to a first embodiment of the present invention. 本発明の第2実施例を示す高温超電導体により浮上させた円筒型風力発電機の上面図である。It is a top view of the cylindrical wind power generator levitated by the high temperature superconductor which shows 2nd Example of this invention. 本発明の第3実施例を示す円筒形羽根車を持ち上げる方法を示す模式図である。It is a schematic diagram which shows the method of lifting the cylindrical impeller which shows 3rd Example of this invention. 本発明の第4実施例を示す冷却システムの模式図である。It is a schematic diagram of the cooling system which shows 4th Example of this invention.

符号の説明Explanation of symbols

1,23 円形状の浮上用磁石
2,22 円筒形羽根車
3,11,21 発電用磁石
4 円形状の浮上用高温超電導体
5 冷却容器
6 液体窒素あるいは液体窒素蒸気の導入管
7 冷却容器からの蒸発ガスの導出管
8 断熱層
9,15〜18 発電用コイル
10,19 発電用コイルから発電される電力の測定装置
12 円筒外枠
13 円筒内枠
14 発電用コイル支持板
24 円筒形羽根車を持ち上げるための扛重用磁石
31 浮上用高温超電導体の冷却システム
32 高温超電導線材
1,23 Circular levitation magnet 2,22 Cylindrical impeller 3,11,21 Generator magnet 4 Circular levitation high-temperature superconductor 5 Cooling vessel 6 Liquid nitrogen or liquid nitrogen vapor introduction tube 7 From cooling vessel Evaporative gas lead-out pipe 8 Heat insulation layer 9, 15-18 Coil for power generation 10, 19 Measuring device for electric power generated from power generation coil 12 Cylinder outer frame 13 Cylinder inner frame 14 Coil support plate for power generation 24 Cylindrical impeller Magnet for heavy lifting 31 for lifting levitation 31 Cooling system for high temperature superconductor for levitation 32 High temperature superconducting wire

Claims (5)

(a)円形状の浮上用磁石と、
(b)該円形状の浮上用磁石の上部に固定され、該円形状の浮上用磁石の垂直な方向に軸を有する円筒形羽根車と、
(c)該円筒形羽根車の上部に交互に極が一列に配置された発電用磁石と、
(d)該発電用磁石に対向して配置される発電用コイルと、
(e)前記円形状の浮上用磁石とギャップを有して対向する円形状の浮上用高温超電導体とを具備し、
(f)前記円形状の浮上用磁石を有する円筒形羽根車を、冷却以前の前記浮上用高温超電導体との間にギャップを持たせた後、前記浮上用高温超電導体を冷却し、前記円筒形羽根車を浮上させ、前記円筒形羽根車に一定の回転力を与えた後は前記円筒形羽根車の惰性で回転させ、前記発電用磁石の回転により、前記発電用コイルで発電することを特徴とする高温超電導体により浮上させた円筒型風力発電機。
(A) a circular levitation magnet;
(B) a cylindrical impeller fixed to an upper portion of the circular levitation magnet and having an axis in a direction perpendicular to the circular levitation magnet;
(C) a magnet for power generation in which poles are alternately arranged in a row at the top of the cylindrical impeller;
(D) a power generation coil disposed to face the power generation magnet;
(E) comprising the circular levitation magnet and a circular levitation high-temperature superconductor facing with a gap;
(F) The cylindrical impeller having the circular levitation magnet is provided with a gap between the levitation high-temperature superconductor before cooling, the levitation high-temperature superconductor is cooled, and the cylinder After the shape impeller is levitated and a constant rotational force is applied to the cylindrical impeller, it is rotated by the inertia of the cylindrical impeller, and the power generation coil generates power by rotating the power generation magnet. Cylindrical wind power generator levitated by the featured high temperature superconductor.
請求項1記載の高温超電導体により浮上させた円筒型風力発電機において、前記円筒形羽根車の径を前記円形状の浮上用高温超電導体の径とほぼ同じか小さくすることにより、ピンニング作用で安定した回転運動を得ることを特徴とする高温超電導体により浮上させた円筒型風力発電機。   The cylindrical wind power generator levitated by the high-temperature superconductor according to claim 1, wherein the diameter of the cylindrical impeller is substantially the same as or smaller than the diameter of the circular levitating high-temperature superconductor. Cylindrical wind power generator levitated by a high-temperature superconductor characterized by obtaining a stable rotational motion. 請求項1記載の高温超電導体により浮上させた円筒型風力発電機において、前記円筒形羽根車と冷却以前の前記浮上用高温超電導体との間にギャップを持たせる手段は、前記円筒形羽根車の上部に前記極が一列に配置された発電用磁石の側面に配列した極配列と対になる配列の極を有する扛重用磁石により磁力吸引し、前記円筒形羽根車の上部の前記扛重用磁石により前記円筒形羽根車を持ち上げるか、前記円筒形羽根車中に機械的に持ち上げる機構を設置することを特徴とする高温超電導体により浮上させた円筒型風力発電機。   2. The cylindrical wind power generator levitated by the high-temperature superconductor according to claim 1, wherein means for providing a gap between the cylindrical impeller and the high-temperature superconductor for levitation before cooling is the cylindrical impeller. The magnet for magnetism at the top of the cylindrical impeller is magnetically attracted by a magnet for weighting having a pole array arranged in a pair with the pole array arranged on the side surface of the magnet for power generation in which the poles are arranged in a row at the top. A cylindrical wind power generator levitated by a high-temperature superconductor, wherein the cylindrical impeller is lifted up or a mechanism for mechanically lifting is installed in the cylindrical impeller. 請求項1記載の高温超電導体により浮上させた円筒型風力発電機において、前記発電用コイルは複数個を円周上に配置することを特徴とする高温超電導体により浮上させた円筒型風力発電機。 2. A cylindrical wind power generator levitated by a high temperature superconductor according to claim 1, wherein a plurality of said power generating coils are arranged on the circumference. . 請求項1記載の高温超電導体により浮上させた円筒型風力発電機において、前記円筒形羽根車の惰性回転は夜間時間(16時間)回転していれば、日中の外部供給電源をソーラー発電に依存して、外部供給電源費用をなくすようにすることを特徴とする高温超電導体により浮上させた円筒型風力発電機。   The cylindrical wind power generator levitated by the high-temperature superconductor according to claim 1, wherein if the inertial rotation of the cylindrical impeller rotates at night time (16 hours), the external power supply for daytime is converted into solar power generation. A cylindrical wind power generator levitated by a high temperature superconductor, which relies on eliminating external supply power costs.
JP2006209590A 2006-08-01 2006-08-01 Cylindrical wind power generator levitated by a high-temperature superconductor Withdrawn JP2008038605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209590A JP2008038605A (en) 2006-08-01 2006-08-01 Cylindrical wind power generator levitated by a high-temperature superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209590A JP2008038605A (en) 2006-08-01 2006-08-01 Cylindrical wind power generator levitated by a high-temperature superconductor

Publications (1)

Publication Number Publication Date
JP2008038605A true JP2008038605A (en) 2008-02-21

Family

ID=39173950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209590A Withdrawn JP2008038605A (en) 2006-08-01 2006-08-01 Cylindrical wind power generator levitated by a high-temperature superconductor

Country Status (1)

Country Link
JP (1) JP2008038605A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936261A (en) * 2010-09-03 2011-01-05 余江海 Sail blade type oriented wind driven generator
CN103427722A (en) * 2012-05-14 2013-12-04 罗才德 Magnetic levitation disc-shaped power generator
GB2515733A (en) * 2013-06-25 2015-01-07 Richard Prout Wind Turbine Generator
CN105545586A (en) * 2016-01-28 2016-05-04 西南交通大学 Magnetic-levitation rotary shaft structure of windmill provided with vertical shaft
CN108019316A (en) * 2018-01-22 2018-05-11 曲阜师范大学 The magnetic suspension wind yaw system of main passive coordinated regulation
CN117803519A (en) * 2024-03-01 2024-04-02 山西康泰金盾安防技术有限公司 Cluster type breeze power generation device with long service life

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936261A (en) * 2010-09-03 2011-01-05 余江海 Sail blade type oriented wind driven generator
CN103427722A (en) * 2012-05-14 2013-12-04 罗才德 Magnetic levitation disc-shaped power generator
GB2515733A (en) * 2013-06-25 2015-01-07 Richard Prout Wind Turbine Generator
CN105545586A (en) * 2016-01-28 2016-05-04 西南交通大学 Magnetic-levitation rotary shaft structure of windmill provided with vertical shaft
CN108019316A (en) * 2018-01-22 2018-05-11 曲阜师范大学 The magnetic suspension wind yaw system of main passive coordinated regulation
CN117803519A (en) * 2024-03-01 2024-04-02 山西康泰金盾安防技术有限公司 Cluster type breeze power generation device with long service life
CN117803519B (en) * 2024-03-01 2024-05-07 山西康泰金盾安防技术有限公司 Cluster type breeze power generation device with long service life

Similar Documents

Publication Publication Date Title
JPH04178127A (en) Energy storage apparatus
CN109687635B (en) Nested rotor coreless flywheel
JP2814153B2 (en) Energy storage device
JP2008038605A (en) Cylindrical wind power generator levitated by a high-temperature superconductor
JP2003219581A (en) Superconducting flywheel power storage device
JP2002247822A (en) Synchronous motor generator with gap adjustment function
JP5504532B2 (en) High speed rotating device
US6369476B1 (en) High temperature superconductor bearings
US8633625B2 (en) Shaft-less energy storage flywheel
JP3665878B2 (en) Bearing device and starting method thereof
Hu et al. Analysis of the driving force of a levitated spherical superconducting rotor
JP3551537B2 (en) Flywheel equipment
JP2008042953A (en) Cylindrical power generator levitated by high-temperature superconductor
Lee et al. Loss characteristics of SFES with amorphous core for PMSM
Matsuoka et al. Development of a high-speed motor at extremely low temperatures with an axial self-bearing motor and a superconducting magnetic bearing
JP2002130278A (en) Flywheel type power-storing device and magnetic bearing device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP3942845B2 (en) Superconducting motor
WO2006028065A1 (en) Rotary body used for energy storage apparatus, method of manufacturing rotary body, and energy storage apparatus
JP2852157B2 (en) Flywheel generator
JP2002300760A (en) Motor/generator, and its electric power storage/voltage control method
JP4987451B2 (en) A cylindrical power generator levitated by a high-temperature superconductor and a small levitating generator with a high-temperature superconducting bulk body
CN210724450U (en) A magnetic levitation flywheel energy storage device
JP3577559B2 (en) Flywheel equipment
JP2971557B2 (en) Power storage device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006