[go: up one dir, main page]

JP2008030014A - Reverse osmosis membrane fluid desiccant apparatus - Google Patents

Reverse osmosis membrane fluid desiccant apparatus Download PDF

Info

Publication number
JP2008030014A
JP2008030014A JP2006229832A JP2006229832A JP2008030014A JP 2008030014 A JP2008030014 A JP 2008030014A JP 2006229832 A JP2006229832 A JP 2006229832A JP 2006229832 A JP2006229832 A JP 2006229832A JP 2008030014 A JP2008030014 A JP 2008030014A
Authority
JP
Japan
Prior art keywords
solution
moisture
reverse osmosis
osmosis membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006229832A
Other languages
Japanese (ja)
Inventor
Shigeto Matsuo
栄人 松尾
Takuya Matsuo
拓也 松尾
Masatomo Matsuo
雅智 松尾
Akiko Sakai
亜希子 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006229832A priority Critical patent/JP2008030014A/en
Publication of JP2008030014A publication Critical patent/JP2008030014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of a desiccant apparatus which consists of a treating section adsorbing moisture in a gas with a solution and regenerating section releasing the moisture in the solution and has a dehumidifying function that the regenerating section becomes large and requires a cost reduction because of needing to flow the gas in an amount nearly twice that in the treating section, that, in the regenerating section, there occurs corrosion due to chloride ions in the solution at high temperatures and adsorbed oxygen and outward scattering of the solution and that, to heat the solution because moisture in the solution is adsorbed in the gas when the partial pressure of the moisture in the solution becomes higher than those of liquid ingredients in the gas, an additional heat source can be required, leading to a fall of the heat efficiency. <P>SOLUTION: In a liquid desiccant apparatus employing e.g. an aqueous solution of lithium or calcium chloride for adsorption of moisture, the solution having become thinner owing to adsorption of moisture is pressurized with a treating machine so as to separate moisture through a reverse osmosis membrane and thereby make the solution thick. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

溶液を使ったデシカント装置の小型化、低コスト化、高性能化  Miniaturization, low cost, high performance of desiccant equipment using solution

気候温暖化対策として冷凍空調装置の所要エネルギー節減、人の集まる場所での呼吸に伴う炭酸ガスの増加防止と不快指数の低減、建築基準法の改正に伴う換気率増大に伴うエネルギー消費の低減などが望まれている。    Reducing energy requirements for refrigeration and air-conditioning systems as a countermeasure to climate warming, preventing increase in carbon dioxide gas associated with breathing in places where people gather, reducing the discomfort index, and reducing energy consumption associated with increased ventilation rates associated with revisions to the Building Standards Act Is desired.

現在の空調装置は空気の温度を下げる働きをするもので、空気中に含まれる水分(湿度)の調整はできないため、夏期の電力節約のために室温を28℃に設定すると、湿度は75%を超えて不快指数は高くなる。    The current air conditioner works to lower the temperature of the air, and since the moisture (humidity) contained in the air cannot be adjusted, the humidity is 75% when the room temperature is set to 28 ° C to save power in the summer. Beyond this, the discomfort index increases.

この理由は、室内の空気は水分を含まない乾燥空気と水蒸気(湿分)で構成されており、現在の空調装置で空気を冷却すると、水蒸気の一部が凝縮して水になる。一方、乾燥空気は所定の温度28℃に冷却され、このとき空調装置の冷却フィンで17℃程度に冷却され残った水蒸気(湿分)で室内の空気の湿度は75−80%程度となる。    The reason for this is that the indoor air is composed of dry air and water vapor (moisture) that do not contain moisture, and when the air is cooled by the current air conditioner, a part of the water vapor is condensed into water. On the other hand, the dry air is cooled to a predetermined temperature of 28 ° C. At this time, the humidity of the indoor air becomes about 75-80% with the water vapor (moisture) remaining after being cooled to about 17 ° C. by the cooling fins of the air conditioner.

このように現在の空調装置では、理論的に湿度が高くなることが明らかにされており、設定温度を25℃に下げても湿度は約70%程度になり、不快感が残る。    Thus, it has been clarified that the current air conditioner theoretically increases the humidity. Even if the set temperature is lowered to 25 ° C., the humidity becomes about 70%, and uncomfortable feeling remains.

図9に示すように人間にとっての快適な室内条件は湿度が40−60%であり、快適な室内環境を実現するには湿度の制御が必須である。また、この領域では、バクテリア、菌類の発生が抑制され、アレルギー鼻炎や喘息が起こり難く、ヴィールスや呼吸器系伝染病は50−70%で抑制されている。    As shown in FIG. 9, the comfortable indoor conditions for human beings are humidity of 40-60%, and humidity control is essential to realize a comfortable indoor environment. In this region, the generation of bacteria and fungi is suppressed, allergic rhinitis and asthma are unlikely to occur, and viruses and respiratory infectious diseases are suppressed by 50-70%.

ヴィールスによって感染するインフルエンザは、冬期乾燥するときに蔓延するのは、湿度が低いためである。    Influenza infected by viruses spreads when it dries in winter because of low humidity.

前述のように、空気は乾燥空気と水蒸気の混合気体であり、温度を1℃上げるために必要な熱量は、乾燥空気が0.24kcal/kg、水蒸気が0.46kcal/kgであり、水蒸気を水に変える熱量(凝縮熱=潜熱)は595kcal/kgであり、空調機で消費されるエネルギーの多くは水蒸気(湿分)の凝縮(水に変える)に費やされている。    As described above, air is a mixed gas of dry air and water vapor, and the amount of heat necessary to raise the temperature by 1 ° C. is 0.24 kcal / kg for dry air and 0.46 kcal / kg for water vapor. The amount of heat converted to water (condensation heat = latent heat) is 595 kcal / kg, and much of the energy consumed by the air conditioner is spent on condensing (converting to water) water vapor (humidity).

シリカゲル等の吸着剤に湿分を吸着させる吸着技術を使って、湿分の制御を行う技術が開発されている。この技術は、吸着時に圧力を上げて吸着、圧力を下げて放出するPSA(Pressure Swing Absorption)、温度を下げて吸着、温度を上げて放出するTSA(Temperature Swing Absorption)に大別されている。    A technique for controlling moisture using an adsorption technique for adsorbing moisture on an adsorbent such as silica gel has been developed. This technique is broadly classified into PSA (Pressure Swing Absorption) that increases the pressure during the adsorption, and releases it after the pressure decreases, and TSA (Temperature Swing Absorption) that lowers the temperature, adsorbs, and releases the temperature.

最近、乾燥機等に採用されている固体デシカントは、吸着剤で作られた円盤に設けられた蜂の巣状の小さな孔に湿った空気を通して空気中の水分を吸着させ、加熱して水分を放出する方式であり、前記のTSAに分類される。    Recently, solid desiccants used in dryers, etc., adsorb moisture in the air through moist air through small honeycomb-shaped holes provided in a disc made of adsorbent, and release moisture by heating. This method is classified as the TSA.

固体デシカントは、ロータの一部で吸着(以後処理と呼ぶ)し、残りの一部を過熱して湿分の放出(以後再生と呼ぶ)を行うので、処理と再生を近接した場所で行う必要があり、処理には80−120℃の熱源が必要であり、処理された空気を使用場所に送る大きなダクトが必要である。実用されている固体デシカントの構成図を図7(株式会社西部技研、デシカント除湿ユニット、Model.R−062/082/102/122のカタログ引用)に示す。処理空気は除湿ロータ(10)に入り、除湿され乾燥空気として処理ファン(30)で室内へと送られる。湿分を吸着した除湿ロータは、モータ(20)とベルト(21)で回転され、再生空気で再生されて、再び吸着が行われる。同様の除湿機は、ダイキン工業株式会社のルームドライヤーや松下電器工業株式会社のナショナル除湿乾燥機として販売されている。    The solid desiccant is adsorbed by a part of the rotor (hereinafter referred to as “treatment”), and the remaining part is heated to release moisture (hereinafter referred to as “regeneration”). The process requires an 80-120 ° C. heat source and requires a large duct to deliver the treated air to the point of use. A configuration diagram of a solid desiccant in practical use is shown in FIG. 7 (catalog citation of Nishibe Giken Co., Ltd., desiccant dehumidifying unit, Model.R-062 / 082/102/122). The processing air enters the dehumidifying rotor (10), is dehumidified, and is sent to the room as dry air by the processing fan (30). The dehumidification rotor that has adsorbed moisture is rotated by the motor (20) and the belt (21), regenerated with regenerated air, and re-adsorbed. Similar dehumidifiers are sold as room dryers from Daikin Industries, Ltd. and as national dehumidifier dryers from Matsushita Electric Industrial Co., Ltd.

液体デシカントは、Dr.Bichowskyによって1930年に考案された(Kathabarホームページより)もので、吸着剤として塩化リチウム等の水溶液を使用しており、低温の水溶液で処理、40−80℃に過熱して再生が行われる。前記のTSAに分類される。実際の液体デシカントは、Kathabar(日本では中外エアシステム株式会社が販売)、Drykor(日本では三建設備が販売、現在はDrykor無くなっている)、国内のメーカーとしてはダイナエアー生産販売を行っている。図8は、これらの会社のカタログに掲載されている図を簡素化して示したものである。    Liquid desiccants are available from Dr. It was devised by Bichowsky in 1930 (from the Katababar website) and uses an aqueous solution such as lithium chloride as an adsorbent, which is treated with a low-temperature aqueous solution and heated to 40-80 ° C. for regeneration. It is classified into the above TSA. The actual liquid desiccants are Katabar (sold by Chugai Air Systems Co., Ltd. in Japan), Drykor (sold by Sanken Equipment in Japan, and now it is no longer available), and domestic manufacturers are producing and selling Dynaair. . FIG. 8 is a simplified illustration of the figures published in the catalogs of these companies.

液体デシカントは、処理機と再生機の間を溶液配管で結ぶことで機能するので大きな空気配管が不要で、自由な配置が可能である。しかし、再生には、処理の2倍以上の外気が必要であり、装置が大きくなる。    Since the liquid desiccant functions by connecting the processing unit and the regenerator with a solution pipe, a large air pipe is not required and a free arrangement is possible. However, regeneration requires more than twice the outside air as the process, and the apparatus becomes large.

液体(湿式)デシカント装置に関し、公報テキスト検索にて発明の名称と要約にデシカントをキーワードとして検索、183件が表示されたが、その中には類似する考案は見出せなかった。    With regard to the liquid (wet) desiccant device, 183 cases were searched by searching the gazette text using the desiccant as a keyword in the title and summary of the invention, but no similar idea was found.

液体デシカントの処理には、加熱が必要であり、熱効率向上が難しく、塩素イオンなどによる腐蝕、処理に使用する外気への溶液の飛散が問題となっている。    The treatment of the liquid desiccant requires heating, and it is difficult to improve the thermal efficiency. Corrosion due to chlorine ions or the like, and scattering of the solution to the outside air used for the treatment are problems.

前記のように、再生には処理空気量の2倍以上の外気が必要であり、効率よく湿分の放出を行い、溶液の飛散を少なくするためには外気の流速を1−2m/s程度の適正値に設定する必要があり、再生機が大きくなる。    As described above, the regeneration requires outside air more than twice the amount of treated air, and in order to efficiently release moisture and reduce the scattering of the solution, the outside air flow rate is about 1-2 m / s. It is necessary to set to an appropriate value for the size of the player.

外気や要求室内温度・湿度、加熱源の温度・熱量の変化によって溶液濃度が変化するので、熱効率が変化し、常に高い効率を維持することはできない。    Since the solution concentration changes due to changes in the outside air, the required room temperature / humidity, and the temperature / heat quantity of the heating source, the thermal efficiency changes and cannot always maintain high efficiency.

液体デシカントの溶液を加圧して逆浸透膜を通して溶液に含まれている水分を分離除去して溶液の再生を行う。    The liquid desiccant solution is pressurized and the water contained in the solution is separated and removed through the reverse osmosis membrane to regenerate the solution.

溶液再生時は、濃度が高くなるため、逆浸透膜や容器等に詰まりが生じる可能性があり、水を循環させて洗浄する。    At the time of solution regeneration, since the concentration becomes high, the reverse osmosis membrane or the container may be clogged, and the water is circulated and washed.

溶液の加圧圧力を制御して濃度調整を行う。    The concentration is adjusted by controlling the pressure of the solution.

図1に実施例1の構成を、図2に逆浸透装置(300)の詳細図の一例を、図3に逆浸透装置(300)の断面図の一例を示す。(図2と図3は東レ逆浸透膜エレメントカタログの図を引用)処理機(100)では、空気の取入口(110)から室内の空気を取り入れられ、ノズル(253)から噴出された濃溶液の微細な液滴(254)と接触、空気中の湿分が溶液中に吸着される。湿分が除かれた空気は、液滴捕捉網(130)で溶液の液滴が捕捉され、ファン(140)で室内へ放出される。    FIG. 1 shows the configuration of Example 1, FIG. 2 shows an example of a detailed view of the reverse osmosis device (300), and FIG. 3 shows an example of a cross-sectional view of the reverse osmosis device (300). (FIGS. 2 and 3 refer to the Toray Reverse Osmosis Membrane Element Catalog). In the processor (100), the indoor solution is taken in from the air inlet (110) and ejected from the nozzle (253). In contact with the fine droplets (254), moisture in the air is adsorbed in the solution. The air from which moisture has been removed is captured by the droplet trapping network (130) and discharged into the room by the fan (140).

空気中の湿分を吸着して薄くなった液滴(254)は、淡溶液溜(115)に集められ、淡溶液管(150)と通り、淡溶液ポンプ(151)で逆浸透装置(300)のブラインシール(340)に設けられた淡溶液入口(341)へと送られる。淡溶液は、メッシュスペーサー(312)で形成される隙間を通り、水分のみが逆浸透膜(311)を通過して中心パイプ(320)に設けられた孔(321)から中心パイプ(320)へ入って水出口(322)から排出される。    The droplets (254) thinned by adsorbing moisture in the air are collected in the light solution reservoir (115), pass through the light solution tube (150), and are supplied to the reverse osmosis device (300) by the light solution pump (151). ) To the pale solution inlet (341) provided in the brine seal (340). The light solution passes through the gap formed by the mesh spacer (312), and only moisture passes through the reverse osmosis membrane (311) to the center pipe (320) from the hole (321) provided in the center pipe (320). It enters and is discharged from the water outlet (322).

逆浸透装置(300)で濃縮された溶液は、濃溶液溜(330)に集められ濃溶液出口(352)から出て、濃溶液管(250)の途中の熱交換器で冷却されノズル(253)で処理機(100)内に噴霧される。    The solution concentrated by the reverse osmosis device (300) is collected in the concentrated solution reservoir (330), exits from the concentrated solution outlet (352), is cooled by a heat exchanger in the middle of the concentrated solution tube (250), and is cooled by the nozzle (253 ) In the processing machine (100).

図4に実施例2の構成を示す。実施例2は、実施例1の処理機(100)内の噴霧を受ける場所に液膜形成器(260)が設けられたものである。    FIG. 4 shows the configuration of the second embodiment. In the second embodiment, the liquid film forming device (260) is provided at the place where the spray is received in the processing machine (100) of the first embodiment.

図5に実施例3の構成を示す。実施例3は、実施例2に逆浸透膜装置(300)の洗浄回路を設けたものである。濃溶液溜(330)の濃溶液出口(352)に接続された管(331)は切替弁(362)で切り替えられ管(333)と管(334)のいずれか一方と接続されている。管(333)に接続されている場合、濃溶液は濃溶液タンク(360)へと入り、濃溶液ポンプ(251)で濃溶液管(250)を通ってノズル(253)へと送られる。    FIG. 5 shows the configuration of the third embodiment. In Example 3, the cleaning circuit of the reverse osmosis membrane device (300) is provided in Example 2. The tube (331) connected to the concentrated solution outlet (352) of the concentrated solution reservoir (330) is switched by a switching valve (362) and connected to either the tube (333) or the tube (334). When connected to the tube (333), the concentrated solution enters the concentrated solution tank (360) and is sent by the concentrated solution pump (251) through the concentrated solution tube (250) to the nozzle (253).

逆浸透装置(300)を洗浄する場合、管(361)が管(364)と接続され、水タンク(410)へと接続される。水タンク(410)には、水出口(322)と接続する管(411)が設けられ、管(420)で水タンク(410)内の水の供給と排出が行われる。水タンク(410)の水は、洗浄ポンプ(431)で加圧され、洗浄管(430)を通って淡溶液入口(341)へと送られる。洗浄に使われる水は、逆浸透装置(300)を洗浄後水タンク(410)に集められ、再度水ポンプ(431)で循環される。    When washing the reverse osmosis device (300), the pipe (361) is connected to the pipe (364) and to the water tank (410). The water tank (410) is provided with a pipe (411) connected to the water outlet (322), and water is supplied to and discharged from the water tank (410) through the pipe (420). The water in the water tank (410) is pressurized by the washing pump (431) and sent to the fresh solution inlet (341) through the washing pipe (430). The water used for washing is collected in the water tank (410) after washing the reverse osmosis device (300), and is circulated again by the water pump (431).

図6に実施例4の液膜形成器(260)の構成を示す。実施例4の液膜形成器(260)は、図6(A)、図6(B)に示すように、長方形の湾曲したプレート(261)、(262)、(263)を積層して構成され、突起部(264)で隙間が形成されるとともに、相互に接着剤等で接合されている。このプレート間の隙間は、隙間を流れる流体の境界層厚さの4倍以上に設定され、曲面の最大深さは、前述の間隔とした場合にルックスルー(一方から流れの方向に隙間を見て反対側が見えること)が無い深さである。    FIG. 6 shows the configuration of the liquid film former (260) of the fourth embodiment. As shown in FIGS. 6A and 6B, the liquid film former (260) of Example 4 is configured by stacking rectangular curved plates (261), (262), and (263). In addition, a gap is formed at the protrusion (264) and is joined to each other with an adhesive or the like. The gap between the plates is set to at least four times the boundary layer thickness of the fluid flowing through the gap, and the maximum depth of the curved surface is look-through (see the gap in the direction of flow from one side) when the above-mentioned distance is used. The depth is such that the opposite side is not visible.

発明の効果The invention's effect

実施例1は、従来の液体デシカント装置の再生機能を逆浸透膜装置で行われるもので、淡溶液中を加圧することによって溶液中の水分が逆浸透膜を通過、水分が分離除去され、濃溶液が形成される。従来の液体デシカントでは、溶液の加熱が必要であったが、本考案の逆浸透膜による水分分離は、加圧によって行われるのでエネルギーが節約される。    In Example 1, the regeneration function of a conventional liquid desiccant device is performed by a reverse osmosis membrane device. By pressurizing the light solution, moisture in the solution passes through the reverse osmosis membrane, and the moisture is separated and removed. A solution is formed. In the conventional liquid desiccant, it is necessary to heat the solution. However, since the water separation by the reverse osmosis membrane of the present invention is performed by pressurization, energy is saved.

従来の液体デシカントでは、再生には処理空気量の2倍以上の外気が必要で、効率的な吸着と溶液の飛散を防止するには、その流速を抑える必要があり、装置が大きくなるという欠点があったが、本考案では再生には外気が不要であり、装置の小型化が可能である。    In conventional liquid desiccants, regeneration requires outside air more than twice the amount of processing air, and in order to prevent efficient adsorption and scattering of the solution, it is necessary to suppress the flow rate, resulting in a large apparatus. However, in the present invention, outside air is not necessary for regeneration, and the apparatus can be miniaturized.

更に、再生には加熱が不要であり、溶液が空気と接触しないために、再生時の塩素イオンや酸素による腐蝕が生じ難くなり、信頼性が向上する。    Furthermore, heating is not required for regeneration, and since the solution does not come into contact with air, corrosion due to chlorine ions and oxygen during regeneration is less likely to occur, and reliability is improved.

溶液濃度をポンプ圧力の調整により、自由に変えることができるので、環境条件などが変化しても常に液体デシカントの効率を高く維持できる。    Since the solution concentration can be freely changed by adjusting the pump pressure, the efficiency of the liquid desiccant can always be kept high even if the environmental conditions change.

実施例1の構成図  Configuration diagram of Example 1 逆浸透膜装置の立体図  Three-dimensional view of reverse osmosis membrane device 逆浸透膜装置の断面図  Cross section of reverse osmosis membrane device 実施例2の構成図  Configuration diagram of Example 2 実施例3の構成図  Configuration diagram of Example 3 実施例4の液膜形成器の図  Diagram of liquid film former of Example 4 従来の固体デシカント装置の構成図  Configuration diagram of a conventional solid desiccant device 従来の液体デシカント装置の構成図  Configuration diagram of conventional liquid desiccant device 最適湿度領域と菌類やヴィールスの繁殖、アレルギーや呼吸器系疾病等が起こりやすい湿度領域  Optimal humidity range and humidity range where fungi and virus breeding, allergies and respiratory diseases are likely to occur

符号の説明Explanation of symbols

(10)除湿ロータ (311)逆浸透膜
(15)流路分配板 (312)メッシュスペーサー
(20)モータ (320)中心パイプ
(21)ベルト (321)孔
(30)処理ファン (322)水出口
(40)再生ヒータ (330)濃溶液溜
(50)再生ファン (340)ブラインシール
(100)処理機 (341)淡溶液入口
(110)空気取入口 (360)濃溶液タンク
(115)淡溶液溜 (361)管
(130)液滴捕捉網 (362)切替弁
(140)ファン (363)管
(150)淡溶液管 (364)管
(151)淡溶液ポンプ (410)水タンク
(152)熱交換器 (411)管
(153)ノズル (420)管
(154)液滴 (430)洗浄管
(200)再生機 (431)洗浄ポンプ
(210)外気入口
(230)液滴捕捉網
(240)ファン
(250)濃溶液管
(251)濃溶液ポンプ
(252)熱交換器
(253)ノズル
(254)液滴
(260)液膜形成器
(261)、(262)、(263)プレート
(264)突起部
(300)再生機
(310)入口液溜
(10) Dehumidification rotor (311) Reverse osmosis membrane (15) Channel distribution plate (312) Mesh spacer (20) Motor (320) Center pipe (21) Belt (321) Hole (30) Processing fan (322) Water outlet (40) Regenerative heater (330) Concentrated solution reservoir (50) Regenerative fan (340) Brine seal (100) Processing machine (341) Light solution inlet (110) Air intake port (360) Concentrated solution tank (115) Light solution reservoir (361) Tube (130) Droplet trapping network (362) Switching valve (140) Fan (363) Tube (150) Light solution tube (364) Tube (151) Light solution pump (410) Water tank (152) Heat exchange (411) Tube (153) Nozzle (420) Tube (154) Droplet (430) Washing tube (200) Regenerator (431) Washing pump (210) Outside air inlet (230) Droplet collection Net (240) Fan (250) Concentrated solution pipe (251) Concentrated solution pump (252) Heat exchanger (253) Nozzle (254) Droplet (260) Liquid film former (261), (262), (263) Plate (264) Projection (300) Regenerator (310) Inlet liquid reservoir

Claims (6)

塩化リチウムや塩化カルシウム等の水溶液を水分の吸着に利用する液体デシカント装置において、処理機で水分を吸着して淡くなった溶液を、逆浸透膜を通して濃縮再生することを特徴とする液体デシカント装置。    A liquid desiccant device that uses an aqueous solution of lithium chloride, calcium chloride, or the like for moisture adsorption, wherein the solution that has become light by adsorption of moisture by a processing machine is concentrated and regenerated through a reverse osmosis membrane. 請求項1において、処理機内の濃溶液噴霧を受ける形で10から45度傾斜して液膜形成器が設けられたことを特徴とする液体デシカント装置。    2. The liquid desiccant apparatus according to claim 1, wherein a liquid film forming device is provided so as to be inclined by 10 to 45 degrees so as to receive the concentrated solution spray in the processing machine. 請求項1、2において、逆浸透膜を洗浄する水回路を設けたことを特徴とする液体デシカント装置。    3. A liquid desiccant device according to claim 1, further comprising a water circuit for cleaning the reverse osmosis membrane. 請求項2、3において、液膜形成器を少なくとも一つの曲がりと少なくとも一つの突起を設けた板で形成されることを特徴とする液体デシカント装置。    4. The liquid desiccant device according to claim 2, wherein the liquid film forming device is formed of a plate provided with at least one bend and at least one protrusion. 請求項4において、板の間隔を境界層厚さの4倍以上、曲がりの深さをルックスルーの無い深さ以上とすることを特徴とする液体デシカント装置。    5. The liquid desiccant device according to claim 4, wherein the distance between the plates is at least four times the boundary layer thickness, and the bending depth is at least a depth without a look-through. 請求項1から5において、逆浸透膜に送る溶液の圧力を制御して、最適な溶液濃度に調整することを特徴とする液体デシカント装置。    6. The liquid desiccant device according to claim 1, wherein the pressure of the solution sent to the reverse osmosis membrane is controlled to adjust to an optimum solution concentration.
JP2006229832A 2006-07-31 2006-07-31 Reverse osmosis membrane fluid desiccant apparatus Pending JP2008030014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229832A JP2008030014A (en) 2006-07-31 2006-07-31 Reverse osmosis membrane fluid desiccant apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229832A JP2008030014A (en) 2006-07-31 2006-07-31 Reverse osmosis membrane fluid desiccant apparatus

Publications (1)

Publication Number Publication Date
JP2008030014A true JP2008030014A (en) 2008-02-14

Family

ID=39119986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229832A Pending JP2008030014A (en) 2006-07-31 2006-07-31 Reverse osmosis membrane fluid desiccant apparatus

Country Status (1)

Country Link
JP (1) JP2008030014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162966A (en) * 2013-03-01 2018-10-18 7エーシー テクノロジーズ,インコーポレイテッド Desiccant air conditioning methods and systems
CN112537822A (en) * 2020-12-24 2021-03-23 深圳市天泉空气水智能科技股份有限公司 Portable air kettle
CN115738615A (en) * 2022-12-06 2023-03-07 珠海格力电器股份有限公司 Water vapor collecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162966A (en) * 2013-03-01 2018-10-18 7エーシー テクノロジーズ,インコーポレイテッド Desiccant air conditioning methods and systems
CN112537822A (en) * 2020-12-24 2021-03-23 深圳市天泉空气水智能科技股份有限公司 Portable air kettle
CN115738615A (en) * 2022-12-06 2023-03-07 珠海格力电器股份有限公司 Water vapor collecting device

Similar Documents

Publication Publication Date Title
KR102546428B1 (en) Ventilating and air conditioning device
CN102052713B (en) Conditioner
TWI702367B (en) Air conditioning system
CN100476308C (en) Humidity control device
CN110709643B (en) Ventilation system
JP4799635B2 (en) Liquid desiccant regenerator and desiccant dehumidifier air conditioner
TW201910690A (en) Ventilation and air conditioning unit
CN104390293B (en) A kind of haze air processor
JP2025514684A (en) Liquid desiccant air conditioning using air as the heat transfer medium
CN108954579A (en) Air treatment equipment
KR102041255B1 (en) All-in-one wet air clean conditioning apparatus
CN111031753B (en) Fresh air unit and air conditioning system
KR200415004Y1 (en) Air cleaner with room temperature control
JP2011033302A (en) Humidity control ventilator
JP2009287911A (en) Switching type liquid desiccant apparatus
JP2008030014A (en) Reverse osmosis membrane fluid desiccant apparatus
CN110529959A (en) A kind of dehumidification system for runner with pump coupled heat
JP2008101796A (en) Dehumidification air conditioner
CN209147287U (en) Air treatment equipment
TWI683982B (en) Humidity management device and method, air-conditioning system and method of operating the same
JP4121116B2 (en) Dehumidification and humidification system
JP2011196562A (en) Humidifier
JP2000257912A (en) Adsorbent and air conditioner
CN218096402U (en) Dry Air Handling Modules and Air Conditioners
JP4393478B2 (en) Desiccant ventilation system