[go: up one dir, main page]

JP2008022625A - AC-DC converter - Google Patents

AC-DC converter Download PDF

Info

Publication number
JP2008022625A
JP2008022625A JP2006191881A JP2006191881A JP2008022625A JP 2008022625 A JP2008022625 A JP 2008022625A JP 2006191881 A JP2006191881 A JP 2006191881A JP 2006191881 A JP2006191881 A JP 2006191881A JP 2008022625 A JP2008022625 A JP 2008022625A
Authority
JP
Japan
Prior art keywords
capacitor
circuit
full
voltage
wave rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006191881A
Other languages
Japanese (ja)
Inventor
Makoto Tanitsu
誠 谷津
Kazuo Kuroki
一男 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006191881A priority Critical patent/JP2008022625A/en
Publication of JP2008022625A publication Critical patent/JP2008022625A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】単相交流電源とダイオードで構成された全波整流回路とリアクトルと、コンデンサ直列回路と、双方向スイッチと、負荷が、接続された構成において、双方向スイッチをスイッチングさせることにより、交流入力電流を高力率化する場合、直列接続されたコンデンサの電圧が半サイクル期間内で不均衡になる課題がある。
【解決手段】単相交流電源とダイオードで構成された全波整流回路の一方の交流入力との間にリアクトルが、全波整流回路の直流出力間にコンデンサ直列回路が、コンデンサ直列回路の内部接続点と全波整流回路の各交流入力との間に双方向スイッチ10、11が、コンデンサ直列回路と並列に負荷14が、各々接続された構成において、直列接続されたコンデンサ12とコンデンサ13の電圧を電圧を検出して、この電圧が均等になるように、双方向スイッチ10および11を高周波でオン・オフ制御する。
【選択図】図1
In a configuration in which a full-wave rectifier circuit, a reactor, a capacitor series circuit, a bidirectional switch, and a load composed of a single-phase AC power source and a diode are connected, the bidirectional switch is switched to switch the alternating current. When the input current is increased in power factor, there is a problem that the voltage of capacitors connected in series becomes unbalanced within a half cycle period.
SOLUTION: A reactor is connected between a single-phase AC power supply and one AC input of a full-wave rectifier circuit composed of a diode, a capacitor series circuit is connected between DC outputs of the full-wave rectifier circuit, and an internal connection of the capacitor series circuit. In the configuration in which the bidirectional switches 10 and 11 are connected between the point and each AC input of the full-wave rectifier circuit, and the load 14 is connected in parallel with the capacitor series circuit, the voltages of the capacitors 12 and 13 connected in series are connected. The bidirectional switches 10 and 11 are on / off controlled at a high frequency so that the voltages are equalized.
[Selection] Figure 1

Description

本発明は、交流入力電流を高力率化しつつ、単相交流電源から全波整流電圧のピーク電圧よりも高い直流電圧を作り出す交流−直流変換回路に関し、特に全波整流回路の直流端子間にコンデンサ直列回路を接続した場合の各コンデンサ電圧をバランスさせることのできる変換回路に関する。   The present invention relates to an AC-DC converter circuit that generates a DC voltage higher than the peak voltage of a full-wave rectified voltage from a single-phase AC power supply while increasing the AC input current with a high power factor, and in particular, between the DC terminals of the full-wave rectifier circuit. The present invention relates to a conversion circuit capable of balancing each capacitor voltage when a capacitor series circuit is connected.

図6に、従来の技術を用いた交流−直流変換回路の回路構成を示す。単相交流電源1とダイオード6〜9で構成された全波整流回路の一方の交流入力との間にリアクトル4が、全波整流回路の直流出力間にコンデンサ12とコンデンサ13からなるコンデンサ直列回路が、コンデンサ直列回路の内部接続点と全波整流回路の他方の交流入力との間に双方向スイッチ11が、コンデンサ直列回路と並列に負荷14が、各々接続された構成である。このような構成において、双方向スイッチ11を交流電源の半サイクルに1回スイッチングさせることにより、交流入力電流を高力率化するものである。双方向スイッチ11がない場合には、コンデンサ12と13の直列回路の電圧を交流電源1の電圧が越えた期間だけ電源から電流が流れるいわゆるコンデンサインプット形の構成であるが、力率が低いことは周知である。これを改善するために、双方向スイッチ11を交流電源の半サイクルに1回オンさせることにより、双方向スイッチ11がない場合に比べて交流電源から流れる電流の期間が長くなり、入力力率が高くなる。即ち、双方向スイッチ11がオフの場合、交流電源1の電圧極性が正の期間でこの電圧が直流電圧(コンデンサ直列回路の電圧)よりも高い期間だけ、交流電源1→リアクトル4→ダイオード6→コンデンサ12→コンデンサ13→ダイオード9→交流電源1の経路で交流電流が流れるが、双方向スイッチ11をオンさせると交流電源1の電圧がコンデンサ12の電圧を越えた期間に、交流電源1→リアクトル4→ダイオード6→コンデンサ12→双方向スイッチ11→交流電源1の経路で交流電流が流れ、コンデンサ12が充電されると同時にリアクトル4にエネルギーが蓄積される。従って、交流電源1の電圧が低い期間でも電流が流れることになり、電流の流れる期間が長くなり、力率が高くなる。ここで、双方向スイッチ11をオンさせる期間を調整することにより直流電圧を制御することができる。交流電源1の極性が負の場合、双方向スイッチ11がオフの時は交流電源1→ダイオード8→コンデンサ12→コンデンサ13→ダイオード7→リアクトル4→交流電源1の経路で、交流スイッチがオンの時は交流電源1→双方向スイッチ11→コンデンサ13→ダイオード7→リアクトル4→交流電源1の経路で交流電流が流れる。尚、詳細は特許文献1に記載されている。
特開平10−174442号公報
FIG. 6 shows a circuit configuration of an AC-DC conversion circuit using a conventional technique. Capacitor series circuit including a reactor 4 between a single-phase AC power supply 1 and one AC input of a full-wave rectifier circuit composed of diodes 6 to 9, and a capacitor 12 and a capacitor 13 between DC outputs of the full-wave rectifier circuit. However, the bidirectional switch 11 is connected between the internal connection point of the capacitor series circuit and the other AC input of the full-wave rectifier circuit, and the load 14 is connected in parallel with the capacitor series circuit. In such a configuration, the AC input current is increased in power factor by switching the bidirectional switch 11 once in a half cycle of the AC power supply. When the bidirectional switch 11 is not provided, a so-called capacitor input type configuration in which current flows from the power source only during the period when the voltage of the AC power source 1 exceeds the voltage of the series circuit of the capacitors 12 and 13, but the power factor is low. Is well known. In order to improve this, by turning on the bidirectional switch 11 once every half cycle of the AC power supply, the period of the current flowing from the AC power supply becomes longer than when the bidirectional switch 11 is not provided, and the input power factor is increased. Get higher. That is, when the bidirectional switch 11 is off, the AC power supply 1 → reactor 4 → diode 6 → only when the voltage polarity of the AC power supply 1 is positive and the voltage is higher than the DC voltage (voltage of the capacitor series circuit). An alternating current flows through the path of the capacitor 12 → the capacitor 13 → the diode 9 → the AC power supply 1. When the bidirectional switch 11 is turned on, the AC power supply 1 → reactor is output during the period when the voltage of the AC power supply 1 exceeds the voltage of the capacitor 12. 4 → Diode 6 → Capacitor 12 → Bidirectional switch 11 → AC power source 1 flows through the path, and capacitor 12 is charged, and at the same time, energy is stored in reactor 4. Therefore, a current flows even when the voltage of the AC power supply 1 is low, the current flowing period becomes long, and the power factor increases. Here, the DC voltage can be controlled by adjusting the period during which the bidirectional switch 11 is turned on. When the polarity of the AC power supply 1 is negative and the bidirectional switch 11 is OFF, the AC switch is turned on in the path of AC power supply 1 → diode 8 → capacitor 12 → capacitor 13 → diode 7 → reactor 4 → AC power supply 1. At that time, an AC current flows through a path of AC power source 1 → bidirectional switch 11 → capacitor 13 → diode 7 → reactor 4 → AC power source 1. Details are described in Patent Document 1.
Japanese Patent Laid-Open No. 10-174442

上述のように、直列接続された各コンデンサには双方向スイッチ11がオンの時には一方のコンデンサが交流電源1からリアクトル4を介して充電され、リアクトル4にはエネルギーが蓄積される。双方向スイッチ11がオフの時にはコンデンサ12と13の直列回路を交流電源1とリアクトル4の直列回路で充電し、この時リアクトルのエネルギーはコンデンサ12と13の直列回路に放電される。この構成においては、双方向スイッチをオンさせる期間が半サイクル毎に僅かに違う場合、あるいは各直列コンデンサ容量に差がある場合、あるいは負荷として各直列コンデンサから不均等に電力を消費する場合などには直列コンデンサの電圧が均等にならない問題が発生する。この対策として交流電源の半サイクル毎に双方向スイッチをオンさせる期間を調整することにより、平均的にはバランスさせることができるが、半サイクルの期間内では変動を抑制することができないという問題がある。   As described above, when the bidirectional switch 11 is turned on for each capacitor connected in series, one capacitor is charged from the AC power supply 1 via the reactor 4, and energy is stored in the reactor 4. When the bidirectional switch 11 is OFF, the series circuit of the capacitors 12 and 13 is charged by the series circuit of the AC power supply 1 and the reactor 4, and at this time, the reactor energy is discharged to the series circuit of the capacitors 12 and 13. In this configuration, when the period for which the bidirectional switch is turned on is slightly different every half cycle, when there is a difference in the capacity of each series capacitor, or when power is unequally consumed from each series capacitor as a load, etc. Causes a problem that the voltage of the series capacitor is not uniform. As a countermeasure, it is possible to balance on average by adjusting the period during which the bidirectional switch is turned on every half cycle of the AC power supply, but there is a problem that fluctuation cannot be suppressed within the half cycle period. is there.

上述の課題を解決するために、第1の発明においては単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続する。
第2の発明においては、単相交流電源と並列に第2のコンデンサ直列回路を、前記交流電源と全波整流回路の交流入力端子との間に各々リアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、前記第1のコンデンサ直列回路の内部接続点に前記第2のコンデンサ直列回路の内部接続点を、各々接続する。
In order to solve the above-mentioned problem, in the first invention, a reactor is provided between a single-phase AC power supply and one or both of AC input terminals of the full-wave rectifier circuit, and a DC output terminal of the full-wave rectifier circuit. A bidirectional capacitor is connected between the first capacitor series circuit and the internal connection point of the first capacitor series circuit and the AC input terminals of the full-wave rectifier circuit.
In the second invention, a second capacitor series circuit is connected in parallel with the single-phase AC power supply, a reactor is provided between the AC power supply and the AC input terminal of the full-wave rectifier circuit, and a DC output of the full-wave rectifier circuit. A first capacitor series circuit between the terminals, a bidirectional switch between the internal connection point of the first capacitor series circuit and each AC input terminal of the full-wave rectifier circuit, and the first capacitor series circuit. The internal connection points of the second capacitor series circuit are respectively connected to the internal connection points.

第3の発明においては、第1および第2の発明において、双方向スイッチは、前記直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるようにオン・オフ制御する。
第4の発明においては、第1および第2の発明において、双方向スイッチをダイオードとスイッチング素子の組み合わせで構成する。
In a third invention, in the first and second inventions, the bidirectional switch detects the voltage of each of the capacitors connected in series, and performs on / off control so that each voltage becomes equal.
In a fourth invention, in the first and second inventions, the bidirectional switch is constituted by a combination of a diode and a switching element.

本発明では、単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続し、直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるように、高周波スイッチングする双方向スイッチをオン・オフ制御しているため、交流入力電流を高力率化させつつ、半サイクル期間内で直列コンデンサ各々の電圧を均等化させることが可能となる。
この結果、直列コンデンサ各々に不均等な消費電力の負荷を個別に接続することが可能となり適用性が向上する。また、直列コンデンサの容量を低減することができ、装置の小型化と低価格化が可能となる。
In the present invention, a reactor is provided between one or both of the single-phase AC power supply and the AC input terminal of the full-wave rectifier circuit, and the first capacitor series circuit is provided between the DC output terminals of the full-wave rectifier circuit, A bidirectional switch is connected between the internal connection point of the first capacitor series circuit and each AC input terminal of the full-wave rectifier circuit, and the voltage of each capacitor connected in series is detected. Since the bidirectional switch that performs high-frequency switching is controlled so as to be equal, it is possible to equalize the voltage of each series capacitor within a half cycle period while increasing the AC input current to a high power factor. Become.
As a result, it is possible to individually connect non-uniform power consumption loads to each series capacitor, thereby improving applicability. In addition, the capacity of the series capacitor can be reduced, and the size and cost of the device can be reduced.

本発明の要点は、単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続し、直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるように、高周波スイッチングする双方向スイッチをオン・オフ制御して、交流入力電流を高力率化させつつ、半サイクル期間内で直列コンデンサ各々の電圧を均等化させる点である。   The main point of the present invention is that a reactor is provided between the single-phase AC power supply and one or both of the AC input terminals of the full-wave rectifier circuit, and the first capacitor series circuit is provided between the DC output terminals of the full-wave rectifier circuit. A bidirectional switch connected between the internal connection point of the first capacitor series circuit and each of the AC input terminals of the full-wave rectifier circuit, and detects the voltage of each capacitor connected in series; The point is to equalize the voltage of each of the series capacitors within a half cycle period while controlling the on / off of the bidirectional switch that performs high-frequency switching so that the voltages are equal, while increasing the AC input current.

図1に、本発明の第1の実施例を示す。単相交流電源1とダイオード6〜9で構成された全波整流回路の一方の交流入力との間にリアクトル4が、全波整流回路の直流出力間にコンデンサ12とコンデンサ13からなるコンデンサ直列回路が、コンデンサ直列回路の内部接続点と全波整流回路の各交流入力との間に双方向スイッチ10、11が、コンデンサ直列回路と並列に負荷14が、各々接続された構成である。
このような構成において、双方向スイッチ10および11をオン・オフ制御する制御回路例を図2に示す。主回路部においては、交流入力電流を電流検出器15で、交流入力で電圧を電圧検出器16で、直列接続されたコンデンサ12の電圧を電圧検出器17で、コンデンサ13の電圧を電圧検出器13で、各々検出して制御回路の入力とする。
制御回路部は、直列接続されたコンデンサ12と13の和の電圧が所定値になるように制御する直流定電圧制御部と、コンデンサ12と13の電圧が等しくなるように制御するコンデンサ電圧均等化制御部とから構成される。直流定電圧制御部は、直流電圧検出器17の出力と直流電圧検出器18の出力を加算器22で加算して、この加算値が設定器37の設定値となるように調節器28で調整し、この調整量と交流入力電圧検出器16の出力とを掛算器30で掛算して交流入力電流が高力率の正弦波となるような電流指令値とし、この電流指令値と電流検出器15で検出された電流実際値との差を加算器24で求め、この値が零になるように調節器32で制御する。また、コンデンサ電圧均等化制御部は、電圧検出器17の出力と直流電圧検出器18の出力を加算器21で減算して、この減算値が零となるように調節器27で調整し、この調整値と交流入力電圧検出器16の出力とを掛算器29で掛算して電流指令値とし、この電流指令値と電流検出器15で検出された電流実際値との差を加算器23で求め、この値が零になるように調節器31で制御する。調節器32の出力v1と調節器31の出力v2から双方向スイッチ10と11のオン・オフ信号を作り出す動作波形を図3に示す。この図は交流入力電圧が正極性の場合(リアクトル4のある側が正の場合)を示す。ここで、コンデンサ12の電圧をEd1、コンデンサ13の電圧をEd2とする。ここで、コンデンサ均等化制御量v2をEd1<Ed2の場合は正の制御量、Ed1>Ed2の場合は負の制御量とし、直流電圧制御量v1にコンデンサ電圧均等化制御量v2を加算器26で加算した制御量からキャリア35と比較器34でPWM変調されたオン・オフ信号を作り出し、これを双方向スイッチ10のオン・オフ信号とする。また、直流電圧制御量v1からコンデンサ電圧均等化制御量v2を加算器25で減算した制御量からキャリア35と比較器33でPWM変調されたオン・オフ信号を作り出し、これを双方向スイッチ11のオン・オフ信号とする。
この結果、Ed1<Ed2の場合は、双方向スイッチ10のオン・オフ信号はオフの期間が長く、双方向スイッチ11のオン・オフ信号はオンの期間が長い信号となり、両方の双方向スイッチ10および11がオンしている間にリアクトル4に蓄積されたエネルギーがコンデンサ12に多く充電されてEd1の電圧が上昇する方向に、コンデンサ13の電圧Ed2が下降する方向に制御され、均等化される。また、Ed1>Ed2の場合は、双方向スイッチ10のオン・オフ信号はオンの期間が長く、双方向スイッチ11のオン・オフ信号はオフの期間が長い信号となり、両方の双方向スイッチ10および11がオンしている間にリアクトル4に蓄積されたエネルギーがコンデンサ13に多く充電されてEd2の電圧が上昇する方向に、コンデンサ12の電圧Ed1が下降する方向に制御され、均等化される。交流入力電圧が負極性(リアクトル4のある側が負)の場合はこれを検出して、パルス分配回路で双方向スイッチ10の信号と双方向スイッチ11の信号を切換えれば同様にコンデンサ12と13の電圧は均等化される。
FIG. 1 shows a first embodiment of the present invention. Capacitor series circuit including a reactor 4 between a single-phase AC power supply 1 and one AC input of a full-wave rectifier circuit composed of diodes 6 to 9, and a capacitor 12 and a capacitor 13 between DC outputs of the full-wave rectifier circuit. However, the bidirectional switches 10 and 11 are connected between the internal connection point of the capacitor series circuit and each AC input of the full-wave rectifier circuit, and the load 14 is connected in parallel with the capacitor series circuit.
FIG. 2 shows an example of a control circuit that controls on / off of the bidirectional switches 10 and 11 in such a configuration. In the main circuit section, the AC input current is detected by the current detector 15, the AC input voltage is detected by the voltage detector 16, the voltage of the capacitor 12 connected in series is converted by the voltage detector 17, and the voltage of the capacitor 13 is converted by the voltage detector. Each of them is detected and used as an input to the control circuit.
The control circuit unit is a DC constant voltage control unit that controls the sum voltage of the capacitors 12 and 13 connected in series to a predetermined value, and a capacitor voltage equalization that controls the voltages of the capacitors 12 and 13 to be equal. And a control unit. The DC constant voltage control unit adds the output of the DC voltage detector 17 and the output of the DC voltage detector 18 with the adder 22, and adjusts with the adjuster 28 so that the added value becomes the set value of the setter 37. The adjustment amount and the output of the AC input voltage detector 16 are multiplied by a multiplier 30 to obtain a current command value such that the AC input current becomes a high power factor sine wave. The current command value and the current detector The difference from the actual current value detected at 15 is obtained by the adder 24 and controlled by the regulator 32 so that this value becomes zero. Further, the capacitor voltage equalization control unit subtracts the output of the voltage detector 17 and the output of the DC voltage detector 18 with the adder 21 and adjusts the subtraction value with the adjuster 27 so that the subtraction value becomes zero. The adjustment value and the output of the AC input voltage detector 16 are multiplied by a multiplier 29 to obtain a current command value. A difference between the current command value and the actual current value detected by the current detector 15 is obtained by an adder 23. The controller 31 controls so that this value becomes zero. FIG. 3 shows operation waveforms for generating on / off signals of the bidirectional switches 10 and 11 from the output v1 of the regulator 32 and the output v2 of the regulator 31. This figure shows the case where the AC input voltage is positive (when the side where the reactor 4 is present is positive). Here, the voltage of the capacitor 12 is Ed1, and the voltage of the capacitor 13 is Ed2. Here, the capacitor equalization control amount v2 is a positive control amount when Ed1 <Ed2, and a negative control amount when Ed1> Ed2. The capacitor voltage equalization control amount v2 is added to the DC voltage control amount v1 by the adder 26. The on / off signal PWM-modulated by the carrier 35 and the comparator 34 is generated from the control amount added in step S3, and this is used as the on / off signal of the bidirectional switch 10. Further, an on / off signal PWM-modulated by the carrier 35 and the comparator 33 is generated from the control amount obtained by subtracting the capacitor voltage equalization control amount v2 from the DC voltage control amount v1 by the adder 25, and this is generated by the bidirectional switch 11. Use an on / off signal.
As a result, when Ed1 <Ed2, the on / off signal of the bidirectional switch 10 has a long off period, and the on / off signal of the bidirectional switch 11 has a long on period. The capacitor 12 is charged with much energy stored in the reactor 4 while the capacitors 11 and 11 are turned on, and the voltage Ed2 of the capacitor 13 is controlled to be increased and the voltage Ed2 of the capacitor 13 is decreased and equalized. . When Ed1> Ed2, the ON / OFF signal of the bidirectional switch 10 has a long ON period, and the ON / OFF signal of the bidirectional switch 11 has a long OFF period. The capacitor 13 is charged with much energy stored in the reactor 4 while 11 is on, and the voltage Ed1 of the capacitor 12 is controlled to be increased in the direction in which the voltage Ed2 increases, and equalized. If the AC input voltage is negative (the side with the reactor 4 is negative), this is detected, and if the signal of the bidirectional switch 10 and the signal of the bidirectional switch 11 are switched by the pulse distribution circuit, the capacitors 12 and 13 are similarly detected. The voltage of is equalized.

図4に、本発明の第2の実施例を示す。第1の実施例との違いは、交流電源1と並列にコンデンサ2と3の直列回路が接続され、この内部接続点と全波整流回路の直流出力間に接続されたコンデンサ12と13の直列回路の内部接続点とが接続されている点とリアクトル5が交流電源1と全波整流回路の交流入力点との間に付加されている点である。
このような構成において、交流電源が正極性(リアクトル4側が正)の時、双方向スイッチ10と11を同時にオンさせると交流電源1→リアクトル4→双方向スイッチ10→双方向スイッチ11→リアクトル5→交流電源1の経路で電流が流れ、リアクトル4と5にエネルギーが蓄積される。次に双方向スイッチ10と11の両方をオフさせるとリアクトル4と5の電流は、ダイオード6→コンデンサ12→コンデンサ13→ダイオード9→リアクトル5→交流電源1の経路となり、コンデンサ12と13が充電され、電圧が上昇する。また、双方向スイッチ10のみをオフさせた場合には、コンデンサ2が電源となり、リアクトル5の電流はダイオード6を介してコンデンサ12を充電し、リアクトル5の電流はコンデンサ3が電源となり増加を続ける。また、双方向スイッチ11のみをオフさせた場合には、コンデンサ3が電源となりリアクトル5の電流はダイオード9を介してコンデンサ13を充電し、リアクトル4の電流はコンデンサ2が電源となり増加を続ける。以上のように双方向スイッチ10と11を適切に制御することにより、コンデンサ12と13の電圧を均等化することができる。制御の原理は第1の実施例と同様である。交流電源が負極性(リアクトル4側の電圧が負)の場合も同様の原理により、コンデンサ12と13の電圧を均等化することができる。
FIG. 4 shows a second embodiment of the present invention. The difference from the first embodiment is that a series circuit of capacitors 2 and 3 is connected in parallel with the AC power source 1, and a series of capacitors 12 and 13 connected between this internal connection point and the DC output of the full-wave rectifier circuit. A point where the internal connection point of the circuit is connected and a reactor 5 are added between the AC power source 1 and the AC input point of the full-wave rectifier circuit.
In such a configuration, when the AC power supply is positive (reactor 4 side is positive) and the bidirectional switches 10 and 11 are turned on simultaneously, the AC power supply 1 → reactor 4 → bidirectional switch 10 → bidirectional switch 11 → reactor 5 → Current flows through the path of the AC power source 1 and energy is stored in the reactors 4 and 5. Next, when both the bidirectional switches 10 and 11 are turned off, the currents of the reactors 4 and 5 become the path of the diode 6 → the capacitor 12 → the capacitor 13 → the diode 9 → the reactor 5 → the AC power source 1, and the capacitors 12 and 13 are charged. And the voltage rises. Further, when only the bidirectional switch 10 is turned off, the capacitor 2 serves as a power source, the current of the reactor 5 charges the capacitor 12 via the diode 6, and the current of the reactor 5 continues to increase with the capacitor 3 serving as a power source. . When only the bidirectional switch 11 is turned off, the capacitor 3 serves as a power source, and the current in the reactor 5 charges the capacitor 13 through the diode 9, and the current in the reactor 4 continues to increase because the capacitor 2 serves as a power source. As described above, the voltages of the capacitors 12 and 13 can be equalized by appropriately controlling the bidirectional switches 10 and 11. The principle of control is the same as in the first embodiment. When the AC power source is negative (reactor 4 side voltage is negative), the voltages of the capacitors 12 and 13 can be equalized by the same principle.

図5に双方向スイッチ10、11をスイッチング素子とダイオードの組合せにより実現する回路例を示す。図5(a)はダイオード43を逆並列接続したIGBT41とダイオード44を逆並列接続したIGBT42を逆直列接続した構成である。A点からB点へ電流を流す場合はIGBT41をオンさせ、B点からA点へ電流を流す場合はIGBT42をオンさせる。両方のIGBT41と42をオフさせれば何れの方向でもスイッチオフとなる。図5(b)はダイオード45、46の直列回路と、ダイオード47、48の直列回路と、IGBT49とを並列接続し、各ダイオード直列回路の内部接続点を端子とした構成である。A点からB点へ電流を流す場合は、IGBT49をオンさせると、ダイオード45→IGBT49→ダイオード48の経路となり、B点からA点へ電流を流す場合は、IGBT49をオンさせると、ダイオード47→IGBT49→ダイオード46の経路となる。IGBT49をオフさせるといずれの方向でもスイッチオフとなる。   FIG. 5 shows a circuit example in which the bidirectional switches 10 and 11 are realized by a combination of a switching element and a diode. FIG. 5A shows a configuration in which an IGBT 41 in which a diode 43 is connected in antiparallel and an IGBT 42 in which a diode 44 is connected in antiparallel are connected in reverse series. The IGBT 41 is turned on when a current is passed from the A point to the B point, and the IGBT 42 is turned on when a current is passed from the B point to the A point. If both IGBTs 41 and 42 are turned off, the switch is turned off in any direction. FIG. 5B shows a configuration in which a series circuit of diodes 45 and 46, a series circuit of diodes 47 and 48, and an IGBT 49 are connected in parallel, and an internal connection point of each diode series circuit is used as a terminal. When current is supplied from point A to point B, the IGBT 49 is turned on to provide a path of diode 45 → IGBT 49 → diode 48. When current is supplied from point B to point A, when the IGBT 49 is turned on, diode 47 → The path is from IGBT 49 to diode 46. When the IGBT 49 is turned off, the switch is turned off in any direction.

本発明は、直流電源の出力にハーフブリッジ形のインバータ回路を接続する場合や、直流中間電圧と正極間、直流中間電圧と負極間に別々に負荷を接続する場合の単相昇圧形直流電源の構成法であり、無停電電源装置(UPS)、スイッチング電源、高周波電源、誘導加熱用電源などへの適用が可能である。   The present invention relates to a single-phase boost DC power source when a half-bridge type inverter circuit is connected to the output of a DC power source, or when a load is separately connected between the DC intermediate voltage and the positive electrode, or between the DC intermediate voltage and the negative electrode. It is a configuration method and can be applied to an uninterruptible power supply (UPS), a switching power supply, a high-frequency power supply, an induction heating power supply, and the like.

本発明の第1の実施例を示す回路図1 is a circuit diagram showing a first embodiment of the present invention. 本発明の制御回路例を示す回路図The circuit diagram which shows the example of the control circuit of this invention 図2の各部の動作を示す動作波形図Operation waveform diagram showing operation of each part of FIG. 本発明の別の実施例を示す回路図Circuit diagram showing another embodiment of the present invention 双方向スイッチの構成例Bi-directional switch configuration example 従来技術を示す回路図Circuit diagram showing conventional technology

符号の説明Explanation of symbols

1・・・交流電源 2、3・・・コンデンサ
4、5・・・リアクトル 6〜9、43〜48・・・ダイオード
10、11・・・双方向スイッチ 12,13・・・コンデンサ
14・・・負荷 15・・・電流検出器
16・・・交流入力電圧検出器 17、18・・・直流電圧検出器
21〜26・・・加算器 27、28、31、32・・・調節器
29、30・・・掛算器 33、34・・・比較器
35・・・キャリア発生器 36・・・パルス分配回路
37・・・電圧設定器
DESCRIPTION OF SYMBOLS 1 ... AC power source 2, 3 ... Capacitor 4, 5 ... Reactor 6-9, 43-48 ... Diode 10, 11 ... Bidirectional switch 12, 13 ... Capacitor 14 ...・ Load 15 ... Current detector
16 ... AC input voltage detector 17, 18 ... DC voltage detector 21-26 ... Adder 27, 28, 31, 32 ... Regulator 29, 30 ... Multiplier 33, 34 ... Comparator
35 ... Carrier generator 36 ... Pulse distribution circuit 37 ... Voltage setter

Claims (4)

単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続したことを特徴とする交流−直流変換装置。   A reactor between the single-phase AC power supply and one or both of the AC input terminals of the full-wave rectifier circuit, a first capacitor series circuit between the DC output terminals of the full-wave rectifier circuit, and the first capacitor An AC-DC converter characterized in that a bidirectional switch is connected between an internal connection point of a series circuit and each AC input terminal of the full-wave rectifier circuit. 単相交流電源と並列に第2のコンデンサ直列回路を、前記交流電源と全波整流回路の交流入力端子との間に各々リアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、前記第1のコンデンサ直列回路の内部接続点に前記第2のコンデンサ直列回路の内部接続点を、各々接続したことを特徴とする交流−直流変換装置。     A second capacitor series circuit in parallel with the single-phase AC power source, a reactor between the AC power source and the AC input terminal of the full-wave rectifier circuit, respectively, and a first capacitor between the DC output terminals of the full-wave rectifier circuit A bidirectional switch is provided between the internal connection point of the first capacitor series circuit and each AC input terminal of the full-wave rectifier circuit, and the second circuit is connected to the internal connection point of the first capacitor series circuit. An AC-DC converter characterized by connecting internal connection points of the capacitor series circuit. 前記双方向スイッチは、前記直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるようにオン・オフ制御されることを特徴とする請求項1または2に記載の交流−直流変換装置。   3. The AC-DC conversion according to claim 1, wherein the bidirectional switch detects a voltage of each of the capacitors connected in series and is controlled to be turned on / off so that the voltages are equal to each other. 4. apparatus. 前記双方向スイッチは、ダイオードとスイッチング素子の組合せで構成されることを特徴とする請求項1または2に記載の交流−直流変換装置。
The AC / DC converter according to claim 1, wherein the bidirectional switch is configured by a combination of a diode and a switching element.
JP2006191881A 2006-07-12 2006-07-12 AC-DC converter Withdrawn JP2008022625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191881A JP2008022625A (en) 2006-07-12 2006-07-12 AC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191881A JP2008022625A (en) 2006-07-12 2006-07-12 AC-DC converter

Publications (1)

Publication Number Publication Date
JP2008022625A true JP2008022625A (en) 2008-01-31

Family

ID=39078181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191881A Withdrawn JP2008022625A (en) 2006-07-12 2006-07-12 AC-DC converter

Country Status (1)

Country Link
JP (1) JP2008022625A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261077A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Alternating current-direct current converter, compressor driving device, and air conditioner
WO2010013344A1 (en) 2008-08-01 2010-02-04 三菱電機株式会社 Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
JP2010068642A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, compressor driving apparatus, and air conditioner
JP2010068552A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, control method for the ac-dc converter, heat pump water heater, and air conditioner
WO2010064284A1 (en) 2008-12-01 2010-06-10 三菱電機株式会社 Alternating current-direct current converting apparatus and apparatus for driving electric machinery
JP2010239770A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd DC / DC converter and power supply system using the same
JP2011250694A (en) * 2011-09-02 2011-12-08 Mitsubishi Electric Corp Ac-dc converter and control method thereof and heat pump hot water supply apparatus and air conditioner
JP2012105399A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Ac-dc converter
JP2012191761A (en) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd Ac-dc conversion circuit
WO2013150573A1 (en) * 2012-04-06 2013-10-10 富士電機株式会社 Rectifier circuit
CN104242605A (en) * 2013-06-07 2014-12-24 台达电子工业股份有限公司 Current sharing busbar
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN106208763A (en) * 2016-08-30 2016-12-07 成都英格瑞德电气有限公司 A kind of rectification circuit supporting warm connection function
WO2017179112A1 (en) * 2016-04-12 2017-10-19 東芝三菱電機産業システム株式会社 Converter and power conversion device using same
CN109889058A (en) * 2019-02-28 2019-06-14 中国第一汽车股份有限公司 A current sharing busbar for inverters of new energy vehicles
JP2019531689A (en) * 2016-11-08 2019-10-31 日産自動車株式会社 Method for controlling a three-phase rectifier for an on-vehicle charging device of an electric or hybrid vehicle
JP2019531688A (en) * 2016-11-10 2019-10-31 日産自動車株式会社 Method for controlling a three-phase rectifier for an on-vehicle charging device of an electric or hybrid vehicle
WO2020194407A1 (en) * 2019-03-22 2020-10-01 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261077A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Alternating current-direct current converter, compressor driving device, and air conditioner
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
US8508165B2 (en) 2008-08-01 2013-08-13 Mitsubishi Electric Corporation AC-DC converter, method of controlling the same, motor driver, compressor driver, air-conditioner, and heat pump type water heater
WO2010013344A1 (en) 2008-08-01 2010-02-04 三菱電機株式会社 Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
JP2010068552A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, control method for the ac-dc converter, heat pump water heater, and air conditioner
EP2164161A3 (en) * 2008-09-11 2011-03-23 Mitsubishi Electric Corporation AC/DC converter for a compressor driver and air conditioner with a troubleshooting mechanism for faulty bidirectional switches
JP2010068642A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, compressor driving apparatus, and air conditioner
US8823303B2 (en) 2008-12-01 2014-09-02 Mitsubishi Electric Corporation Alternating-current direct-current converter and electric motor driver
EP2355329A4 (en) * 2008-12-01 2013-05-01 Mitsubishi Electric Corp Alternating current-direct current converting apparatus and apparatus for driving electric machinery
WO2010064284A1 (en) 2008-12-01 2010-06-10 三菱電機株式会社 Alternating current-direct current converting apparatus and apparatus for driving electric machinery
JP2010239770A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd DC / DC converter and power supply system using the same
US8664926B2 (en) 2009-03-31 2014-03-04 Honda Motor Co., Ltd. DC-DC converter and power supplying system using a DC-DC converter
JP2012105399A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Ac-dc converter
JP2012191761A (en) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd Ac-dc conversion circuit
JP2011250694A (en) * 2011-09-02 2011-12-08 Mitsubishi Electric Corp Ac-dc converter and control method thereof and heat pump hot water supply apparatus and air conditioner
CN104205602A (en) * 2012-04-06 2014-12-10 富士电机株式会社 Rectifier circuit
JP2013219903A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd Rectifier circuit
WO2013150573A1 (en) * 2012-04-06 2013-10-10 富士電機株式会社 Rectifier circuit
US9385624B2 (en) 2012-04-06 2016-07-05 Fuji Electric Co., Ltd. Rectifier circuit
CN104242605A (en) * 2013-06-07 2014-12-24 台达电子工业股份有限公司 Current sharing busbar
CN104242605B (en) * 2013-06-07 2016-08-10 台达电子工业股份有限公司 Current sharing busbar
KR20180132114A (en) * 2016-04-12 2018-12-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Converter and power converter using it
KR102208248B1 (en) * 2016-04-12 2021-01-26 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Converter and power conversion device using the same
JPWO2017179112A1 (en) * 2016-04-12 2018-11-22 東芝三菱電機産業システム株式会社 Converter and power conversion device using the same
CN109075719B (en) * 2016-04-12 2021-02-19 东芝三菱电机产业系统株式会社 Converter and power conversion device using same
CN109075719A (en) * 2016-04-12 2018-12-21 东芝三菱电机产业系统株式会社 Converter and the power inverter for using the converter
WO2017179112A1 (en) * 2016-04-12 2017-10-19 東芝三菱電機産業システム株式会社 Converter and power conversion device using same
US10630195B2 (en) 2016-04-12 2020-04-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Converter and power conversion device using same
CN106208763A (en) * 2016-08-30 2016-12-07 成都英格瑞德电气有限公司 A kind of rectification circuit supporting warm connection function
JP2019531689A (en) * 2016-11-08 2019-10-31 日産自動車株式会社 Method for controlling a three-phase rectifier for an on-vehicle charging device of an electric or hybrid vehicle
JP2019531688A (en) * 2016-11-10 2019-10-31 日産自動車株式会社 Method for controlling a three-phase rectifier for an on-vehicle charging device of an electric or hybrid vehicle
CN109889058A (en) * 2019-02-28 2019-06-14 中国第一汽车股份有限公司 A current sharing busbar for inverters of new energy vehicles
WO2020194407A1 (en) * 2019-03-22 2020-10-01 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner
JPWO2020194407A1 (en) * 2019-03-22 2021-11-18 日立ジョンソンコントロールズ空調株式会社 Power converter and air conditioner
JP7054756B2 (en) 2019-03-22 2022-04-14 日立ジョンソンコントロールズ空調株式会社 Power converter and air conditioner

Similar Documents

Publication Publication Date Title
JP2008022625A (en) AC-DC converter
JP6191830B2 (en) Power conversion system
JP5762617B2 (en) DC / DC converter
KR100764779B1 (en) DC power supply
JP5066522B2 (en) Apparatus and method for UPS operation to balance a DC system
TWI373900B (en) High efficiency charging circuit and power supplying system
CN109314466B (en) Parallel power supply device
JP5254357B2 (en) Power converter
WO2016075996A1 (en) Power conversion device
WO2014057883A1 (en) Direct power conversion device and method for controlling direct power conversion device
US9419542B2 (en) Inverter device
US9197126B2 (en) Power converting apparatus
JP2009017720A (en) Power converter
WO2013136378A1 (en) Power conversion apparatus
JP6065753B2 (en) DC / DC converter and battery charge / discharge device
US20080157598A1 (en) Power converting apparatus
WO2015052743A1 (en) Electrical power converter
JP3947492B2 (en) Uninterruptible power system
JP5950970B2 (en) Power converter
JP2014107935A (en) Control method of direct power conversion device
JP5400956B2 (en) Power converter
US20230076369A1 (en) Unidirectional power converters with power factor correction circuits controlled using adjustable deadtime
JP5190683B2 (en) AC power supply
JP5748804B2 (en) Power converter
JP5800125B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20081215

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091214