[go: up one dir, main page]

JP2008017612A - Split core for low frequency motors - Google Patents

Split core for low frequency motors Download PDF

Info

Publication number
JP2008017612A
JP2008017612A JP2006185843A JP2006185843A JP2008017612A JP 2008017612 A JP2008017612 A JP 2008017612A JP 2006185843 A JP2006185843 A JP 2006185843A JP 2006185843 A JP2006185843 A JP 2006185843A JP 2008017612 A JP2008017612 A JP 2008017612A
Authority
JP
Japan
Prior art keywords
steel sheet
split core
less
motor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006185843A
Other languages
Japanese (ja)
Inventor
Takashi Mogi
尚 茂木
Kenji Hashizume
健次 橋爪
Hideyori Minematsu
英資 峰松
Tadaharu Onishi
忠治 大西
Shinichi Yoshida
信一 吉田
Mitsuhiro Nitobe
光弘 二藤部
Shigeru Sugiyama
繁 椙山
Yoshitaka Yoshinari
良孝 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Steel Corp filed Critical Hitachi Ltd
Priority to JP2006185843A priority Critical patent/JP2008017612A/en
Publication of JP2008017612A publication Critical patent/JP2008017612A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】従来の電磁鋼板は50Hz等の商用周波数における鉄損を大きく低減することを目的に開発されており、圧延機駆動用電動機としては回転数が100rpmで、鋼板に流れる磁束の周波数としては1−40Hzとかなり小さく、最適化されていないので、電動機効率の向上のため、ヒステリシス損失低減を図った電磁鋼板で形成した分割コアを提供する。
【解決手段】Siを2.0質量%以上2.8質量%以下含有し、平均結晶粒径が15mm以上50mm未満の方向性電磁鋼板を加工した分割コアからなり、かつ分割コアのティース部に鋼板と熱膨張係数の異なる材料を当接させて鋼板に張力を付与した低周波電動機用分割コア。
【選択図】図1
A conventional electromagnetic steel sheet has been developed for the purpose of greatly reducing iron loss at a commercial frequency such as 50 Hz. As a motor for driving a rolling mill, the rotation speed is 100 rpm, and the frequency of magnetic flux flowing through the steel sheet is as follows. Since it is as small as 1-40 Hz and is not optimized, a split core formed of a magnetic steel sheet designed to reduce hysteresis loss is provided to improve motor efficiency.
SOLUTION: It comprises a split core obtained by processing a grain-oriented electrical steel sheet containing Si of 2.0% by mass or more and 2.8% by mass or less and having an average crystal grain size of 15 mm or more and less than 50 mm. A split core for a low-frequency electric motor in which a material having a different thermal expansion coefficient from that of a steel plate is brought into contact with each other to apply tension to the steel plate.
[Selection] Figure 1

Description

本発明は高効率化を図った電動機用分割コアに関し、詳しくはヒステリシス損失を低減した電磁鋼板、即ち方向性電磁鋼板を用いた低周波電動機用分割コアで、ティース部に張力を付与し鉄損を改善することに関するものである。   The present invention relates to a split core for an electric motor that achieves high efficiency, and more specifically, a split core for a low-frequency motor using a magnetic steel sheet with reduced hysteresis loss, that is, a directional magnetic steel sheet. It is about improving.

従来の交流電動機は一般に一定速度運転の用途に用いられており、かつ定格回転速度が比較的高いため、大型機の場合でも電動機の体格がそれ程大きくなく、重量的にも軽い。一方、圧延機駆動用の大型電動機としては従来から殆ど直流電動機が使用されており、例えば6.5MW/100rpmと一般に回転速度が低く、例えば225%と常用過負荷耐量も大きい。その上、例えば分塊、厚板ミルでは双電動機駆動タイプを採用するため据付スペースの制限が厳しく、また、連続熱間仕上圧延機では狭いスペースに1スタンド10〜15MWの圧延機が5〜7スタンド並び、従ってこれらを駆動する大型電動機群も狭いスペースに集中配置される。   Conventional AC motors are generally used for constant speed operation and have a relatively high rated rotational speed. Therefore, even in the case of a large machine, the size of the motor is not so large and light in weight. On the other hand, as a large-sized motor for driving a rolling mill, a DC motor has been conventionally used. For example, the rotational speed is generally low, for example, 6.5 MW / 100 rpm, and for example, 225%, and the normal overload resistance is large. In addition, for example, the split and thick plate mill employs a twin-motor drive type, so the installation space is severely limited. On the other hand, the continuous hot finishing mill has 5 to 7 rolling mills with one stand of 10 to 15 MW in a narrow space. The stand arrangements, and thus the large motor groups that drive them, are also concentrated in a narrow space.

最近急速に進展してきた誘導電動機、同期電動機等の交流可変速電動機が、圧延機駆動用主電動機としての直流電動機にとって代わろうとしている。この場合、直流電動機並みの効率、省スペース構造等の条件を満たすか、少なくとも同等機能を付与しなければならない。   Recently, AC variable speed motors such as induction motors and synchronous motors, which have been rapidly developed, are going to replace DC motors as main motors for driving rolling mills. In this case, it is necessary to satisfy the same efficiency as a DC motor, a space-saving structure, or at least an equivalent function.

圧延機駆動用として従来の直流電動機にとって代る交流可変速電動機には、従来の直流電動機が具備してきた据付、分解上の条件、高効率、高度制御性等に対し、少なくとも同等機能を付与する必要がある点に着目がなされており、この中で、特に高効率化のニーズが高まりつつある。   An AC variable speed motor that replaces a conventional DC motor for driving a rolling mill is provided with at least an equivalent function for installation, disassembly conditions, high efficiency, high controllability, etc. that the conventional DC motor has. Attention has been focused on the necessity, and in this, the need for particularly high efficiency is increasing.

特に、高効率化を目指した分割コアで、ティース部に張力を付与した先行技術として以下のものがある。   In particular, there are the following as prior arts in which a tension is applied to the teeth portion in a split core aiming at high efficiency.

特開平2005−51941号公報には、その図1に示されるように、ヨーク部の根本部分に突起形状をつくり、突起部を隙間なく当接することにより、ヨーク部とヨーク部間にギャップを生じさせ、これにより、主に磁束がとおる部分に圧縮応力を生じさせないようにすることができるので、圧縮応力による鉄損劣化を防止することができるという技術が開示されている。   In Japanese Patent Application Laid-Open No. 2005-51941, as shown in FIG. 1, a protrusion is formed at the base portion of the yoke portion, and a gap is formed between the yoke portion and the yoke portion by abutting the protrusion portion without a gap. Thus, it is possible to prevent compressive stress from being generated mainly in the portion where the magnetic flux passes, and thus a technique is disclosed in which iron loss deterioration due to compressive stress can be prevented.

特開平2004−99998号公報には、鋼板表面に、金属元素Cr、Ni、Cu、Znなどをメッキすることにより、鋼板との膨張係数の違いにより、鋼板表面に引張張力を与える技術が開示されている。
しかし、これら先行技術には、低周波数においてさらに鉄損を改善させることは開示されていない。
Japanese Patent Application Laid-Open No. 2004-99998 discloses a technique for applying a tensile tension to a steel sheet surface by plating the metal element surface with a metal element Cr, Ni, Cu, Zn or the like due to a difference in expansion coefficient from the steel sheet. ing.
However, these prior arts do not disclose further improving the iron loss at a low frequency.

なお、ここでいう分割コアとは、ヨーク部とティース部に分割した方向性電磁鋼板を使用し、その鋼板を組み合わせて磁束密度がとおる方向にそろえるもので、分割コア自体は、特開平7−67272号公報に開示されている。   The divided core here is a directional electromagnetic steel sheet divided into a yoke part and a tooth part, and the steel sheets are aligned in the direction in which the magnetic flux density is set. No. 67272.

特開平2005−51941号公報Japanese Patent Laid-Open No. 2005-51941 特開平2004−99998号公報JP-A-2004-99998 特開平7−67272号公報JP-A-7-67272

従来の電磁鋼板は50Hz等の商用周波数における鉄損を低減することを主眼として開発されている。しかしながら、上記圧延機駆動用の大型電動機としては回転数を100rpm程度とするため、鋼板中に励磁される磁束の周波数としては10−40Hzとかなり小さくなる。このような状況下において、高効率の観点から商用周波数よりも低周波数において、従来品より低鉄損である電磁鋼板が必要とされている。
本発明では、電動機効率の向上のため、渦電流損失よりもヒステリシス損失を低減した電磁鋼板で、分割コアを形成した圧延機駆動電動機用分割コアを提供することが課題である。
Conventional electromagnetic steel sheets have been developed mainly for reducing iron loss at commercial frequencies such as 50 Hz. However, since the rotation speed of the large-sized electric motor for driving the rolling mill is about 100 rpm, the frequency of magnetic flux excited in the steel sheet is considerably small as 10-40 Hz. Under such circumstances, there is a need for an electrical steel sheet having a lower iron loss than conventional products at a frequency lower than the commercial frequency from the viewpoint of high efficiency.
An object of the present invention is to provide a split core for a rolling mill drive motor in which a split core is formed of a magnetic steel sheet having a hysteresis loss reduced rather than an eddy current loss in order to improve motor efficiency.

本発明の具体的な手段は以下の通りである。   Specific means of the present invention are as follows.

(1)Siを2.0質量%以上2.8質量%以下含有し、二次再結晶の平均結晶粒径が15mm以上、50mm未満の方向性電磁鋼板を加工した分割コアからなり、かつ分割コアのティース部側面に鋼板と熱膨張係数の異なる材料を当接させて鋼板に張力を付与したことを特徴とする低周波電動機用分割コア。   (1) It is composed of a split core obtained by processing a grain-oriented electrical steel sheet containing 2.0% by mass or more and 2.8% by mass or less of Si and having an average crystal grain size of secondary recrystallization of 15 mm or more and less than 50 mm. A split core for a low-frequency electric motor, wherein a material having a different thermal expansion coefficient from that of a steel plate is brought into contact with a side surface of a tooth portion of the core to apply tension to the steel plate.

(2)前記熱膨張係数の異なる材料が、セラミックであることを特徴とする上記(1)記載の低周波電動機用分割コア。   (2) The split core for a low-frequency motor according to (1), wherein the materials having different thermal expansion coefficients are ceramics.

(3)前記張力の範囲が0.5kg/mm2以上1.5kg/mm2未満であることを特徴とする上記(1)または(2)記載の低周波電動機用分割コア。 (3) The split core for a low-frequency motor according to (1) or (2) above, wherein the tension range is 0.5 kg / mm 2 or more and less than 1.5 kg / mm 2 .

なお、ここで言う方向性電磁鋼板とは、圧延方向Lとその直角方向Cの鉄損比WL/Cが0.6以下のものを指す。 The grain-oriented electrical steel sheet as used herein refers to a steel sheet having an iron loss ratio WL / C of 0.6 or less in the rolling direction L and the direction C perpendicular thereto.

すでに述べたように、電動機の効率の向上、例えば、厚板ミルでの出力トルクの増大、連続熱間仕上圧延機周辺の狭小スペースに対応するための小型化を図るには、ティースやヨークでの鉄損を一層低減しなければならない。本発明者は、これら鉄鋼産業の工場内に用いられる圧延機駆動電動機等の回転数が、例えば100rpmと低く、従来の50−60Hzの商用周波数で低鉄損特性を得てきた電磁鋼板とは想定される使用条件が全く異なることに基づいて本発明を完成させたものである。   As already mentioned, to improve the efficiency of the motor, for example, to increase the output torque in the thick plate mill, and to reduce the size to accommodate the narrow space around the continuous hot finishing mill, Iron loss must be further reduced. The inventor of the present invention is a magnetic steel sheet having a low iron loss characteristic at a commercial frequency of 50-60 Hz, which has a low rotational speed of, for example, 100 rpm, such as a rolling mill drive motor used in the steel industry factory. The present invention has been completed on the basis that the assumed use conditions are completely different.

本発明によれば、Si含有量が2.0質量%以上2.8質量%以下、二次再結晶粒径が15mm以上50mm未満である方向性電磁鋼板を用い、ティース長手方向に0.5kg/mm2以上1.5kg/mm2未満である張力を付加することで、従来より1%程度高効率の1〜20MW級圧延機駆動電動機分割コアを得ることができた。 According to the present invention, a grain-oriented electrical steel sheet having a Si content of 2.0% by mass or more and 2.8% by mass or less and a secondary recrystallized grain size of 15 mm or more and less than 50 mm is used, and 0.5 kg in the longitudinal direction of the teeth. / mm 2 or more 1.5 kg / mm 2 lower than a is to add tension, could be obtained 1~20MW class mill drive motor division cores of conventionally about 1% efficiency.

まず、本発明の対象機器においては、商用周波数(50、60Hz)よりも、周波数が10〜40Hzでの領域で使用することが多いため、むしろ低周波の鉄損、とりわけヒステリシス損失を評価指標として本対象機種用の電磁鋼板を開発することが重要と考えた。   First, in the target device of the present invention, since it is often used in the region where the frequency is 10 to 40 Hz rather than the commercial frequency (50, 60 Hz), rather, low frequency iron loss, especially hysteresis loss is used as an evaluation index. We thought it important to develop electrical steel sheets for this target model.

従来、電動機を高効率化する過程では、商用周波数の鉄損低減が主であったが、無方向性電磁鋼板の特性ではこれ以上の効率改善は難しくなりつつある。そこでよりヒステリシス損失の低い方向性電磁鋼板について検討した。   Conventionally, in the process of improving the efficiency of an electric motor, iron loss at commercial frequencies has been mainly reduced. However, further improvement in efficiency is becoming difficult due to the characteristics of the non-oriented electrical steel sheet. Therefore, a grain-oriented electrical steel sheet with lower hysteresis loss was studied.

以下、請求項1〜3に係る本発明の限定理由について説明する。   Hereinafter, the reasons for limitation of the present invention according to claims 1 to 3 will be described.

(1)Siを2.0%〜2.8%に限定した理由
図1に方向性電磁鋼板のSi含有量とヒステリシス損失の関係を示した。サンプル形状は60mm幅×300mm長×0.35mmで、800A/mの磁束密度B8が1.90−1.91Tの試料をプロットした。印加する磁束密度は1.7Tで、0.5Hz以下のゆっくりした変化でBHループを描き、そのループが囲んだ面積からヒステリシス損失を計算した。
(1) Reason for limiting Si to 2.0% to 2.8% FIG. 1 shows the relationship between the Si content of the grain-oriented electrical steel sheet and hysteresis loss. The sample shape was 60 mm wide × 300 mm long × 0.35 mm, and a sample with a magnetic flux density B8 of 1.90 to 1.91 T at 800 A / m was plotted. The applied magnetic flux density was 1.7 T, and a BH loop was drawn with a slow change of 0.5 Hz or less, and the hysteresis loss was calculated from the area surrounded by the loop.

鋼板に張力を加えない場合にはSi量によってヒステリシス損失の顕著な変化は見られないが、圧延方向に1.2kg/mm2の張力を加えるとSi量が低いところでヒステリシス損失が低減することが実験により判明した。この結果を図1に示す。この低減には磁歪定数が関与していると考えられる。磁歪定数が大きくなるほど応力が磁気特性に及ぼす影響は大きくなる。例えば、磁歪定数が0に近い6.5%Siでは張力印加による鉄損の低減が見られないことが経験的にも知られている。 When no tension is applied to the steel sheet, no significant change in hysteresis loss is observed depending on the amount of Si, but when a tension of 1.2 kg / mm 2 is applied in the rolling direction, the hysteresis loss may be reduced when the Si amount is low. It became clear by experiment. The result is shown in FIG. It is considered that the magnetostriction constant is involved in this reduction. The greater the magnetostriction constant, the greater the effect of stress on magnetic properties. For example, it is also empirically known that iron loss is not reduced by applying tension when the magnetostriction constant is 6.5% Si, which is close to zero.

したがって、本発明においてはヒステリシス損失の低減効果を得るために、通常の方向性電磁鋼板における約3.2%のSi量に対し、張力印加効果を見込んで、圧延方向のヒステリシス損失が10%低減する磁歪定数となる2.8%以下にSi含有量を規定した。Siが2.0%未満だとヒステリシス損低減の効果がないので下限は2.0%以上とした。   Therefore, in the present invention, in order to obtain the effect of reducing the hysteresis loss, the hysteresis loss in the rolling direction is reduced by 10% in anticipation of the tension application effect with respect to the Si amount of about 3.2% in the normal grain-oriented electrical steel sheet. The Si content was regulated to 2.8% or less, which is the magnetostriction constant. If Si is less than 2.0%, there is no effect of reducing hysteresis loss, so the lower limit was made 2.0% or more.

(2)平均結晶粒径を15mm以上50mm未満に限定した理由
B8が1.90から1.91Tの試料で、圧延方向のヒステリシス損失と2次再結晶平均粒径の関係を図2に示した。2次再結晶平均粒径は、試料中に引いた直線と結晶粒界との交差点の数を数え、直線距離から交差点数を割って結晶粒径を求めた。
(2) Reason why the average crystal grain size is limited to 15 mm or more and less than 50 mm B8 is a sample of 1.90 to 1.91 T, and the relationship between the hysteresis loss in the rolling direction and the secondary recrystallization average grain size is shown in FIG. . The secondary recrystallization average particle size was obtained by counting the number of intersections between the straight line drawn in the sample and the crystal grain boundary, and dividing the number of intersections from the linear distance.

ヒステリシス損失は2次再結晶平均粒径が大きくなるにつれ減少した。これは結晶粒界が少なくなるため、磁壁移動が妨げられず、磁化し易くなるためと考えられる。一方、渦電流損失は結晶粒径が大きくなるほど増加する。これは磁壁間隔が大きくなるため、交番磁界印加時における単位時間当たりの磁壁の移動距離が長くなり、磁壁の移動速度が上がり、渦電流損失が大きくなったものと考えられる。   Hysteresis loss decreased as the secondary recrystallization average grain size increased. This is presumably because the domain boundary is reduced, the domain wall movement is not hindered, and the magnetization is easily performed. On the other hand, eddy current loss increases as the crystal grain size increases. This is considered to be because the domain wall spacing increases, the domain wall travel distance per unit time when an alternating magnetic field is applied increases, the domain wall travel speed increases, and eddy current loss increases.

ヒステリシス損失の低減のみを考慮する上では、2次再結晶平均粒径を大きくする方が良い。ここで2次再結晶平均粒径を15mm以上50mm未満に限定した理由は、従来の大型発電機に用いられる方向性電磁鋼板の2次再結晶平均粒径が約6mmであり、このヒステリシス損失を20%低減するためには15mm以上50mm未満、好ましくは15mm以上20mm未満にすることが必要となるためである。   In considering only the reduction of hysteresis loss, it is better to increase the secondary recrystallization average grain size. The reason for limiting the secondary recrystallization average particle size to 15 mm or more and less than 50 mm is that the grain size of the grain-oriented electrical steel sheet used in the conventional large generator is about 6 mm, and this hysteresis loss is reduced. This is because in order to reduce by 20%, it is necessary to make it 15 mm or more and less than 50 mm, preferably 15 mm or more and less than 20 mm.

(3)引張張力を0.5以上1.5kg/mm2未満に限定した理由
上に記した効果は圧延方向に着目したヒステリシス損失に及ぼす影響である。しかしながら、大型電動機のティース部分に磁束が流れる方向は圧延方向に対して垂直になる。圧延方向に垂直な方向では、ヒステリシス損失の絶対値が圧延方向より2倍程度大きく、張力による下がり代はむしろ圧延方向より大きい。したがって、圧延方向に垂直な方向に張力を付加した場合の鉄損低減効果は圧延方向より大きい。
(3) Reason why the tensile tension is limited to 0.5 or more and less than 1.5 kg / mm 2 The effect described above is an influence on hysteresis loss focusing on the rolling direction. However, the direction in which the magnetic flux flows in the teeth portion of the large electric motor is perpendicular to the rolling direction. In the direction perpendicular to the rolling direction, the absolute value of the hysteresis loss is about twice as large as that in the rolling direction, and the lowering margin due to tension is rather larger than that in the rolling direction. Therefore, the iron loss reduction effect when tension is applied in the direction perpendicular to the rolling direction is greater than in the rolling direction.

電磁鋼板の幅は約1mであり、外径がこれ以上であれば、分割したブロックを組み合わせてコアを形成する。また、コアに流れる磁束の主体は周方向であるため、通常方向性電磁鋼板の圧延方向を周方向に配置して分割コアを形成する。しかしながら、この時コアのティース部分は磁束の方向と圧延方向が垂直になり好ましい磁気特性とはなっていない。   If the width of the magnetic steel sheet is about 1 m and the outer diameter is larger than this, the core is formed by combining the divided blocks. Moreover, since the main body of the magnetic flux which flows into a core is a circumferential direction, the rolling direction of a normal-oriented electrical steel sheet is arrange | positioned in the circumferential direction, and a split core is formed. However, at this time, the tooth portion of the core does not have desirable magnetic characteristics because the direction of magnetic flux is perpendicular to the rolling direction.

そこで、ティース方向の磁束と同じ方向に、0.5kg/mm2以上1.5kg/mm2未満の張力を加えるとティース部分の鉄損が低減する。0.5kg/mm2以上とした理由は、ヒステリシス損がほぼ20%低減するからである。1.5kg/mm2未満にした理由は、この領域でほぼ鉄損の低減が飽和するためである。 Therefore, when a tension of 0.5 kg / mm 2 or more and less than 1.5 kg / mm 2 is applied in the same direction as the magnetic flux in the teeth direction, the iron loss of the tooth portion is reduced. The reason for setting it to 0.5 kg / mm 2 or more is that the hysteresis loss is reduced by almost 20%. The reason why it is less than 1.5 kg / mm 2 is that the reduction of iron loss is almost saturated in this region.

次に、ティース部に引張張力を付与する手段について説明する。   Next, means for applying a tensile tension to the teeth portion will be described.

図3に、具体的に引張張力を付与するための構造を示した。あらかじめティース1を数百度に暖めた状態でその両脇をセラミック板2で押さえ、歯部の長手方向はくさび3で固定した。歯部が常温に戻ると鋼板は収縮し、一方、セラミック板はほとんど収縮せず、かつ固定子巻線4によりたわまないため、鋼板に張力が印加される。この張力により鉄損がさらに低減出来ることが判明した。ティース方向の外部張力は高温測定用の歪ゲージを用いてヤング率から求めた。   FIG. 3 shows a specific structure for applying tensile tension. In a state where the teeth 1 were heated to several hundred degrees in advance, both sides thereof were pressed by the ceramic plate 2, and the longitudinal direction of the tooth portion was fixed by the wedge 3. When the tooth portion returns to normal temperature, the steel plate contracts, while the ceramic plate hardly contracts and does not bend by the stator winding 4, so that tension is applied to the steel plate. It was found that the iron loss can be further reduced by this tension. The external tension in the tooth direction was obtained from Young's modulus using a strain gauge for high temperature measurement.

ここで、ティース部側面に当接させる材料としては、セラミックスに限らず電磁鋼板よりも熱膨張係数の小さいものであればよい。また、セラミックスとしては具体的には炭化ケイ素(炭化珪素)、窒化ケイ素(窒化珪素)、またはアルミナ系のものが好ましい。   Here, the material to be brought into contact with the side surface of the tooth portion is not limited to ceramics, and any material having a smaller thermal expansion coefficient than that of the electromagnetic steel sheet may be used. Further, specifically, ceramics are preferably silicon carbide (silicon carbide), silicon nitride (silicon nitride), or alumina.

以下、実施例に基づき本発明を説明する。   Hereinafter, the present invention will be described based on examples.

C:0.06%、Si:2.4%、Mn:0.1%、S:0.01%、N:0.01%、Sn:0.03%の成分からなる鋼を用い、インヒビターとしてAlNを用いるプロセスにおいて、本実施例では電磁鋼板の結晶方位をそろえ、かつ粒成長を促進するため、圧延方向に磁化容易軸をもたない結晶粒の成長を抑制する析出物であるインヒビターを以下の工程条件で強化した。   C: 0.06%, Si: 2.4%, Mn: 0.1%, S: 0.01%, N: 0.01%, Sn: 0.03% Steel is used as an inhibitor. In the process using AlN as an inhibitor, in this example, in order to align the crystal orientation of the electrical steel sheet and promote grain growth, an inhibitor that is a precipitate that suppresses the growth of crystal grains having no easy axis in the rolling direction is used. It strengthened with the following process conditions.

スラブの段階でSi=2.4%、N=0.0050〜0.0100%、酸可溶性Al=0.02〜0.03%に規定した状態で、スラブを熱延し、熱延終了時に550℃まで70℃/秒で冷却し、1.6mm厚の熱延板にした。この後、熱延板を1100℃で30秒焼鈍し、次いで35℃/秒で冷却、酸洗し、さらに板厚0.30mmまで冷延した。脱炭焼鈍を830℃×70秒の間、露点65℃の湿水素、窒素雰囲気の中で行った。引き続き窒化処理を750℃×30秒間、乾窒素、水素混合ガスにアンモニアを添加した雰囲気ガス中で行い、窒化後の鋼板の窒化量を0.02%にした。その後MgOとTiO2を主成分とするスラリーを塗布乾燥した後、1200℃×20時間の仕上焼鈍を行った。 At the stage of slab, Si = 2.4%, N = 0.050 to 0.0100%, acid-soluble Al = 0.02 to 0.03%, and the slab is hot rolled. The plate was cooled to 550 ° C. at 70 ° C./second to obtain a hot-rolled sheet having a thickness of 1.6 mm. Thereafter, the hot-rolled sheet was annealed at 1100 ° C. for 30 seconds, then cooled and pickled at 35 ° C./second, and further cold-rolled to a sheet thickness of 0.30 mm. Decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere with a dew point of 65 ° C. for 830 ° C. × 70 seconds. Subsequently, nitriding was performed at 750 ° C. for 30 seconds in an atmosphere gas in which ammonia was added to dry nitrogen and hydrogen mixed gas, so that the nitriding amount of the steel sheet after nitriding was 0.02%. Thereafter, a slurry mainly composed of MgO and TiO 2 was applied and dried, and then finish annealing was performed at 1200 ° C. for 20 hours.

得られた二次再結晶粒径は16.4mmであった。製造した電磁鋼板を大型電動機用分割片に打抜き、積層してブロックを造った。ティース方向に張力を印加するためセラミックの板を図3のように焼きばめをしてはめ込んだところ、歪ゲージから得られた伸びからヤング率により張力を算出した結果が1.2kg/mm2であった。 The obtained secondary recrystallized grain size was 16.4 mm. The manufactured electrical steel sheet was punched into large electric motor pieces and laminated to make a block. When a ceramic plate was fitted by shrink fitting as shown in FIG. 3 in order to apply tension in the tooth direction, the result of calculating the tension by Young's modulus from the elongation obtained from the strain gauge was 1.2 kg / mm 2. Met.

Figure 2008017612
Figure 2008017612

上記の電磁鋼板で出力9,000kW、極数:6極、18分割の誘導電動機を製造し、試験を行った。このときの誘導電動機の効率は一般的な材料を用いた場合、96.3%に対し、本発明の分割コアでは97.8%であり、全鉄損は20%程度に減少した。   An induction motor having an output of 9,000 kW, the number of poles: 6 poles, and 18 divisions was manufactured and tested using the above-described electromagnetic steel sheet. The efficiency of the induction motor at this time was 97.8% in the split core of the present invention compared to 96.3% when a general material was used, and the total iron loss was reduced to about 20%.

C:0.05%、Si:2.2%、Mn:0.1%、S:0.01%、N:0.008%、Sn:0.05%の成分からなる鋼を用い、インヒビターとしてAlNを用いるプロセスにおいて、本実施例では結晶粒径を大きくするため、以下の工程条件を適用した。   C: 0.05%, Si: 2.2%, Mn: 0.1%, S: 0.01%, N: 0.008%, Sn: 0.05% of steel, and inhibitor In this example, in order to increase the crystal grain size, the following process conditions were applied.

上記鋼を用いた電磁鋼スラブを仕上熱間圧延終了後、急速冷却して低温巻取りし、1.6mm厚の熱延板にした。巻き取りコイルを短時間内に水冷すると、熱延板の結晶粒に炭化物が微細に析出し、また固溶Cも増えた。この後、熱延板を1100℃で30秒焼鈍し、次いで35℃/秒で冷却、酸洗した。予備冷延では、微細炭化物が転位の移動を妨げ、スラブ加熱時の粗大化粒に起因する熱延板の伸延粒にも加工歪が多く蓄積され、インヒビター析出焼鈍で伸延粒は一次再結晶して、細かな整粒となった。またインヒビターは微細に分散析出され、さらに板厚0.30mmまで最終冷延した。脱炭焼鈍を830℃×70秒の間、露点65℃の湿水素、窒素雰囲気の中で行った。引き続き窒化処理を750℃×30秒間、乾窒素、水素混合ガスにアンモニアを添加した雰囲気ガス中で行い、窒化後の鋼板の窒化量を0.02%にした。その後MgOとTiO2を主成分とするスラリーを塗布乾燥した後、1200℃×20時間の仕上焼鈍を行った。 An electromagnetic steel slab using the above steel was rapidly cooled after completion of finish hot rolling, and wound at a low temperature to obtain a 1.6 mm thick hot rolled sheet. When the winding coil was water-cooled within a short time, carbides were finely deposited on the crystal grains of the hot-rolled sheet, and solid solution C also increased. Thereafter, the hot-rolled sheet was annealed at 1100 ° C. for 30 seconds, then cooled at 35 ° C./second and pickled. In pre-cold rolling, fine carbides hinder the movement of dislocations, and a large amount of processing strain accumulates in the hot-rolled steel sheet due to coarsened grains during slab heating. It became fine sized. The inhibitor was finely dispersed and precipitated, and further cold rolled to a plate thickness of 0.30 mm. Decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere with a dew point of 65 ° C. for 830 ° C. × 70 seconds. Subsequently, nitriding was performed at 750 ° C. for 30 seconds in an atmosphere gas in which ammonia was added to dry nitrogen and hydrogen mixed gas, so that the nitriding amount of the steel sheet after nitriding was 0.02%. Thereafter, a slurry mainly composed of MgO and TiO 2 was applied and dried, and then finish annealing was performed at 1200 ° C. for 20 hours.

この工程で2次再結晶が良好になり、粒径は17.0mmになった。製造した電磁鋼板を大型電動機用分割片に打抜き、積層してブロックを造った。ティース方向に張力を印加するためセラミックの板を図3のように焼きばめをしてはめ込んだところ、歪ゲージから得られた伸びからヤング率により応力を算出した結果が1.0kg/mm2になった。 In this step, secondary recrystallization was good and the particle size was 17.0 mm. The manufactured electrical steel sheet was punched into large electric motor pieces and laminated to make a block. When a ceramic plate was fitted by fitting as shown in FIG. 3 in order to apply tension in the tooth direction, the stress was calculated from Young's modulus from the elongation obtained from the strain gauge, and the result was 1.0 kg / mm 2. Became.

Figure 2008017612
Figure 2008017612

上記の電磁鋼板で出力4,000kW、極数:6極、9分割の誘導電動機を製造し、試験を行った。このときの誘導電動機の効率は一般的な材料を用いた場合、96.1%に対し、本発明の分割コアでは97.1%であり、全鉄損は19%程度に減少した。   An induction motor having an output of 4,000 kW, the number of poles: 6 poles, and 9 divisions was manufactured from the above magnetic steel sheet and tested. The efficiency of the induction motor at this time was 97.1% for the split core of the present invention compared to 96.1% when a general material was used, and the total iron loss was reduced to about 19%.

C:0.06%、Si:2.1%、Mn:0.1%、S:0.01%、Al:0.03%、N:0.008%、Sn:0.05%の成分からなる鋼を用い、インヒビターとしてAlN、CuS、MnSを用いるプロセスにおいて、本実施例では結晶粒径を大きくするため、以下の工程条件を適用した。   C: 0.06%, Si: 2.1%, Mn: 0.1%, S: 0.01%, Al: 0.03%, N: 0.008%, Sn: 0.05% In this example, the following process conditions were applied to increase the crystal grain size in a process using AlN, CuS, and MnS as inhibitors.

上記鋼を用いた電磁鋼スラブを熱間圧延し、1.6mm厚の熱延板にした。この後、熱延板焼鈍の昇温段階でSi34の分解を促進させた後、一次均熱1000℃以上の時間を20〜120秒保持することによりCuxSを十分に溶体化させた。その後、一次冷却および所定の二次均熱を行った後の二次冷却速度を20〜100℃/秒の除冷却にコントローすることによりSasCuxSを70〜140ppm微細に析出させ、SasMnS/SasCuxS比を0.3〜2.5にし、冷却、酸洗した。さらに板厚0.30mmまで最終冷延した。脱炭焼鈍を830℃×70秒の間、露点65℃の湿水素、窒素雰囲気の中で行った。引き続き窒化処理を750℃×30秒間、乾窒素、水素混合ガスにアンモニアを添加した雰囲気ガス中で行い、窒化後の鋼板の窒化量を0.02%にした。その後MgOとTiO2を主成分とするスラリーを塗布乾燥した後、1200℃×20時間の仕上焼鈍を行った。この時、平均粒径が18.3mmになった。 An electromagnetic steel slab using the above steel was hot-rolled into a 1.6 mm thick hot rolled sheet. Then, after promoting the decomposition of Si 3 N 4 in the temperature rising stage of the hot-rolled sheet annealing, CuxS was sufficiently solutionized by holding the primary soaking time of 1000 ° C. or more for 20 to 120 seconds. Thereafter, by controlling the secondary cooling rate after performing primary cooling and predetermined secondary soaking to 20 to 100 ° C./second decooling, SasCuxS is precipitated finely by 70 to 140 ppm, and the SasMnS / SasCuxS ratio is determined. 0.3-2.5, cooled and pickled. Further, the sheet was finally cold-rolled to a thickness of 0.30 mm. Decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere with a dew point of 65 ° C. for 830 ° C. × 70 seconds. Subsequently, nitriding was performed at 750 ° C. for 30 seconds in an atmosphere gas in which ammonia was added to dry nitrogen and hydrogen mixed gas, so that the nitriding amount of the steel sheet after nitriding was 0.02%. Thereafter, a slurry mainly composed of MgO and TiO 2 was applied and dried, and then finish annealing was performed at 1200 ° C. for 20 hours. At this time, the average particle size was 18.3 mm.

製造した電磁鋼板を大型電動機用分割片に打抜き、積層してブロックを造った。ティース方向に張力を印加するためセラミックの板を図3のように焼きばめをしてはめ込んだところ、歪ゲージから得られた伸びからヤング率により応力を算出した結果が0.9kg/mm2になった。 The manufactured electrical steel sheet was punched into large electric motor pieces and laminated to make a block. When a ceramic plate was fitted by fitting as shown in FIG. 3 in order to apply a tension in the tooth direction, the stress was calculated from Young's modulus from the elongation obtained from the strain gauge, and the result was 0.9 kg / mm 2. Became.

Figure 2008017612
Figure 2008017612

上記の電磁鋼板で出力15,000kW、極数:4極、18分割の誘導電動機を製造し、試験を行った。このときの誘導電動機の効率は一般的な材料を用いた場合、96.3%に対し、本発明の分割コアでは98.3%であり、全鉄損は19%程度に減少した。   An induction motor having an output of 15,000 kW, the number of poles: 4 poles, and 18 divisions was manufactured from the above-described electromagnetic steel sheet and tested. The efficiency of the induction motor at this time was 96.3% in the case of using a general material, whereas it was 98.3% in the split core of the present invention, and the total iron loss was reduced to about 19%.

以上のように、本発明によれば、全鉄損を低減し、効率の高い電動機を実現することが出来る。   As described above, according to the present invention, it is possible to reduce the total iron loss and realize an electric motor with high efficiency.

電磁鋼板のSi量とヒステリシス損失を測定した図である。It is the figure which measured Si amount and hysteresis loss of an electromagnetic steel plate. 電磁鋼板の2次再結晶平均粒径と損失を測定した図である。It is the figure which measured the secondary recrystallization average particle diameter and loss of the electrical steel sheet. 本発明の電磁鋼板を用いた分割コアを示した図である。It is the figure which showed the split core using the electromagnetic steel plate of this invention.

符号の説明Explanation of symbols

1 ティース
2 セラミック板
3 くさび
4 固定子巻線
1 Teeth 2 Ceramic plate 3 Wedge 4 Stator winding

Claims (3)

Siを2.0質量%以上2.8質量%以下含有し、二次再結晶の平均結晶粒径が15mm以上50mm未満の方向性電磁鋼板を加工した分割コアからなり、かつ分割コアのティース部側面に鋼板と熱膨張係数の異なる材料を当接させて鋼板に張力を付与したことを特徴とする低周波電動機用分割コア。   It consists of a split core obtained by processing a grain-oriented electrical steel sheet containing Si in an amount of 2.0% by mass to 2.8% by mass and having an average crystal grain size of secondary recrystallization of 15 mm or more and less than 50 mm. A split core for a low-frequency motor, characterized in that a material having a different thermal expansion coefficient from that of a steel plate is brought into contact with a side surface to apply tension to the steel plate. 前記熱膨張係数の異なる材料が、セラミックであることを特徴とする請求項1記載の低周波電動機用分割コア。   The split core for a low-frequency motor according to claim 1, wherein the materials having different thermal expansion coefficients are ceramics. 前記張力の範囲が0.5kg/mm2以上1.5kg/mm2未満であることを特徴とする請求項1または2記載の低周波電動機用分割コア。 The split core for a low-frequency motor according to claim 1 or 2, wherein the tension range is 0.5 kg / mm 2 or more and less than 1.5 kg / mm 2 .
JP2006185843A 2006-07-05 2006-07-05 Split core for low frequency motors Withdrawn JP2008017612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185843A JP2008017612A (en) 2006-07-05 2006-07-05 Split core for low frequency motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185843A JP2008017612A (en) 2006-07-05 2006-07-05 Split core for low frequency motors

Publications (1)

Publication Number Publication Date
JP2008017612A true JP2008017612A (en) 2008-01-24

Family

ID=39074105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185843A Withdrawn JP2008017612A (en) 2006-07-05 2006-07-05 Split core for low frequency motors

Country Status (1)

Country Link
JP (1) JP2008017612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178599A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178599A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP4023183B2 (en) Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
CN104480383B (en) Production method of high-magnetic-induction non-oriented silicon steel with thickness of 0.35mm for high-efficiency motor
JP3305806B2 (en) Manufacturing method of high tensile non-oriented electrical steel sheet
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JPH0472904B2 (en)
JP2013104080A (en) Non-oriented magnetic steel sheet and method for manufacturing the same
JP2000017334A (en) Method for producing grain-oriented and non-oriented electrical steel sheets having low iron loss and high magnetic flux density and continuous annealing equipment
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4507316B2 (en) DC brushless motor
JPH0425346B2 (en)
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JP2008017612A (en) Split core for low frequency motors
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH06228645A (en) Manufacturing method of electrical steel sheet for small static device
KR950002895B1 (en) Ultra-high silicon oriented electrical steel sheet and manufacturing method
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2005187846A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2004104929A (en) Magnetic steel sheet for rotating equipment with a split core shape
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006