[go: up one dir, main page]

JP2008014837A - Radar system and its signal processing method - Google Patents

Radar system and its signal processing method Download PDF

Info

Publication number
JP2008014837A
JP2008014837A JP2006187163A JP2006187163A JP2008014837A JP 2008014837 A JP2008014837 A JP 2008014837A JP 2006187163 A JP2006187163 A JP 2006187163A JP 2006187163 A JP2006187163 A JP 2006187163A JP 2008014837 A JP2008014837 A JP 2008014837A
Authority
JP
Japan
Prior art keywords
velocity
radar
spectrum
echo
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006187163A
Other languages
Japanese (ja)
Inventor
Junichi Horigome
淳一 堀込
Masakazu Wada
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006187163A priority Critical patent/JP2008014837A/en
Publication of JP2008014837A publication Critical patent/JP2008014837A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the performance of topographic echo cancellation processing, and compute a Doppler speed with high precision. <P>SOLUTION: After A/D conversion of a received signal received by an antenna is performed, its quadrature detection is performed. A signal processing part finds speed spectra at each predetermined time duration by converting the quadraturely detected I/Q signals in a time region into a frequency region, by applying FFT processing to them. From the individual speed spectra found at each predetermined time duration, components appearing near zero speed are removed respectively as topographic echoes. The speed spectra from which the topographic echoes have been removed are integrated, and based on the integrated speed spectra the Doppler speed is computed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば、上空の風向風速を観測するウィンドプロファイラ等のドップラレーダに用いられるレーダ装置とその信号処理方法に関する。   The present invention relates to a radar apparatus used in a Doppler radar such as a wind profiler for observing wind direction and wind speed in the sky, and a signal processing method therefor.

晴天乱流エコーを観測するレーダ装置(例えばウィンドプロファイラ等)は、大気乱流等によって散乱する微弱な反射波を観測対象とするため、SN比(信号対雑音比)が小さいことが難点である。これに対処するために、例えば、受信信号に対して時間領域でコヒーレント積分を行ったり、周波数領域で複数の速度スペクトルを加算するインコヒーレント積分(スペクトル積算)を行ったりする。これらのSN比改善処理後、地形エコーの除去処理が行われる。地形エコーとは、地上の物体(山岳や建物等)から返ってくるエコーで、そのドップラ速度はゼロになるため、所望の大気エコーと区別して除去することができる(例えば、特許文献1を参照。)。   A radar apparatus (such as a wind profiler) that observes clear-sky turbulent echoes has a weak SN ratio (signal-to-noise ratio) because it targets weak reflected waves scattered by atmospheric turbulence and the like. . In order to cope with this, for example, coherent integration is performed on the received signal in the time domain, or incoherent integration (spectrum integration) is performed in which a plurality of velocity spectra are added in the frequency domain. After these signal-to-noise ratio improvement processes, a terrain echo removal process is performed. The terrain echo is an echo returned from an object (such as a mountain or a building) on the ground, and its Doppler velocity becomes zero, so that it can be distinguished from a desired atmospheric echo and removed (for example, see Patent Document 1). .)

しかし、地上の風速が大きい場合には、木の葉の揺れ等の影響により各スペクトルにおいて地形エコーの形状が揺らぎ変化する。このため、スペクトル積算後に地形エコー除去処理を行うと、地形エコーの幅が広がり、気象エコーが部分的に地形エコーと共に除去されてしまうという問題があった。
特許第3702347号公報
However, when the wind speed on the ground is high, the shape of the terrain echo fluctuates and changes in each spectrum due to the influence of the fluctuation of leaves. For this reason, when the terrain echo removal process is performed after spectrum integration, the width of the terrain echo is widened, and the weather echo is partially removed together with the terrain echo.
Japanese Patent No. 3702347

上記述べたように、従来のレーダ信号処理方式での地形エコー除去処理では、風の揺らぎ等により各スペクトルにおける地形エコーの形状がそれぞれ異なるため、スペクトル積算後では地形エコーを精度良く除去することができない。   As described above, in the terrain echo removal process in the conventional radar signal processing method, the shape of the terrain echo in each spectrum differs due to wind fluctuations, etc., so that the terrain echo can be accurately removed after spectrum integration. Can not.

この発明は上記事情に着目してなされたもので、その目的とするところは、地形エコー除去処理の性能を向上し、ドップラ速度を精度良く算出することができるレーダ装置とその信号処理方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and an object thereof is to provide a radar apparatus capable of improving the performance of terrain echo removal processing and accurately calculating the Doppler velocity, and a signal processing method thereof. There is to do.

上記目的を達成するためにこの発明に係わるレーダ装置は、繰り返しレーダパルスを送信し、レーダエコーを受信する送受信部と、前記レーダエコーの受信信号を周波数領域に変換して一定時間毎の速度スペクトルを得る変換手段と、前記一定時間毎の速度スペクトルそれぞれから速度ゼロ付近に現れる成分を地形エコーとして除去する除去手段と、前記地形エコーが除去された一定時間毎の速度スペクトルを積算する積算手段と、前記積算された速度スペクトルをもとにターゲットのドップラ速度を算出する算出手段とを備えることを特徴とする。   In order to achieve the above object, a radar apparatus according to the present invention includes a transmission / reception unit that repeatedly transmits a radar pulse and receives a radar echo, and converts the received signal of the radar echo into a frequency domain to obtain a velocity spectrum at a constant time interval. Conversion means for obtaining the above, a removing means for removing a component appearing in the vicinity of zero speed from each of the velocity spectra for each fixed time as a terrain echo, and an integrating means for integrating the velocity spectrum for each fixed time from which the terrain echo is removed, And calculating means for calculating the Doppler velocity of the target based on the accumulated velocity spectrum.

また、この発明に係わる信号処理方法は、繰り返しレーダパルスを送信しレーダエコーを受信するレーダ装置に用いられる信号処理方法であって、前記レーダエコーの受信信号を周波数領域に変換して一定時間毎の速度スペクトルを求め、前記一定時間毎の速度スペクトルそれぞれから速度ゼロ付近に現れる成分を地形エコーとして除去し、前記地形エコーが除去された一定時間毎の速度スペクトルを積算し、前記積算された速度スペクトルをもとにターゲットのドップラ速度を算出することを特徴とする。   The signal processing method according to the present invention is a signal processing method used in a radar apparatus that repeatedly transmits radar pulses and receives radar echoes, and converts the received signals of the radar echoes into a frequency domain at regular intervals. The velocity spectrum of the constant time is obtained, components appearing near the velocity zero are removed as terrain echoes from each of the velocity spectra for each fixed time, the velocity spectrum for each fixed time from which the terrain echo is removed is integrated, and the integrated velocity The Doppler velocity of the target is calculated based on the spectrum.

上記構成によるレーダ装置とその信号処理方法では、一定時間毎に得られる速度スペクトルそれぞれに対し、スペクトル積算前に地形エコー除去処理を行うようにしている。これにより、風の揺らぎ等により各スペクトルにおける地形エコーの形状がそれぞれ異なる場合でも、地形エコーを精度良く除去することができ、信頼性の高いドップラ速度を算出することが可能となる。   In the radar apparatus and the signal processing method thereof having the above-described configuration, the terrain echo removal process is performed before spectrum integration for each velocity spectrum obtained at regular time intervals. As a result, even when the shape of the terrain echo in each spectrum differs due to wind fluctuation or the like, the terrain echo can be accurately removed, and a highly reliable Doppler velocity can be calculated.

したがってこの発明によれば、地形エコー除去処理の性能を向上し、ドップラ速度を精度良く算出することができるレーダ装置とその信号処理方法を提供することができる。   Therefore, according to the present invention, it is possible to provide a radar apparatus capable of improving the performance of the terrain echo removal process and calculating the Doppler speed with high accuracy and a signal processing method thereof.

以下、図面を参照しながら本発明の実施の形態を詳細に説明する。
図1は、この発明に係わるレーダ装置の一実施形態を示す機能ブロック図である。
変調部12は、信号処理部11からインタフェース(I/F)を介して与えられる制御のもと、指定された変調方式の中間周波信号のディジタル値を生成する。このディジタル値は、D/A変換部13においてアナログ値に変換され、送信中間周波数信号(fi)が生成される。生成された送信中間周波数信号は、送受信部14においてレーダパルスの送信周波数にまでアップコンバートされ、電力増幅されたのち空中線15から空間に送出される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a functional block diagram showing an embodiment of a radar apparatus according to the present invention.
The modulation unit 12 generates a digital value of an intermediate frequency signal of a designated modulation system under the control given from the signal processing unit 11 via the interface (I / F). This digital value is converted into an analog value by the D / A converter 13 to generate a transmission intermediate frequency signal (fi). The generated transmission intermediate frequency signal is up-converted to the transmission frequency of the radar pulse in the transmission / reception unit 14, and after power amplification, is transmitted from the antenna 15 to the space.

空中線15から送出された周波数f0のレーダパルスは、雨粒などのターゲットにより反射され、レーダエコーが戻ってくる。このレーダエコーはターゲットの移動速度を反映するドップラ周波数(fd)を伴い、その受信周波数は(f0+fd)と表される。レーダエコーは、空中線15を介して送受信部14に到来し、増幅されたのちダウンコンバートされて(fi+fd)の受信中間周波数信号が生成される。この受信中間周波数信号はA/D変換部16によりディジタル値に変換されたのち復調部17により直交検波される。   The radar pulse with the frequency f0 transmitted from the antenna 15 is reflected by a target such as raindrops, and the radar echo returns. This radar echo is accompanied by a Doppler frequency (fd) reflecting the moving speed of the target, and the reception frequency is represented as (f0 + fd). The radar echo arrives at the transmitting / receiving unit 14 via the antenna 15 and is amplified and then down-converted to generate a reception intermediate frequency signal of (fi + fd). The received intermediate frequency signal is converted into a digital value by the A / D converter 16 and then quadrature detected by the demodulator 17.

さらに、直交検波された信号は、復調部17において複数の変調方式により復調される。これにより得られたI成分(同相成分)およびQ成分(直交位相成分)の受信データは、インタフェース(I/F)を介して信号処理部11に与えられる。信号処理部11は受信データからエコーの反射強度、ターゲットの速度および速度幅などの観測データを算出する。特に、受信データに対してFFT処理を行うことにより得られる速度スペクトルから、ターゲットのドップラ速度を算出することができる。   Further, the quadrature-detected signal is demodulated by the demodulation unit 17 by a plurality of modulation methods. The received data of the I component (in-phase component) and Q component (quadrature phase component) obtained in this way is given to the signal processing unit 11 via the interface (I / F). The signal processing unit 11 calculates observation data such as echo reflection intensity, target velocity and velocity width from the received data. In particular, the target Doppler velocity can be calculated from the velocity spectrum obtained by performing the FFT process on the received data.

図2は、図1のレーダ装置の処理手順を示す流れ図である。受信信号は、A/D変換されたのち、直交検波され、I成分(同相成分)、Q成分(直交位相成分)の信号がそれぞれ出力される。さらに、信号処理部11では、出力されたI/Q信号に対して、FFT処理を行う。このFFT処理では、時間領域のI/Q信号を周波数領域に変換することで、速度スペクトルが得られる。   FIG. 2 is a flowchart showing a processing procedure of the radar apparatus of FIG. The received signal is A / D converted and then subjected to quadrature detection, and I component (in-phase component) and Q component (quadrature phase component) signals are output. Further, the signal processing unit 11 performs FFT processing on the output I / Q signal. In this FFT processing, a velocity spectrum is obtained by converting a time domain I / Q signal into a frequency domain.

ここで、FFT処理により一定時間毎に得られた速度スペクトルに対する地形エコー除去処理について、図3を用いて説明する。
レーダ装置で観測される地形エコーは、木の葉が風で揺らぐ等の影響で、ドップラ速度ゼロ付近に速度成分を有する。図3に示すように、スペクトル積算を行った後に地形エコー除去処理を行うと、この揺らぎ成分を含んでしまうため、地形エコーの成分はドップラ速度ゼロを中心に大きな幅を持ってしまう。このため、積算されたスペクトルから地形エコーを除去しようとすると、所望の気象エコーが部分的に地形エコーと共に除去されてしまうおそれがある。
Here, the terrain echo removal process for the velocity spectrum obtained at regular intervals by the FFT process will be described with reference to FIG.
The terrain echo observed by the radar device has a velocity component in the vicinity of the Doppler velocity of zero due to the influence of the leaves of the tree fluctuating with the wind. As shown in FIG. 3, if the terrain echo removal process is performed after spectrum integration, this fluctuation component is included, so that the terrain echo component has a large width centering on a Doppler velocity of zero. For this reason, if the terrain echo is to be removed from the integrated spectrum, the desired weather echo may be partially removed together with the terrain echo.

そこで、本発明では、一定時間毎に得られる速度スペクトルそれぞれに対し、スペクトル積算前に地形エコー除去処理を行う。積算前であれば、各スペクトルにおいて地形エコーの揺らぎ成分を検出しやすいため、地形エコーのみを精度良く除去することができる。各スペクトルについて地形エコー除去処理を行った後に積算し、積算されたスペクトルをもとにターゲットのドップラ速度を算出する。   Therefore, in the present invention, terrain echo removal processing is performed on each velocity spectrum obtained at regular intervals before spectrum integration. Before integration, since it is easy to detect the fluctuation component of the terrain echo in each spectrum, only the terrain echo can be accurately removed. After performing the topographic echo removal processing for each spectrum, the spectrum is accumulated and the Doppler velocity of the target is calculated based on the accumulated spectrum.

以上述べたように上記実施形態では、空中線により受信された受信信号は、A/D変換されたのち、直交検波される。信号処理部は、直交検波された時間領域のI/Q信号に対してFFT処理により周波数領域に変換することで速度スペクトルを求める。この求められた速度スペクトルに対し、それぞれ地形エコー除去処理を行う。そして、それぞれ地形エコーが除去された速度スペクトルを積算し、積算された速度スペクトルをもとにドップラ速度を算出するようにしている。   As described above, in the above embodiment, the received signal received by the antenna is A / D converted and then subjected to quadrature detection. The signal processing unit obtains a velocity spectrum by converting the time-domain I / Q signal subjected to quadrature detection into the frequency domain by FFT processing. A terrain echo removal process is performed on each of the obtained velocity spectra. Then, the velocity spectra from which the topographic echoes are removed are integrated, and the Doppler velocity is calculated based on the integrated velocity spectrum.

このように、速度スペクトルの積算前に、各スペクトルに対して地形エコー除去処理を行うことにより、風の揺らぎ等により各スペクトルにおける地形エコーの形状がそれぞれ異なる場合でも、地形エコーを精度良く除去することができ、信頼性の高いドップラ速度を算出することが可能となる。   In this way, by performing terrain echo removal processing on each spectrum before integrating the velocity spectrum, even if the shape of the terrain echo in each spectrum differs due to wind fluctuations, etc., the terrain echo can be accurately removed. It is possible to calculate the Doppler speed with high reliability.

なお、この発明は上記実施の形態に限定されるものではない。例えば図1においてD/A変換部13、およびA/Dの変換部16の機能は、他の機能ブロックに併せ持たせることもできる。また本発明は、気象レーダに限定されることなく他のドップラレーダにも適用することができる。   The present invention is not limited to the above embodiment. For example, in FIG. 1, the functions of the D / A conversion unit 13 and the A / D conversion unit 16 can be combined with other functional blocks. The present invention is not limited to a weather radar but can be applied to other Doppler radars.

要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

この発明に係わるレーダ装置の一実施形態を示す機能ブロック図。The functional block diagram which shows one Embodiment of the radar apparatus concerning this invention. 図1のレーダ装置の処理手順を示す流れ図。The flowchart which shows the process sequence of the radar apparatus of FIG. 速度スペクトラムに対する地形エコー除去処理を示す図。The figure which shows the topographic echo removal process with respect to a velocity spectrum.

符号の説明Explanation of symbols

11…信号処理部、12…変調部、13…D/A変換部、14…送受信部、15…空中線装置、16…A/D変換部、17…復調部。   DESCRIPTION OF SYMBOLS 11 ... Signal processing part, 12 ... Modulation part, 13 ... D / A conversion part, 14 ... Transmission / reception part, 15 ... Antenna apparatus, 16 ... A / D conversion part, 17 ... Demodulation part

Claims (2)

繰り返しレーダパルスを送信し、レーダエコーを受信する送受信部と、
前記レーダエコーの受信信号を周波数領域に変換して一定時間毎の速度スペクトルを得る変換手段と、
前記一定時間毎の速度スペクトルそれぞれから速度ゼロ付近に現れる成分を地形エコーとして除去する除去手段と、
前記地形エコーが除去された一定時間毎の速度スペクトルを積算する積算手段と、
前記積算された速度スペクトルをもとにターゲットのドップラ速度を算出する算出手段と
を備えることを特徴とするレーダ装置。
A transmission / reception unit that repeatedly transmits radar pulses and receives radar echoes;
Conversion means for converting the received signal of the radar echo into a frequency domain to obtain a velocity spectrum at a constant time;
Removing means for removing a component appearing near velocity zero from each velocity spectrum for each predetermined time as a terrain echo;
An accumulating means for accumulating a velocity spectrum every fixed time from which the terrain echo is removed;
A radar apparatus comprising: a calculation unit that calculates a Doppler velocity of a target based on the accumulated velocity spectrum.
繰り返しレーダパルスを送信しレーダエコーを受信するレーダ装置に用いられる信号処理方法であって、
前記レーダエコーの受信信号を周波数領域に変換して一定時間毎の速度スペクトルを求め、
前記一定時間毎の速度スペクトルそれぞれから速度ゼロ付近に現れる成分を地形エコーとして除去し、
前記地形エコーが除去された一定時間毎の速度スペクトルを積算し、
前記積算された速度スペクトルをもとにターゲットのドップラ速度を算出することを特徴とする信号処理方法。
A signal processing method used in a radar device that repeatedly transmits radar pulses and receives radar echoes,
Convert the received signal of the radar echo into the frequency domain to obtain a velocity spectrum for every fixed time,
Removing the component appearing near the velocity zero from each velocity spectrum for each predetermined time as a terrain echo,
Accumulate the velocity spectrum every fixed time from which the terrain echo is removed,
A signal processing method characterized in that a Doppler velocity of a target is calculated based on the accumulated velocity spectrum.
JP2006187163A 2006-07-06 2006-07-06 Radar system and its signal processing method Abandoned JP2008014837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187163A JP2008014837A (en) 2006-07-06 2006-07-06 Radar system and its signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187163A JP2008014837A (en) 2006-07-06 2006-07-06 Radar system and its signal processing method

Publications (1)

Publication Number Publication Date
JP2008014837A true JP2008014837A (en) 2008-01-24

Family

ID=39071989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187163A Abandoned JP2008014837A (en) 2006-07-06 2006-07-06 Radar system and its signal processing method

Country Status (1)

Country Link
JP (1) JP2008014837A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096593A (en) * 2008-10-15 2010-04-30 Japan Weather Association Wind prediction device and program
JP2010271058A (en) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp Wind measuring device
CN101988963A (en) * 2010-04-19 2011-03-23 南京恩瑞特实业有限公司 Method for acquiring three-dimensional wind field by using wind profiler radar
JP2011174750A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Radar device
CN102323574A (en) * 2011-06-25 2012-01-18 中国航天科工集团第二研究院二十三所 Wind profile radar signal processing method
RU2460091C1 (en) * 2011-03-02 2012-08-27 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Method of estimating accuracy of doppler radar wind profile
RU2502083C1 (en) * 2012-04-28 2013-12-20 Открытое акционерное общество Центральное конструкторское бюро аппаратостроения Method of calibrating and checking doppler wind profile radar
CN104237892A (en) * 2014-09-17 2014-12-24 北京无线电测量研究所 Atmospheric temperature sounding system and method of wind profiling radar
WO2017208375A1 (en) * 2016-05-31 2017-12-07 淳一 古本 Doppler shift analysis device
WO2020031505A1 (en) * 2018-08-06 2020-02-13 三菱電機株式会社 Signal processing device and signal processing method
JP6797340B1 (en) * 2020-03-24 2020-12-09 三菱電機株式会社 Signal processing equipment, radar equipment and signal processing methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085472A (en) * 2002-08-28 2004-03-18 Mitsubishi Electric Corp Radar signal processor, and method of processing radar signal
JP2005017143A (en) * 2003-06-26 2005-01-20 Toshiba Corp Meteorological radar signal processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085472A (en) * 2002-08-28 2004-03-18 Mitsubishi Electric Corp Radar signal processor, and method of processing radar signal
JP2005017143A (en) * 2003-06-26 2005-01-20 Toshiba Corp Meteorological radar signal processor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096593A (en) * 2008-10-15 2010-04-30 Japan Weather Association Wind prediction device and program
JP2010271058A (en) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp Wind measuring device
JP2011174750A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Radar device
CN101988963A (en) * 2010-04-19 2011-03-23 南京恩瑞特实业有限公司 Method for acquiring three-dimensional wind field by using wind profiler radar
RU2460091C1 (en) * 2011-03-02 2012-08-27 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Method of estimating accuracy of doppler radar wind profile
CN102323574A (en) * 2011-06-25 2012-01-18 中国航天科工集团第二研究院二十三所 Wind profile radar signal processing method
RU2502083C1 (en) * 2012-04-28 2013-12-20 Открытое акционерное общество Центральное конструкторское бюро аппаратостроения Method of calibrating and checking doppler wind profile radar
CN104237892A (en) * 2014-09-17 2014-12-24 北京无线电测量研究所 Atmospheric temperature sounding system and method of wind profiling radar
WO2017208375A1 (en) * 2016-05-31 2017-12-07 淳一 古本 Doppler shift analysis device
CN109154658A (en) * 2016-05-31 2019-01-04 都市气象株式会社 Doppler frequency shift resolver
JPWO2017208375A1 (en) * 2016-05-31 2019-03-28 メトロウェザー株式会社 Doppler shift analyzer
CN109154658B (en) * 2016-05-31 2020-06-09 都市气象株式会社 Doppler shift analysis device, method, and computer-readable recording medium
US10816668B2 (en) 2016-05-31 2020-10-27 Metroweather Co., Ltd. Doppler shift analysis device
WO2020031505A1 (en) * 2018-08-06 2020-02-13 三菱電機株式会社 Signal processing device and signal processing method
JP6656497B1 (en) * 2018-08-06 2020-03-04 三菱電機株式会社 Signal processing device and signal processing method
JP6797340B1 (en) * 2020-03-24 2020-12-09 三菱電機株式会社 Signal processing equipment, radar equipment and signal processing methods

Similar Documents

Publication Publication Date Title
JP2008014837A (en) Radar system and its signal processing method
KR102204839B1 (en) Apparatus and method of detecting target using radar
CN109964143B (en) Method for processing signals caused by coherent lidar and associated lidar system
JP2020067455A (en) Fmcw radar for suppressing disturbing signal
JP5847423B2 (en) Range sidelobe removal apparatus, signal processing apparatus, radar apparatus equipped with the signal processing apparatus, range sidelobe removal method, and program
CN108291957A (en) It is configured to reduce the vehicle radar system of interference
WO2014024644A1 (en) Signal processing device and signal processing method in wind profiler
EP2990820B1 (en) Clutter suppressing device and radar apparatus provided with the same
JP5284230B2 (en) Weather radar system and its signal processing method
JP5111778B2 (en) Radar apparatus and signal processing method thereof
JP2012037306A (en) Interference cancellation apparatus, signal processor, radar device, interference cancellation method and program
JP6324327B2 (en) Passive radar equipment
KR20170029899A (en) Apparatus and method for estimating lfm signal parameter of active sonar system
JP5235737B2 (en) Pulse Doppler radar device
JP6278732B2 (en) Marine radar equipment
JP5104425B2 (en) Distance measuring method and distance measuring device
JP5699405B2 (en) Radar received signal processing apparatus and method
JP6712313B2 (en) Signal processing device and radar device
KR101705532B1 (en) Frequency modulation radar and control method thereof
JP2011059015A (en) Device and method for detection of interference wave
JP4836497B2 (en) Radar apparatus and signal processing method thereof
JP4836496B2 (en) Radar apparatus and signal processing method thereof
JP5553970B2 (en) Radar equipment
JP4746436B2 (en) Radar apparatus and signal processing method thereof
US11892535B2 (en) Signal processing apparatus and signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110311