[go: up one dir, main page]

JP2008014598A - Bleeder for compression type refrigerating machine - Google Patents

Bleeder for compression type refrigerating machine Download PDF

Info

Publication number
JP2008014598A
JP2008014598A JP2006188329A JP2006188329A JP2008014598A JP 2008014598 A JP2008014598 A JP 2008014598A JP 2006188329 A JP2006188329 A JP 2006188329A JP 2006188329 A JP2006188329 A JP 2006188329A JP 2008014598 A JP2008014598 A JP 2008014598A
Authority
JP
Japan
Prior art keywords
refrigerant
absorbent
condenser
compression
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006188329A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Tadashi Yamaguchi
忠司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Corp
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Corp
Priority to JP2006188329A priority Critical patent/JP2008014598A/en
Publication of JP2008014598A publication Critical patent/JP2008014598A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bleeder for a compression-type refrigerating machine capable of dispensing with taking in and out of lubricant, saving power for an oil pump, and discharging a noncondensing gas in a bleeding tank to the outside of a system while reducing the wear amount of a refrigerant. <P>SOLUTION: In this compression-type refrigerating machine 1-1, a compressor 13, a condenser 17 and an evaporator 11 are connected by refrigerant piping 21, the bleeding tank 31 is connected with the condenser 17 by piping 33, and the noncondensing gas is collected in the bleeding tank 31. An absorption tank 35 filled with an absorbent 69 is connected with the bleeding tank 31 by piping 37, the noncondensing gas accumulated in the bleeding tank 31 is introduced to the absorption tank 35 to allow the refrigerant to be absorbed by the absorbent 69, and further the refrigerant vapor generated by being heated by an absorbent heater 71 is returned to a refrigerant circulating system of the evaporator 11 and the condenser 17 through piping 75 in regenerating the absorbent 69. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は圧縮式冷凍機の抽気装置に関するものである。   The present invention relates to an extraction device for a compression refrigerator.

従来、圧縮式冷凍機(蒸気圧縮式冷凍機)は、電動機によって駆動される圧縮機と凝縮器と蒸発器とを冷媒配管で連結して構成されている。そして圧縮式冷凍機の冷凍サイクル中の不凝縮ガスは、この冷凍機を運転すると凝縮器に溜まる。これは凝縮器と蒸発器の間が凝縮器出口にて液化した冷媒液でシールされているからである。そして凝縮器に溜まった不凝縮ガスは、冷凍機運転中、圧縮比の増加となり、無駄な動力を消費する。このため従来、圧縮式冷凍機の冷凍サイクル中から不凝縮ガスを抽気する抽気装置が開発されている。   Conventionally, a compression refrigerator (vapor compression refrigerator) is configured by connecting a compressor driven by an electric motor, a condenser, and an evaporator with a refrigerant pipe. And the non-condensable gas in the refrigerating cycle of a compression-type refrigerator accumulates in a condenser when this refrigerator is operated. This is because the space between the condenser and the evaporator is sealed with the refrigerant liquid liquefied at the outlet of the condenser. The non-condensable gas accumulated in the condenser increases the compression ratio during the operation of the refrigerator and consumes useless power. For this reason, conventionally, an extraction device for extracting non-condensable gas from the refrigeration cycle of the compression refrigerator has been developed.

不凝縮ガスを抽気するため、冷媒を吸収する吸収剤として潤滑油を用い、不凝縮ガスと冷媒蒸気の混合ガス中の冷媒濃度を低下させる技術は例えば特許文献1,2などで開示されている。これらは油吸収により冷媒分圧を低下させているが、用いる油は冷凍機の軸受、増速機などの潤滑系に用いられている潤滑油である。軸受、増速機が冷媒と共に冷凍機内に密封されているため、潤滑油に冷媒が溶解している。潤滑油の粘性を維持(低下を防ぐ)するため、冷媒濃度が所定値以上に上昇しないようにしているが、粘性が目標値になるような濃度にしているため、冷媒分圧は比較的高くなり、冷媒放出量が多くなりがちである。また、潤滑油の再生(冷媒濃度の低下)を行う場所は、潤滑油循環系にあり、抽気タンクへの潤滑油の出し入れは潤滑油ポンプにより行っており、その分動力がかかる。また油の出入量あるいはタンク内液位の制御など特別な制御が必要になる。
特公平1−55397号公報 特開平5−10636号公報
For extracting non-condensable gas, a technique for reducing the refrigerant concentration in the mixed gas of non-condensable gas and refrigerant vapor by using lubricating oil as an absorbent that absorbs the refrigerant is disclosed in Patent Documents 1 and 2, for example. . Although these reduce the refrigerant partial pressure by absorbing oil, the oil used is a lubricating oil used in a lubricating system such as a bearing of a refrigerator or a speed increaser. Since the bearing and the gearbox are sealed in the refrigerator together with the refrigerant, the refrigerant is dissolved in the lubricating oil. In order to maintain (prevent) the viscosity of the lubricating oil, the refrigerant concentration does not rise above a predetermined value. However, since the viscosity is adjusted to a target value, the refrigerant partial pressure is relatively high. Therefore, the amount of refrigerant discharged tends to increase. Further, the place where the regeneration of the lubricating oil (reduction of the refrigerant concentration) is performed is in the lubricating oil circulation system, and the lubricating oil is taken into and out of the extraction tank by the lubricating oil pump. In addition, special control such as control of the oil flow in and out or the liquid level in the tank is required.
Japanese Patent Publication No. 1-55397 JP-A-5-10636

本発明は上述の点に鑑みてなされたものでありその目的は、潤滑油の出し入れを不要とし、油ポンプの動力を節減でき、また抽気タンク内の不凝縮ガスを冷媒の損耗量を少なくして系外に放出できる圧縮式冷凍機の抽気装置を提供することにある。   The present invention has been made in view of the above-mentioned points, and its purpose is to eliminate the need to put in and take out lubricating oil, to reduce the power of the oil pump, and to reduce the amount of non-condensable gas in the extraction tank by reducing the amount of refrigerant consumed. Another object of the present invention is to provide a bleeder for a compression type refrigerator that can be discharged out of the system.

本願請求項1に記載の発明は、圧縮機と凝縮器と蒸発器とを冷媒を循環する冷媒配管によって連結するとともに、前記凝縮器に抽気タンクを接続して凝縮器に溜まった不凝縮ガスを抽気タンクに集める圧縮式冷凍機において、前記抽気タンクに吸収剤の充填された吸収タンクを接続して前記抽気タンク内に蓄積された不凝縮ガスを吸収タンクに導入してその吸収剤に冷媒を吸収させ、前記吸収剤の再生時には、前記吸収タンクに設けた吸収剤ヒーターにより加熱して発生した冷媒蒸気を前記蒸発器、凝縮器の冷媒循環系に戻すことを特徴とする圧縮式冷凍機の抽気装置にある。
前記冷媒循環系には、さらにエコノマイザーを設置してもよい。
According to the first aspect of the present invention, the compressor, the condenser, and the evaporator are connected by a refrigerant pipe that circulates the refrigerant, and a non-condensable gas accumulated in the condenser is connected to the condenser by connecting an extraction tank. In a compression refrigerator that collects in an extraction tank, an absorption tank filled with an absorbent is connected to the extraction tank, non-condensable gas accumulated in the extraction tank is introduced into the absorption tank, and a refrigerant is supplied to the absorbent. A refrigerant refrigerating machine that absorbs and regenerates the absorbent, and returns the refrigerant vapor generated by heating with an absorbent heater provided in the absorption tank to the refrigerant circulation system of the evaporator and condenser. In the bleeder.
An economizer may be further installed in the refrigerant circulation system.

本願請求項2に記載の発明は、請求項1に記載の圧縮式冷凍機の抽気装置において、前記吸収タンクの吸収剤ヒーターが、電気ヒーターあるいはヒートポンプの温熱側であることを特徴とする圧縮式冷凍機の抽気装置にある。
ヒートポンプの冷熱側は、空気でも良いし、冷凍機凝縮器の冷媒、または抽気タンクの凝縮器からの冷媒蒸気あるいは凝縮した液でも差し支えない。
The invention according to claim 2 of the present application is the compression type bleeder of claim 1, wherein the absorbent heater of the absorption tank is the electric heater or the heat side of a heat pump. It is in the extraction device of the refrigerator.
The cold side of the heat pump may be air, or the refrigerant of the refrigerator condenser, or the refrigerant vapor or condensed liquid from the condenser of the extraction tank may be used.

本願請求項3に記載の発明は、請求項1に記載の圧縮式冷凍機の抽気装置において、前記吸収タンクには吸収剤クーラーを設け、抽気タンクから吸収タンクへの不凝縮ガス放出時には、この吸収剤クーラーを作動させて吸収剤を冷却しながら冷媒蒸気を吸収させることを特徴とする圧縮式冷凍機の抽気装置にある。
吸収剤クーラーは、不凝縮ガス放出動作開始の所定時間前に、作動を始めるのが好ましい。
According to a third aspect of the present invention, in the bleeder of the compression refrigeration machine according to the first aspect, an absorbent cooler is provided in the absorption tank, and when non-condensable gas is discharged from the bleed tank to the absorption tank, A bleeder for a compression type refrigerator is characterized in that the refrigerant vapor is absorbed while the absorbent cooler is operated to cool the absorbent.
The absorbent cooler preferably starts operating a predetermined time before the start of the non-condensable gas discharge operation.

本願請求項4に記載の発明は、請求項3に記載の圧縮式冷凍機の抽気装置において、前記吸収剤クーラーの冷却側に、前記凝縮器からの冷媒液を受け入れ、被冷却側の吸収剤の熱で前記冷媒液を蒸発させ、その冷媒蒸気あるいは気液混合体を、前記蒸発器、あるいは前記凝縮器と蒸発器の間に設置したエコノマイザーに導くことを特徴とする圧縮式冷凍機の抽気装置にある。   The invention according to claim 4 of the present application is the bleeder of the compression refrigerator according to claim 3, wherein the refrigerant liquid from the condenser is received on the cooling side of the absorbent cooler, and the absorbent on the cooled side is received. The refrigerant liquid is evaporated by the heat of the refrigerant, and the refrigerant vapor or the gas-liquid mixture is led to the evaporator or an economizer installed between the condenser and the evaporator. In the bleeder.

本願請求項5に記載の発明は、請求項3に記載の圧縮式冷凍機の抽気装置において、前記吸収剤クーラーが、温熱側と冷熱側とを切替可能なヒートポンプの冷熱側であり、吸収剤の再生時には、温熱側に切替えて、前記吸収剤ヒータとすることを特徴とする圧縮式冷凍機の抽気装置にある。   The invention according to claim 5 of the present application is the bleeder of the compression refrigerator according to claim 3, wherein the absorbent cooler is a cold side of a heat pump capable of switching between a hot side and a cold side, and the absorbent At the time of regeneration, the bleeder of the compression refrigeration machine is characterized in that it is switched to the warm side and used as the absorbent heater.

本願請求項6に記載の発明は、請求項1乃至5の内の何れかに記載の圧縮式冷凍機の抽気装置において、前記凝縮器と抽気タンクとの間に、凝縮器の不凝縮ガスを圧縮する抽気圧縮機を設けたことを特徴とする圧縮式冷凍機の抽気装置にある。   The invention according to claim 6 of the present application is the compression chiller extraction device according to any one of claims 1 to 5, wherein the non-condensable gas of the condenser is placed between the condenser and the extraction tank. The present invention resides in a bleeder for a compression type refrigerator having a bleeder compressor for compression.

本願請求項7に記載の発明は、請求項6に記載の圧縮式冷凍機の抽気装置において、前記抽気タンクにガス冷却器を設け、このガス冷却器の冷却側に前記凝縮器からの冷媒液を導入し、蒸発した冷媒蒸気あるいは気液混合体を、前記凝縮器に戻すか、あるいは凝縮器と蒸発器の間に設置したエコノマイザーに戻すか、あるいは蒸発器に戻すことを特徴とする圧縮式冷凍機の抽気装置にある。   The invention according to claim 7 of the present application is the bleeder for a compression refrigeration machine according to claim 6, wherein a gas cooler is provided in the bleed tank, and a refrigerant liquid from the condenser is provided on the cooling side of the gas cooler. And the evaporated refrigerant vapor or gas-liquid mixture is returned to the condenser, returned to an economizer installed between the condenser and the evaporator, or returned to the evaporator. It is in the extraction device of the type refrigerator.

本願請求項8に記載の発明は、請求項1乃至5の内の何れかに記載の圧縮式冷凍機の抽気装置において、前記抽気タンクにガス冷却器を設け、このガス冷却器の冷却側に前記凝縮器からの冷媒液を導入し、蒸発した冷媒蒸気あるいは気液混合体を前記蒸発器に戻すことを特徴とする圧縮式冷凍機の抽気装置にある。   The invention according to claim 8 of the present application is the bleeder for a compression refrigeration machine according to any one of claims 1 to 5, wherein a gas cooler is provided in the bleed tank, and a cooling side of the gas cooler is provided on the cooling side. In the extraction device of the compression type refrigerator, the refrigerant liquid from the condenser is introduced, and the evaporated refrigerant vapor or gas-liquid mixture is returned to the evaporator.

吸収タンクに吸収剤ヒーターを設け、従来のような潤滑油の出し入れを不要としたので、潤滑油を循環させる油ポンプの動力を節減できる。また潤滑油としての粘性の考慮を不要として冷媒濃度を冷媒の蒸気圧が所定以下になるように調節し、吸収能力の向上と排出冷媒量の低下を図ることができる。   Since an absorbent heater is provided in the absorption tank, it is not necessary to put in and out the lubricating oil as in the conventional case, so that the power of the oil pump that circulates the lubricating oil can be saved. Further, it is possible to improve the absorption capacity and reduce the amount of discharged refrigerant by adjusting the refrigerant concentration so that the vapor pressure of the refrigerant is not more than a predetermined value without considering the viscosity as the lubricating oil.

以下、本発明の実施形態を図面を参照して詳細に説明する。
〔第1実施形態〕
図1は本発明の第1実施形態を用いて構成される圧縮式冷凍機1−1を示す全体概略構成図である。同図に示す圧縮式冷凍機1−1は、蒸気圧縮式の冷凍サイクルを行う圧縮式冷凍機であって、冷媒を封入したクローズドシステムで構成され、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器11と、電動機(駆動機)15によって回転駆動されて前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機13と、高圧蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器17と、前記凝縮した冷媒を減圧して膨張させて蒸発器11に送る膨張機19とを、冷媒を循環する冷媒配管21によって連結して構成されている。さらにこの圧縮式冷凍機1−1は、電動機15や下記する各種ポンプの駆動制御や、各種開閉手段の開閉制御等を行う図示しない制御機器(制御手段)を具備している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is an overall schematic configuration diagram showing a compression refrigerator 1-1 configured by using the first embodiment of the present invention. The compression refrigerator 1-1 shown in the figure is a compression refrigerator that performs a vapor compression refrigeration cycle, and is composed of a closed system that encloses a refrigerant, and takes heat from cold water (a fluid to be cooled). An evaporator 11 that evaporates the refrigerant and exhibits a refrigeration effect, a compressor 13 that is rotationally driven by an electric motor (driving machine) 15 to compress the refrigerant vapor into high-pressure steam, and the high-pressure steam is cooled water (cooling fluid). The condenser 17 that cools and condenses the refrigerant and the expander 19 that decompresses and expands the condensed refrigerant and sends it to the evaporator 11 are connected by a refrigerant pipe 21 that circulates the refrigerant. Further, the compression refrigerator 1-1 includes a control device (control means) (not shown) that performs drive control of the electric motor 15 and various pumps described below, open / close control of various open / close means, and the like.

さらに圧縮式冷凍機1−1は、前記凝縮器17に抽気タンク31を配管33によって接続し、この抽気タンク31に吸収タンク35を配管37によって接続している。配管33中には抽気圧縮機39が接続され、配管37中には弁V1が接続されている。凝縮器17には、凝縮器17の冷媒で電動機15を冷却して凝縮器17に戻る配管41が取り付けられ、配管41中には冷媒ポンプ43が設置されている。冷媒ポンプ43の吐出側では配管45が分岐し、さらにその先端を配管47,49で分岐し、それぞれ抽気タンク31と吸収タンク35に導入され、それぞれガス冷却器51の冷却側,吸収剤クーラー53の冷却側を通して、ガス冷却器51の冷却側は配管55によって凝縮器17に、吸収剤クーラー53の冷却側は配管57によって蒸発器11に接続されている。   Further, in the compression refrigerator 1-1, an extraction tank 31 is connected to the condenser 17 by a pipe 33, and an absorption tank 35 is connected to the extraction tank 31 by a pipe 37. A bleed compressor 39 is connected in the pipe 33, and a valve V 1 is connected in the pipe 37. A pipe 41 that cools the electric motor 15 with the refrigerant of the condenser 17 and returns to the condenser 17 is attached to the condenser 17, and a refrigerant pump 43 is installed in the pipe 41. On the discharge side of the refrigerant pump 43, the pipe 45 is branched, and further, the tip is branched by pipes 47 and 49, which are respectively introduced into the extraction tank 31 and the absorption tank 35. The cooling side of the gas cooler 51 and the absorbent cooler 53, respectively. The cooling side of the gas cooler 51 is connected to the condenser 17 by a pipe 55, and the cooling side of the absorbent cooler 53 is connected to the evaporator 11 by a pipe 57.

抽気タンク31の下部には、この抽気タンク31から凝縮器17と蒸発器11の間の冷媒配管21に接続される配管65が取り付けられている。また抽気タンク31には、その内部のガス圧力を検出する圧力検出手段59と、内部の冷媒液の温度を検出する温度検出手段61と、所定の液面レベルを検出するレベルスイッチ(液面検出手段)63及びレベルスイッチ63によって開閉制御される配管65に接続された弁67とが設置されている。   A pipe 65 connected from the extraction tank 31 to the refrigerant pipe 21 between the condenser 17 and the evaporator 11 is attached to the lower part of the extraction tank 31. The bleed tank 31 has a pressure detection means 59 for detecting the gas pressure inside it, a temperature detection means 61 for detecting the temperature of the refrigerant liquid inside, and a level switch (liquid level detection) for detecting a predetermined liquid level. Means) 63 and a valve 67 connected to a pipe 65 controlled to be opened and closed by the level switch 63 are provided.

一方吸収タンク35には吸収剤69(この実施形態では潤滑油などの油)が充填されており、吸収剤69を加熱する吸収剤ヒーター71が設置されている。また吸収タンク35には大気中に不凝縮ガスを排出する配管73及び弁V2と、冷媒を配管57によって蒸発器11に戻す配管75及び弁V3とが取り付けられている。なお配管47中には膨張弁V0が、配管49中には弁V4が設置されている。吸収剤69としては、吸収タンク35から何らかの事情で冷凍サイクル中に漏れ出ることもあるとすると、圧縮機13の軸受の潤滑油と同一のものが好ましい。しかし吸収作用、伝熱の点からは粘性の低い(潤滑)油が吸収剤には適しており、同じ種類(同じ系統)の潤滑油で粘性を低く調整した潤滑油としておくのが妥当である。   On the other hand, the absorption tank 35 is filled with an absorbent 69 (in this embodiment, oil such as lubricating oil), and an absorbent heater 71 for heating the absorbent 69 is installed. The absorption tank 35 is provided with a pipe 73 and a valve V2 for discharging non-condensable gas into the atmosphere, and a pipe 75 and a valve V3 for returning the refrigerant to the evaporator 11 through the pipe 57. An expansion valve V0 is installed in the piping 47, and a valve V4 is installed in the piping 49. As the absorbent 69, the same lubricant as the bearing oil of the compressor 13 is preferable if it may leak from the absorption tank 35 into the refrigeration cycle for some reason. However, in terms of absorption and heat transfer, low viscosity (lubricant) oil is suitable for the absorbent, and it is reasonable to use a lubricant with the viscosity adjusted to a low level with the same type (same system) of lubricating oil. .

以上のように構成された圧縮式冷凍機1−1の抽気装置の動作を説明する。凝縮器17中の不凝縮ガスを冷媒蒸気と共に抽気圧縮機39で吸引圧縮して抽気タンク31に集める。これによって凝縮器17への不凝縮ガスの影響を減らすことができる。一方このとき冷媒ポンプ43によって凝縮器17の冷媒液の一部が膨張弁V0を通してガス冷却器51の冷却側に供給されて蒸発し、抽気タンク31内のガスを冷却してガス中の冷媒を凝縮した後、凝縮器17に戻される。抽気圧縮機39で圧縮しているので、抽気タンク31では凝縮器温度レベルより高い温度で冷媒を凝縮できる。凝縮した冷媒は配管65によって冷凍機循環系に戻される。その際弁67は、レベルスイッチ63によって抽気タンク31内に所定の水位の冷媒液面が保持されるように開閉され、抽気タンク31内の不凝縮ガスが液シールで配管65側に流出しないようにしている。なおこの実施形態ではレベルスイッチ63と弁67とで液面を制御しているが、フロート弁等、他の手段を用いて液面を制御してもよい。   The operation of the extraction device of the compression refrigerator 1-1 configured as described above will be described. The non-condensable gas in the condenser 17 is sucked and compressed by the extraction compressor 39 together with the refrigerant vapor and collected in the extraction tank 31. Thereby, the influence of the non-condensable gas on the condenser 17 can be reduced. On the other hand, at this time, a part of the refrigerant liquid in the condenser 17 is supplied to the cooling side of the gas cooler 51 through the expansion valve V0 and evaporated by the refrigerant pump 43, and the gas in the extraction tank 31 is cooled to remove the refrigerant in the gas. After condensing, it is returned to the condenser 17. Since it is compressed by the extraction compressor 39, the extraction tank 31 can condense the refrigerant at a temperature higher than the condenser temperature level. The condensed refrigerant is returned to the refrigerator circulation system by the pipe 65. At that time, the valve 67 is opened and closed by the level switch 63 so that the coolant level at a predetermined water level is maintained in the extraction tank 31, and the non-condensable gas in the extraction tank 31 is prevented from flowing out to the pipe 65 side by the liquid seal. I have to. In this embodiment, the liquid level is controlled by the level switch 63 and the valve 67, but the liquid level may be controlled using other means such as a float valve.

一方吸収タンク35には前述のように油が吸収剤69として保有されており、吸収剤69は加熱再生された後、弁V1,V2,V3,V4閉止の状態で長時間放置され室温付近まで低下させている。そして不凝縮ガスの集まり具合を、例えば圧力検出手段59による抽気タンク圧力と、温度検出手段61による抽気タンク31内の凝縮冷媒温度から判断し、所定量集まったと判断したときに、ガス排出操作(抽気タンク31から吸収タンク35への不凝縮ガス放出操作)に入る(あるいは、抽気タンク31が所定の圧力になったときに、ガス排出操作に入る)。例えば不凝縮ガスの集まり具合を、抽気タンク圧力P0と抽気タンク31内の凝縮冷媒温度Tから判断し、所定量集まったと判断したときに、ガス排出動作に入る(圧力P0に対する冷媒飽和温度T0と冷媒液温度Tとの差 ΔT=T0−T が所定の値以上のとき動作、あるいは抽気タンク圧力P0と、冷媒液温度Tに対する飽和圧力Pとの差 ΔP=P0−P が所定の値以上のとき動作(ΔPが不凝縮ガスの分圧になる)。)、あるいは圧力P0が所定値以上でガス排出動作に入る。あるいは所定の運転時間間隔毎に、ガス排出動作に入る。   On the other hand, as described above, oil is held in the absorption tank 35 as the absorbent 69, and after the absorbent 69 is heated and regenerated, it is left for a long time with the valves V1, V2, V3, and V4 closed to the vicinity of room temperature. It is decreasing. Then, the concentration state of the non-condensable gas is determined from, for example, the extraction tank pressure by the pressure detection unit 59 and the condensed refrigerant temperature in the extraction tank 31 by the temperature detection unit 61. The operation of discharging the non-condensable gas from the extraction tank 31 to the absorption tank 35 is started (or the operation of discharging the gas is performed when the extraction tank 31 reaches a predetermined pressure). For example, the degree of collection of non-condensable gas is determined from the extraction tank pressure P0 and the condensed refrigerant temperature T in the extraction tank 31, and when it is determined that a predetermined amount has been collected, the gas discharge operation is started (the refrigerant saturation temperature T0 relative to the pressure P0). Operation when the difference ΔT = T0−T with the refrigerant liquid temperature T is greater than or equal to a predetermined value, or the difference ΔP = P0−P between the extraction tank pressure P0 and the saturation pressure P with respect to the refrigerant liquid temperature T is greater than or equal to the predetermined value (ΔP becomes the partial pressure of the non-condensable gas)) or the gas discharge operation is started when the pressure P0 is equal to or higher than a predetermined value. Alternatively, the gas discharge operation is started at every predetermined operation time interval.

まず弁V4を開け、吸収剤クーラー53の冷却側に凝縮器17からの冷媒液を供給して蒸発させ、吸収剤69の温度を低下させる。そして所定時間後あるいは油温が所定値になった後、弁V1を開け、抽気タンク31内のガスを吸収タンク35に導入する。導入された不凝縮ガスと冷媒蒸気は吸収タンク35下部から気泡になって吸収剤69中を上昇し、冷媒蒸気は吸収剤69に吸収される。所定時間後あるいは抽気タンク31圧力が所定値に低下した後、弁V1と弁V4を閉じる。なお弁V4は、弁V1を開けた後、すぐ閉じても良い。この場合、吸収剤クーラー53の冷却側に残存する冷媒液が冷却効果を発揮する。冷媒蒸気の吸収は弁V1閉止とほぼ同時に終了するが、若干の時間をみてもよい。その後弁V2を開け、不凝縮ガスを大気に放出する。抽気タンク31の圧力から、吸収タンク35内の吸収後の圧力を推定することができ、大気圧以上を判断しているが、安全のため逆止弁77で大気の侵入を防ぐようにしている。なお、吸収タンク35にも圧力スイッチあるいは圧力センサー等の圧力検出手段を設け、大気圧以上を確認して、弁V2を開にしても良い。所定時間後あるいは所定圧力に低下して排気完了と判断したら、弁V2を閉止し、排出操作を完了する。なお弁V1の閉止前に弁V2を開とし、冷媒蒸気を吸収させながら不凝縮ガスを排出しても良く、この場合、抽気タンク31から吸収タンク35への不凝縮ガスの移動量を増やすことができる。弁V1の閉止のタイミングは、時間あるいは抽気タンク31の圧力で行うのが良い。   First, the valve V4 is opened, the refrigerant liquid from the condenser 17 is supplied to the cooling side of the absorbent cooler 53 and evaporated, and the temperature of the absorbent 69 is lowered. Then, after a predetermined time or after the oil temperature reaches a predetermined value, the valve V1 is opened, and the gas in the extraction tank 31 is introduced into the absorption tank 35. The introduced non-condensable gas and refrigerant vapor form bubbles from the bottom of the absorption tank 35 and rise in the absorbent 69, and the refrigerant vapor is absorbed by the absorbent 69. After a predetermined time or after the pressure of the bleed tank 31 drops to a predetermined value, the valves V1 and V4 are closed. The valve V4 may be closed immediately after the valve V1 is opened. In this case, the refrigerant liquid remaining on the cooling side of the absorbent cooler 53 exhibits a cooling effect. The absorption of the refrigerant vapor ends almost simultaneously with the closing of the valve V1, but a slight time may be taken. Thereafter, the valve V2 is opened, and noncondensable gas is released to the atmosphere. The pressure after absorption in the absorption tank 35 can be estimated from the pressure in the extraction tank 31, and it is judged that the pressure is higher than the atmospheric pressure. However, for the sake of safety, the check valve 77 prevents the air from entering. . The absorption tank 35 may also be provided with pressure detecting means such as a pressure switch or a pressure sensor, and the valve V2 may be opened after confirming that the atmospheric pressure is exceeded. After a predetermined time or when the pressure is lowered to a predetermined pressure and it is determined that exhaust is complete, the valve V2 is closed and the discharge operation is completed. The valve V2 may be opened before the valve V1 is closed, and the noncondensable gas may be discharged while absorbing the refrigerant vapor. In this case, the movement amount of the noncondensable gas from the extraction tank 31 to the absorption tank 35 is increased. Can do. The closing timing of the valve V1 is preferably performed by time or the pressure of the extraction tank 31.

吸収タンク35の吸収能力が充分あると判断される場合は、抽気タンク31に不凝縮ガスが蓄積されるのを待ち、再度、ガス排出操作に入っても良い。吸収能力の低下あるいは所定の回数後に、吸収剤(油)69の再生操作に移る。再生操作は1回の排出操作毎に、再生をしてもよい。再生操作は弁V1,V2,V3,V4閉止の状態で、吸収タンク35の吸収剤69を吸収剤ヒーター71で加熱する。そして弁V3を開け、吸収剤69中の冷媒を蒸発させ、蒸発器11などに追い出す。吸収剤69の温度が所定の温度まで上昇して、再生完了と判断する。なお温度で判断する代りに、加熱時間で完了と判断しても差し支えない。   When it is determined that the absorption capacity of the absorption tank 35 is sufficient, the gas discharge operation may be started again after waiting for the non-condensable gas to be accumulated in the extraction tank 31. After a decrease in the absorption capacity or after a predetermined number of times, the operation moves to a regeneration operation of the absorbent (oil) 69. The regeneration operation may be performed every discharge operation. In the regeneration operation, the absorbent 69 in the absorbent tank 35 is heated by the absorbent heater 71 while the valves V1, V2, V3, and V4 are closed. Then, the valve V3 is opened, the refrigerant in the absorbent 69 is evaporated and expelled to the evaporator 11 and the like. The temperature of the absorbent 69 rises to a predetermined temperature, and it is determined that regeneration is complete. Instead of judging by temperature, it can be judged that heating is completed.

以上説明したようにこの圧縮式冷凍機1−1は、凝縮器17に接続された抽気タンク31内の冷媒分圧の高いガスを、間歇的に吸収剤69が充填された吸収タンク35に導入し、この吸収剤69に冷媒を吸収させて冷媒分圧を低下させた後に不凝縮ガスを大気に放出し、1回あるいは複数回の大気放出後に、吸収剤ヒーター71にて吸収剤69を加熱再生し、再生の際に発生する冷媒を冷凍機の冷媒循環系に戻す構成となっている。また言い換えれば、圧縮式冷凍機1−1は、凝縮器17から冷媒蒸気とともに不凝縮ガスを抽気タンク31に集め、冷媒は凝縮させて冷凍機循環系に戻し、不凝縮ガスは抽気タンク31にそのまま残り、一方冷媒は凝縮圧力(凝縮温度に対する飽和圧)に相当する分圧として残っていて、抽気タンク31のガスをこのまま外部に放出(排気)すると、冷媒も不凝縮ガスと共に放出されてしまうので、吸収タンク35の吸収剤69に接触させて、冷媒蒸気圧を低下させてから、大気に放出する構成としている。これによって冷媒の損耗量を少なくして不凝縮ガスを系外に放出することが可能となる。   As described above, this compression refrigerator 1-1 introduces a gas having a high refrigerant partial pressure in the extraction tank 31 connected to the condenser 17 into the absorption tank 35 filled with the absorbent 69 intermittently. Then, after the refrigerant is absorbed by the absorbent 69 to reduce the refrigerant partial pressure, the non-condensable gas is released to the atmosphere, and the absorbent 69 is heated by the absorbent heater 71 after one or more releases to the atmosphere. The refrigerant is regenerated and the refrigerant generated at the time of regeneration is returned to the refrigerant circulation system of the refrigerator. In other words, the compression refrigerator 1-1 collects the non-condensable gas together with the refrigerant vapor from the condenser 17 in the extraction tank 31, condenses the refrigerant and returns it to the refrigerating machine circulation system, and the non-condensable gas enters the extraction tank 31. On the other hand, the refrigerant remains as a partial pressure corresponding to the condensation pressure (saturation pressure with respect to the condensation temperature), and if the gas in the extraction tank 31 is released (exhaust) to the outside as it is, the refrigerant is also released together with the noncondensable gas. Therefore, after making it contact with the absorber 69 of the absorption tank 35 and reducing a refrigerant vapor pressure, it is set as the structure discharge | released to air | atmosphere. As a result, it is possible to reduce the amount of wear of the refrigerant and release the non-condensable gas outside the system.

〔第2実施形態〕
図2は本発明の第2実施形態を用いて構成される圧縮式冷凍機1−2を示す全体概略構成図である。同図に示す圧縮式冷凍機1−2において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す圧縮式冷凍機1−1と同じである。この圧縮式冷凍機1−2において前記圧縮式冷凍機1−1と相違する点は、抽気圧縮機39を省略し、配管47によって凝縮器17からガス冷却器51の冷却側に供給された冷媒を、配管55によって蒸発器11に戻した点である。圧縮式冷凍機1−1とは抽気タンク31に不凝縮ガスを集める方法が異なっている。
[Second Embodiment]
FIG. 2 is an overall schematic configuration diagram showing a compression type refrigerator 1-2 configured using the second embodiment of the present invention. In the compression refrigeration machine 1-2 shown in the figure, the same or corresponding parts as those in the compression refrigeration machine 1-1 shown in FIG. The items other than those described below are the same as those of the compression refrigerator 1-1 shown in FIG. The difference between the compression type refrigerator 1-1 and the compression type refrigerator 1-1 is that the extraction compressor 39 is omitted and the refrigerant supplied from the condenser 17 to the cooling side of the gas cooler 51 by the pipe 47. Is returned to the evaporator 11 by the pipe 55. The method of collecting non-condensable gas in the extraction tank 31 is different from that of the compression refrigerator 1-1.

即ちこの圧縮式冷凍機1−2は、凝縮器17からの冷媒液を膨張弁V0を通して抽気タンク31のガス冷却器51の冷却側に導き、ガス冷却器51の冷却側で蒸発した後、蒸発器11に導くように構成している。ガス冷却器51の冷却側はほぼ蒸発器11と同じ低温度になっている。配管33による凝縮器17から抽気タンク31への冷媒蒸気は、ガス冷却器51の被冷却側で凝縮するので、配管33を通して凝縮器17から抽気タンク31への冷媒蒸気の流れが生じ、不凝縮ガスはこの冷媒蒸気と共に抽気タンク31に流入する。冷媒は凝縮して配管65を通して冷凍機循環系に戻る。不凝縮ガスは液シール(抽気タンク31内の冷媒液面を保持)により流出しない。なおこの実施形態の場合、抽気タンク31のガス冷却器51の冷却側には冷媒ポンプ43経由で凝縮器冷媒液を供給しているが、冷媒ポンプ43を経由せず、凝縮器圧力と蒸発器圧力の差で供給するようにしても差し支えない。   That is, the compression type refrigerator 1-2 guides the refrigerant liquid from the condenser 17 through the expansion valve V0 to the cooling side of the gas cooler 51 of the extraction tank 31, evaporates on the cooling side of the gas cooler 51, and then evaporates. It is configured to lead to the vessel 11. The cooling side of the gas cooler 51 is at the same low temperature as the evaporator 11. Since the refrigerant vapor from the condenser 17 to the extraction tank 31 by the pipe 33 is condensed on the cooled side of the gas cooler 51, the refrigerant vapor flows from the condenser 17 to the extraction tank 31 through the pipe 33 and is not condensed. The gas flows into the extraction tank 31 together with the refrigerant vapor. The refrigerant is condensed and returns to the refrigerator circulation system through the pipe 65. Non-condensable gas does not flow out by the liquid seal (holding the refrigerant liquid level in the extraction tank 31). In the case of this embodiment, the condenser refrigerant liquid is supplied to the cooling side of the gas cooler 51 of the extraction tank 31 via the refrigerant pump 43, but the condenser pressure and the evaporator are not via the refrigerant pump 43. Even if it supplies with the difference of pressure, it does not interfere.

不凝縮ガスの集まり具合を、例えば、抽気タンク31の圧力と抽気タンク31内の凝縮冷媒温度から判断し、あるいは抽気タンク31の圧力から判断し、所定量のガスが集まったとき、ガス排出操作に入る。ガス排出操作、吸収剤再生操作は前記圧縮式冷凍機1−1の場合と同様である。   When the amount of non-condensable gas is collected from, for example, the pressure of the extraction tank 31 and the temperature of the condensed refrigerant in the extraction tank 31, or from the pressure of the extraction tank 31, the gas discharge operation to go into. The gas discharge operation and the absorbent regeneration operation are the same as in the case of the compression refrigerator 1-1.

即ち前記圧縮式冷凍機1−1は、凝縮器17と抽気タンク31の間に抽気圧縮機39を設け、冷媒蒸気と不凝縮ガスを圧縮しながら集める方式(圧縮抽気方式)であるのに対し、この圧縮式冷凍機1−2は、抽気タンク31内に低温となるガス冷却器51を設け、抽気タンク31内の冷媒蒸気圧を低下させて、蒸気の流れに乗せて不凝縮ガスを集める方式(サーマルパージ方式)である。   That is, the compression type refrigerator 1-1 has a bleed compressor 39 provided between the condenser 17 and the bleed tank 31 and collects refrigerant vapor and non-condensable gas while compressing (compressed bleed method). In this compression type refrigerator 1-2, a gas cooler 51 having a low temperature is provided in the extraction tank 31, the refrigerant vapor pressure in the extraction tank 31 is lowered, and the non-condensable gas is collected on the flow of steam. Method (thermal purge method).

〔第3実施形態〕
図3は本発明の第3実施形態を用いて構成される圧縮式冷凍機1−3を示す全体概略構成図である。同図に示す圧縮式冷凍機1−3において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す圧縮式冷凍機1−1と同じである。この圧縮式冷凍機1−3において前記圧縮式冷凍機1−1と相違する点は、凝縮器17と蒸発器11の間の冷媒配管21中にエコノマイザー23を設置してエコノマイザー23で分離した冷媒蒸気を多段(2段)にした圧縮機13の圧縮段の中間に吸引させた点と、配管47によって凝縮器17からガス冷却器51の冷却側に供給された冷媒を、配管55によってエコノマイザー23に戻した点と、配管49によって凝縮器17から吸収剤クーラー53の冷却側に供給された冷媒を、配管57によってエコノマイザー23に戻した点である。上記圧縮式冷凍機1−1とは、抽気タンク31のガス冷却器51の冷却側の蒸発温度及び吸引タンク35の吸引剤クーラー53の温度レベルを変えている。
[Third Embodiment]
FIG. 3 is an overall schematic configuration diagram illustrating a compression refrigerator 1-3 configured using the third embodiment of the present invention. In the compression refrigeration machine 1-3 shown in the same figure, the same or corresponding parts as those of the compression refrigeration machine 1-1 shown in FIG. The items other than those described below are the same as those of the compression refrigerator 1-1 shown in FIG. This compression refrigerator 1-3 is different from the compression refrigerator 1-1 in that an economizer 23 is installed in the refrigerant pipe 21 between the condenser 17 and the evaporator 11 and separated by the economizer 23. And the refrigerant supplied to the cooling side of the gas cooler 51 from the condenser 17 by the pipe 47 through the pipe 55 is sucked into the middle of the compression stage of the compressor 13 having multiple stages (two stages). The point which returned to the economizer 23 and the point which returned the refrigerant | coolant supplied to the cooling side of the absorber cooler 53 from the condenser 17 by the piping 49 to the economizer 23 by the piping 57. The compression refrigerator 1-1 changes the evaporating temperature on the cooling side of the gas cooler 51 of the extraction tank 31 and the temperature level of the suction cooler 53 of the suction tank 35.

即ちこの圧縮式冷凍機1−3は、抽気タンク31のガス冷却器51の冷却側に凝縮器17からの冷媒液を供給し、ガス冷却器51の冷却側の出口をエコノマイザー23に連絡しており、エコノマイザー23の温度レベルで蒸発することになる。ガス冷却器51の冷却側の蒸発温度を低下させたことで、抽気タンク31内の凝縮温度、凝縮圧力を下げることができ、冷媒蒸気分圧を低下させることになる。従って吸収タンク35へ送り込む不凝縮ガス中の冷媒量を減少させることができる。ただし、ガス冷却器51の冷却側からエコノマイザー23に冷媒蒸気を戻しているので、2段目圧縮機13bの仕事量を増やしてしまうことにはなる。   That is, the compression refrigerator 1-3 supplies the refrigerant liquid from the condenser 17 to the cooling side of the gas cooler 51 of the extraction tank 31 and communicates the outlet on the cooling side of the gas cooler 51 to the economizer 23. Therefore, it evaporates at the temperature level of the economizer 23. By reducing the evaporation temperature on the cooling side of the gas cooler 51, the condensation temperature and the condensation pressure in the extraction tank 31 can be lowered, and the refrigerant vapor partial pressure is lowered. Accordingly, the amount of refrigerant in the non-condensable gas sent to the absorption tank 35 can be reduced. However, since the refrigerant vapor is returned from the cooling side of the gas cooler 51 to the economizer 23, the work amount of the second stage compressor 13b is increased.

また吸収タンク35の吸収剤クーラー53の冷却側の出口を蒸発器11からエコノマイザー23に変えている。温度レベルが上昇し、吸収剤濃度が同一であれば吸収能力は低下するが、1段目圧縮機13aの圧縮仕事は減らすことができる。吸収能力の調整などは、吸収剤濃度の調整(再生時の加熱温度)などで行う。なお抽気タンク31のガス冷却器51の冷却側からの冷媒戻し位置、吸収タンク35の吸収剤クーラー53の冷却側からの冷媒戻し位置の組み合わせは下記するように各種考えられる。ガス排出操作、吸収剤再生操作は前記圧縮式冷凍機1−1の場合とほぼ同様である。   Further, the outlet on the cooling side of the absorbent cooler 53 of the absorption tank 35 is changed from the evaporator 11 to the economizer 23. If the temperature level rises and the absorbent concentration is the same, the absorption capacity decreases, but the compression work of the first stage compressor 13a can be reduced. The absorption capacity is adjusted by adjusting the absorbent concentration (heating temperature during regeneration). Various combinations of the refrigerant return position from the cooling side of the gas cooler 51 of the extraction tank 31 and the refrigerant return position from the cooling side of the absorbent cooler 53 of the absorption tank 35 are considered as follows. The gas discharge operation and the absorbent regeneration operation are substantially the same as those of the compression refrigerator 1-1.

〔第4実施形態〕
図4は本発明の第4実施形態を用いて構成される圧縮式冷凍機1−4を示す全体概略構成図である。同図に示す圧縮式冷凍機1−4において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す圧縮式冷凍機1−1と同じである。この圧縮式冷凍機1−4において前記圧縮式冷凍機1−1と相違する点は、圧縮式冷凍機1−1で用いた吸収剤ヒーター71と吸収剤クーラー53の代りに、温熱側と冷熱側が逆転可能なヒートポンプ(吸収剤ヒーター/クーラー)79を設置した点である。即ち圧縮式冷凍機1−1とは、吸収タンク35の吸収剤ヒーター71及び吸収剤クーラー53が異なる。この圧縮式冷凍機1−4のように、温熱側と冷熱側とが逆転可能なヒートポンプ79にて、吸収タンク35を温熱側とすることで、吸収剤ヒーターの役目をさせ(このときの冷熱側は、外気、抽気タンク31の冷媒、ターボ冷凍機の凝縮器などとしてよく、図では外気を採用している。)、逆に吸収タンク35を冷熱側とすることで、吸収剤クーラーの役目をさせる(このとき温熱側=放熱側は、外気、抽気タンク31の冷媒、ターボ冷凍機の凝縮器などとしてよく、図では外気を採用している。)。ヒートポンプの種類は特にこだわらず、圧縮式ヒートポンプあるいはペルチェ素子を用いた電子式でも差し支えない。
[Fourth Embodiment]
FIG. 4 is an overall schematic configuration diagram showing a compression refrigerator 1-4 configured using the fourth embodiment of the present invention. In the compression refrigeration machine 1-4 shown in the figure, the same or corresponding parts as those of the compression refrigeration machine 1-1 shown in FIG. The items other than those described below are the same as those of the compression refrigerator 1-1 shown in FIG. The difference between the compression refrigerator 1-1 and the compression refrigerator 1-1 in the compression refrigerator 1-4 is that, instead of the absorbent heater 71 and the absorber cooler 53 used in the compression refrigerator 1-1, the hot side and cold heat are used. The heat pump (absorbent heater / cooler) 79 capable of reversing the side is installed. That is, the absorbent heater 71 and the absorbent cooler 53 of the absorption tank 35 are different from the compression refrigerator 1-1. Like the compression refrigerator 1-4, the heat pump 79 capable of reversing the hot side and the cold side makes the absorption tank 35 the hot side, thereby serving as an absorbent heater (cooling at this time) The side may be the outside air, the refrigerant of the extraction tank 31, the condenser of the turbo chiller, etc., and the outside air is adopted in the figure.) On the contrary, the absorption tank 35 is set to the cold side, thereby serving as an absorbent cooler. (At this time, the heat side = the heat release side may be the outside air, the refrigerant in the extraction tank 31, the condenser of the turbo refrigerator, etc., and the outside air is used in the figure). The type of heat pump is not particularly limited, and it may be a compression heat pump or an electronic type using a Peltier element.

〔第5実施形態〕
図5は本発明の第5実施形態を用いて構成される圧縮式冷凍機1−5を示す全体概略構成図である。同図に示す圧縮式冷凍機1−5において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す圧縮式冷凍機1−1と同じである。この圧縮式冷凍機1−5において前記圧縮式冷凍機1−1と相違する点は、圧縮式冷凍機の冷凍サイクルを二重化し(二重化したそれぞれの部材に符号A,Bを付して区別する)、電動機15及び本発明の抽気装置を共用化したものであり、この実施形態においては抽気装置を一方の(低圧側)冷凍サイクル(A側)に接続している。
[Fifth Embodiment]
FIG. 5 is an overall schematic configuration diagram showing a compression refrigerator 1-5 configured by using the fifth embodiment of the present invention. In the compression refrigeration machine 1-5 shown in the figure, the same or corresponding parts as those of the compression refrigeration machine 1-1 shown in FIG. The items other than those described below are the same as those of the compression refrigerator 1-1 shown in FIG. The difference between the compression refrigerator 1-5 and the compression refrigerator 1-1 in the compression refrigerator 1-5 is that the refrigeration cycle of the compression refrigerator is doubled. ), The electric motor 15 and the bleeder of the present invention are shared. In this embodiment, the bleeder is connected to one (low pressure side) refrigeration cycle (A side).

冷凍サイクルを二重化した冷凍機では、1台の冷凍機内に2冷凍サイクルが存在する形をとるので、それぞれのサイクルに本発明の抽気装置を適用して差し支えない。しかしこの実施形態のように、抽気システムを両サイクルに兼用することもできる。不凝縮ガスは二系統のそれぞれの凝縮器17A,Bに集まるが、高圧側の凝縮器17Bと低圧側の凝縮器17A間に連絡管81を設け、少量の冷媒蒸気、不凝縮ガスの移動を可能にしておくと、不凝縮ガスは低圧側の凝縮器17Aに集まる。流動を意識的に調節するため、連絡管81中に弁V5を設け制御してもよい。そしてこの低圧側の凝縮器17Aと抽気タンク31とを連絡し、抽気するようにしている。ガス冷却器51、吸収剤クーラー53などの温度レベルが各種選択できることは前述と同様である。   In a refrigerator having a double refrigeration cycle, there are two refrigeration cycles in one refrigerator. Therefore, the extraction device of the present invention may be applied to each cycle. However, as in this embodiment, the extraction system can be used for both cycles. The non-condensable gas collects in each of the two systems of condensers 17A and 17B. A connecting pipe 81 is provided between the high-pressure side condenser 17B and the low-pressure side condenser 17A to move a small amount of refrigerant vapor and non-condensable gas. If enabled, the non-condensable gas collects in the low pressure side condenser 17A. In order to consciously adjust the flow, a valve V5 may be provided in the communication pipe 81 and controlled. The low-pressure side condenser 17A and the extraction tank 31 are connected to perform extraction. As described above, various temperature levels of the gas cooler 51, the absorbent cooler 53, and the like can be selected.

この実施形態では低圧側の凝縮器17Aに不凝縮ガスを集めたが、連絡管81に圧縮機を設け、昇圧して高圧側の凝縮器17Bに不凝縮ガスを集めることも可能である。両サイクル間の冷媒は、電動機15と圧縮機13A,13Bのシールを通して、高圧側サイクルから低圧側サイクルへと移動する傾向にあるので、全体のバランスを取るため、ここで述べたように高圧側に冷媒と共に不凝縮ガスを移動させ、高圧側の凝縮器17Bに不凝縮ガスを集めることもできる。   In this embodiment, the non-condensable gas is collected in the low-pressure side condenser 17A. However, it is also possible to provide a compressor in the connecting pipe 81 and increase the pressure to collect the non-condensable gas in the high-pressure side condenser 17B. The refrigerant between the two cycles tends to move from the high pressure side cycle to the low pressure side cycle through the seals of the electric motor 15 and the compressors 13A and 13B. It is also possible to move the noncondensable gas together with the refrigerant to collect the noncondensable gas in the high-pressure side condenser 17B.

〔第6実施形態〕
図6は本発明の第6実施形態を用いて構成される圧縮式冷凍機1−6の全体概略構成図である。同図に示す圧縮式冷凍機1−6において、前記図1に示す圧縮式冷凍機1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記図1に示す実施形態と同じである。この圧縮式冷凍機1−6において、前記圧縮式冷凍機1−1と相違する点は、膨張機19の代りに動力回収装置63を設置した点である。
[Sixth Embodiment]
FIG. 6 is an overall schematic configuration diagram of a compression refrigerator 1-6 configured using the sixth embodiment of the present invention. In the compression refrigerator 1-6 shown in the figure, the same reference numerals are given to the same or corresponding parts as those of the compression refrigerator 1-1 shown in FIG. Items other than those described below are the same as those in the embodiment shown in FIG. The compression refrigerator 1-6 differs from the compression refrigerator 1-1 in that a power recovery device 63 is installed in place of the expander 19.

この実施形態で用いている動力回収装置63は凝縮器17から蒸発器11への冷媒の流れが持つエネルギーを回収する回転式の動力回収膨張機であり、内部にノズルとタービンとを持ち、ノズルで凝縮器17からの冷媒液の流速を高めると共に旋回流とし、この液流をタービンに当ててタービンに回転力を与えている。動力回収装置63は発電機(動力回収機)65を具備し、この発電機65によって前記冷媒の流れが持つエネルギーを電力として回収する。回収した電力を電動機15に供給して圧縮仕事の一部に利用すれば、その分外部からの投入電力(投入動力)を減少することができる。また凝縮器17から蒸発器11に入る冷媒から動力を回収しているので、蒸発器11に入る冷媒のエンタルピーが低下しており、従って蒸発器11の冷凍能力も増大し、冷凍効果が増大する。   The power recovery device 63 used in this embodiment is a rotary power recovery expander that recovers the energy of the refrigerant flow from the condenser 17 to the evaporator 11, and has a nozzle and a turbine inside. Thus, the flow rate of the refrigerant liquid from the condenser 17 is increased and a swirling flow is applied, and this liquid flow is applied to the turbine to give a rotational force to the turbine. The power recovery device 63 includes a generator (power recovery machine) 65, and the generator 65 recovers the energy of the refrigerant flow as electric power. If the recovered electric power is supplied to the motor 15 and used for a part of the compression work, the input electric power (input power) from the outside can be reduced accordingly. Further, since the power is recovered from the refrigerant entering the evaporator 11 from the condenser 17, the enthalpy of the refrigerant entering the evaporator 11 is lowered, and thus the refrigerating capacity of the evaporator 11 is increased and the refrigeration effect is increased. .

ところで上記各実施形態で使用する吸収剤69としては、冷媒と相溶性のある潤滑油が好ましい。冷凍機の軸受に使用しているものと同一でも良いし、同系統で粘性の異なるものでも良い。図7に冷媒圧力と吸収溶液の冷媒濃度との関係を示し、図8に露点(冷媒飽和温度)と吸収溶液(吸収剤+冷媒)温度の関係の例(冷媒:R245fa、潤滑油:ポリオールエステル)を示す。この潤滑油を冷媒濃度5%で使用する場合を考える。抽気タンク31での冷媒凝縮温度を35℃とすると飽和圧力213kPaであるが、不凝縮ガスと冷媒蒸気の混合ガスを、10℃、5%の潤滑油に接触吸収させると、露点は−22.6℃、飽和圧17kPaとなり、混合ガス中に含まれる冷媒は約8%に減らすことができる。この効果は抽気タンク31の凝縮温度を−22.5℃にすることに相当する。冷媒を吸収すると、潤滑油中の冷媒濃度が若干上昇する。抽気タンク31を約5リットルとし、潤滑油量約2kgとすると、1回の抽気操作(タンク5リットル分)で、濃度は約0.3%上昇し、5.3%になる。潤滑油量を多くすれば濃度変化は抑えられる。潤滑油の冷媒濃度を5%に戻すには、再生時に吸収タンク35を蒸発器11に接続して露点を約6℃にすれば、潤滑油を約58℃まで加熱すれば良い。   By the way, as the absorbent 69 used in each of the above-described embodiments, a lubricating oil compatible with the refrigerant is preferable. It may be the same as that used for the bearing of the refrigerator, or it may be the same system with a different viscosity. FIG. 7 shows the relationship between the refrigerant pressure and the refrigerant concentration of the absorbing solution, and FIG. 8 shows an example of the relationship between the dew point (refrigerant saturation temperature) and the absorbing solution (absorbent + refrigerant) temperature (refrigerant: R245fa, lubricating oil: polyol ester). ). Consider a case where this lubricating oil is used at a refrigerant concentration of 5%. When the refrigerant condensation temperature in the extraction tank 31 is 35 ° C., the saturation pressure is 213 kPa. However, when the mixed gas of the non-condensable gas and the refrigerant vapor is absorbed by contact with 10 ° C. and 5% lubricating oil, the dew point is −22. The refrigerant becomes 6 ° C. and a saturation pressure of 17 kPa, and the refrigerant contained in the mixed gas can be reduced to about 8%. This effect corresponds to setting the condensation temperature of the extraction tank 31 to −22.5 ° C. When the refrigerant is absorbed, the refrigerant concentration in the lubricating oil slightly increases. If the extraction tank 31 is about 5 liters and the amount of lubricating oil is about 2 kg, the concentration increases by about 0.3% and becomes 5.3% in one extraction operation (for 5 liters of tank). If the amount of lubricating oil is increased, the change in concentration can be suppressed. In order to return the refrigerant concentration of the lubricating oil to 5%, the lubricating oil may be heated to about 58 ° C. by connecting the absorption tank 35 to the evaporator 11 during regeneration and setting the dew point to about 6 ° C.

抽気タンク31のガス冷却器51の冷却側への冷媒液の供給と、ガス冷却器51の冷却側からの冷媒蒸気(液が混じっても差し支えない)の排出には、以下のような各種流れがあり、本発明を適用できる。
(1)凝縮器17の冷媒液→冷媒ポンプ43→ガス冷却器51→凝縮器17 (第1実施形態,第4実施形態,第5実施形態,第6実施形態)
(2)凝縮器17の冷媒液→(冷媒ポンプ43)→ガス冷却器51→エコノマイザー23 (第3実施形態)
(3)凝縮器17の冷媒液→(冷媒ポンプ43)→ガス冷却器51→蒸発器11 (第2実施形態)
(4)エコノマイザー23の冷媒液→冷媒ポンプ43→ガス冷却器51→エコノマイザー23
(5)エコノマイザー23の冷媒液→ガス冷却器51→蒸発器11
(6)蒸発器11の冷媒液→冷媒ポンプ43→ガス冷却器51→蒸発器11
The following various flows are used to supply the refrigerant liquid to the cooling side of the gas cooler 51 of the extraction tank 31 and to discharge the refrigerant vapor (which may be mixed with liquid) from the cooling side of the gas cooler 51. The present invention can be applied.
(1) Refrigerant liquid of condenser 17 → refrigerant pump 43 → gas cooler 51 → condenser 17 (first embodiment, fourth embodiment, fifth embodiment, sixth embodiment)
(2) Refrigerant liquid in condenser 17 → (refrigerant pump 43) → gas cooler 51 → economizer 23 (third embodiment)
(3) Refrigerant liquid of condenser 17 → (refrigerant pump 43) → gas cooler 51 → evaporator 11 (second embodiment)
(4) Refrigerant liquid of economizer 23 → refrigerant pump 43 → gas cooler 51 → economizer 23
(5) Refrigerant liquid of economizer 23 → gas cooler 51 → evaporator 11
(6) Refrigerant liquid of evaporator 11 → refrigerant pump 43 → gas cooler 51 → evaporator 11

(1),(2),(3)の冷媒ポンプ43は、電動機15冷却のために、冷媒液を電動機15に送るポンプで兼用できる。(2),(3)は冷媒ポンプ43を利用しなくても圧力差で冷媒供給が可能である。(4),(6)は冷媒ポンプ43を新たに設ける必要がある。これらの中で(1)の冷媒蒸気を凝縮器17に戻す方式が、冷凍機への圧縮仕事を増すことがなく効率的によい。次いでエコノマイザー25に戻す方式(2),(4)が効率的に良い。圧縮抽気方式は(1)〜(6)全てが利用可能であるが、サーマルパージ方式では(1)が利用できず、(2)〜(6)が利用可能となる。圧縮抽気方式では、凝縮器17、エコノマイザー25、蒸発器11あるいはこれらを接続する冷媒配管21のどこにでも戻すことができる。サーマルパージ方式では、蒸発器11あるいはこれと接続する冷媒配管21に戻すことになる。冷凍機への負荷をかけないのは、凝縮器17に戻す方式である。   The refrigerant pump 43 of (1), (2), (3) can also be used as a pump that sends the refrigerant liquid to the electric motor 15 for cooling the electric motor 15. In (2) and (3), the refrigerant can be supplied by the pressure difference without using the refrigerant pump 43. In (4) and (6), it is necessary to newly provide the refrigerant pump 43. Among these, the method of returning the refrigerant vapor (1) to the condenser 17 is efficient without increasing the compression work to the refrigerator. Next, the methods (2) and (4) for returning to the economizer 25 are efficient. All of (1) to (6) can be used for the compression bleed method, but (1) cannot be used for the thermal purge method, and (2) to (6) can be used. In the compression bleed system, it can be returned anywhere in the condenser 17, the economizer 25, the evaporator 11 or the refrigerant pipe 21 connecting them. In the thermal purge method, the refrigerant 11 is returned to the evaporator 11 or the refrigerant pipe 21 connected thereto. The method of returning to the condenser 17 does not apply a load to the refrigerator.

圧縮式冷凍機1−1を示す全体概略構成図である。It is a whole schematic block diagram which shows the compression refrigerator 1-1. 圧縮式冷凍機1−2を示す全体概略構成図である。It is a whole schematic block diagram which shows the compression-type refrigerator 1-2. 圧縮式冷凍機1−3を示す全体概略構成図である。It is a whole schematic block diagram which shows the compression refrigerator 1-3. 圧縮式冷凍機1−4を示す全体概略構成図である。It is a whole schematic block diagram which shows the compression-type refrigerator 1-4. 圧縮式冷凍機1−5を示す全体概略構成図である。It is a whole schematic block diagram which shows the compression refrigerator 1-5. 圧縮式冷凍機1−6を示す全体概略構成図である。It is a whole schematic block diagram which shows the compression refrigerator 1-6. 冷媒圧力と吸収溶液の冷媒濃度との関係の例を示す図である。It is a figure which shows the example of the relationship between a refrigerant | coolant pressure and the refrigerant | coolant density | concentration of an absorption solution. 露点と吸収溶液温度の関係の例を示す図である。It is a figure which shows the example of the relationship between a dew point and absorption solution temperature.

符号の説明Explanation of symbols

1−1 圧縮式冷凍機
11 蒸発器
13 圧縮機
15 電動機(駆動機)
17 凝縮器
19 膨張機
21 冷媒配管
23 エコノマイザー
31 抽気タンク
35 吸収タンク
39 抽気圧縮機
43 冷媒ポンプ
51 ガス冷却器
53 吸収剤クーラー
69 吸収剤
71 吸収剤ヒーター
1−2 圧縮式冷凍機
1−3 圧縮式冷凍機
1−4 圧縮式冷凍機
79 ヒートポンプ
1−5 圧縮式冷凍機
1−6 圧縮式冷凍機
1-1 Compression Refrigerator 11 Evaporator 13 Compressor 15 Electric Motor (Driver)
17 Condenser 19 Expander 21 Refrigerant Pipe 23 Economizer 31 Extraction Tank 35 Absorption Tank 39 Extraction Compressor 43 Refrigerant Pump 51 Gas Cooler 53 Absorbent Cooler 69 Absorbent 71 Absorbent Heater 1-2 Compressed Refrigerator 1-3 Compression type refrigerator 1-4 Compression type refrigerator 79 Heat pump 1-5 Compression type refrigerator 1-6 Compression type refrigerator

Claims (8)

圧縮機と凝縮器と蒸発器とを冷媒を循環する冷媒配管によって連結するとともに、前記凝縮器に抽気タンクを接続して凝縮器に溜まった不凝縮ガスを抽気タンクに集める圧縮式冷凍機において、
前記抽気タンクに吸収剤の充填された吸収タンクを接続して前記抽気タンク内に蓄積された不凝縮ガスを吸収タンクに導入してその吸収剤に冷媒を吸収させ、
前記吸収剤の再生時には、前記吸収タンクに設けた吸収剤ヒーターにより加熱して発生した冷媒蒸気を前記蒸発器、凝縮器の冷媒循環系に戻すことを特徴とする圧縮式冷凍機の抽気装置。
In the compression type refrigerator that connects the compressor, the condenser, and the evaporator with a refrigerant pipe that circulates the refrigerant, and connects the extraction tank to the condenser and collects the non-condensable gas accumulated in the condenser in the extraction tank.
An absorption tank filled with an absorbent is connected to the extraction tank, non-condensable gas accumulated in the extraction tank is introduced into the absorption tank, and the refrigerant is absorbed by the absorbent.
A bleeder for a compression refrigeration machine, wherein, during regeneration of the absorbent, refrigerant vapor generated by heating with an absorbent heater provided in the absorption tank is returned to a refrigerant circulation system of the evaporator and condenser.
請求項1に記載の圧縮式冷凍機の抽気装置において、
前記吸収タンクの吸収剤ヒーターが、電気ヒーターあるいはヒートポンプの温熱側であることを特徴とする圧縮式冷凍機の抽気装置。
In the bleeder of the compression refrigerator according to claim 1,
An extraction device for a compression type refrigerator, wherein the absorbent heater of the absorption tank is an electric heater or a heat side of a heat pump.
請求項1に記載の圧縮式冷凍機の抽気装置において、
前記吸収タンクには吸収剤クーラーを設け、
抽気タンクから吸収タンクへの不凝縮ガス放出時には、この吸収剤クーラーを作動させて吸収剤を冷却しながら冷媒蒸気を吸収させることを特徴とする圧縮式冷凍機の抽気装置。
In the bleeder of the compression refrigerator according to claim 1,
The absorption tank is provided with an absorbent cooler,
A bleeder for a compression refrigeration machine that absorbs refrigerant vapor while operating the absorbent cooler to cool the absorbent when discharging non-condensable gas from the bleed tank to the absorption tank.
請求項3に記載の圧縮式冷凍機の抽気装置において、
前記吸収剤クーラーの冷却側に、前記凝縮器からの冷媒液を受け入れ、被冷却側の吸収剤の熱で前記冷媒液を蒸発させ、その冷媒蒸気あるいは気液混合体を、前記蒸発器、あるいは前記凝縮器と蒸発器の間に設置したエコノマイザーに導くことを特徴とする圧縮式冷凍機の抽気装置。
In the extraction apparatus of the compression refrigerator according to claim 3,
The refrigerant liquid from the condenser is received on the cooling side of the absorbent cooler, the refrigerant liquid is evaporated by the heat of the absorbent on the cooled side, and the refrigerant vapor or gas-liquid mixture is supplied to the evaporator or A bleeder for a compression type refrigerator, which is led to an economizer installed between the condenser and the evaporator.
請求項3に記載の圧縮式冷凍機の抽気装置において、
前記吸収剤クーラーが、温熱側と冷熱側とを切替可能なヒートポンプの冷熱側であり、
吸収剤の再生時には、温熱側に切替えて、前記吸収剤ヒータとすることを特徴とする圧縮式冷凍機の抽気装置。
In the extraction apparatus of the compression refrigerator according to claim 3,
The absorbent cooler is a cold side of a heat pump capable of switching between a hot side and a cold side,
A bleeder for a compression refrigeration machine, wherein the absorbent heater is switched to the warm side during regeneration of the absorbent.
請求項1乃至5の内の何れかに記載の圧縮式冷凍機の抽気装置において、
前記凝縮器と抽気タンクとの間に、凝縮器の不凝縮ガスを圧縮する抽気圧縮機を設けたことを特徴とする圧縮式冷凍機の抽気装置。
In the extraction apparatus of the compression-type refrigerator in any one of Claims 1 thru | or 5,
A bleeder for a compression type refrigerator, wherein a bleed compressor for compressing a non-condensable gas of the condenser is provided between the condenser and the bleed tank.
請求項6に記載の圧縮式冷凍機の抽気装置において、
前記抽気タンクにガス冷却器を設け、
このガス冷却器の冷却側に前記凝縮器からの冷媒液を導入し、蒸発した冷媒蒸気あるいは気液混合体を、前記凝縮器に戻すか、あるいは凝縮器と蒸発器の間に設置したエコノマイザーに戻すか、あるいは蒸発器に戻すことを特徴とする圧縮式冷凍機の抽気装置。
In the bleeder of the compression refrigerator according to claim 6,
A gas cooler is provided in the extraction tank,
An economizer in which the refrigerant liquid from the condenser is introduced to the cooling side of the gas cooler, and the evaporated refrigerant vapor or gas-liquid mixture is returned to the condenser or installed between the condenser and the evaporator. Or a bleeder for a compression type refrigerator, wherein the bleeder is returned to the evaporator.
請求項1乃至5の内の何れかに記載の圧縮式冷凍機の抽気装置において、
前記抽気タンクにガス冷却器を設け、
このガス冷却器の冷却側に前記凝縮器からの冷媒液を導入し、蒸発した冷媒蒸気あるいは気液混合体を前記蒸発器に戻すことを特徴とする圧縮式冷凍機の抽気装置。
In the bleeder of the compression type refrigerator according to any one of claims 1 to 5,
A gas cooler is provided in the extraction tank,
A bleeder for a compression type refrigerator, wherein the refrigerant liquid from the condenser is introduced to the cooling side of the gas cooler, and the evaporated refrigerant vapor or gas-liquid mixture is returned to the evaporator.
JP2006188329A 2006-07-07 2006-07-07 Bleeder for compression type refrigerating machine Pending JP2008014598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188329A JP2008014598A (en) 2006-07-07 2006-07-07 Bleeder for compression type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188329A JP2008014598A (en) 2006-07-07 2006-07-07 Bleeder for compression type refrigerating machine

Publications (1)

Publication Number Publication Date
JP2008014598A true JP2008014598A (en) 2008-01-24

Family

ID=39071781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188329A Pending JP2008014598A (en) 2006-07-07 2006-07-07 Bleeder for compression type refrigerating machine

Country Status (1)

Country Link
JP (1) JP2008014598A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069557A (en) * 2009-09-25 2011-04-07 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
CN108474601A (en) * 2016-03-08 2018-08-31 三菱重工制冷空调系统株式会社 Vapour compression refrigerator and its control method
CN109883078A (en) * 2019-01-23 2019-06-14 山东科技大学 A cascade refrigeration system
US10495363B2 (en) 2014-09-25 2019-12-03 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device and control method for bleed device
JP2024081732A (en) * 2017-10-10 2024-06-18 ジョンソン コントロールズ テクノロジー カンパニー Activating and deactivating a purge unit of a vapor compression system based at least in part on conditions in a condenser of the vapor compression system - Patents.com

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069557A (en) * 2009-09-25 2011-04-07 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
US10495363B2 (en) 2014-09-25 2019-12-03 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device and control method for bleed device
CN108474601A (en) * 2016-03-08 2018-08-31 三菱重工制冷空调系统株式会社 Vapour compression refrigerator and its control method
CN108474601B (en) * 2016-03-08 2020-08-14 三菱重工制冷空调系统株式会社 Vapor compression type refrigerator and control method thereof
JP2024081732A (en) * 2017-10-10 2024-06-18 ジョンソン コントロールズ テクノロジー カンパニー Activating and deactivating a purge unit of a vapor compression system based at least in part on conditions in a condenser of the vapor compression system - Patents.com
CN109883078A (en) * 2019-01-23 2019-06-14 山东科技大学 A cascade refrigeration system

Similar Documents

Publication Publication Date Title
US11635239B2 (en) Refrigeration system with purge and acid filter
CN100400803C (en) Vapour compression refrigerant cycle system with refrigeration cycle and Rankine cycle
KR20150124450A (en) Lubrication and cooling system
WO2005057099A1 (en) A method for extracting carbon dioxide for use as a refrigerant in a vapor compression system
JP2008128535A (en) Bleeder for compression type refrigerating machine
JP4714099B2 (en) Bearing lubricator for compression refrigerator
JP4317793B2 (en) Cooling system
JP2009293901A (en) Compression refrigerating machine
WO2014130356A1 (en) Oil management for heating ventilation and air conditioning system
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP2008128570A (en) Refrigerating apparatus
JP2008096027A (en) Bleeding device for compression type refrigerating machine
JP5543093B2 (en) Compressive refrigerator and operation method thereof
US9796398B2 (en) Air-conditioning apparatus and railway vehicle air-conditioning apparatus
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP2004212019A (en) Refrigeration system
JP2004340081A (en) Rankine cycle
JP4301666B2 (en) Waste heat absorption refrigerator
JP2011075208A (en) Bleed air recovery device, method for operating the bleed air recovery device, and turbo refrigerator including the bleed air recovery device
JP2009236429A (en) Compression type refrigerating machine and its lubricant recovering method
CN219693611U (en) Military air conditioner refrigerating system capable of refrigerating in large temperature area
JP2019174086A (en) Heat pump unit
KR200183480Y1 (en) A Refrigerator For Vehicle
JP2008101870A (en) Bleeder for compression type refrigerating machine