[go: up one dir, main page]

JP2008010202A - Lighting control device - Google Patents

Lighting control device Download PDF

Info

Publication number
JP2008010202A
JP2008010202A JP2006177051A JP2006177051A JP2008010202A JP 2008010202 A JP2008010202 A JP 2008010202A JP 2006177051 A JP2006177051 A JP 2006177051A JP 2006177051 A JP2006177051 A JP 2006177051A JP 2008010202 A JP2008010202 A JP 2008010202A
Authority
JP
Japan
Prior art keywords
measurement range
illuminance
measurement
value
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177051A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogasawara
潔 小笠原
Yoshinobu Murakami
善宣 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006177051A priority Critical patent/JP2008010202A/en
Publication of JP2008010202A publication Critical patent/JP2008010202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

【課題】 照度センサの測定レンジが意図しない測定レンジに切り替わることはなく、適切な測定レンジに設定でき、さらにはレイアウト変更等による被照射面の反射率の変化が生じても被照射面の明るさを一定に制御可能な照明制御装置を提供する。
【解決手段】 照明制御装置1において、照度センサ1bは、複数の測定レンジを切替可能な測定レンジ切替部1nを具備し、測定レンジ設定部1iは、ユーザが操作部1fを操作した場合に、光源1dを所定の点灯電力で点灯させ、このときの被照射面の照度が測定可能な測定レンジに測定レンジ切替部1nを固定する。
【選択図】図1
PROBLEM TO BE SOLVED: To set an appropriate measurement range without switching the measurement range of an illuminance sensor to an unintended measurement range, and further, even if the reflectance of the irradiated surface changes due to a layout change or the like, the brightness of the irradiated surface is increased. Provided is a lighting control device capable of controlling the thickness at a constant level.
In an illumination control device 1, an illuminance sensor 1b includes a measurement range switching unit 1n capable of switching a plurality of measurement ranges, and the measurement range setting unit 1i is operated when a user operates an operation unit 1f. The light source 1d is turned on with a predetermined lighting power, and the measurement range switching unit 1n is fixed to a measurement range in which the illuminance of the irradiated surface at this time can be measured.
[Selection] Figure 1

Description

本発明は、照明制御装置に関するものである。   The present invention relates to a lighting control device.

従来から、光源により照明される机上面、床面等の被照射面の照度を反射光によって測定する照度センサと、照度センサが測定した照度レベルを記憶する記憶部と、被照射面の照度が目標レベルとなる方向に明るさフィードバック制御を行う制御部とを備えた照明装置に関する発明は多く成されている(例えば、特許文献1参照)。   Conventionally, an illuminance sensor that measures the illuminance of an illuminated surface such as a desk top or a floor illuminated by a light source by reflected light, a storage unit that stores an illuminance level measured by the illuminance sensor, and an illuminance of the illuminated surface Many inventions related to a lighting device including a control unit that performs brightness feedback control in a direction of a target level are made (for example, see Patent Document 1).

図6は、明るさフィードバック制御を行う従来の照明装置の構成を示しており、天井面に設置した調光端末11と、調光端末11によって光出力を制御される照明器具12とで構成される。この照明装置は、壁に設けた窓W等の開口部から光が入射する環境に設置され、このような環境条件下で外光利用による省エネルギーを目的とした照明制御を行う。   FIG. 6 shows a configuration of a conventional lighting device that performs brightness feedback control, and includes a dimming terminal 11 installed on a ceiling surface and a lighting fixture 12 whose light output is controlled by the dimming terminal 11. The This illuminating device is installed in an environment where light enters from an opening such as a window W provided on the wall, and performs illumination control for the purpose of energy saving by using external light under such an environmental condition.

図7は、調光端末11、照明器具12の各構成を示すブロック図であり、調光端末11は、制御部11aと、照度センサ11bと、記憶部11cと、リモコン送受信部11dとを備え、照明器具12は、光源12aと、光源12aへ点灯電力を供給する点灯回路12bとを備える。   FIG. 7 is a block diagram showing the configurations of the light control terminal 11 and the lighting fixture 12. The light control terminal 11 includes a control unit 11a, an illuminance sensor 11b, a storage unit 11c, and a remote control transmission / reception unit 11d. The lighting fixture 12 includes a light source 12a and a lighting circuit 12b that supplies lighting power to the light source 12a.

調光端末11の照度センサ11bは、固有の光学系を有して一定の視野の照度を常時測定し、測定した照度を電圧信号に変換して制御部11aへ連続してセンサ電圧として出力する。この電圧信号は、照度から一意に決定され、照度と略比例の関係にある。ここで、図6において天井面に設置した調光端末11の真下には机Dが配置されており、照度センサ11bには、照明器具11の光源11aが発する光H1aにより照明される机上面からの反射光H1bと、窓Wを介した外光H2aにより照明される机上面からの反射光H2bとが入射する。   The illuminance sensor 11b of the dimming terminal 11 has an inherent optical system and constantly measures the illuminance of a certain visual field, converts the measured illuminance into a voltage signal, and continuously outputs it as a sensor voltage to the control unit 11a. . This voltage signal is uniquely determined from the illuminance, and is approximately proportional to the illuminance. Here, in FIG. 6, the desk D is arranged directly below the light control terminal 11 installed on the ceiling surface, and the illuminance sensor 11 b is from the desk upper surface illuminated by the light H <b> 1 a emitted from the light source 11 a of the lighting fixture 11. Reflected light H1b and reflected light H2b from the desk surface illuminated by the external light H2a through the window W are incident.

記憶部11cには、机上面の目標照度に対応したセンサ電圧の目標値(以後、目標センサ電圧と称す)が1点記憶されており、この目標センサ電圧は、外部のリモコン送信器(図示なし)からの目標値設定信号をリモコン送受信部11dが受け取り、記憶部11cに格納される。   The storage unit 11c stores one point of sensor voltage target value (hereinafter referred to as target sensor voltage) corresponding to the target illuminance on the desk surface, and this target sensor voltage is stored in an external remote control transmitter (not shown). The remote controller transmission / reception unit 11d receives the target value setting signal from) and stores it in the storage unit 11c.

そして、制御部11aは、記憶部11cから目標センサ電圧を読み出し、照度センサ11bから送信されるセンサ電圧がこの目標センサ電圧となるように光源12aに供給する点灯電力を制御する。具体的には、調光端末11の制御部11aから照明器具12の点灯回路12bへPWM信号が送信され、点灯回路12bは、このPWM信号に応じた点灯電力を光源12aへ供給しており、制御部11aはPWM信号のパルス幅を変化させることで、光源12aの光出力を変化させている。なお、本発明において点灯電力は、光源に供給されている電力を光源の定格電力で除した値(0〜100%)で表す。   And the control part 11a reads the target sensor voltage from the memory | storage part 11c, and controls the lighting electric power supplied to the light source 12a so that the sensor voltage transmitted from the illumination intensity sensor 11b may turn into this target sensor voltage. Specifically, a PWM signal is transmitted from the control unit 11a of the dimming terminal 11 to the lighting circuit 12b of the lighting fixture 12, and the lighting circuit 12b supplies lighting power corresponding to the PWM signal to the light source 12a. The controller 11a changes the light output of the light source 12a by changing the pulse width of the PWM signal. In the present invention, the lighting power is represented by a value (0 to 100%) obtained by dividing the power supplied to the light source by the rated power of the light source.

図8は、照度センサ11bが出力するセンサ電圧と、光源12aに供給される点灯電力との関係を示しており、特性Y11(実線)は外光のない環境においての相関を示し、特性Y12(破線)は外光の入射が比較的少ない環境においての相関を示し、特性Y13(一点鎖線)は外光の入射が比較的多い環境においての相関を示している。例えば、目標センサ電圧をVpとすると、外光がない環境では光源12aを70%の点灯電力で点灯させることで、光源12aによる反射光H1bのみでセンサ電圧が目標センサ電圧Vpに一致する。この状態で外光が少量入射すると、外光による反射光H2bが加わるため、センサ電圧は目標センサ電圧Vpを上回る。そこで、調光端末11の制御部11aは、外光による反射光H2bに相当する分、光源12aに供給する点灯電力を減少させることで、センサ電圧が目標センサ電圧Vpとなるように制御する。すなわち、図8では点灯電力を50%に設定する。外光が多量入射した場合も同様であり、センサ電圧が目標センサ電圧Vpを維持するように、点灯電力を45%に設定する。このように、天井面の照度センサ11bのセンサ電圧を一定に維持することで、所定の明るさを保ちつつ、外光を利用した省エネルギーの照明制御を行う。   FIG. 8 shows the relationship between the sensor voltage output from the illuminance sensor 11b and the lighting power supplied to the light source 12a. The characteristic Y11 (solid line) shows the correlation in an environment without external light, and the characteristic Y12 ( A broken line) indicates a correlation in an environment where the incidence of external light is relatively small, and a characteristic Y13 (a chain line) indicates a correlation in an environment where the incidence of external light is relatively large. For example, if the target sensor voltage is Vp, the sensor voltage matches the target sensor voltage Vp only by the reflected light H1b from the light source 12a by lighting the light source 12a with 70% lighting power in an environment where there is no external light. When a small amount of external light is incident in this state, reflected light H2b due to external light is added, so that the sensor voltage exceeds the target sensor voltage Vp. Therefore, the control unit 11a of the dimming terminal 11 controls the sensor voltage to become the target sensor voltage Vp by reducing the lighting power supplied to the light source 12a by an amount corresponding to the reflected light H2b due to external light. That is, in FIG. 8, the lighting power is set to 50%. The same applies when a large amount of external light is incident, and the lighting power is set to 45% so that the sensor voltage maintains the target sensor voltage Vp. Thus, by maintaining the sensor voltage of the illuminance sensor 11b on the ceiling surface constant, energy-saving illumination control using outside light is performed while maintaining a predetermined brightness.

しかしながら、上記照明装置では、リモコン送信器等の外部設定手段によって、照明制御ブロック毎に施工者が目標値を設定する必要がある。また、レイアウト変更等があると環境条件が変わって、被照射面の反射率が変化するため、適切な明るさを確保するには目標値を再度設定する必要があった。   However, in the lighting device, it is necessary for the builder to set a target value for each lighting control block by external setting means such as a remote control transmitter. Further, if there is a layout change or the like, the environmental conditions change and the reflectance of the irradiated surface changes, so that it is necessary to set the target value again to ensure appropriate brightness.

そこで、上記問題を解決するために、以下の照明制御装置が提案された。図9に示すように、照明制御装置21は天井面に設置されて、制御部21aと、照度センサ21bと、記憶部21cと、光源21dと、光源21dに点灯電力を供給する点灯回路21eとを備える。   Therefore, in order to solve the above problem, the following lighting control device has been proposed. As shown in FIG. 9, the illumination control device 21 is installed on the ceiling surface, and includes a control unit 21a, an illuminance sensor 21b, a storage unit 21c, a light source 21d, and a lighting circuit 21e that supplies lighting power to the light source 21d. Is provided.

まず、電源を最初に投入する出荷時状態において、照明制御装置21の制御部21aは、光源21dを所定の点灯電力、例えば70%の点灯電力で点灯させる。このとき、制御部21aは、照度センサ21bのセンサ電圧、および点灯電力(0%〜100%)を所定間隔で取得し、得られたセンサ電圧を点灯電力で除した値(以後、演算値と称す)を算出する。
[演算値]=[センサ電圧/点灯電力]
そして、この通電期間中(電源投入〜電源停止に至る期間)における演算値の最小値(演算最小値)を記憶部21cに記憶させる。ここで、演算値が最小になるのは、外光がなくてセンサ電圧が最小となる夜間である。
[演算最小値]=Min[センサ電圧/点灯電力]
First, in the shipping state when the power is first turned on, the control unit 21a of the illumination control device 21 turns on the light source 21d with a predetermined lighting power, for example, 70% lighting power. At this time, the control unit 21a obtains the sensor voltage of the illuminance sensor 21b and the lighting power (0% to 100%) at predetermined intervals, and a value obtained by dividing the obtained sensor voltage by the lighting power (hereinafter referred to as a calculated value). Calculated).
[Calculated value] = [Sensor voltage / Lighting power]
And the minimum value (calculation minimum value) of the calculated value during this energization period (period from power-on to power-off) is stored in the storage unit 21c. Here, the calculated value is minimized at night when there is no outside light and the sensor voltage is minimized.
[Calculation minimum value] = Min [Sensor voltage / lighting power]

そして、次回の通電期間においては、前回の通電期間に取得した演算最小値に、明るさフィードバック制御上限値を乗じた値を目標センサ電圧に設定し、明るさフィードバック制御を行う。
[目標センサ電圧]=Min[センサ電圧/点灯電力]×[明るさフィードバック制御上限値]
ここで、明るさフィードバック制御上限値とは、時間経過による光源21aの光束減退(図10(a)参照)を補正して略一定の設計照度P(図10(c)参照)を補償できる特性を有する出力曲線のことであり、図10(b)に示すように出荷時の70%から寿命末期時の100%に向かって累積点灯時間の増大に伴い増加する関数で、光源に供給される点灯電力の上限値を累積点灯時間に応じて示している。なお、この明るさフィードバック制御上限値の特性は記憶部21cに格納されている。
In the next energization period, brightness feedback control is performed by setting the target sensor voltage by multiplying the calculated minimum value acquired in the previous energization period by the brightness feedback control upper limit value.
[Target sensor voltage] = Min [Sensor voltage / lighting power] × [Brightness feedback control upper limit value]
Here, the brightness feedback control upper limit value is a characteristic that can compensate for a substantially constant design illuminance P (see FIG. 10C) by correcting the light beam decrease of the light source 21a over time (see FIG. 10A). As shown in FIG. 10B, the output curve has a function that increases as the cumulative lighting time increases from 70% at the time of shipment to 100% at the end of the life, and is supplied to the light source. The upper limit value of the lighting power is shown according to the cumulative lighting time. The brightness feedback control upper limit characteristic is stored in the storage unit 21c.

この制御ロジックでは、外光のない夜間時に、照度センサ21bに入射する光が減少してセンサ電圧が最小になるとともに、点灯電力が増加して明るさフィードバック制御上限値(当初は約70%)に設定されるため、演算値は夜間において最小になる。このとき、[夜間の点灯電力]=[明るさフィードバック制御上限値]であるので、最小演算値に明るさフィードバック制御上限値を乗ずれば、
[目標センサ電圧]=[夜間の約70%の点灯電力によるセンサ電圧]
となる。
In this control logic, at night when there is no external light, the light incident on the illuminance sensor 21b is reduced to minimize the sensor voltage, and the lighting power is increased to increase the brightness feedback control upper limit (initially about 70%). Therefore, the calculated value is minimized at night. At this time, since [night lighting power] = [brightness feedback control upper limit value], if the minimum calculated value is multiplied by the brightness feedback control upper limit value,
[Target sensor voltage] = [Sensor voltage with about 70% lighting power at night]
It becomes.

そして以降は、電源投入毎に、そのときの累積点灯時間に応じたフィードバック制御上限値を用いて、上記同様に目標センサ電圧を計算し、制御部21aは、センサ電圧がこの目標センサ電圧を維持するように点灯電力を制御する。   Thereafter, every time the power is turned on, the target sensor voltage is calculated in the same manner as described above using the feedback control upper limit value according to the accumulated lighting time at that time, and the control unit 21a maintains the target sensor voltage. To control the lighting power.

また、目標センサ電圧を求めるために明るさフィードバック制御上限値を乗ずることには、もう1つ理由がある。仮に外光のない夜間に明るさフィードバック制御によって、明るさフィードバック制御上限値にて決められている上限である70%まで点灯電力が上昇せず、例えば65%までしか上昇しなかった場合、そのときの演算最小値は、
[演算最小値]=Min[65%の点灯電力によるセンサ電圧/点灯電力(=65%)]
となり、この演算最小値に基づいて、次回の通電期間における目標センサ電圧を決定すると、
[目標センサ電圧]=[65%の点灯電力によるセンサ電圧/点灯電力(=65%)]×[明るさフィードバック制御上限値(=70%)]
となる。
There is another reason for multiplying the brightness feedback control upper limit value to obtain the target sensor voltage. If the lighting power does not increase to 70%, which is the upper limit determined by the brightness feedback control upper limit value, for example, at night when there is no outside light, When the operation minimum value is
[Calculation minimum value] = Min [Sensor voltage / lighting power with 65% lighting power (= 65%)]
Based on this calculated minimum value, when the target sensor voltage for the next energization period is determined,
[Target sensor voltage] = [Sensor voltage with 65% lighting power / Lighting power (= 65%)] × [Brightness feedback control upper limit value (= 70%)]
It becomes.

すなわち、点灯電力とセンサ電圧との比例関係が成立していれば、前回の通電期間における点灯電力65%での演算最小値に明るさフィードバック制御上限値を乗ずることによって、点灯電力70%による演算最小値に基づく目標センサ電圧に補正され、次回の通電期間に用いることができる。(例えば、特許文献2参照)   That is, if the proportional relationship between the lighting power and the sensor voltage is established, the calculation with the lighting power of 70% is performed by multiplying the calculation minimum value at the lighting power of 65% during the previous energization period by the brightness feedback control upper limit value. It is corrected to the target sensor voltage based on the minimum value and can be used in the next energization period. (For example, see Patent Document 2)

上記特許文献2のような制御を行うメリットとして、レイアウト変更等で環境条件が変わって、机上面、床面等の反射率が変化した場合においても、レイアウト変更後の夜間の演算最小値を取得することで、その演算最小値を基に翌日または翌々日の電源投入時にはレイアウト変更に対応した目標センサ電圧を設定できる点がある。すなわち、特許文献1のように目標値を設定するのに人の手を煩わせることなく、照明装置が演算値を取得し、翌日または翌々日の電源投入時に目標センサ電圧を自動的に設定することができる。   As a merit of performing the control as in Patent Document 2 above, even when the environmental conditions change due to a layout change, etc., and the reflectivity on the desk top, floor, etc. changes, the nightly calculated minimum value after the layout change is obtained Thus, the target sensor voltage corresponding to the layout change can be set when the power is turned on the next day or the next day based on the calculated minimum value. That is, as in Patent Document 1, the lighting device acquires a calculated value without bothering a person to set the target value, and automatically sets the target sensor voltage when the power is turned on the next day or the next day. Can do.

上記図9に示す従来技術において、照度センサ21bは測定した照度を電圧信号に変換し、制御部21aは当該電圧信号を増幅して、CPU等で構成される制御部21aで認識可能なセンサ電圧に増幅するが、設計の段階で照度センサ21bの受光面で検知する照度とセンサ電圧とが1:1の対応となるように、図11に示すような比例関係の相関特性を有する設計を行っている(以後、この相関特性を測定レンジ特性と称す)。このことによって、明るさフィードバック制御を行う際に、制御部21aは、机上面の反射光(すなわち、天井面の照度)に基づくセンサ電圧を、机上面照度として認識する。そして、設定された目標センサ電圧に現在のセンサ電圧が近付くように点灯電力を制御する。   In the prior art shown in FIG. 9, the illuminance sensor 21b converts the measured illuminance into a voltage signal, the control unit 21a amplifies the voltage signal, and the sensor voltage that can be recognized by the control unit 21a configured by a CPU or the like. 11 is designed so that the illuminance detected by the light-receiving surface of the illuminance sensor 21b and the sensor voltage have a 1: 1 correspondence at the design stage, as shown in FIG. (Hereinafter, this correlation characteristic is referred to as a measurement range characteristic). Thus, when performing brightness feedback control, the control unit 21a recognizes the sensor voltage based on the reflected light on the desk surface (that is, the illuminance on the ceiling surface) as the illuminance on the desk surface. Then, the lighting power is controlled so that the current sensor voltage approaches the set target sensor voltage.

ここで、実現したい机上面照度は一般に商品仕様から決定されるもので、設定可能な照度範囲が広ければ、当然様々な用途に適用できる。しかし、CPU等で構成される制御部21aが認識可能なセンサ電圧の範囲は、一般に0〜Vcc(Vccは、CPUの電源電圧)であり、設定可能な机上面照度の最大値に電源電圧Vccを対応させる必要がある。   Here, the illuminance on the desk surface desired to be realized is generally determined from the product specifications, and can naturally be applied to various uses as long as the illuminance range that can be set is wide. However, the range of the sensor voltage that can be recognized by the control unit 21a composed of a CPU or the like is generally 0 to Vcc (Vcc is a power supply voltage of the CPU), and the power supply voltage Vcc is set to the maximum settable desk top surface illumination. Need to correspond.

そこで、机上面照度を一定にする明るさフィードバック制御を実現する上で考慮すべき天井面照度の範囲を100〜700lx(ルクス)に設定した場合、図11に示すように天井面照度100lxをセンサ電圧VLに対応させ、天井面照度700lxをセンサ電圧VH(>VL)に対応させ、さらに、目標センサ電圧に対して±5%の補正幅±Va内にセンサ電圧が存在するときは同一照度とみなす。このとき、センサ電圧VH×1.05が電源電圧Vccとなる。そして制御部21aは、このセンサ電圧VL〜VHの範囲で、目標センサ電圧の設定、および明るさフィードバック制御を行うことができる。   Therefore, when the ceiling surface illuminance range to be considered in realizing the brightness feedback control for making the desk surface illuminance constant is set to 100 to 700 lx (lux), as shown in FIG. Corresponding to the voltage VL, the ceiling surface illuminance 700 lx is made to correspond to the sensor voltage VH (> VL), and when the sensor voltage exists within the correction width ± Va of ± 5% with respect to the target sensor voltage, the same illuminance is obtained. I reckon. At this time, the sensor voltage VH × 1.05 becomes the power supply voltage Vcc. The control unit 21a can perform setting of the target sensor voltage and brightness feedback control in the range of the sensor voltages VL to VH.

しかしながら、明るさフィードバック制御を行う上で照度の設定範囲を広くすると、制御部21aで明るさフィードバック制御を行う際の分解能が十分に確保できず、精度の高い制御を実現できない。   However, if the setting range of the illuminance is widened in performing the brightness feedback control, the resolution at the time of performing the brightness feedback control by the control unit 21a cannot be sufficiently secured, and the highly accurate control cannot be realized.

そこで、複数の測定レンジを有して測定レンジを切り替え可能な照度センサを用いて、電源投入時に現在の環境条件下での被照射面の照度を測定し、当該測定結果から適当な測定レンジを決定し、次の電源投入時までは、今回の電源投入時に決定した測定レンジでセンサ電圧を出力する構成が提案されている。
特開平11−185974号公報 特開2006−40731号公報
Therefore, using an illuminance sensor that has multiple measurement ranges and can switch the measurement range, measure the illuminance of the irradiated surface under the current environmental conditions when the power is turned on, and determine the appropriate measurement range from the measurement results. A configuration is proposed in which the sensor voltage is output within the measurement range determined at the time of power-on this time until the next power-on.
JP-A-11-185974 JP 2006-40731 A

しかしながら、複数の測定レンジを切り替えて設定可能な照度センサを用いて、電源投入毎に照度センサの測定レンジの設定を行うと、環境条件によっては電源投入時に意図しない測定レンジの切替が行われる虞があり、下記のような弊害が考えられる。   However, using an illuminance sensor that can be set by switching between multiple measurement ranges, and setting the illuminance sensor measurement range each time the power is turned on, the measurement range may be unintentionally switched when the power is turned on depending on the environmental conditions. There are the following problems.

まず、電源投入時に測定レンジの切替が行われると、照度センサによって測定される照度(センサ電圧)を基に演算される目標センサ電圧も測定レンジ切替時に異なる値に設定しなければならない。例えば、図12に示す3つの測定レンジRA11,RA12,RA13において(測定レンジが狭い順に、RA11,RA12,RA13)、同一センサ電圧であっても、測定レンジが異なると対応する机上面照度は異なる。測定レンジRA11で目標センサ電圧Vpが設定された場合に対応する机上面照度はI11であるが、次回の電源投入時に測定レンジRA12に切り替わったとすると、目標センサ電圧Vpは、測定レンジRA11よりも明るい机上面照度I12として認識されるため、必要以上に点灯電力を大きくする制御が行われる。さらに次回の電源投入時に測定レンジRA13に切り替わったとすると、目標センサ電圧Vpは、測定レンジRA12よりも明るい机上面照度I13として認識されるため、やはり点灯電力は大きくなる。   First, when the measurement range is switched when the power is turned on, the target sensor voltage calculated based on the illuminance (sensor voltage) measured by the illuminance sensor must be set to a different value when the measurement range is switched. For example, in the three measurement ranges RA11, RA12, and RA13 shown in FIG. 12 (RA11, RA12, and RA13 in order from the narrowest measurement range), even if the sensor voltage is the same, the corresponding desk surface illuminance is different when the measurement range is different. . The desk surface illuminance corresponding to the case where the target sensor voltage Vp is set in the measurement range RA11 is I11. However, when the power is switched to the measurement range RA12 at the next power-on, the target sensor voltage Vp is brighter than the measurement range RA11. Since it is recognized as the desk surface illuminance I12, control for increasing the lighting power more than necessary is performed. Further, assuming that the target sensor voltage Vp is switched to the measurement range RA13 when the power is turned on next time, the target sensor voltage Vp is recognized as a desk surface illuminance I13 brighter than the measurement range RA12.

したがって、電源投入時に意図しない測定レンジの切替が行われて、目標センサ電圧が高めに設定された場合は、必要以上に点灯電力が大きくなってエネルギー消費が大きくなり、一方、目標センサ電圧が低めに設定された場合は、点灯電力が小さくなってユーザに暗く感じさせてしまい、本来期待される明るさフィードバック制御が行われないという課題があった。   Therefore, if the measurement range is unintentionally switched when the power is turned on and the target sensor voltage is set to a higher value, the lighting power will increase more than necessary, resulting in higher energy consumption, while the target sensor voltage will be lower. When it is set to, there is a problem that the lighting power is reduced to make the user feel dark and the brightness feedback control that is originally expected is not performed.

本発明は、上記事由に鑑みてなされたものであり、その目的は、照度センサの測定レンジが意図しない測定レンジに切り替わることはなく、適切な測定レンジに設定でき、さらにはレイアウト変更等による被照射面の反射率の変化が生じても被照射面の明るさを一定に制御可能な照明制御装置を提供することにある。   The present invention has been made in view of the above-described reasons, and the object thereof is not to switch the measurement range of the illuminance sensor to an unintended measurement range, and can be set to an appropriate measurement range. An object of the present invention is to provide an illumination control device capable of controlling the brightness of an irradiated surface to be constant even when the reflectance of the irradiated surface changes.

請求項1の発明は、点灯電力を供給されて点灯する光源と、光源により照明される被照射面の照度を反射光により測定する照度センサと、光源に供給する点灯電力を制御する制御部と、照度センサの測定値を点灯電力で除した演算値のうち所定期間内における最小の演算値を記憶する記憶部とを備えて、制御部は、前記最小の演算値に基づいて目標照度を設定し、照度センサの測定値が当該目標照度となるように光源に供給する点灯電力を制御する照明制御装置において、照度センサの測定レンジを複数の測定レンジから切替可能に選択する測定レンジ切替部と、ユーザの操作によって、光源を所定の点灯電力で点灯させ、このときの被照射面の照度が測定可能な測定レンジに測定レンジ切替部を固定する測定レンジ設定部とを備えることを特徴とする。   The invention of claim 1 is a light source that is lit by being supplied with lighting power, an illuminance sensor that measures the illuminance of the irradiated surface illuminated by the light source by reflected light, and a control unit that controls the lighting power supplied to the light source. A storage unit that stores a minimum calculated value within a predetermined period among the calculated values obtained by dividing the measured value of the illuminance sensor by the lighting power, and the control unit sets the target illuminance based on the minimum calculated value In the illumination control device that controls the lighting power supplied to the light source so that the measurement value of the illuminance sensor becomes the target illuminance, a measurement range switching unit that selects the measurement range of the illuminance sensor from a plurality of measurement ranges; A measurement range setting unit that turns on the light source with a predetermined lighting power by a user operation and fixes the measurement range switching unit to a measurement range in which the illuminance of the irradiated surface at this time can be measured. And butterflies.

この発明によれば、ユーザの操作によって照度センサの測定レンジの設定動作が行われるので、測定レンジが意図しない測定レンジに切り替わることはなく適切な測定レンジに設定でき、またレイアウト変更等による被照射面の反射率の変化が生じた場合には測定レンジの再設定をして適切な目標照度を設定できるので、レイアウト変更等による被照射面の反射率の変化が生じても被照射面の明るさを一定に制御できる。   According to the present invention, since the measurement range setting operation of the illuminance sensor is performed by the user's operation, the measurement range can be set to an appropriate measurement range without being switched to an unintended measurement range, and irradiated by changing the layout or the like. If the reflectance of the surface changes, the measurement range can be reset and an appropriate target illuminance can be set, so even if the reflectance of the irradiated surface changes due to layout changes, etc. The thickness can be controlled constant.

請求項2の発明は、請求項1において、照度センサの測定値が前記固定された測定レンジを超えた場合、照度センサの測定値を点灯電力で除する演算は行われないことを特徴とする。   The invention of claim 2 is characterized in that, in claim 1, when the measured value of the illuminance sensor exceeds the fixed measurement range, the calculation for dividing the measured value of the illuminance sensor by the lighting power is not performed. .

この発明によれば、次回の電源投入時に不適切な目標照度が設定されることを防止できる。   According to the present invention, it is possible to prevent an inappropriate target illuminance from being set at the next power-on.

請求項3の発明は、請求項1において、前記測定レンジ設定部は、複数の測定レンジのうち、光源を所定の点灯電力で点灯させたときの照度センサの測定値が測定上限値と測定下限値の中心値近傍となる測定レンジに固定することを特徴とする。   The invention of claim 3 is the measurement range setting unit according to claim 1, wherein the measurement value of the illuminance sensor when the light source is turned on at a predetermined lighting power among the plurality of measurement ranges is a measurement upper limit value and a measurement lower limit. It is characterized by being fixed to a measurement range in the vicinity of the center value of the values.

この発明によれば、制御の分解能を十分に確保でき、明るさフィードバック制御による被反射面の照度を精度よく目標照度に維持することができる。   According to the present invention, the resolution of control can be sufficiently secured, and the illuminance of the reflected surface by brightness feedback control can be accurately maintained at the target illuminance.

以上説明したように、本発明では、照度センサの測定レンジが意図しない測定レンジに切り替わることはなく、適切な測定レンジに設定でき、さらにはレイアウト変更等による被照射面の反射率の変化が生じても被照射面の明るさを一定に制御することができるという効果がある。   As described above, in the present invention, the measurement range of the illuminance sensor is not switched to an unintended measurement range, and can be set to an appropriate measurement range. Further, the reflectance of the irradiated surface changes due to a layout change or the like. However, the brightness of the irradiated surface can be controlled to be constant.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態の照明制御装置1は天井面に設置されており、図1に示すように、制御部1aと、照度センサ1bと、記憶部1cと、光源1dと、点灯回路1eと、操作部1fとを備える。
(Embodiment 1)
The lighting control device 1 of the present embodiment is installed on a ceiling surface, and as shown in FIG. 1, a control unit 1a, an illuminance sensor 1b, a storage unit 1c, a light source 1d, a lighting circuit 1e, and an operation unit. 1f.

そして、照度センサ1bは、固有の光学系を有して一定の視野の照度を常時測定し、測定した照度を電圧信号に変換して制御部1aへ連続してセンサ電圧として出力する。この電圧信号は、照度から一意に決定され、照度と略比例の関係にある。ここで、図2において天井面Bに設置した照明制御装置1の真下には机上面、床面などの被照射面Fがあり、照度センサ1bには、光源1dから出力された光の被照射面Fでの反射光以外に、窓を通して入り込む昼光などの外光の被照射面Fでの反射光も入射されて、被照射面Fの照度を反射光により検出する。   The illuminance sensor 1b has a unique optical system and constantly measures the illuminance of a fixed visual field, converts the measured illuminance into a voltage signal, and continuously outputs it as a sensor voltage to the control unit 1a. This voltage signal is uniquely determined from the illuminance, and is approximately proportional to the illuminance. Here, in FIG. 2, there are irradiated surfaces F such as a desk top surface and a floor surface directly under the illumination control device 1 installed on the ceiling surface B, and the illuminance sensor 1 b is irradiated with light output from the light source 1 d. In addition to the reflected light from the surface F, reflected light from the irradiated surface F of external light such as daylight entering through the window is also incident, and the illuminance of the irradiated surface F is detected by the reflected light.

制御部1aは、照度センサ1bからのセンサ電圧を増幅する増幅回路1gと、照明制御の目標照度となる照度センサ1bの出力電圧(目標センサ電圧)を計算する演算部1hと、照度センサ1bの測定レンジを設定する測定レンジ設定部1iと、光源1dに調光制御のためのPWM信号を出力する調光信号出力部1jとを備え、演算部1hと測定レンジ設定部1iとはCPU1kで構成されている。   The control unit 1a includes an amplifier circuit 1g that amplifies the sensor voltage from the illuminance sensor 1b, an arithmetic unit 1h that calculates an output voltage (target sensor voltage) of the illuminance sensor 1b that is the target illuminance for illumination control, and the illuminance sensor 1b. A measurement range setting unit 1i for setting a measurement range and a dimming signal output unit 1j for outputting a PWM signal for dimming control to the light source 1d are provided. The calculation unit 1h and the measurement range setting unit 1i are configured by a CPU 1k. Has been.

記憶部1cは、EEPROMのような不揮発性メモリで構成され、CPU1kからの各データ、設定値を記憶する。   The storage unit 1c is configured by a nonvolatile memory such as an EEPROM, and stores each data and set value from the CPU 1k.

点灯回路1eは、商用電源ACを入力として、PWM信号に応じた点灯電力を光源1dへ供給しており、光源1dは、例えば1乃至複数の蛍光灯で構成される。   The lighting circuit 1e receives the commercial power supply AC and supplies lighting power corresponding to the PWM signal to the light source 1d. The light source 1d is composed of, for example, one or more fluorescent lamps.

操作部1fは、ユーザが操作することで、CPU1kの動作を通常モードまたは測定レンジ設定モードに切り替えるスイッチで構成され、部屋の壁面等に設けられる。   The operation unit 1f is configured by a switch that switches the operation of the CPU 1k to a normal mode or a measurement range setting mode when operated by a user, and is provided on a wall surface of a room or the like.

以下、本実施形態の照明制御装置1の各モードでの動作について説明する。まず、通常モードにおいて、制御部1aのCPU1kは、昼夜を問わず、増幅回路1gを介した照度センサ1bのセンサ電圧が、演算部1hで演算した目標センサ電圧となるように光源1dへ供給する点灯電力を制御する。すなわち、照度センサ1bのセンサ電圧に基づいて被照射面の照度が略一定となるように光源1dへの供給電力を制御するのである。この目標センサ電圧は、上記背景技術と同様に、通電期間毎に
[演算最小値]=Min[センサ電圧/点灯電力]
を計算して記憶部1cに格納し、次回の電源投入時にこの演算最小値および明るさフィードバック制御上限値に基づいて、
[目標センサ電圧]=Min[センサ電圧/点灯電力]×[明るさフィードバック制御上限値]
を計算することで求められる。なお、明るさフィードバック制御上限値の特性は記憶部1cに格納されており、この特性および目標センサ電圧の計算については、上記背景技術にて詳述しており、説明は省略する。
Hereinafter, the operation in each mode of the illumination control device 1 of the present embodiment will be described. First, in the normal mode, the CPU 1k of the control unit 1a supplies the light source 1d so that the sensor voltage of the illuminance sensor 1b via the amplifier circuit 1g becomes the target sensor voltage calculated by the calculation unit 1h regardless of day or night. Controls the lighting power. In other words, the power supplied to the light source 1d is controlled based on the sensor voltage of the illuminance sensor 1b so that the illuminance of the irradiated surface is substantially constant. This target sensor voltage is [calculated minimum value] = Min [sensor voltage / lighting power] for each energization period, as in the background art.
Is calculated and stored in the storage unit 1c, and the next time the power is turned on, based on the calculated minimum value and the brightness feedback control upper limit value,
[Target sensor voltage] = Min [Sensor voltage / lighting power] × [Brightness feedback control upper limit value]
Is obtained by calculating. Note that the characteristic of the brightness feedback control upper limit value is stored in the storage unit 1c, and the calculation of the characteristic and the target sensor voltage is described in detail in the background art, and the description thereof is omitted.

ここで、照度センサ1bは、測定した照度に略比例した電流を出力する照度測定部1mと、照度測定部1mの出力電流を電圧に変換するとともに、複数の測定レンジを切り替える測定レンジ切替部1nとで構成されており、この測定レンジは、以下説明する測定レンジ設定モードにおいて設定される。   Here, the illuminance sensor 1b includes an illuminance measurement unit 1m that outputs a current substantially proportional to the measured illuminance, and a measurement range switching unit 1n that converts an output current of the illuminance measurement unit 1m into a voltage and switches a plurality of measurement ranges. This measurement range is set in a measurement range setting mode described below.

電源を最初に投入する出荷時状態、またはレイアウト変更等により被照射面の反射率が変わった場合、ユーザは夜間に操作部1fを操作して測定レンジ設定モードに切り替える。測定レンジ設定モードにおいて、測定レンジ設定部1iは、そのときの累積点灯時間に応じた明るさフィードバック制御上限値に点灯電力を制御して光源1dを点灯させ、このときの照度センサ1bのセンサ電圧が制御部1aに入力される。   When the reflectivity of the irradiated surface changes due to the shipping state when the power is first turned on or due to a layout change or the like, the user operates the operation unit 1f at night to switch to the measurement range setting mode. In the measurement range setting mode, the measurement range setting unit 1i controls the lighting power to the brightness feedback control upper limit value corresponding to the cumulative lighting time at that time to turn on the light source 1d, and the sensor voltage of the illuminance sensor 1b at this time Is input to the controller 1a.

測定レンジ切替部1nは、図3に示すように、照度測定部1mと制御部1aとを接続する信号経路とグランドレベルとの間に、抵抗R1とトランジスタQ1との直列回路、抵抗R2とトランジスタQ2との直列回路、抵抗R3とトランジスタQ3との直列回路を各々接続し、信号経路の制御部1a側には抵抗R0を挿入している。トランジスタQ1〜Q3は、制御部1aの測定レンジ設定部1iによって各々がオン・オフ制御され、
測定レンジRA1:トランジスタQ1のみがオン
測定レンジRA2:トランジスタQ1,Q2がオン
測定レンジRA3:トランジスタQ1,Q2,Q3がオン
の3つの測定レンジに切り替えられる。
As shown in FIG. 3, the measurement range switching unit 1n includes a series circuit of a resistor R1 and a transistor Q1, a resistor R2 and a transistor between a signal path connecting the illuminance measuring unit 1m and the control unit 1a and the ground level. A series circuit with Q2 and a series circuit with resistor R3 and transistor Q3 are connected to each other, and a resistor R0 is inserted on the control section 1a side of the signal path. The transistors Q1 to Q3 are each turned on / off by the measurement range setting unit 1i of the control unit 1a.
Measurement range RA1: Only transistor Q1 is on Measurement range RA2: Transistors Q1 and Q2 are on Measurement range RA3: Transistors Q1, Q2 and Q3 are on.

図4は、測定レンジRA1,RA2,RA3の各特性を示し、測定レンジRA1,RA2,RA3における照度の測定上限値I1,I2,I3はCPU1kの電源電圧Vccで制限され、I1<I2<I3となる。   FIG. 4 shows the characteristics of the measurement ranges RA1, RA2, and RA3, and the illuminance measurement upper limit values I1, I2, and I3 in the measurement ranges RA1, RA2, and RA3 are limited by the power supply voltage Vcc of the CPU 1k, and I1 <I2 <I3. It becomes.

そして、測定レンジ設定モードに切り替えた直後、測定レンジ設定部1iは、トランジスタQ1のみをオンして測定レンジRA1に設定し、照度測定部1mの出力電流は抵抗R1で電圧に変換され、抵抗R1の両端電圧がセンサ電圧として制御部1aに出力される。CPU1kは、増幅部1gを介して受けたセンサ電圧をA/D変換した後、測定レンジ設定部1iにおいて、このセンサ電圧がCPU1kの電源電圧Vccを超えていないかを判別する。センサ電圧がCPU1kの電源電圧Vccを超えていなければ、測定レンジ設定部1iは、測定レンジ切替部1nを測定レンジRA1に固定する。   Immediately after switching to the measurement range setting mode, the measurement range setting unit 1i turns on only the transistor Q1 and sets it to the measurement range RA1, and the output current of the illuminance measurement unit 1m is converted into a voltage by the resistor R1, and the resistor R1 Is output to the control unit 1a as a sensor voltage. The CPU 1k performs A / D conversion on the sensor voltage received via the amplifier 1g, and then determines whether the sensor voltage exceeds the power supply voltage Vcc of the CPU 1k in the measurement range setting unit 1i. If the sensor voltage does not exceed the power supply voltage Vcc of the CPU 1k, the measurement range setting unit 1i fixes the measurement range switching unit 1n to the measurement range RA1.

測定レンジRA1において、センサ電圧がCPU1kの電源電圧Vccを超えていれば、測定レンジ設定部1iは、さらにトランジスタQ2をオンして測定レンジRA2に設定し、照度測定部1mの出力電流は抵抗R1,R2の並列回路で電圧に変換される。並列接続された抵抗R1,R2の合成抵抗は抵抗R1の抵抗より小さいので、測定レンジRA2では、測定レンジRA1より低いセンサ電圧が制御部1aに出力される。測定レンジ設定部1iは、上記同様に、増幅部1gを介して受けたセンサ電圧がCPU1kの電源電圧Vccを超えていないかを判別する。センサ電圧がCPU1kの電源電圧Vccを超えていなければ、測定レンジ設定部1iは、測定レンジ切替部1nを測定レンジRA2に固定する。   In the measurement range RA1, if the sensor voltage exceeds the power supply voltage Vcc of the CPU 1k, the measurement range setting unit 1i further turns on the transistor Q2 to set the measurement range RA2, and the output current of the illuminance measurement unit 1m is the resistance R1. , R2 is converted into a voltage by a parallel circuit. Since the combined resistance of the resistors R1 and R2 connected in parallel is smaller than that of the resistor R1, a sensor voltage lower than the measurement range RA1 is output to the control unit 1a in the measurement range RA2. Similarly to the above, the measurement range setting unit 1i determines whether the sensor voltage received through the amplification unit 1g exceeds the power supply voltage Vcc of the CPU 1k. If the sensor voltage does not exceed the power supply voltage Vcc of the CPU 1k, the measurement range setting unit 1i fixes the measurement range switching unit 1n to the measurement range RA2.

測定レンジRA2において、センサ電圧がCPU1kの電源電圧Vccを超えていれば、測定レンジ設定部1iは、さらにトランジスタQ3をオンして測定レンジRA3に設定し、照度測定部1mの出力電流は抵抗R1,R2,R3の並列回路で電圧に変換される。並列接続された抵抗R1,R2,R3の合成抵抗は抵抗R1,R2の合成抵抗より小さいので、測定レンジRA3では、測定レンジ2より低いセンサ電圧が制御部1aに出力される。測定レンジ設定部1iは、上記同様に、増幅部1gを介して受けたセンサ電圧がCPU1kの電源電圧Vccを超えていないかを判別する。センサ電圧がCPU1kの電源電圧Vccを超えていなければ、測定レンジ設定部1iは、測定レンジ切替部1nを測定レンジRA3に固定する。   In the measurement range RA2, if the sensor voltage exceeds the power supply voltage Vcc of the CPU 1k, the measurement range setting unit 1i further turns on the transistor Q3 to set the measurement range RA3, and the output current of the illuminance measurement unit 1m is the resistance R1. , R2 and R3 are converted into voltages. Since the combined resistance of the resistors R1, R2, and R3 connected in parallel is smaller than the combined resistance of the resistors R1 and R2, in the measurement range RA3, a sensor voltage lower than that in the measurement range 2 is output to the control unit 1a. Similarly to the above, the measurement range setting unit 1i determines whether the sensor voltage received through the amplification unit 1g exceeds the power supply voltage Vcc of the CPU 1k. If the sensor voltage does not exceed the power supply voltage Vcc of the CPU 1k, the measurement range setting unit 1i fixes the measurement range switching unit 1n to the measurement range RA3.

測定レンジ切替部1nは、上記のように固定したいずれかの測定レンジを、この環境条件下での固定測定レンジとして、不揮発性メモリで構成された記憶部1cに記憶させる。そして、ユーザが、操作部1fを再度操作して通常モードに切り替えると、CPU1kは、電源投入毎に記憶部1cから固定測定レンジを読み出し、測定レンジ設定部1iはこの固定測定レンジに測定レンジ切替部1nを固定する。したがって、ユーザが操作部1fを操作して測定レンジ設定モードに切り替えない限り、測定レンジの切替が行われることはない。すなわち、従来のように電源投入時に意図しない測定レンジの切替が行われることはないのである。   The measurement range switching unit 1n stores one of the measurement ranges fixed as described above as a fixed measurement range under the environmental conditions in the storage unit 1c configured with a nonvolatile memory. When the user operates the operation unit 1f again to switch to the normal mode, the CPU 1k reads the fixed measurement range from the storage unit 1c every time the power is turned on, and the measurement range setting unit 1i switches the measurement range to the fixed measurement range. The part 1n is fixed. Therefore, the measurement range is not switched unless the user operates the operation unit 1f to switch to the measurement range setting mode. That is, the measurement range is not switched unintentionally when the power is turned on as in the prior art.

そして、レイアウト変更等によって環境条件が変わった場合には、上記同様にユーザが操作部1fを操作して測定レンジ設定モードに切り替えて、測定レンジ設定部1iがその環境条件に適した測定レンジを判別し、固定測定レンジとして記憶部1cに記憶させる。すなわち、レイアウト変更等による被照射面の反射率の変化が生じても測定レンジの再設定が可能となり、適切な目標センサ電圧を設定できるのである。   When the environmental conditions change due to a layout change or the like, the user operates the operation unit 1f to switch to the measurement range setting mode as described above, and the measurement range setting unit 1i selects a measurement range suitable for the environmental conditions. It discriminate | determines and memorize | stores in the memory | storage part 1c as a fixed measurement range. That is, even if the reflectance of the irradiated surface changes due to a layout change or the like, the measurement range can be reset, and an appropriate target sensor voltage can be set.

なお、測定レンジ設定モードにおいて、測定レンジ3で出力されたセンサ電圧がCPU1kの電源電圧Vccを超えていれば、CPU1kは、この環境条件では明るさフィードバック制御を行うことができないと判断して、固定測定レンジ無しの情報を記憶部1cに記憶させる。そして、ユーザが、操作部1fを操作して通常モードに切り替えると、CPU1kは、電源投入毎に記憶部1cから固定測定レンジ無しの情報を読み出し、演算部1hは、所定の点灯電力(例えば100%の点灯電力)を光源1dへ供給するように制御する。   In the measurement range setting mode, if the sensor voltage output in the measurement range 3 exceeds the power supply voltage Vcc of the CPU 1k, the CPU 1k determines that brightness feedback control cannot be performed under this environmental condition, Information indicating no fixed measurement range is stored in the storage unit 1c. Then, when the user operates the operation unit 1f to switch to the normal mode, the CPU 1k reads out information indicating that there is no fixed measurement range from the storage unit 1c every time the power is turned on, and the calculation unit 1h receives a predetermined lighting power (for example, 100). % Lighting power) is supplied to the light source 1d.

また本実施形態では、測定レンジ設定モードにおいて、累積点灯時間に応じた明るさフィードバック制御上限値に点灯電力を制御して光源1dを点灯させた状態で、電源電圧Vcc以下で最も大きいセンサ電圧が出力される測定レンジを固定測定レンジとしている。したがって、目標センサ電圧を十分高い電圧値に設定できるので、通常モードにおいて、目標センサ電圧付近のセンサ電圧が十分高い電圧値となり、センサ電圧のS/N比を高くして制御の分解能を十分に確保でき、明るさフィードバック制御による被反射面の照度を精度よく目標照度に維持することができる。   Further, in the present embodiment, in the measurement range setting mode, the largest sensor voltage below the power supply voltage Vcc is obtained with the lighting power controlled to the brightness feedback control upper limit value corresponding to the cumulative lighting time and the light source 1d being turned on. The output measurement range is a fixed measurement range. Therefore, since the target sensor voltage can be set to a sufficiently high voltage value, the sensor voltage near the target sensor voltage becomes a sufficiently high voltage value in the normal mode, and the control resolution is sufficiently increased by increasing the S / N ratio of the sensor voltage. The illuminance of the reflected surface by brightness feedback control can be accurately maintained at the target illuminance.

(実施形態2)
本実施形態の照明制御装置の構成は、実施形態1と同様に図1〜図4で示され、同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
The configuration of the illumination control device of the present embodiment is shown in FIGS. 1 to 4 as in the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.

通常モード時に、センサ電圧が固定測定レンジの測定上限値を超えた場合、すなわちセンサ電圧が電源電圧Vccを超えた場合、外光などの外部光源によって固定測定レンジの測定可能範囲をオーバする照度になっているとみなし、演算部1hは、この期間の演算値の計算を停止する。これは、外光が多過ぎる場合、演算値も当然大きな値になってしまうので、もし、この演算値を基に次回の通電期間の目標センサ電圧が設定されると、目標センサ電圧も大きな値になってしまい、必要以上に点灯電力が大きくなって明るさフィードバック制御に支障をきたしてしまう。   In normal mode, if the sensor voltage exceeds the measurement upper limit of the fixed measurement range, that is, if the sensor voltage exceeds the power supply voltage Vcc, the illuminance will exceed the measurable range of the fixed measurement range by an external light source such as external light. Therefore, the calculation unit 1h stops calculating the calculation value during this period. This is because, if there is too much external light, the calculated value will naturally be a large value. If the target sensor voltage for the next energization period is set based on this calculated value, the target sensor voltage will also be a large value. As a result, the lighting power is increased more than necessary and the brightness feedback control is hindered.

そこで、本実施形態では、通常モード時にセンサ電圧が固定測定レンジの測定上限値を超えた場合、演算値の計算を停止することで、次回の電源投入時に不適切な目標センサ電圧が設定されることを防止している。   Therefore, in this embodiment, when the sensor voltage exceeds the measurement upper limit value of the fixed measurement range in the normal mode, an inappropriate target sensor voltage is set at the next power-on by stopping the calculation value calculation. To prevent that.

(実施形態3)
本実施形態の照明制御装置の構成は、実施形態1と同様に図1、図2で示され、同様の構成には同一の符号を付して説明は省略する。
(Embodiment 3)
The configuration of the illumination control device of the present embodiment is shown in FIGS. 1 and 2 as in the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、照度センサ1bの測定レンジ切替部1nは5つの測定レンジRA1〜RA5を切り替え可能に構成され、図5に示すように、測定レンジRA1〜RA5における照度の測定下限値は0(lx)であり、測定上限値I1〜I5はCPU1kの電源電圧Vccで制限されて、I1<I2<I3<I4<I5となる。   In the present embodiment, the measurement range switching unit 1n of the illuminance sensor 1b is configured to be able to switch between five measurement ranges RA1 to RA5, and as shown in FIG. 5, the measurement lower limit value of illuminance in the measurement ranges RA1 to RA5 is 0 ( lx) and the measurement upper limit values I1 to I5 are limited by the power supply voltage Vcc of the CPU 1k, and I1 <I2 <I3 <I4 <I5.

そして、測定レンジ設定モードにおいて固定測定レンジを決定する際に、測定レンジ設定部1iは、そのときの累積点灯時間に応じた明るさフィードバック制御上限値に点灯電力を制御して光源1dを点灯させ、このときの照度センサ1bのセンサ電圧が制御部1aに入力される。そして、レンジRA1,レンジRA2ではセンサ電圧がCPU1kの電源電圧Vccを超えている場合、測定レンジRA3,RA4,RA5のうちいずれかが固定測定モードに設定されるのであるが、本実施形態では、センサ電圧が、測定上限値と測定下限値の中心値近傍となる測定レンジに設定される。すなわち、測定レンジ設定モードにおけるセンサ電圧が0.5×Vccに最も近い測定レンジが固定測定レンジとなる。   Then, when determining the fixed measurement range in the measurement range setting mode, the measurement range setting unit 1i turns on the light source 1d by controlling the lighting power to the brightness feedback control upper limit value according to the cumulative lighting time at that time. The sensor voltage of the illuminance sensor 1b at this time is input to the control unit 1a. In the range RA1 and range RA2, when the sensor voltage exceeds the power supply voltage Vcc of the CPU 1k, one of the measurement ranges RA3, RA4, and RA5 is set to the fixed measurement mode. In the present embodiment, The sensor voltage is set to a measurement range in the vicinity of the center value of the measurement upper limit value and the measurement lower limit value. That is, the measurement range in which the sensor voltage in the measurement range setting mode is closest to 0.5 × Vcc is the fixed measurement range.

したがって、目標センサ電圧の電圧レベル、目標センサ電圧の補正幅確保、センサ電圧のS/N比の点で最適な測定レンジを選択できるので、制御の分解能を十分に確保でき、明るさフィードバック制御による被反射面の照度を精度よく目標照度に維持することができる。   Therefore, since the optimum measurement range can be selected in terms of the target sensor voltage level, the target sensor voltage correction range, and the S / N ratio of the sensor voltage, sufficient control resolution can be secured, and brightness feedback control is used. The illuminance of the reflected surface can be accurately maintained at the target illuminance.

実施形態1の照明制御装置のブロック構成を示す図である。It is a figure which shows the block configuration of the illumination control apparatus of Embodiment 1. FIG. 同上の設置状態を示す図である。It is a figure which shows the installation state same as the above. 同上の照度センサの構成を示す図である。It is a figure which shows the structure of an illumination intensity sensor same as the above. 同上の照度センサの測定レンジを示す図である。It is a figure which shows the measurement range of an illumination intensity sensor same as the above. 実施形態3の照明制御装置の測定レンジを示す図である。It is a figure which shows the measurement range of the illumination control apparatus of Embodiment 3. 従来の照明装置の設置状態を示す図である。It is a figure which shows the installation state of the conventional illuminating device. 同上のブロック構成を示す図である。It is a figure which shows a block configuration same as the above. 同上のセンサ電圧と点灯電力との関係を示す図である。It is a figure which shows the relationship between a sensor voltage same as the above and lighting power. 従来の照明制御装置のブロック構成を示す図である。It is a figure which shows the block configuration of the conventional illumination control apparatus. (a)〜(c)同上の光束減退を補正する明るさフィードバック制御上限値を示す図である。(A)-(c) It is a figure which shows the brightness feedback control upper limit which correct | amends luminous flux decline same as the above. 同上の照度センサの測定レンジを示す図である。It is a figure which shows the measurement range of an illumination intensity sensor same as the above. 従来の照度センサの測定レンジを示す図である。It is a figure which shows the measurement range of the conventional illumination intensity sensor.

符号の説明Explanation of symbols

1 照明制御装置
1a 制御部
1b 照度センサ
1c 記憶部
1d 光源
1e 点灯回路
1f 操作部
1h 演算部
1i 測定レンジ設定部
1n 測定レンジ切替部
DESCRIPTION OF SYMBOLS 1 Illumination control apparatus 1a Control part 1b Illuminance sensor 1c Memory | storage part 1d Light source 1e Lighting circuit 1f Operation part 1h Calculation part 1i Measurement range setting part 1n Measurement range switching part

Claims (3)

点灯電力を供給されて点灯する光源と、光源により照明される被照射面の照度を反射光により測定する照度センサと、光源に供給する点灯電力を制御する制御部と、照度センサの測定値を点灯電力で除した演算値のうち所定期間内における最小の演算値を記憶する記憶部とを備えて、制御部は、前記最小の演算値に基づいて目標照度を設定し、照度センサの測定値が当該目標照度となるように光源に供給する点灯電力を制御する照明制御装置において、
照度センサの測定レンジを複数の測定レンジから切替可能に選択する測定レンジ切替部と、
ユーザの操作によって、光源を所定の点灯電力で点灯させ、このときの被照射面の照度が測定可能な測定レンジに測定レンジ切替部を固定する測定レンジ設定部と
を備えることを特徴とする照明制御装置。
A light source that is lit by being supplied with lighting power, an illuminance sensor that measures the illuminance of the illuminated surface illuminated by the light source by reflected light, a control unit that controls the lighting power supplied to the light source, and a measurement value of the illuminance sensor A storage unit for storing a minimum calculated value within a predetermined period among the calculated values divided by the lighting power, the control unit sets a target illuminance based on the minimum calculated value, and the measured value of the illuminance sensor In the lighting control device that controls the lighting power supplied to the light source so that the target illuminance becomes the target illuminance,
A measurement range switching unit that selects the measurement range of the illuminance sensor from a plurality of measurement ranges, and
A measurement range setting unit that turns on the light source with a predetermined lighting power by a user operation, and fixes the measurement range switching unit to a measurement range in which the illuminance of the irradiated surface at this time can be measured. Control device.
照度センサの測定値が前記固定された測定レンジを超えた場合、照度センサの測定値を点灯電力で除する演算は行われないことを特徴とする請求項1記載の照明制御装置。 The lighting control device according to claim 1, wherein when the measurement value of the illuminance sensor exceeds the fixed measurement range, the calculation for dividing the measurement value of the illuminance sensor by the lighting power is not performed. 前記測定レンジ設定部は、複数の測定レンジのうち、光源を所定の点灯電力で点灯させたときの照度センサの測定値が測定上限値と測定下限値の中心値近傍となる測定レンジに固定することを特徴とする請求項1記載の照明制御装置。 The measurement range setting unit fixes the measurement value of the illuminance sensor when the light source is turned on with a predetermined lighting power among a plurality of measurement ranges to be in the vicinity of the center value of the measurement upper limit value and the measurement lower limit value. The lighting control device according to claim 1.
JP2006177051A 2006-06-27 2006-06-27 Lighting control device Pending JP2008010202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177051A JP2008010202A (en) 2006-06-27 2006-06-27 Lighting control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177051A JP2008010202A (en) 2006-06-27 2006-06-27 Lighting control device

Publications (1)

Publication Number Publication Date
JP2008010202A true JP2008010202A (en) 2008-01-17

Family

ID=39068228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177051A Pending JP2008010202A (en) 2006-06-27 2006-06-27 Lighting control device

Country Status (1)

Country Link
JP (1) JP2008010202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205841A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Illumination control system
WO2013155867A1 (en) * 2012-04-18 2013-10-24 Zhang Jiayan Automatic dimming constant-light control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144882A (en) * 1997-11-05 1999-05-28 Mitsubishi Electric Corp Automatic illuminance setting method for lighting control system
JP2006040731A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Illumination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144882A (en) * 1997-11-05 1999-05-28 Mitsubishi Electric Corp Automatic illuminance setting method for lighting control system
JP2006040731A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Illumination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205841A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Illumination control system
WO2013155867A1 (en) * 2012-04-18 2013-10-24 Zhang Jiayan Automatic dimming constant-light control system

Similar Documents

Publication Publication Date Title
JP5649404B2 (en) Lighting device
JP5491779B2 (en) Lighting fixture and lighting system
KR101530377B1 (en) System for controlling an lighting fixture
JP4635970B2 (en) Lighting control device
JP3954183B2 (en) Automatic illumination control device
JP2008204897A (en) Lighting control system
JP2010049834A (en) Lighting device
JP2008010202A (en) Lighting control device
JP4784212B2 (en) lighting equipment
JP2006040731A (en) Illumination device
JP4736497B2 (en) Lighting device
KR101594036B1 (en) A allrm clock with lamp and lamp lighting method thereof
JP2012129021A (en) Lighting system, lighting control method, and lighting control program
JP2003347068A (en) Lighting control device
JP4771839B2 (en) Power supply control device, power supply control method, and video display device
JP3774952B2 (en) Lighting device and control method thereof
KR100946692B1 (en) Automatic illuminance control system and illuminance control method using the same
KR101964773B1 (en) Dimming level adjusting method using energy consumption of lighting
JP4544186B2 (en) Lighting control device
JPH0519234A (en) Controller for brightness of liquid crystal display provided with back light source
KR100216975B1 (en) Illumination control method for inverter stand
JP5317345B2 (en) Light source lighting device, lighting device, and lighting system
JP2005085588A (en) Dimming control system
KR102364509B1 (en) Electronic display with precise luminance control using photometric sensors
KR101021978B1 (en) LED lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907