[go: up one dir, main page]

JP2008007374A - Method for manufacturing electroconductive ceramics material - Google Patents

Method for manufacturing electroconductive ceramics material Download PDF

Info

Publication number
JP2008007374A
JP2008007374A JP2006179442A JP2006179442A JP2008007374A JP 2008007374 A JP2008007374 A JP 2008007374A JP 2006179442 A JP2006179442 A JP 2006179442A JP 2006179442 A JP2006179442 A JP 2006179442A JP 2008007374 A JP2008007374 A JP 2008007374A
Authority
JP
Japan
Prior art keywords
crucible
carbon
powder
solidified body
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179442A
Other languages
Japanese (ja)
Other versions
JP4672608B2 (en
Inventor
Masaharu Nanba
匡玄 難波
Kiyoshi Araki
清 新木
Satoshi Morikawa
智 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006179442A priority Critical patent/JP4672608B2/en
Publication of JP2008007374A publication Critical patent/JP2008007374A/en
Application granted granted Critical
Publication of JP4672608B2 publication Critical patent/JP4672608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a 12CaO 7Al<SB>2</SB>O<SB>3</SB>polycrystalline substance having higher electrical conductivity with high productivity. <P>SOLUTION: A 12CaO 7Al<SB>2</SB>O<SB>3</SB>powder is arranged in a carbon crucible wherein carbon sheets are sheeted, a carbon lid is put on the opening of the crucible, the crucible with the lid is introduced into a melting furnace. 12CaO 7Al<SB>2</SB>O<SB>3</SB>polycrystalline substance having higher electrical conductivity can be manufactured by melting the powder in the crucible in a dried nitrogen atmosphere, cooling and solidifying. In the present method, a melting and solidifying treatment is required only once, while a conventional method has required twice-repeated such treatments, and the resultant solid does not stick to the crucible. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性セラミックス材料の製造方法に関する。   The present invention relates to a method for producing a conductive ceramic material.

近年、ケージ(籠)状の結晶構造を有する酸化物12CaO・7Al(以下、C12A7と表記)の粉末を加圧成形後、還元雰囲気中で1600[℃]程度に保持,溶融し、徐冷,凝固するというステップを2回繰り返す、又は還元雰囲気中で溶融したガラスを真空雰囲気で結晶化させることにより、5[S/cm]の導電率を有するC12A7多結晶体を製造できるとの報告がなされた(非特許文献1,2参照)。
Kim et al., J.Am.Chem.Soc., 127, 1370-1371(2005) Kim et al., Chem.Mater., 18, 1938-1944(2006)
In recent years, a powder of oxide 12CaO · 7Al 2 O 3 (hereinafter referred to as C12A7) having a cage-like crystal structure is pressed and then held and melted at about 1600 [° C.] in a reducing atmosphere. It is said that C12A7 polycrystal having a conductivity of 5 [S / cm] can be produced by repeating the steps of slow cooling and solidification twice or by crystallizing glass melted in a reducing atmosphere in a vacuum atmosphere. A report was made (see Non-Patent Documents 1 and 2).
Kim et al., J. Am. Chem. Soc., 127, 1370-1371 (2005) Kim et al., Chem. Mater., 18, 1938-1944 (2006)

しかしながら、上記製造方法によれば、溶融凝固処理を2回行わなければならない。また、C12A7を溶融凝固させた場合、凝固体が坩堝に固着するために、凝固体を取り出す際に坩堝を破壊しなければならない。このため、上記製造方法によれば、製造コストを低減し、導電性を有するC12A7多結晶体を生産性高く製造することができない。また、C12A7多結晶体の室温での導電率は高々5[S/cm]以下であり、十分な導電性を有するものではない。   However, according to the above manufacturing method, the melt-solidification process must be performed twice. In addition, when C12A7 is melted and solidified, the solidified body adheres to the crucible, so that the crucible must be destroyed when the solidified body is taken out. For this reason, according to the said manufacturing method, manufacturing cost can be reduced and the C12A7 polycrystal which has electroconductivity cannot be manufactured with high productivity. In addition, the C12A7 polycrystal has a conductivity at room temperature of 5 [S / cm] or less, and does not have sufficient conductivity.

本発明は、上述の課題を解決するためになされたものであり、その目的は、生産性高くより高い導電性を有する12CaO・7Al多結晶体を製造可能な導電性セラミックス材料の製造方法を提供することにある。 The present invention has been made to solve the above-described problems, and its object is to produce a conductive ceramic material capable of producing a 12CaO.7Al 2 O 3 polycrystal having higher productivity and higher conductivity. It is to provide a method.

本願発明の発明者らは、精力的な研究を重ねてきた結果、12CaO・7Al粉末を内面にカーボン製シートを敷き詰めたカーボン製の坩堝内に配置し、坩堝の開口部にカーボン製の蓋を載置し、蓋が載置された坩堝を溶融炉内に導入し、乾燥窒素雰囲気で坩堝内の粉末を溶融させた後に冷却凝固させることにより、より高い導電性を有する12CaO・7Al多結晶体を製造できることを知見した。またこの場合、2回必要であった溶融凝固処理が1回で済むと共に、凝固体が坩堝に固着しないことが知見された。 As a result of intensive research, the inventors of the present invention have arranged 12CaO · 7Al 2 O 3 powder in a carbon crucible with a carbon sheet spread on the inner surface, and made carbon in the opening of the crucible. 12CaO.7Al having higher conductivity by introducing the crucible with the lid into the melting furnace, melting the powder in the crucible in a dry nitrogen atmosphere, and then cooling and solidifying it. It was found that 2 O 3 polycrystals can be produced. Further, in this case, it was found that the melt-solidification process that was required twice was sufficient and the solidified body was not fixed to the crucible.

なお、導電性を有する12CaO・7Al多結晶体は還元剤としての利用が期待できる。また、材料がクラーク数の大きな元素から構成されているため、安価な導電材料としても期待できる。また、電界放出型電子エミッターとしての応用も期待できる。また、酸化還元を伴う電気化学デバイスの電極材料や、有機ELデバイスにおける電荷注入材料のように、特殊な接合特性が要求ざれる電極としての応用も期待できる。 The conductive 12CaO · 7Al 2 O 3 polycrystal can be expected to be used as a reducing agent. Moreover, since the material is composed of an element having a large Clarke number, it can be expected as an inexpensive conductive material. Also, application as a field emission electron emitter can be expected. In addition, it can be expected to be applied as an electrode that requires special bonding characteristics, such as an electrode material of an electrochemical device accompanied by oxidation-reduction or a charge injection material in an organic EL device.

本発明の導電性セラミックス材料の製造方法によれば、溶融凝固処理が1回で済み、また凝固体が坩堝に固着しないので、生産性高くより高い導電性を有する12CaO・7Al多結晶体を製造することができる。 According to the method for producing a conductive ceramic material of the present invention, the melt and solidification process is performed only once, and the solidified body does not adhere to the crucible, so that 12CaO · 7Al 2 O 3 polycrystal having higher productivity and higher conductivity. The body can be manufactured.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

〔実施例1〕
実施例1では、始めに、市販の炭酸カルシウム粉末(比表面積5.5[m/g])と市販の酸化アルミニウム粉末(比表面積141[m/g])を12:7のモル比で秤量し、これら粉末を水媒体により湿式混合,乾燥した後、篩を通すことにより混合粉体を得た。次に、混合粉体を1200[℃]の大気雰囲気下で4時間熱処理することにより固相反応を生じさせ、C12A7粉末を合成した。なお、C12A7であるか否かは、固相合成後の粉体のX線回折図形により確認した(図1参照)。
[Example 1]
In Example 1, first, a commercially available calcium carbonate powder (specific surface area 5.5 [m 2 / g]) and a commercially available aluminum oxide powder (specific surface area 141 [m 2 / g]) were mixed at a molar ratio of 12: 7. These powders were wet-mixed with an aqueous medium, dried, and then passed through a sieve to obtain a mixed powder. Next, the mixed powder was heat-treated in an air atmosphere at 1200 [° C.] for 4 hours to cause a solid phase reaction, thereby synthesizing C12A7 powder. Whether or not it was C12A7 was confirmed by an X-ray diffraction pattern of the powder after solid-phase synthesis (see FIG. 1).

次に、内面に市販のカーボンシート(商品名:グラフォイル)を敷き詰めたカーボン坩堝中(内面サイズφ24×H45[mm])にC12A7粉末を一軸プレスしたペレット及び粉末を充填した後、カーボン坩堝の開口部にカーボン製の蓋を載置した。なお、この時、坩堝と蓋の間の隙間によってカーボン坩堝内部と外部の通気性は確保されていた。次に、坩堝を一回り大きな上記と同様の蓋付きのカーボン坩堝内に入れ、二重坩堝を内面が耐火煉瓦で覆われている市販の電気炉にて、乾燥窒素雰囲気下、1600[℃],1時間の溶融処理を行った後、室温まで冷却した。電気炉の冷却速度は300[℃/h]であった。   Next, after filling a carbon crucible (inner surface size φ24 × H45 [mm]) with a commercially available carbon sheet (trade name: Grafoil) on the inner surface with pellets obtained by uniaxial pressing of C12A7 powder, and then opening the carbon crucible A carbon lid was placed on the part. At this time, the air permeability between the inside and outside of the carbon crucible was ensured by the gap between the crucible and the lid. Next, the crucible is put in a carbon crucible with a cover similar to the above, and the double crucible is placed in a commercial electric furnace whose inner surface is covered with refractory bricks in a dry nitrogen atmosphere at 1600 [° C.]. , After 1 hour of melting treatment, cooled to room temperature. The cooling rate of the electric furnace was 300 [° C./h].

次に、カーボン坩堝内より溶融凝固体を取り出した。この際、溶融凝固体とカーボン坩堝の固着は生じておらず、溶融凝固体は容易に取り出せた。但し、溶融凝固体表面上でカーボン坩堝と接していた曲面にはカーボンシートが付着していた。次に、溶融凝固体表面のカーボンシートを機械加工により除去した後、試料を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C12A7相が確認された(図2参照)。また、この粉末は濃い緑色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通が確認された。   Next, the molten solidified body was taken out from the carbon crucible. At this time, the molten solidified body and the carbon crucible were not fixed, and the molten solidified body could be easily taken out. However, the carbon sheet adhered to the curved surface that was in contact with the carbon crucible on the surface of the molten solidified body. Next, after removing the carbon sheet on the surface of the melt-solidified body by machining, the sample was crushed, and a part of the sample was further pulverized and powdered, and then the phase was identified by X-ray diffraction. C12A7 A phase was confirmed (see FIG. 2). The powder had a dark green color. Furthermore, when the continuity of the fractured surface of the crushed sample was examined with a commercially available tester or a commercially available insulation resistance meter, continuity was confirmed.

そこで室温導電率の測定を試みた。すなわち、機械加工により同様に作製した溶融凝固体より試料として2×2×17[mm]程度の直方体を切り出し、通常の直流4端子法(図3参照,符号1は試料を示す)を用いて電流0.1[A]で試料の室温導電率の測定を試みた。しかしながら、検出電圧が安定しないために試料の室温導電率を測定することができなかった。   Therefore, an attempt was made to measure the room temperature conductivity. That is, a rectangular parallelepiped of about 2 × 2 × 17 [mm] is cut out as a sample from a melt-solidified body similarly produced by machining, and using a normal DC four-terminal method (see FIG. 3, reference numeral 1 indicates the sample). An attempt was made to measure the room temperature conductivity of the sample at a current of 0.1 [A]. However, the room temperature conductivity of the sample could not be measured because the detection voltage was not stable.

試料の表面を観察した所、電気抵抗が高い変質層(水酸化物)が存在していることが判明した。このことから、検出電圧が安定しなかった理由は、変質層によって電流源と電圧計のグラウンド側(図3に示す端子T1,T3)の電位が異なってくるためであると推察される。   When the surface of the sample was observed, it was found that an altered layer (hydroxide) having high electrical resistance was present. From this, it can be inferred that the reason why the detected voltage is not stable is that the potential of the current source and the ground side of the voltmeter (terminals T1 and T3 shown in FIG. 3) differs depending on the altered layer.

また、C12A7はセメント材料としても知られており、特にその粉末は空気中では水分と反応することはよく知られている。このことから、粉末に比べて表面積が非常に小さいバルク体であっても、空気中の水分と反応し、表面に水酸化物が生成したものと推察される。   C12A7 is also known as a cement material, and it is well known that its powder reacts with moisture in the air. From this fact, it is inferred that even a bulk body having a very small surface area compared to the powder reacted with moisture in the air to generate hydroxide on the surface.

そこで、図4に示すような差動直流4端子法を用いて電流源と電圧計のグラウンド側(図4に示す端子T1)の電位を等しくして試料の室温導電率を測定した。その結果、I−V特性はオーミックであり、室温導電率は120[S/cm]と高かった。また、温度100[℃]における導電率を同様に測定した所、導電率は室温の時とほぼ同じ値であった。すなわち、この温度範囲では導電率の温度依存性は見られない若しくは極めて小さいものであった。   Thus, the room temperature conductivity of the sample was measured by using the differential direct current four-terminal method as shown in FIG. 4 and equalizing the potentials of the current source and the ground side of the voltmeter (terminal T1 shown in FIG. 4). As a result, the IV characteristics were ohmic and the room temperature conductivity was as high as 120 [S / cm]. Moreover, when the electrical conductivity at a temperature of 100 [° C.] was measured in the same manner, the electrical conductivity was almost the same as that at room temperature. That is, in this temperature range, the temperature dependence of the conductivity was not observed or was extremely small.

〔実施例2〕
実施例2では、始めに、溶融凝固を行う電気炉として市販のカーボン炉を用いた以外は実施例1と同様の処理を行うことにより溶融凝固体を得た。次に、室温まで冷却した後、カーボン坩堝内より溶融凝固体を取り出した。この際、溶融凝固体とカーボン坩堝の固着は生じておらず、溶融凝固体は容易に取り出せた。但し、溶融凝固体表面上でカーボン坩堝と接していた曲面にはカーボンシートが付着していた。次に、溶融凝固体表面のカーボンシートを機械加工により除去した後、試料を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C12A7相が確認された。また粉末は濃い緑色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通が確認され、差動直流4端子法により測定された室温導電率は80[S/cm]であった。
[Example 2]
In Example 2, first, a molten and solidified body was obtained by performing the same treatment as in Example 1 except that a commercially available carbon furnace was used as the electric furnace for performing melting and solidification. Next, after cooling to room temperature, the molten solidified body was taken out from the carbon crucible. At this time, the molten solidified body and the carbon crucible were not fixed, and the molten solidified body could be easily taken out. However, the carbon sheet adhered to the curved surface that was in contact with the carbon crucible on the surface of the molten solidified body. Next, after removing the carbon sheet on the surface of the melt-solidified body by machining, the sample was crushed, and a part of the sample was further pulverized and powdered, and then the phase was identified by X-ray diffraction. C12A7 Phase was confirmed. The powder had a dark green color. Furthermore, when the continuity of the fractured surface of the crushed sample was examined with a commercially available tester or a commercially available insulation resistance meter, the continuity was confirmed, and the room temperature conductivity measured by the differential DC 4-terminal method was 80 [S / cm. ]Met.

〔実施例3〕
実施例3では、始めに、カーボン坩堝内面にカーボンシートを敷き詰めなかった点以外は、実施例1と同様の処理を行うことにより溶融凝固体を得た。この際、溶融凝固体とカーボン坩堝は固着しており、カーボン坩堝を破壊しなければ溶融凝固体は取り出せなかった。次に、取り出した溶融凝固体を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C12A7相が確認された。また粉末は濃い緑色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通が確認され、差動直流4端子法により測定された室温導電率は100[S/cm]であった。
Example 3
In Example 3, first, a molten solidified body was obtained by performing the same treatment as in Example 1 except that the carbon sheet was not spread on the inner surface of the carbon crucible. At this time, the molten solidified body and the carbon crucible were fixed, and the molten solidified body could not be taken out unless the carbon crucible was broken. Next, the taken-out molten solidified body was crushed, and some samples were further pulverized to form a powder, and then the phase was identified by X-ray diffraction. As a result, C12A7 phase was confirmed. The powder had a dark green color. Furthermore, when the continuity of the fractured surface of the crushed sample was examined with a commercially available tester or a commercially available insulation resistance meter, the continuity was confirmed, and the room temperature conductivity measured by the differential DC 4-terminal method was 100 [S / cm. ]Met.

〔比較例1〕
比較例1では、始めに、1600[℃],1時間の溶融処理時の雰囲気を乾燥アルゴン雰囲気とした点以外は、実施例1と同様の処理を行うことにより溶融凝固体を得た。次に、室温まで冷却した後、カーボン坩堝内より溶融凝固体を取り出した。この際、溶融凝固体とカーボン坩堝の固着は生じておらず、溶融凝固体は容易に取り出せた。但し、溶融凝固体表面上でカーボン坩堝と接していた曲面にはカーボンシートが付着していた。次に、取り出した溶融凝固体表面のカーボンシートを機械加工により除去した後、試料を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、3CaO・Al(C3A)相とCaO・Al(CA)相が確認された(図5参照)。また、粉末は灰色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通は確認されなかった。
[Comparative Example 1]
In Comparative Example 1, first, a molten solidified body was obtained by performing the same treatment as in Example 1 except that the atmosphere during the melting treatment for 1 hour was changed to a dry argon atmosphere at 1600 [° C.]. Next, after cooling to room temperature, the molten solidified body was taken out from the carbon crucible. At this time, the molten solidified body and the carbon crucible were not fixed, and the molten solidified body could be easily taken out. However, the carbon sheet adhered to the curved surface that was in contact with the carbon crucible on the surface of the molten solidified body. Next, after removing the carbon sheet on the surface of the melted solidified body taken out by machining, the sample was crushed, and some samples were further pulverized and powdered, and then the phases were identified by X-ray diffraction. A 3CaO.Al 2 O 3 (C3A) phase and a CaO · Al 2 O 3 (CA) phase were confirmed (see FIG. 5). Moreover, the powder was gray. Furthermore, when continuity was investigated with the commercially available tester or the commercially available insulation resistance meter with respect to the fracture surface of the crushed sample, continuity was not confirmed.

次に、粉砕粉末(C3A相とCA相の混合物)を1600[℃],1時間の溶融処理時の雰囲気を乾燥アルゴン雰囲気とした以外は、再度実施例1と同様に溶融凝固を行い、溶融凝固体を得た。室温まで冷却した後、カーボン坩堝内より溶融凝固体を取り出した。この際、溶融凝固体とカーボン坩堝の固着は生じておらず、溶融凝固体は容易に取り出せた。但し、溶融凝固体表面上でカーボン坩堝と接していた曲面にはカーボンシートが付着していた。   Next, melt solidification is performed again in the same manner as in Example 1 except that the pulverized powder (mixture of the C3A phase and the CA phase) is 1600 [° C.] and the atmosphere during the melting process for 1 hour is a dry argon atmosphere. A solidified body was obtained. After cooling to room temperature, the molten solidified body was taken out from the carbon crucible. At this time, the molten solidified body and the carbon crucible were not fixed, and the molten solidified body was easily taken out. However, the carbon sheet adhered to the curved surface that was in contact with the carbon crucible on the surface of the molten solidified body.

次に、溶融凝固体表面のカーボンシートを機械加工により除去した後、試料を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C12A7相が確認された(図6参照)。また粉末は濃い緑色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通が確認され、差動直流4端子法により測定された室温導電率は5[S/cm]であった。また測定系を昇温し、200[℃]までの数点の温度で導電率を同様に測定した所、その値は次第に大きくなる半導体的な挙動を示した。また、アレニウスプロットによりその活性化エネルギーは0.12[eV]と見積もられた。   Next, after removing the carbon sheet on the surface of the melt-solidified body by machining, the sample was crushed, and some samples were further pulverized and powdered, and then the phase was identified by X-ray diffraction. C12A7 A phase was confirmed (see FIG. 6). The powder had a dark green color. Furthermore, when the continuity of the fractured surface of the crushed sample was examined with a commercially available tester or a commercially available insulation resistance meter, the continuity was confirmed, and the room temperature conductivity measured by the differential DC 4-terminal method was 5 [S / cm. ]Met. Moreover, when the temperature of the measurement system was raised and the conductivity was measured in the same manner at several temperatures up to 200 ° C., the value showed a semiconducting behavior that gradually increased. Moreover, the activation energy was estimated to be 0.12 [eV] by the Arrhenius plot.

〔比較例2〕
カーボン坩堝内面にカーボンシートを敷き詰めなかった点、及び1600[℃],1時間の溶融処理時の雰囲気を乾燥アルゴン雰囲気とした点以外は実施例1と同様の処理を行うことにより溶融凝固体を得た。この際、溶融凝固体とカーボン坩堝は固着しており、カーボン坩堝を破壊しなければ溶融凝固体は取り出せなかった。次に、溶融凝固体を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C3A相とCA相が確認された。また、粉末は灰色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通は確認されなかった。
[Comparative Example 2]
The molten solidified body was obtained by performing the same treatment as in Example 1 except that the carbon sheet was not spread on the inner surface of the carbon crucible and that the atmosphere during the melting treatment for 1 hour was changed to a dry argon atmosphere. Obtained. At this time, the molten solidified body and the carbon crucible were fixed, and the molten solidified body could not be taken out unless the carbon crucible was broken. Next, the molten solidified body was crushed, and some samples were further pulverized to form a powder, and then the phases were identified by X-ray diffraction. As a result, the C3A phase and the CA phase were confirmed. Moreover, the powder was gray. Furthermore, when continuity was investigated with the commercially available tester or the commercially available insulation resistance meter with respect to the fracture surface of the crushed sample, continuity was not confirmed.

次に、粉砕粉末(C3A相とCA相の混合物)を、カーボン坩堝内面にカーボンシートを敷き詰めなかった点、及び1600[℃],1時間の溶融処理時の雰囲気を乾燥アルゴン雰囲気とした点以外は実施例1と同様にして再度溶融凝固を行い、溶融凝固体を得た。この際、溶融凝固体とカーボン坩堝は固着しており、カーボン坩堝を破壊しなければ溶融凝固体は取り出せなかった
次に、溶融凝固体を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C12A7相が確認された。また粉末は濃い緑色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通が確認され、差動直流4端子法により測定された室温導電率は5[S/cm]であった。
Next, except that the pulverized powder (mixture of C3A phase and CA phase) was not spread with a carbon sheet on the inner surface of the carbon crucible, and that the atmosphere during the melting treatment at 1600 [° C.] for 1 hour was a dry argon atmosphere. Was melt-solidified again in the same manner as in Example 1 to obtain a melt-solidified body. At this time, the molten solidified body and the carbon crucible are fixed, and the molten solidified body cannot be taken out unless the carbon crucible is broken. Next, the molten solidified body is crushed, and a part of the sample is further pulverized. After the phase was identified by X-ray diffraction, C12A7 phase was confirmed. The powder had a dark green color. Furthermore, when the continuity of the fractured surface of the crushed sample was examined with a commercially available tester or a commercially available insulation resistance meter, the continuity was confirmed, and the room temperature conductivity measured by the differential DC 4-terminal method was 5 [S / cm. ]Met.

〔比較例3〕
比較例3では、始めに、1600[℃],1時間の溶融処理時の雰囲気を乾燥アルゴン雰囲気とした点以外は実施例2と同様の処理を行うことにより溶融凝固体を得た。次に、室温まで冷却した後、カーボン坩堝内から溶融凝固体を取り出した。この際、溶融凝固体とカーボン坩堝の固着は生じておらず、溶融凝固体は容易に取り出せた。但し、溶融凝固体表面上でカーボン坩堝と接していた曲面にはカーボンシートが付着していた。次に、取り出した溶融凝固体表面のカーボンシートを機械加工により除去した後、試料を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、5CaO・3Al(以下C5A3と表記)相とC3A相が確認された。また、粉末は灰色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通は確認されなかった。
[Comparative Example 3]
In Comparative Example 3, first, a molten solidified body was obtained by performing the same treatment as in Example 2 except that the atmosphere at 1600 [° C.] for 1 hour was changed to a dry argon atmosphere. Next, after cooling to room temperature, the molten solidified body was taken out from the carbon crucible. At this time, the molten solidified body and the carbon crucible were not fixed, and the molten solidified body could be easily taken out. However, the carbon sheet adhered to the curved surface that was in contact with the carbon crucible on the surface of the molten solidified body. Next, after removing the carbon sheet on the surface of the melted solidified body taken out by machining, the sample was crushed, and some samples were further pulverized and powdered, and then the phases were identified by X-ray diffraction. A 5CaO.3Al 2 O 3 (hereinafter referred to as C5A3) phase and a C3A phase were confirmed. Moreover, the powder was gray. Furthermore, when continuity was investigated with the commercially available tester or the commercially available insulation resistance meter with respect to the fracture surface of the crushed sample, continuity was not confirmed.

次に、粉砕粉末(C5A3相とC3A相の混合物)を1600[℃],1時間の溶融処理時の雰囲気を乾燥アルゴン雰囲気とした点以外は実施例2と同様に再度溶融凝固を行うことにより、溶融凝固体を得た。次に、室温まで冷却した後、カーボン坩堝内から溶融凝固体を取り出した。この際、溶融凝固体とカーボン坩堝の固着は生じておらず、溶融凝固体は容易に取り出せた。但し、溶融凝固体表面上でカーボン坩堝と接していた曲面にはカーボンシートが付着していた。   Next, by performing pulverization and solidification again in the same manner as in Example 2 except that the pulverized powder (mixture of the C5A3 phase and the C3A phase) was 1600 [° C.] and the atmosphere during the melting treatment for 1 hour was a dry argon atmosphere A melt-solidified body was obtained. Next, after cooling to room temperature, the molten solidified body was taken out from the carbon crucible. At this time, the molten solidified body and the carbon crucible were not fixed, and the molten solidified body could be easily taken out. However, the carbon sheet adhered to the curved surface that was in contact with the carbon crucible on the surface of the molten solidified body.

次に、溶融凝固体表面のカーボンシートを機械加工により除去した後、試料を破砕し、一部試料に関しては更に粉砕し、粉末状とした後にX線回折により相の同定を行った所、C12A7相が確認された。また粉末は濃い緑色を呈していた。さらに、破砕した試料の破面に対し市販のテスター又は市販の絶縁抵抗計で導通を調べた所、導通が確認され、差動直流4端子法により測定された導電率は5[S/cm]であった。   Next, after removing the carbon sheet on the surface of the melt-solidified body by machining, the sample was crushed, and a part of the sample was further pulverized and powdered, and then the phase was identified by X-ray diffraction. C12A7 Phase was confirmed. The powder had a dark green color. Furthermore, when the continuity of the fractured surface of the crushed sample was examined with a commercially available tester or a commercially available insulation resistance meter, the continuity was confirmed, and the conductivity measured by the differential DC 4-terminal method was 5 [S / cm]. Met.

以上の結果を表1にまとめる。

Figure 2008007374
The results are summarized in Table 1.
Figure 2008007374

表1から明らかなように、12CaO・7Al粉末をカーボン製シートを内面に敷き詰めたカーボン製の坩堝内に配置し、坩堝の開口部にカーボン製の蓋を載置し、蓋が載置された坩堝を溶融炉内に導入し、乾燥窒素雰囲気で坩堝内の粉末を溶融させた後に冷却凝固させることにより、凝固体が坩堝に固着することなく、より高い導電性を有する12CaO・7Al多結晶体を製造できることがわかる。 As is clear from Table 1, 12CaO · 7Al 2 O 3 powder was placed in a carbon crucible with a carbon sheet laid on the inner surface, and a carbon lid was placed on the opening of the crucible, and the lid was placed. The introduced crucible is introduced into a melting furnace, and the powder in the crucible is melted in a dry nitrogen atmosphere and then cooled and solidified, so that the solidified body does not stick to the crucible and has higher conductivity. It can be seen that a 2 O 3 polycrystal can be produced.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

固相合成後の実施例1の粉体から得られたX線回折図形を示す。The X-ray diffraction pattern obtained from the powder of Example 1 after solid-phase synthesis is shown. 1回の溶融凝固処理後の実施例1の粉体から得られたX線回折図形である。It is an X-ray diffraction pattern obtained from the powder of Example 1 after one melt-solidification treatment. 直流4端子法により導電率を測定する際の配線図を示す。The wiring diagram at the time of measuring electrical conductivity by the direct current 4 terminal method is shown. 差動直流4端子法により導電率を測定する際の配線図を示す。The wiring diagram at the time of measuring electrical conductivity by the differential direct current 4 terminal method is shown. 1回目の溶融凝固処理後の比較例1の粉体から得られたX線回折図形を示す。The X-ray-diffraction figure obtained from the powder of the comparative example 1 after the 1st melt-solidification process is shown. 2回目の溶融凝固処理後の比較例1の粉体から得られたX線回折図形である。It is an X-ray diffraction pattern obtained from the powder of Comparative Example 1 after the second melt solidification treatment.

Claims (2)

酸化物に換算して概略12CaO・7Alの組成を有する原料粉末をカーボン製の坩堝内に配置する工程と、
前記坩堝の開口部にカーボン製の蓋を載置する工程と、
蓋が載置された坩堝を溶融炉内に導入し、乾燥窒素雰囲気で坩堝内の粉末を溶融させた後に冷却凝固させる工程と
を有することを特徴とする導電性セラミックス材料の製造方法。
A step of placing a raw material powder having a composition of approximately 12CaO · 7Al 2 O 3 in terms of an oxide in a carbon crucible;
Placing a carbon lid on the crucible opening;
Introducing the crucible on which the lid is placed into a melting furnace, melting the powder in the crucible in a dry nitrogen atmosphere, and cooling and solidifying the powder.
請求項1に記載の導電性セラミックス材料の製造方法であって、前記酸化物に換算して概略12CaO・7Alの組成を有する原料粉末をカーボン製の坩堝内に配置する前にカーボン製の坩堝の内面にカーボン製シートを敷き詰める工程を有することを特徴とする導電性セラミックス材料の製造方法。 A method for producing a conductive ceramic material according to claim 1, made of carbon before placing the raw material powder having a composition of general 12CaO · 7Al 2 O 3 in terms of the oxide in a carbon crucible A method for producing a conductive ceramic material comprising a step of spreading a carbon sheet on the inner surface of the crucible.
JP2006179442A 2006-06-29 2006-06-29 Method for producing conductive ceramic material Expired - Fee Related JP4672608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179442A JP4672608B2 (en) 2006-06-29 2006-06-29 Method for producing conductive ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179442A JP4672608B2 (en) 2006-06-29 2006-06-29 Method for producing conductive ceramic material

Publications (2)

Publication Number Publication Date
JP2008007374A true JP2008007374A (en) 2008-01-17
JP4672608B2 JP4672608B2 (en) 2011-04-20

Family

ID=39065901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179442A Expired - Fee Related JP4672608B2 (en) 2006-06-29 2006-06-29 Method for producing conductive ceramic material

Country Status (1)

Country Link
JP (1) JP4672608B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023899A (en) * 2007-06-19 2009-02-05 Ngk Insulators Ltd Electroconductive ceramic material and method for manufacturing the same
KR101126808B1 (en) * 2010-03-02 2012-03-23 경북대학교 산학협력단 Error estimation method and device for multi-axis controlled machines
WO2012157462A1 (en) * 2011-05-13 2012-11-22 旭硝子株式会社 Method for producing member containing conductive mayenite compound
CN115044977A (en) * 2022-05-24 2022-09-13 先导薄膜材料(广东)有限公司 A C12a7: e-electronic compound target material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111296A (en) * 1980-12-29 1982-07-10 Osaka Titanium Seizo Kk Crucible device for melting semiconductor
JPS5930794A (en) * 1982-08-09 1984-02-18 Toshiba Ceramics Co Ltd Melting crucible device for pulling up single crystal
JPH0967666A (en) * 1995-08-28 1997-03-11 Nippon Carbon Co Ltd Crucible structure for laser beam-heated aluminum vapor deposition
WO2005077859A1 (en) * 2004-02-13 2005-08-25 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111296A (en) * 1980-12-29 1982-07-10 Osaka Titanium Seizo Kk Crucible device for melting semiconductor
JPS5930794A (en) * 1982-08-09 1984-02-18 Toshiba Ceramics Co Ltd Melting crucible device for pulling up single crystal
JPH0967666A (en) * 1995-08-28 1997-03-11 Nippon Carbon Co Ltd Crucible structure for laser beam-heated aluminum vapor deposition
WO2005077859A1 (en) * 2004-02-13 2005-08-25 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023899A (en) * 2007-06-19 2009-02-05 Ngk Insulators Ltd Electroconductive ceramic material and method for manufacturing the same
US7767116B2 (en) 2007-06-19 2010-08-03 Ngk Insulators, Ltd. Conductive ceramic material and production method thereof
KR101126808B1 (en) * 2010-03-02 2012-03-23 경북대학교 산학협력단 Error estimation method and device for multi-axis controlled machines
WO2012157462A1 (en) * 2011-05-13 2012-11-22 旭硝子株式会社 Method for producing member containing conductive mayenite compound
CN115044977A (en) * 2022-05-24 2022-09-13 先导薄膜材料(广东)有限公司 A C12a7: e-electronic compound target material and preparation method thereof
CN115044977B (en) * 2022-05-24 2023-12-05 先导薄膜材料(广东)有限公司 C12A7: e-electronic compound target material and preparation method thereof

Also Published As

Publication number Publication date
JP4672608B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
Gil-González et al. Phase-pure BiFeO 3 produced by reaction flash-sintering of Bi 2 O 3 and Fe 2 O 3
Zhu et al. Effects of chemical modification on the electrical properties of 0.67 BiFeO3− 0.33 PbTiO3 ferroelectric ceramics
Yang et al. Low-temperature sintering of Al2O3 ceramics doped with 4CuO-TiO2-2Nb2O5 composite oxide sintering aid
Muralidharan et al. Optimization of process parameters for the production of Ni–Mn–Co–Fe based NTC chip thermistors through tape casting route
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
TW201016608A (en) Process for producing an oxide
Liu et al. Effect of Sm substitution for Gd on the electrical conductivity of fluorite-type Gd2Zr2O7
JP4672608B2 (en) Method for producing conductive ceramic material
US10643768B2 (en) Thermistor sintered body and thermistor element
CN104684867B (en) The manufacture method of the electric conductivity mayenite compound of high electron density
CN105967674A (en) Chromium-doped magnesium aluminate high temperature thermistor material and preparation method thereof
JPWO2013191211A1 (en) Method for producing conductive mayenite compound having high electron density and target
Van Hal et al. Mechanochemical synthesis of BaTiO3, Bi0. 5Na0. 5TiO3 and Ba2NaNb5O15 dielectric ceramics
Mercadelli et al. Influence of powders thermal activation process on the production of planar β-alumina ceramic membranes
JP5058880B2 (en) Conductive ceramic materials
JPWO2014050899A1 (en) Method for producing conductive mayenite compound with high electron density
EP3696827A1 (en) Thermistor sintered body and temperature sensor element
JP4574628B2 (en) Mixed ion conductor
Zhang et al. Effect of fabrication conditions on I–V properties for ZnO varistor with high concentration additives by sol–gel technique
Desouky The effect of SiO2 addition on dielectric properties and microstructure of ZnNiO2: based ceramics
Cai et al. Effects of sintering atmosphere on microstructure and electrical properties of BiScO3–PbTiO3 high-temperature piezoceramics
TW201249750A (en) Method for producing member containing conductive mayenite compound
JP2012082081A (en) Raw material mixture for producing conductive mayenite compound and method of producing conductive mayenite compound
JPWO2020090489A1 (en) Thermistor sintered body and temperature sensor element
Satapathy Effect of cobalt oxide on the densification of yttrium aluminum garnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees