[go: up one dir, main page]

JP2008002931A - Device for measuring inter-hole distance - Google Patents

Device for measuring inter-hole distance Download PDF

Info

Publication number
JP2008002931A
JP2008002931A JP2006172368A JP2006172368A JP2008002931A JP 2008002931 A JP2008002931 A JP 2008002931A JP 2006172368 A JP2006172368 A JP 2006172368A JP 2006172368 A JP2006172368 A JP 2006172368A JP 2008002931 A JP2008002931 A JP 2008002931A
Authority
JP
Japan
Prior art keywords
shaft
hole
distance
holes
point setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006172368A
Other languages
Japanese (ja)
Other versions
JP4836685B2 (en
JP2008002931A5 (en
Inventor
Hiromi Kawazoe
浩巳 河添
Shoichi Yasuda
昭一 安田
Kiyotsuyo Naruse
聖剛 鳴瀬
Eiko Owada
英光 大和田
Hiroyuki Aoki
博之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2006172368A priority Critical patent/JP4836685B2/en
Publication of JP2008002931A publication Critical patent/JP2008002931A/en
Publication of JP2008002931A5 publication Critical patent/JP2008002931A5/ja
Application granted granted Critical
Publication of JP4836685B2 publication Critical patent/JP4836685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately measure the interval between both through-holes formed in a measuring object by a single operator. <P>SOLUTION: A device for measuring an inter-hole distance is constituted of a measuring point setting means 11 having a shaft 12 inserted into through-holes 6-8 mainly constituting a boss part, a measuring point setting means 21 mainly inserted into through-holes 9a, 10a of brackets 9, 10, and a measure 30. Each of shafts 12, 22 has the same length, and centering members 13, 23 on which four-spot conical curved surfaces 13a, 23a and notched parts 13b, 23b are formed alternately are mounted mutually oppositely on two spots on each shaft 12, 22, and each shaft 12, 22 is centered by action of each conical curved surface 13a, 23a. The measure 30 is held fixedly on both end faces of one side and the other side of each shaft 12, 22 inserted into each of boss parts or a both part and the through-hole, and the distance between them is measured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ピンが挿通されるボス部等の透孔を少なくとも一対穿設されている被測定物において、透孔間の距離を測定する孔間距離測定装置に関するものである。   The present invention relates to an inter-hole distance measuring device for measuring a distance between through holes in a measured object having at least a pair of through holes such as bosses through which pins are inserted.

例えば、土砂の掘削作業を行う建設機械としての油圧ショベルは、ブーム,アーム及びバケットからなる掘削作業手段を備えるものである。ブームやアームには、複数個所にわたって連結ピンの装着部が形成されている。例えばアームは、その端部乃至端部近傍位置にボス部が形成されており、このボス部に連結ピンが装着されて、ブームやバケットが相対回動可能に連結される。また、所定の位置にブラケットを設け、このブラケットに透孔を形成して、油圧シリンダを構成するシリンダチューブやロッドの連結部が形成される。   For example, a hydraulic excavator as a construction machine that performs excavation work of earth and sand includes excavation work means including a boom, an arm, and a bucket. The boom and arm are provided with connecting pin mounting portions at a plurality of locations. For example, a boss portion is formed at an end portion or a position in the vicinity of the end portion of the arm, and a connecting pin is attached to the boss portion so that a boom and a bucket are connected so as to be relatively rotatable. Further, a bracket is provided at a predetermined position, and a through hole is formed in the bracket to form a connecting portion for a cylinder tube and a rod constituting the hydraulic cylinder.

ここで、ブームやアーム等の構造部材、例えばアームは、特許文献1に示されているように、平板や曲げ板等といった所定の形状を有する鋼板を溶接手段で組み立てた缶組み構造から構成される。この缶組み構造部材には、ボス部を有する連結部材が溶接手段により連結されることになる。さらに、油圧シリンダの連結部を有するブラケットや、必要に応じて補強板等といった部材も溶接される。このように、アームを構成する構造部材にはブーム及びバケットへの連結部と、油圧シリンダの取付部とが設けられるが、これら各取付部は透孔を有する構成となっている。
特開2005−29984号公報
Here, a structural member such as a boom or an arm, for example, an arm is configured by a can assembly structure in which a steel plate having a predetermined shape such as a flat plate or a bent plate is assembled by welding means, as shown in Patent Document 1. The A connecting member having a boss portion is connected to the can assembly structure member by welding means. Furthermore, members such as a bracket having a connecting portion of a hydraulic cylinder and a reinforcing plate are also welded if necessary. As described above, the structural member constituting the arm is provided with the connecting portion to the boom and the bucket and the mounting portion of the hydraulic cylinder, and each of the mounting portions has a through hole.
JP 2005-29984 A

ところで、前述した構造部材において、缶組み及びブラケットの取り付けを含め、組み立ては主に溶接により行われるので、溶接時に生じる熱の作用で各部の収縮や曲がり,変形等が生じる可能性がある。従って、各部における鋼板等の部材からなる部品の寸法を高精度に形成したとしても、溶接時に生じる変形等に起因して、組立精度が維持できなくなる。特に、前述した各透孔の位置及び状態は極めて重要であり、透孔の位置が正規の位置からずれていると、この構造部材を油圧ショベルの作業手段として組み付けたときに、その動作の円滑性が損なわれるおそれがある。   By the way, in the structural member mentioned above, since assembly is mainly performed by welding including attachment of a can assembly and a bracket, there is a possibility that contraction, bending, deformation or the like of each part may occur due to the action of heat generated during welding. Therefore, even if the dimensions of parts made of members such as steel plates in each part are formed with high accuracy, the assembly accuracy cannot be maintained due to deformation or the like that occurs during welding. In particular, the position and state of each of the above-mentioned through holes are extremely important. May be impaired.

そこで、溶接時に生じる各構成部材の変形等を予測して、これらの透孔形成部の位置ずれを予め見込んで、構成各部の製造,組み立て及び透孔の加工等を行うようにすれば、構造部材そのものの組立精度を高めることができる。このように、溶接時における位置ずれや変形等の検出はアームやブーム等の各所に形成されている透孔を基準として行うことができる。即ち、所定の部材における2箇所の透孔間の間隔を測定すれば、本来の設計値に対する溶接時の変形度合いを検出することは可能である。2箇所の透孔間の間隔を測定するために種々の方式があるが、どのような方式を採用するにしても、これら各透孔の中心位置を検出しなければならない。   Therefore, it is possible to predict the deformation of each component member that occurs during welding, anticipate the positional deviation of these through-hole forming portions in advance, and perform the manufacture, assembly, processing of the through-holes, etc. of the respective components. The assembly accuracy of the member itself can be increased. In this manner, detection of misalignment or deformation during welding can be performed with reference to through holes formed in various places such as an arm and a boom. That is, by measuring the distance between two through holes in a predetermined member, it is possible to detect the degree of deformation during welding with respect to the original design value. There are various methods for measuring the distance between the two through holes, and whatever the method is used, the center position of each through hole must be detected.

前述した各透孔の中心位置を正確に検出するのは困難を伴う場合が多く、2箇所の透孔間の間隔が短いものであれば、両透孔間にメジャーを差し渡すことによって、一人の作業者により孔間距離を測定することができるが、特に油圧ショベルのアームやブーム等といった大型の部材では、2箇所の透孔間にメジャーを差し渡すために少なくとも2人の作業者が必要となる。しかも、構造部材はボックス形状となっているので、測定を高精度に行うには、2箇所穿設された透孔において、一方側の壁面への開口部間の間隔を測定するだけでなく、他方側の壁面への開口部間の間隔をも測定する必要があり、これら両開口部側の測定精度に対する信頼性が十分得られない可能性がある。   It is often difficult to accurately detect the center position of each of the above-mentioned through holes. If the distance between the two through holes is short, a measure is passed between the two through holes. The distance between holes can be measured by any worker, but at least two workers are required to pass the measure between the two through holes, especially for large members such as hydraulic excavator arms and booms. It becomes. Moreover, since the structural member has a box shape, in order to perform the measurement with high accuracy, in the through hole formed at two locations, not only the distance between the openings to the wall surface on one side is measured, It is necessary to measure the distance between the openings on the other wall surface, and there is a possibility that the reliability with respect to the measurement accuracy on these openings cannot be sufficiently obtained.

本発明は以上の点に鑑みてなされたものであって、その目的とするところは、構造部材に形成した2箇所の透孔間の間隔を、極めて容易に、しかも正確に測定できるようにすることにある。   The present invention has been made in view of the above points, and an object of the present invention is to make it possible to measure the interval between two through holes formed in a structural member very easily and accurately. There is.

前述した目的を達成するために、本発明は、少なくとも一対の透孔を有する被測定物に対して、一方の透孔の中心から他方の透孔の中心までの距離を測定する孔間距離測定装置であって、前記透孔に挿入可能なシャフトと、このシャフトに嵌合されるように装着され、外面に少なくとも3箇所の円錐状曲面を形成したセンタリング部材と、このセンタリング部材を前記シャフトの軸線方向における任意の位置に固定される固定手段とを有する測定点設定手段と、前記一対の透孔にそれぞれ前記測定点設定手段を装着して、これら両測定点設定手段の前記シャフトの端面の中心位置間の距離を測定する測距手段とから構成したことをその特徴とするものである。   In order to achieve the above-described object, the present invention provides an inter-hole distance measurement for measuring the distance from the center of one through hole to the center of the other through hole for an object having at least a pair of through holes. An apparatus comprising: a shaft that can be inserted into the through hole; a centering member that is fitted to the shaft and has at least three conical curved surfaces formed on an outer surface; and the centering member that is attached to the shaft. A measuring point setting means having a fixing means fixed at an arbitrary position in the axial direction, and the measuring point setting means are respectively attached to the pair of through holes, and the end faces of the shafts of both the measuring point setting means It is characterized by comprising distance measuring means for measuring the distance between the center positions.

ここで、被測定物としては、前述した油圧ショベルのアームやブーム等を対象とすることができるが、本発明による孔間距離測定装置は、これに限定されるものではない。要するに、各種の構造部材、特に1人では測定できないような大型の構造部材において、ボス部を含む透孔が複数個所設けられているものに適用することができる。そして、缶組み構造のように、溶接手段で組み立てられる関係から、部材の変形が生じる場合に特に好適に適用される。   Here, the object to be measured can be the above-described hydraulic excavator arm or boom, but the inter-hole distance measuring device according to the present invention is not limited to this. In short, the present invention can be applied to various structural members, particularly large structural members that cannot be measured by one person, provided with a plurality of through holes including a boss portion. And it applies especially suitably, when a deformation | transformation of a member arises from the relationship assembled by a welding means like a can assembly structure.

溶接により組み立てられる缶組み構造部材にあっては、溶接時の熱で曲がりや捻じれ等の変形が生じることがある。この缶組み構造部材においては、ボス部やその他の透孔の両端開口部間にはある程度の間隔がある。そこで、シャフトを透孔に挿通させて、このシャフトに透孔の両側から一対のセンタリング部材を嵌合させるようになし、これらのセンタリング部材によりシャフトを透孔に対してセンタリングすることができる。そして、この状態でシャフトをセンタリング部材に対して安定的に固定するために、シャフトの外面には少なくとも1箇所の平坦面部を形成し、センタリング部材を止めねじによりシャフトの平坦面部に固定することができる。センタリング部材には円錐形状曲面が形成されており、これら相隣接する円錐形状曲面の間の部位は切り欠き部となっている。即ち、センタリング部材は底面が透孔より大径で、小径部側端面が透孔より小さい寸法を有する円錐台形状の部材からなり、その円錐形状の曲面からなる側面部に一定の間隔毎に切り欠き部を形成したものである。円錐形状曲面は、円周方向において、少なくとも3箇所設けられるが、製作の容易性の観点からは、4箇所の円錐形状曲面を形成するのが望ましい。また、円錐形状曲面の幅寸法は透孔に嵌合させたときに、安定的に保持されることを条件として、できるだけ細い幅とするのが望ましい。これによって、透孔の寸法に多少の誤差があっても、また構造部材を構成する鋼板等の板材における透孔の形成部乃至その近傍の部位が熱の作用で変形していたとしても、つまり透孔の状況の如何に拘らず、この透孔における実質的に中心となる位置を検出することができるようになる。   In a can assembly structure member assembled by welding, deformation such as bending or twisting may occur due to heat during welding. In this can assembly structure member, there is a certain amount of space between the opening portions at both ends of the boss portion and other through holes. Therefore, the shaft is inserted into the through hole, and a pair of centering members are fitted into the shaft from both sides of the through hole, and the shaft can be centered with respect to the through hole by these centering members. In order to stably fix the shaft to the centering member in this state, at least one flat surface portion is formed on the outer surface of the shaft, and the centering member is fixed to the flat surface portion of the shaft by a set screw. it can. The centering member is formed with a conical curved surface, and a portion between the adjacent conical curved surfaces is a notch. That is, the centering member is formed of a truncated cone-shaped member having a bottom surface larger in diameter than the through-hole and a small-diameter side end surface smaller than the through-hole, and is cut into a conical curved side surface at regular intervals. A notch is formed. At least three conical curved surfaces are provided in the circumferential direction, but it is desirable to form four conical curved surfaces from the viewpoint of ease of manufacture. Further, it is desirable that the width of the conical curved surface be as narrow as possible on condition that the conical curved surface is stably held when fitted into the through hole. As a result, even if there are some errors in the dimensions of the through holes, and even if the through hole forming part in the plate material such as a steel plate constituting the structural member or the vicinity thereof is deformed by the action of heat, that is, Regardless of the state of the through-hole, it becomes possible to detect a position that is substantially centered in the through-hole.

センタリング部材により透孔の中心位置に装着した2箇所のシャフト間の距離を測定する測距手段としては、一方のシャフトの端面に着脱可能に固定され、他方のシャフトの端面にまで延在できるメジャーで構成することができる。また、両シャフトの端部中心位置にピンポイント導電性コンタクト部を設け、これらコンタクト部間にワイヤを張り渡して設け、このワイヤ間に一定の電流を流すようになし、これらコンタクト部間の電圧を測定し、この測定値に対して、単位長さ当たりの電圧値を基準電圧として、測定電圧と基準電圧との比に基づいてシャフト間の距離を測定することもできる。さらに、各シャフトの端部における中心位置に発光ダイオード等からなる点光源を配設して、これら両光源を測定点としてその間の距離を三角測量により算出する等の手法を採用することもできる。   As a distance measuring means for measuring the distance between two shafts mounted at the center position of the through hole by a centering member, a measure that is detachably fixed to the end face of one shaft and can extend to the end face of the other shaft. Can be configured. In addition, a pinpoint conductive contact portion is provided at the center position of the ends of both shafts, a wire is provided between these contact portions, and a constant current is passed between the wires. The distance between the shafts can also be measured based on the ratio between the measured voltage and the reference voltage, with the voltage value per unit length as the reference voltage. Further, it is also possible to employ a technique in which a point light source composed of a light emitting diode or the like is disposed at the center position at the end of each shaft, and the distance between these light sources is measured by triangulation.

このように構成することによって、缶組み構造物における孔間距離を、単独の作業者により容易に、しかも正確に測定することができるようになる。   By comprising in this way, the distance between holes in a can-assembled structure can be easily and accurately measured by a single operator.

以下、図面に基づいて本発明の実施の形態について説明する。まず、図1及び図2に缶組み構造物の一例として、油圧ショベルの作業手段におけるアームにおけるアーム本体構造部材1の構成を示す。なお、本発明の孔間距離測定装置が適用される被測定物としては、このアーム本体構造部材1に限定されるものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG.1 and FIG.2 shows the structure of the arm main body structural member 1 in the arm in the working means of a hydraulic excavator as an example of a can assembly structure. The object to be measured to which the inter-hole distance measuring device of the present invention is applied is not limited to the arm main body structural member 1.

これらの図において、アーム本体構造部材1は、左右の側板2,2と、上板3,下板4及び曲げ板5とから構成される缶組み構造としたものである。これら各部材は鋼板等の板体から構成されて、溶接手段により相互に連結するようにして組み立てられる。また、この缶組み構造部材には、その一端側にバケットへの連結用のボス部を構成する透孔6及びリンク部材への連結用のボス部を構成する透孔7が溶接手段により装着されている。さらに、他端近傍位置には下板4と曲げ板5との連結部の位置にブームへの連結用のボス部を構成する透孔8が溶接手段により装着されている。さらにまた、上板3には一対のブラケット9,9が溶接されており、これらブラケット9には透孔9aが穿設されており、曲げ板5にも一対のブラケット10,10が溶接されており、これらのブラケット10にも透孔10aが穿設されている。そして、これら透孔9a及び10aには、油圧シリンダのロッドの先端部またはシリンダチューブの基端部に連結した連結ピンが装着される。   In these drawings, the arm main body structural member 1 has a can assembly structure composed of left and right side plates 2, 2, an upper plate 3, a lower plate 4, and a bending plate 5. Each of these members is composed of a plate body such as a steel plate and is assembled so as to be connected to each other by welding means. Further, the can assembly structure member is provided with a through hole 6 constituting a boss portion for connection to the bucket and a through hole 7 constituting a boss portion for connection to the link member on one end side by welding means. ing. Further, a through-hole 8 constituting a boss part for connection to the boom is attached by welding means at the position of the connection part between the lower plate 4 and the bending plate 5 in the vicinity of the other end. Furthermore, a pair of brackets 9, 9 are welded to the upper plate 3, and through holes 9 a are formed in these brackets 9, and a pair of brackets 10, 10 are also welded to the bending plate 5. These brackets 10 also have through holes 10a. The through holes 9a and 10a are fitted with connecting pins that are connected to the tip of the rod of the hydraulic cylinder or the base end of the cylinder tube.

アーム本体構造部材1は以上のように構成されるが、このアーム本体構造部材1を構成する各部は溶接手段により組み付けられるものであり、溶接時に発生する熱の影響による変形等、各部の組み付け精度に誤差が生じることがある。このような誤差が発生すると、アームやバケットを連結し、駆動用の油圧シリンダを装着したときに、その作動に円滑性が損なわれることから、各部の製造及び組み付け時に、予め変形による誤差を見込んでおくことによって、組み付け状態での精度を向上させることができる。ここで、量産に当っては、アーム本体構造部材1を構成する各部の材質が一定で、全ての寸法関係が同じであって、全て同一の条件で溶接したとすると、当然、設計値に対する誤差はほぼ一定の状態となる。   Although the arm body structural member 1 is configured as described above, each part constituting the arm body structural member 1 is assembled by welding means, and the assembly accuracy of each part such as deformation due to the influence of heat generated during welding. May cause errors. If such an error occurs, the smoothness of the operation will be impaired when the arm or bucket is connected and the hydraulic cylinder for driving is mounted. Therefore, when manufacturing and assembling each part, the error due to deformation is expected in advance. Therefore, the accuracy in the assembled state can be improved. Here, in mass production, if the material of each part constituting the arm body structural member 1 is constant, all the dimensional relationships are the same, and all are welded under the same conditions, it is obvious that there is an error with respect to the design value. Is almost constant.

以上のことから、アーム本体構造部材1の量産化に入る前の段階で、複数の試作品を製造して、その製造後における各部の寸法を測定し、組み付け時に生じる誤差を補正するように各部の寸法及び組み立て条件を調整することにより、溶接時の誤差が補正されて、高精度のアーム本体構造部材1を製造することができる。このために、前述した試作品における各部の寸法精度を測定する必要がある。ここで、アーム本体構造部材1として最も重要な寸法精度は、前述した各透孔6〜8,9a,10aとの各位置及び軸心である。このためには、これら透孔6〜8,9a,10aの位置関係を測定する。   In view of the above, in the stage before mass production of the arm body structural member 1, a plurality of prototypes are manufactured, the dimensions of each part after the manufacture are measured, and each part is corrected so as to correct errors occurring during assembly. By adjusting the dimensions and assembly conditions, the error at the time of welding is corrected, and the highly accurate arm main body structural member 1 can be manufactured. Therefore, it is necessary to measure the dimensional accuracy of each part in the prototype described above. Here, the most important dimensional accuracy as the arm main body structural member 1 is the position and the axial center of each of the through holes 6 to 8, 9 a, and 10 a described above. For this purpose, the positional relationship between these through holes 6 to 8, 9 a and 10 a is measured.

このために用いられるのが、図3乃至図8に示したように、孔間距離測定装置を構成する測定点設定手段である。そこで、以下において、測定点設定手段の構成について説明する。図3乃至図5には大口径用の測定点設定手段11が、また図6乃至図8には小口径用の測定点設定手段21が示されている。   For this purpose, as shown in FIG. 3 to FIG. 8, a measurement point setting means constituting the inter-hole distance measuring apparatus is used. Therefore, the configuration of the measurement point setting unit will be described below. FIGS. 3 to 5 show a measuring point setting means 11 for a large diameter, and FIGS. 6 to 8 show a measuring point setting means 21 for a small diameter.

まず、図3乃至図5において、12は金属製のシャフトであり、このシャフト12は丸棒状のものであって、その側面には両端側から中心方向に向けて所定の幅分の平坦面部12a,12aが形成されている。シャフト12にはセンタリング部材13が嵌合して設けられている。センタリング部材13は中央にシャフト12の外径と概略一致する孔径の貫通孔14を設けた概略円錐台形状の部材であって、円周方向において、90度毎に円錐形状曲面13aが4箇所形成されており、これら相隣接する円錐形状曲面13a,13a間の部位は切り欠き部13bとなっている。また、センタリング部材13の底面部、つまり最大径部には、カラー部15が連設されており、このカラー部15にはセンタリング部材13をシャフト12の軸線方向における任意の位置に固定するための固定手段としてのストッパ用ねじ16が螺挿されている。   First, in FIGS. 3 to 5, reference numeral 12 denotes a metal shaft. The shaft 12 has a round bar shape, and a flat surface portion 12a having a predetermined width from both ends toward the center on the side surface. , 12a are formed. A centering member 13 is fitted on the shaft 12. The centering member 13 is a substantially frustoconical member provided with a through hole 14 having a hole diameter substantially equal to the outer diameter of the shaft 12 at the center, and four conical curved surfaces 13a are formed every 90 degrees in the circumferential direction. The part between these conical curved surfaces 13a, 13a adjacent to each other is a notch 13b. Further, a collar portion 15 is connected to the bottom surface portion of the centering member 13, that is, the maximum diameter portion, and the centering member 13 is fixed to the collar portion 15 at an arbitrary position in the axial direction of the shaft 12. A stopper screw 16 as a fixing means is screwed.

ストッパ用ねじ16は蝶ねじから構成されて、その先端は平面形状となっている。従って、ストッパ用ねじ16を締め付けるに当っては、格別の工具を使用することなく、その先端をシャフト12の平坦面部12aに圧接させることによって、センタリング部材13を軸線方向に動かないように固定される。即ち、シャフト12の両端からセンタリング部材13を嵌合させて、ストッパ用ねじ16でシャフト12の軸線方向における所望の位置で固定できるようになる。また、シャフト12の両端部には、半円形状の段差部17が形成されており、この段差部17の鉛直壁には後述するメジャー30を着脱可能に固定する手段として、クランプ用のマグネット18が着脱可能に装着できるようになっている。   The stopper screw 16 is composed of a wing screw, and its tip has a planar shape. Therefore, when the stopper screw 16 is tightened, the centering member 13 is fixed so as not to move in the axial direction by pressing the tip thereof against the flat surface portion 12a of the shaft 12 without using a special tool. The That is, the centering member 13 is fitted from both ends of the shaft 12 and can be fixed at a desired position in the axial direction of the shaft 12 by the stopper screw 16. A semicircular stepped portion 17 is formed at both ends of the shaft 12, and a clamp magnet 18 is used as a means for detachably fixing a measure 30 (described later) to the vertical wall of the stepped portion 17. Can be detachably mounted.

アーム本体構造部材1に設けたボス部を構成する透孔6〜8は大口径のものであり、バケット,リンク部材及びブームの各部材に対してピンにより相対回動可能に連結するためのものである。また、ブラケット9,10に設けた透孔9a,10aは透孔6〜8より口径の小さい小口径のものであり、油圧シリンダの端部がピンを用いて相対回動可能に連結される。測定点設定手段11を構成するセンタリング部材13は、口径の大きい透孔6〜8と小さい口径の透孔9a,10aに装着可能なものとすると、大型化し、かつ重量物となり、さらにブラケット9,9間及び10,10間の間隔はボス部を構成する側板2,2間の間隔より狭いものであり、両センタリング部材が相互に干渉しないようにして透孔に挿入できるようにする必要がある。そこで、小口径からなる透孔9a,10aに装着される測定点設定手段21は、図6乃至図8に示したように、センタリング部材23が小型のものを使用する。ただし、測定点設定手段11と測定点設定手段21とでは、少なくともセンタリング部材のサイズが異なるだけで、相似形状とする。また、シャフト12とシャフト22とは少なくとも長さは同じものとする。そして、太さは同じであっても良く、また小口径用のシャフト22の方を細いものとすることもできる。そして、シャフト22には平坦面部22aが形成され、センタリング部材23には4箇所の円錐形状曲面23aと切り欠き部23bとが交互に形成されており、かつその中心部にはシャフト22の外径とほぼ同じ孔径の貫通孔24が形成され、カラー部25に装着したストッパ用ねじ26によりセンタリング部材23はシャフト22の任意の位置に固定されるようになっている。さらに、シャフト22の両端部には半円部分の段差27が形成され、かつその鉛直壁に着脱されるマグネット28を設けている。   The through holes 6 to 8 constituting the boss portion provided in the arm main body structural member 1 have a large diameter, and are connected to the bucket, the link member, and the boom so as to be relatively rotatable by pins. It is. The through holes 9a and 10a provided in the brackets 9 and 10 have a smaller diameter than the through holes 6 to 8, and the ends of the hydraulic cylinders are connected to each other so as to be relatively rotatable using pins. If the centering member 13 constituting the measurement point setting means 11 can be attached to the large-diameter through holes 6 to 8 and the small-diameter through holes 9a and 10a, the centering member 13 becomes large and heavy, and the bracket 9, The distance between 9 and the distance between 10 and 10 is narrower than the distance between the side plates 2 and 2 constituting the boss portion, and it is necessary to allow both centering members to be inserted into the through holes without interfering with each other. . Therefore, as the measurement point setting means 21 attached to the through holes 9a and 10a having a small diameter, a centering member 23 having a small size is used as shown in FIGS. However, the measurement point setting means 11 and the measurement point setting means 21 have similar shapes, at least with the difference in the size of the centering member. The shaft 12 and the shaft 22 are at least the same length. The thickness may be the same, and the small-diameter shaft 22 can be made thinner. The shaft 22 is formed with a flat surface portion 22a, the centering member 23 is formed with four conical curved surfaces 23a and cutout portions 23b alternately, and the outer diameter of the shaft 22 is formed at the center thereof. The centering member 23 is fixed to an arbitrary position of the shaft 22 by a stopper screw 26 attached to the collar portion 25. Furthermore, a semicircular step 27 is formed at both ends of the shaft 22, and a magnet 28 that is attached to and detached from the vertical wall is provided.

例えば大口径の透孔6と大口径の透孔8との間の距離を測定する場合には、図9に示したように、共に大口径用の測定点設定手段11を両透孔6,8に装着して、その間の距離を測定する。また、透孔6とブラケット9の小口径の透孔9aとの間の距離を測定する場合には、図10に示したように、透孔6には大口径用の測定点設定手段11を装着し、透孔9aには小口径用の測定点設定手段21を装着する。そして、これら2点間の距離を測定するが、その測距手段としては、例えばメジャー30を用いることができる。しかも、この距離の測定は、アーム本体構造部材1の両側の測定が行われる。   For example, when measuring the distance between the large-diameter through-hole 6 and the large-diameter through-hole 8, as shown in FIG. 8 and measure the distance between them. When measuring the distance between the through-hole 6 and the small-diameter through-hole 9a of the bracket 9, as shown in FIG. The measurement point setting means 21 for a small diameter is attached to the through hole 9a. The distance between these two points is measured. As the distance measuring means, for example, a measure 30 can be used. In addition, this distance is measured on both sides of the arm body structural member 1.

まず、両側板2,2に形成した透孔6にセンタリング部材13を脱着したシャフト12を挿通させる。そして、透孔6の両端からの左右への突出部分の長さをほぼ等しくする。次いで、このようにして透孔6に挿通させたシャフト12の両端から両側板2,2に向けて一対からなるセンタリング部材13を挿入する。ここで、センタリング部材13はその縮径部側を側板2に向けるようにして、シャフト12に嵌合させて、透孔6のエッジ部分にセンタリング部材13の円錐形状曲面13aを当接させる。ここで、円錐形状曲面13aは4箇所設けられているので、透孔6の内部に向けて両側からセンタリング部材13を押し込むと、このセンタリング部材13の軸心が透孔6の孔径の中心位置と一致するように自動調芯され、シャフト12が透孔6の軸心位置に配置される。この状態で、ストッパ用ねじ16をセンタリング部材13に螺挿することによって、このストッパ用ねじ16の先端をシャフト12の平坦面部12aに圧接させて、センタリング部材13をシャフト12に固定する。   First, the shaft 12 from which the centering member 13 is detached is inserted into the through holes 6 formed in the both side plates 2 and 2. And the length of the protrusion part to the right and left from the both ends of the through-hole 6 is made substantially equal. Next, a pair of centering members 13 are inserted from both ends of the shaft 12 inserted through the through-hole 6 in this way toward both side plates 2 and 2. Here, the centering member 13 is fitted to the shaft 12 so that the diameter-reduced portion side faces the side plate 2, and the conical curved surface 13 a of the centering member 13 is brought into contact with the edge portion of the through hole 6. Here, since the conical curved surface 13a is provided at four places, when the centering member 13 is pushed in from both sides toward the inside of the through hole 6, the center of the centering member 13 becomes the center position of the hole diameter of the through hole 6. Self-aligning is performed so as to match, and the shaft 12 is disposed at the axial center position of the through hole 6. In this state, the stopper screw 16 is screwed into the centering member 13, whereby the tip of the stopper screw 16 is brought into pressure contact with the flat surface portion 12 a of the shaft 12, and the centering member 13 is fixed to the shaft 12.

また、透孔8にも同様の手法で測定点設定手段11を装着する。そして、例えば透孔6に装着した測定点設定手段11におけるシャフト12の端面に形成した段差部17にメジャー30の一端を当接させて、固定手段としてのマグネット18を用いてこのメジャー30の一端部を固定する。そして、メジャー30の他端を透孔8に装着した測定点設定手段11を構成するシャフト12の端面における段差部17の位置に押し当てて、目盛りを読み取ることにより透孔6−8間の距離が測定される。ここで、距離測定を正確に行うために、透孔6に装着したシャフト12と透孔8に装着したシャフト12との側板2からの突出長さを等しくする。シャフト12の突出量を目測によっても概ね判断でき、またメジャーにより測定できるが、シャフト12に目盛りを設けておけば、両側への突出量をより正確に、しかも容易に検出することができる。また、シャフト12は透孔6,8間の中心位置と調芯され、しかもシャフト12の端面には半円状の段差部17が形成されているので、シャフト12の軸中心位置を容易に検出できるようになり、透孔6と透孔8との中心位置間の距離を正確に測定できる。そして、作業者はメジャー30の一方の端部を保持する必要がないので、この距離の測定を容易に行うことができる。なお、メジャー30の端部を着脱可能に固定するための手段として、クランプ用のマグネット18に代えて、蝶ボルト等、適宜の固定手段を用いることもできる。   The measurement point setting means 11 is also attached to the through-hole 8 by the same method. Then, for example, one end of the measure 30 is brought into contact with the stepped portion 17 formed on the end surface of the shaft 12 in the measurement point setting means 11 attached to the through-hole 6, and one end of the measure 30 is used by using the magnet 18 as a fixing means. Fix the part. Then, the distance between the through holes 6-8 is obtained by pressing the other end of the measure 30 against the position of the stepped portion 17 on the end surface of the shaft 12 constituting the measurement point setting means 11 mounted on the through hole 8 and reading the scale. Is measured. Here, in order to accurately measure the distance, the protruding lengths of the shaft 12 mounted in the through hole 6 and the shaft 12 mounted in the through hole 8 from the side plate 2 are made equal. The amount of protrusion of the shaft 12 can be roughly determined by measurement and can be measured by a measure, but if the shaft 12 is provided with a scale, the amount of protrusion to both sides can be detected more accurately and easily. Further, since the shaft 12 is aligned with the center position between the through holes 6 and 8, and the semicircular stepped portion 17 is formed on the end surface of the shaft 12, the shaft center position of the shaft 12 can be easily detected. Thus, the distance between the center positions of the through hole 6 and the through hole 8 can be accurately measured. And since an operator does not need to hold | maintain one edge part of the measure 30, it can measure this distance easily. As a means for detachably fixing the end portion of the measure 30, an appropriate fixing means such as a butterfly bolt may be used instead of the clamp magnet 18.

ここで、センタリング部材13が部分的に挿入される限り、透孔6,8の孔径が異なっていても、測定点設定手段11によって、これら透孔6,8の中心位置を確実に検出することができる。即ち、透孔の中心位置に配置されるのはシャフト12であり、センタリング部材13は透孔の大きさ如何に拘らず、シャフト12をセンタリングするための機能を発揮するものである。従って、透孔6と透孔8との孔径が異なっていても、またこれら透孔6,8における加工精度等に多少のばらつきがあっても、シャフト12の中心位置は実質的に透孔6,8の中心位置に配置されることになる。このために、2本のシャフト12,12の中心位置間をメジャー30で掛け渡すことによって、極めて正確に、しかも容易に孔間距離を測定することができる。   Here, as long as the centering member 13 is partially inserted, even if the hole diameters of the through holes 6 and 8 are different, the center position of the through holes 6 and 8 can be reliably detected by the measurement point setting means 11. Can do. That is, the shaft 12 is arranged at the center position of the through hole, and the centering member 13 exhibits a function for centering the shaft 12 regardless of the size of the through hole. Therefore, even if the hole diameters of the through hole 6 and the through hole 8 are different, and there is some variation in the processing accuracy in the through holes 6 and 8, the center position of the shaft 12 is substantially the through hole 6. , 8 at the center position. For this reason, the distance between the holes can be measured very accurately and easily by spanning between the center positions of the two shafts 12 and 12 with the measure 30.

そして、2箇所挿通させたシャフト12の両端が透孔6,8の両側から、つまり両側板2,2から実質的に同じ長さだけ突出しているので、透孔6,8におけるアーム本体構造部材1の左右の側板2の両側開口端間の距離をそれぞれ測定できる。その結果、透孔6と透孔8との中心位置間の間隔をその両側の開口部において正確に測定することができ、この測定値に基づいて、アーム本体構造部材1における透孔6,8間の部位の曲がり,反り,捻じれ,歪み等といった変形の有無も検出することができる。   Since both ends of the shaft 12 inserted through the two portions protrude from both sides of the through holes 6 and 8, that is, from both side plates 2 and 2, substantially the same length, the arm body structural member in the through holes 6 and 8 The distance between the opening ends on both sides of the left and right side plates 2 can be measured. As a result, the distance between the center positions of the through-hole 6 and the through-hole 8 can be accurately measured at the openings on both sides, and based on this measurement value, the through-holes 6 and 8 in the arm body structural member 1 are measured. It is also possible to detect the presence or absence of deformation such as bending, warping, twisting, and distortion of the intervening parts.

さらに、図10におけるように、透孔6とブラケット9の透孔9aとの間の距離を測定するには、透孔9aには測定点設定手段21を装着する。この測定点設定手段21の装着方法及びそれと透孔6に装着した測定点設定手段11との間の距離測定も前述と同様にして行うことができる。ここで、透孔6の幅寸法と、一対からなるブラケット9,9の間隔とでは、ブラケット9,9間の間隔の方が短いが、測定点設定手段21のシャフト22の長さ寸法は測定点設定手段11のシャフト12と同じものであるから、透孔6の中心と透孔9aの中心との間の直線的距離を測定することができる。   Further, as shown in FIG. 10, in order to measure the distance between the through hole 6 and the through hole 9a of the bracket 9, the measurement point setting means 21 is attached to the through hole 9a. The mounting method of the measuring point setting means 21 and the distance measurement between the measuring point setting means 21 and the measuring point setting means 11 mounted in the through hole 6 can be performed in the same manner as described above. Here, between the width dimension of the through-hole 6 and the distance between the pair of brackets 9 and 9, the distance between the brackets 9 and 9 is shorter, but the length dimension of the shaft 22 of the measuring point setting means 21 is measured. Since it is the same as the shaft 12 of the point setting means 11, the linear distance between the center of the through-hole 6 and the center of the through-hole 9a can be measured.

アーム本体構造部材の正面図である。It is a front view of an arm main body structural member. 図1の平面図である。It is a top view of FIG. 大口径用の測定点設定手段の正面図である。It is a front view of the measuring point setting means for large apertures. 図3のX−X断面図である。It is XX sectional drawing of FIG. 図3の側面図である。FIG. 4 is a side view of FIG. 3. 小口径用の測定点設定手段の正面図である。It is a front view of the measurement point setting means for small apertures. 図6のY−Y断面図である。It is YY sectional drawing of FIG. 図6の側面図である。FIG. 7 is a side view of FIG. 6. ボス部とボス部との間の距離を測定している状態を示す説明図である。It is explanatory drawing which shows the state which is measuring the distance between a boss | hub part and a boss | hub part. ボス部と透孔との間の距離を測定している状態を示す説明図である。It is explanatory drawing which shows the state which is measuring the distance between a boss | hub part and a through-hole.

符号の説明Explanation of symbols

1 アーム本体構造部材
2 側板
3 上板
4 下板
5 曲げ板
6〜8 ボス部の透孔
9,10 ブラケット
9a,10a 透孔
11 大口径用の測定点設定手段
21 小口径用の測定点設定手段
12,22 シャフト
12a,22a 平坦面部
13,23 センタリング部材
13a,23a 円錐形状曲面
16,26 ストッパ用ねじ
18,28 マグネット
30 メジャー
DESCRIPTION OF SYMBOLS 1 Arm main body structural member 2 Side plate 3 Upper plate 4 Lower plate 5 Bending plate 6-8 Boss hole 9 and 10 Bracket 9a, 10a Through hole 11 Measuring point setting means 21 for large diameter Measuring point setting for small diameter Means 12, 22 Shafts 12a, 22a Flat surface portions 13, 23 Centering members 13a, 23a Conical curved surfaces 16, 26 Stopper screws 18, 28 Magnet 30 Measure

Claims (3)

少なくとも一対の透孔を有する被測定物に対して、一方の透孔の中心から他方の透孔の中心までの距離を測定する孔間距離測定装置において、
前記透孔に挿入可能なシャフトと、このシャフトに嵌合されるように装着され、外面に少なくとも3箇所の円錐状曲面を形成したセンタリング部材と、このセンタリング部材を前記シャフトの軸線方向における任意の位置に固定される固定手段とを有する測定点設定手段と、
前記一対の透孔にそれぞれ前記測定点設定手段を装着して、これら両測定点設定手段の前記シャフトの端面の中心位置間の距離を測定する測距手段とから
構成したことを特徴とする孔間距離測定装置。
In the inter-hole distance measuring device that measures the distance from the center of one through hole to the center of the other through hole, for a measurement object having at least a pair of through holes,
A shaft that can be inserted into the through-hole, a centering member that is fitted to the shaft and has at least three conical curved surfaces formed on the outer surface, and the centering member is an arbitrary one in the axial direction of the shaft. Measuring point setting means having fixing means fixed at a position;
The measurement point setting means is mounted on each of the pair of through holes, and the distance measurement means measures the distance between the center positions of the end surfaces of the shafts of both measurement point setting means. Distance measuring device.
前記シャフトには、前記センタリング部材を前記透孔の両側から嵌合させるように一対装着し、前記シャフトの外面には少なくとも1箇所の平坦面部を形成し、前記センタリング部材には止めねじを装着して、この止めねじの先端を前記平坦面部に圧接させることによって、前記シャフトに固定される構成としたことを特徴とする請求項1記載の孔間距離測定装置。 A pair of centering members are attached to the shaft so as to be fitted from both sides of the through-hole, at least one flat surface portion is formed on the outer surface of the shaft, and a set screw is attached to the centering member. 2. The inter-hole distance measuring device according to claim 1, wherein a tip of the set screw is fixed to the shaft by being brought into pressure contact with the flat surface portion. 前記測距手段は、前記一方のシャフトの端面に着脱可能に固定され、他方のシャフトの端面にまで延在可能なメジャーであることを特徴とする請求項1記載の孔間距離測定装置。

The inter-hole distance measuring device according to claim 1, wherein the distance measuring means is a measure that is detachably fixed to an end surface of the one shaft and can extend to an end surface of the other shaft.

JP2006172368A 2006-06-22 2006-06-22 Hole distance measuring device Active JP4836685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172368A JP4836685B2 (en) 2006-06-22 2006-06-22 Hole distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172368A JP4836685B2 (en) 2006-06-22 2006-06-22 Hole distance measuring device

Publications (3)

Publication Number Publication Date
JP2008002931A true JP2008002931A (en) 2008-01-10
JP2008002931A5 JP2008002931A5 (en) 2008-07-10
JP4836685B2 JP4836685B2 (en) 2011-12-14

Family

ID=39007442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172368A Active JP4836685B2 (en) 2006-06-22 2006-06-22 Hole distance measuring device

Country Status (1)

Country Link
JP (1) JP4836685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082747A (en) * 2020-09-14 2020-12-15 沧州师范学院 A fixture for auto parts testing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213801A (en) * 1984-04-09 1985-10-26 Hitachi Cable Ltd Inner diameter hole inspection device for high pressure hose with fittings on both ends
JPH03117704A (en) * 1990-09-10 1991-05-20 Yutani Heavy Ind Ltd Recycling and combining method for hydraulic cylinder
JP2005029984A (en) * 2003-07-08 2005-02-03 Hitachi Constr Mach Co Ltd Working arm for construction machine and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213801A (en) * 1984-04-09 1985-10-26 Hitachi Cable Ltd Inner diameter hole inspection device for high pressure hose with fittings on both ends
JPH03117704A (en) * 1990-09-10 1991-05-20 Yutani Heavy Ind Ltd Recycling and combining method for hydraulic cylinder
JP2005029984A (en) * 2003-07-08 2005-02-03 Hitachi Constr Mach Co Ltd Working arm for construction machine and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082747A (en) * 2020-09-14 2020-12-15 沧州师范学院 A fixture for auto parts testing

Also Published As

Publication number Publication date
JP4836685B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP2009090320A (en) 3D piping assembly equipment
JP5805912B1 (en) Distance measuring device and distance measuring method
CN113074604B (en) Frame cross beam testing fixture
JP6268373B2 (en) Residual stress measuring method and residual stress measuring device
JP4836685B2 (en) Hole distance measuring device
EP3299130A1 (en) Inspection tool and method for non-destructive inspection of a lug
JP5820084B1 (en) Anchor bolt driving jig, anchor bolt driving method, and anchor bolt fixing strength inspection method
JP2014016314A (en) Electric pole inclination measuring device and fixture for the same
US20200072719A1 (en) Method for Manufacturing CTOD Test Specimen, and Jig for Controlling Plastic Strain
EP3067725A1 (en) Fixture and method for manufacturing the same
KR102724469B1 (en) Measuring equipment for curvature
JP4666363B2 (en) Work machine
JP6555589B2 (en) Jig for displacement measurement
JP2018017519A (en) Position gauge, centering device and centering method
KR20210036580A (en) A measuring device of gap and step
KR20250089688A (en) Flange eccentric and gap measuring instrument
KR20210101815A (en) A measuring device of gap and step
US20190025038A1 (en) Straightness checking method
JP2019124709A (en) Displacement measurement jig and displacement measurement method
CN111570639A (en) Positioning detection mechanism and pipe expander with same
US20250172446A1 (en) Force sensor having contact member and annular force sensing device including the same
KR101654469B1 (en) Micrometer
CN111119251B (en) A horizontal deformation measurement system and method for a pipe jacking working well
CN212539001U (en) Inspection tooling
KR20240151549A (en) Flush and gap checking fixture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150