[go: up one dir, main page]

JP2008002876A - Current sensor and electronic energy meter - Google Patents

Current sensor and electronic energy meter Download PDF

Info

Publication number
JP2008002876A
JP2008002876A JP2006171209A JP2006171209A JP2008002876A JP 2008002876 A JP2008002876 A JP 2008002876A JP 2006171209 A JP2006171209 A JP 2006171209A JP 2006171209 A JP2006171209 A JP 2006171209A JP 2008002876 A JP2008002876 A JP 2008002876A
Authority
JP
Japan
Prior art keywords
current
magnetic
current sensor
magnetic flux
collecting core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006171209A
Other languages
Japanese (ja)
Inventor
Takashi Hayashi
崇 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006171209A priority Critical patent/JP2008002876A/en
Publication of JP2008002876A publication Critical patent/JP2008002876A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】主として電力計測および電力量計測のための電流センサにおいて外部磁場による影響を受けにくく、直線性及び温度特性が優れ、直流成分が重畳された周期的電流であっても正確にその交流成分を計測できる電流センサを提供する。
【解決手段】略同一形状に2分割された環状の集磁コアをギャップを設けて対向配置し、該ギャップ部には寸法と巻数が同一の検出コイルを配設した。前記検出コイルは、同一基板上にコイルパターンとして形成することによって配置することとし、集磁コアに形成された2ケ所のギャップにおける磁気抵抗を略同一とした。
また、電流バーを流れる被測定電流が作る磁束が貫く磁路の磁気抵抗について、集磁コア内部のみの磁気抵抗とギャップ部を含めた全磁気抵抗の比が、電流センサの出力許容誤差より小さくなるように、集磁コアおよびギャップを構成した。
【選択図】 図1
In a current sensor mainly for power measurement and power measurement, it is hardly affected by an external magnetic field, has excellent linearity and temperature characteristics, and is accurate even if it is a periodic current superimposed with a DC component. A current sensor capable of measuring the current is provided.
An annular magnetic collecting core divided into two substantially in the same shape is disposed opposite to each other with a gap, and a detection coil having the same size and number of turns is disposed in the gap portion. The detection coil was arranged by forming it as a coil pattern on the same substrate, and the magnetoresistances at the two gaps formed in the magnetic flux collecting core were made substantially the same.
In addition, for the magnetic resistance of the magnetic path through which the magnetic flux generated by the current to be measured flowing through the current bar penetrates, the ratio of the total magnetic resistance including the gap and the magnetic resistance inside the current collecting core is smaller than the output tolerance of the current sensor. Thus, the magnetic flux collecting core and the gap were configured.
[Selection] Figure 1

Description


本発明は、直流成分が重畳し、かつ周期的に変化する電流の、交流成分を正確に計測するための手段を提供する。特に、交流成分の測定精度が重要である電力計測および電力量計測のための電流計測技術に関する。

The present invention provides means for accurately measuring an alternating current component of a current that is superimposed and periodically changed. In particular, the present invention relates to current measurement technology for power measurement and energy measurement in which measurement accuracy of AC components is important.


一般に大電力を扱う回路における電流計測は主回路との絶縁が必要であり、別置の電流センサを使用する場合が多い。代表的な電流計測方式としては、変流器(カレントトランス;CT)、ホール素子などの磁電変換素子によって構成された直流電流センサ、ロゴスキーコイル法などが知られている。
交流回路で最も一般的に使われる電流センサは変流器(カレントトランス;CT)である。これは、磁気コアに複数回の二次巻線を施したものであり、電流バーを磁気コアに貫通させて被測定電流が変化したとき、それによって生ずるコア内の磁束密度の変化を相殺するように巻線に電流が流れ、この二次巻線内の電流を計測することによって被測定電流を計測するものである。

In general, current measurement in a circuit that handles high power requires insulation from the main circuit, and a separate current sensor is often used. As a typical current measurement method, a current transformer (current transformer; CT), a direct current sensor constituted by a magnetoelectric conversion element such as a Hall element, a Rogowski coil method, and the like are known.
The current sensor most commonly used in AC circuits is a current transformer (CT). This is a magnetic core with multiple secondary windings. When the current to be measured is changed by passing a current bar through the magnetic core, the resulting change in magnetic flux density in the core is offset. Thus, a current flows through the winding, and the current to be measured is measured by measuring the current in the secondary winding.

磁気コアにギャップを設け、磁気コア内に生ずる磁束を検出する電流計測方式は、例えば先行技術特許文献1および先行技術特許文献2にその構成が示されている。この場合、ギャップつき集磁コアのギャップ位置に磁電変換素子を配置して、被測定電流によって集磁コア内に発生する磁束密度を計測することによって被測定電流を計測する。
その他、主に大電流を計測する手法として、ロゴスキーコイル法が知られている。この構成は先行技術特許文献3に示されているように、空芯コイルを環状に多数配置して、その中心を貫く電流が変化したときに、空芯コイルを貫く磁束の変化によって発生する電圧を積分することによって電流を得るというものである。
A configuration of a current measurement method for providing a gap in a magnetic core and detecting a magnetic flux generated in the magnetic core is shown, for example, in Prior Art Patent Document 1 and Prior Art Patent Document 2. In this case, the current to be measured is measured by arranging a magnetoelectric conversion element at the gap position of the magnetic flux collecting core with a gap and measuring the magnetic flux density generated in the magnetic flux collecting core by the current to be measured.
In addition, the Rogowski coil method is known as a method for mainly measuring a large current. In this configuration, as shown in Prior Art Patent Document 3, when a large number of air core coils are arranged in an annular shape and the current passing through the center thereof changes, the voltage generated by the change in magnetic flux passing through the air core coil Is obtained by integrating.

また、ロゴスキーコイル法と同じく電磁誘導を用いた手法として、ギャップつき集磁コアの周りに巻線を施して、被測定電流の変化による集磁コア内の磁束変化を巻線コイルで検出することもあり、クランプ型電流センサ等で利用されている。図5は本方式による従来の構成を示す図である。図5において電流バー13を囲んでギャップ12をもつ集磁コア11が配置され、該集磁コア11には検出コイル14が巻回されている。本方式においては被測定電流によって集磁コア内に発生する磁束密度の時間変化に比例する出力が検出コイル14から得られる。この出力を図示しない積分回路に導き、積分演算を行えば被測定電流が得られる。
特開平7−151793号公報 特開2003−43073号公報 特開2005−3589号公報
As in the Rogowski coil method, as a method using electromagnetic induction, a winding is provided around the gap collecting core, and the change in the magnetic flux in the collecting core due to the change in the measured current is detected by the winding coil. In some cases, it is used in a clamp-type current sensor or the like. FIG. 5 is a diagram showing a conventional configuration according to the present system. In FIG. 5, a magnetic flux collecting core 11 having a gap 12 surrounding the current bar 13 is disposed, and a detection coil 14 is wound around the magnetic flux collecting core 11. In this method, an output proportional to the time change of the magnetic flux density generated in the magnetic collecting core by the current to be measured is obtained from the detection coil 14. If this output is led to an integration circuit (not shown) and integration calculation is performed, a current to be measured can be obtained.
Japanese Patent Laid-Open No. 7-151793 JP 2003-43073 A Japanese Patent Laying-Open No. 2005-3589


半導体技術の進展に伴い、半波電流など直流が重畳した電流によって消費される電力が計量できる電力計や電力量計のニーズが増えつつある。直流を含む多くの周波数成分からなる一般の電圧、電流において、電力は各周波数成分ごとに電圧×電流の数値を演算して得られる。しかし、商用の交流電源電圧は直流成分を含まないので、電力の測定では電流の直流成分は不要である。一方、交流電流成分の測定精度は直接電力の計算精度に影響を与える。

With the progress of semiconductor technology, there is an increasing need for wattmeters and watt hour meters that can measure the power consumed by a current superimposed with a direct current such as a half-wave current. In general voltage and current composed of many frequency components including direct current, power is obtained by calculating a value of voltage × current for each frequency component. However, since the commercial AC power supply voltage does not include a DC component, the DC component of the current is not necessary for power measurement. On the other hand, the measurement accuracy of alternating current components directly affects the calculation accuracy of power.

しかし、従来の電流計測手法では以下に述べる問題があった。
まず、変流器では交流電流を高精度に計測することが可能であるが、変流器を貫通する電流バーに直流成分を含む電流が通電されると、その直流成分が計測されないだけでなく、コアの磁気飽和によって交流成分も正確に計測できなくなる。
磁電変換素子による直流電流センサによる電流計測では、直流成分が重畳された電流であっても、直流成分をもたない交流電流を計測する場合と同程度の精度で周期的電流を計測することができる。しかし、この電流センサの出力はコアの磁気特性に加えて磁電変換素子の直線性や温度特性に直接依存するため、一般に交流計測精度としては変流器より劣っている。また、一般に磁電変換素子は感度ばらつきが大きいことに加え、集磁コアと磁電変換素子との相対位置のずれによって、電流センサとしての感度ばらつきが大きくなる。
However, the conventional current measurement method has the following problems.
First of all, an AC current can be measured with high accuracy in a current transformer, but when a current containing a DC component is passed through a current bar that passes through the current transformer, the DC component is not only measured. The AC component cannot be measured accurately due to the magnetic saturation of the core.
Current measurement by a DC current sensor using a magnetoelectric transducer can measure periodic current with the same degree of accuracy as measuring AC current that has no DC component, even if the DC component is superimposed. it can. However, since the output of this current sensor directly depends on the linearity and temperature characteristics of the magnetoelectric transducer in addition to the magnetic characteristics of the core, the AC measurement accuracy is generally inferior to that of the current transformer. In general, in addition to large variations in sensitivity of magnetoelectric transducers, variations in sensitivity as current sensors increase due to a relative positional shift between the magnetism collecting core and the magnetoelectric transducer.

また、ロゴスキーコイル法では、空芯のため、わずかな巻きムラによって外部磁場の影響を受けてしまうという、作製上の困難を有している。
ロゴスキーコイル法と同じく電磁誘導を検出原理とする場合であっても、集磁コアの周りに巻線したものでは、外部磁場による磁束が集磁コア内を通るため、大きな誤差要因となる。
Further, the Rogowski coil method has a manufacturing difficulty in that it is affected by an external magnetic field due to slight winding unevenness due to the air core.
Even in the case where electromagnetic induction is used as the detection principle, as in the Rogowski coil method, a coil wound around the magnetic collecting core causes a large error because the magnetic flux generated by the external magnetic field passes through the magnetic collecting core.

図6に外部磁場がある場合の集磁コア内の磁束の通路を示す。図6において集磁コア11は1カ所のギャップ12をもつ環状コアであり、ギャップ12の逆側には検出コイル14が複数回巻回されている。外部磁界が図6の下方から侵入した場合、磁束は検出コイル14の側(φA)、ギャップ12の側(φB)に分かれてコア内を通過する。検出コイル14側の磁束φAが変動すると、検出コイル14には誘導電圧が発生し、検出すべき被測定電流による発生電圧に重畳して誤差を生ずる。磁束φAおよびφBに対する磁気抵抗はギャップのないφA側がはるかに小さく、したがって検出コイル14を貫通する磁束φAはφBより大きい。この結果、外部磁場がある場合の電流測定誤差は無視できないものとなる。この外部磁場を避けるため、センサ全体を磁気シールドで囲むといった対策が必要であった。   FIG. 6 shows a path of magnetic flux in the magnetic flux collecting core when there is an external magnetic field. In FIG. 6, the magnetic flux collecting core 11 is an annular core having one gap 12, and a detection coil 14 is wound a plurality of times on the opposite side of the gap 12. When an external magnetic field enters from the lower side of FIG. 6, the magnetic flux is divided into the detection coil 14 side (φA) and the gap 12 side (φB) and passes through the core. When the magnetic flux φA on the detection coil 14 side fluctuates, an induced voltage is generated in the detection coil 14 and is superimposed on the generated voltage due to the current to be detected to cause an error. The magnetic resistance to the magnetic fluxes φA and φB is much smaller on the φA side without a gap, and therefore the magnetic flux φA penetrating the detection coil 14 is larger than φB. As a result, the current measurement error when there is an external magnetic field cannot be ignored. In order to avoid this external magnetic field, it was necessary to take measures such as surrounding the entire sensor with a magnetic shield.

本発明は、外部磁場による影響を受けにくく、直線性及び温度特性が優れ、直流成分が重畳された周期的電流であっても正確にその交流成分を計測できる電流センサおよびこの電流センサを用いた電子式電力量計を提供することを目的とする。   The present invention uses a current sensor that is not easily affected by an external magnetic field, has excellent linearity and temperature characteristics, and can accurately measure an alternating current component even with a periodic current superimposed with a direct current component, and the current sensor. An object is to provide an electronic watt-hour meter.


このため本発明では、略同一形状に2分割された環状の集磁コアをギャップを設けて対向配置し、該ギャップ部には寸法と巻数が同一の検出コイルを配設し、該検出コイル端子をその出力電圧が加算されるように直列接続することとした。また、前記検出コイルは、同一基板上にコイルパターンとして形成することによって配置することとし、集磁コアに形成された2ケ所のギャップにおける磁気抵抗を略同一とした。

Therefore, in the present invention, the annular magnetic collecting cores divided into two substantially in the same shape are arranged to face each other with a gap, and a detection coil having the same size and number of turns is arranged in the gap portion, and the detection coil terminal Are connected in series so that their output voltages are added. In addition, the detection coil is arranged by forming it as a coil pattern on the same substrate, and the magnetic resistances at the two gaps formed in the magnetic flux collecting core are made substantially the same.

更に、電流バーを流れる被測定電流が作る磁束が貫く磁路の磁気抵抗について、集磁コア内部のみの磁気抵抗とギャップ部を含めた全磁気抵抗の比が、電流センサの出力許容誤差より小さくなるように、集磁コアおよびギャップを構成した。
更に、このような電流センサを電子式電力量計に用いた。
Furthermore, regarding the magnetic resistance of the magnetic path through which the magnetic flux generated by the current to be measured flowing through the current bar penetrates, the ratio of the total magnetic resistance including the gap and the magnetic resistance inside the current collecting core is smaller than the output tolerance of the current sensor. Thus, the magnetic flux collecting core and the gap were configured.
Furthermore, such a current sensor was used for an electronic watt-hour meter.


本発明では、略同一形状に2分割された環状の集磁コアをギャップを設けて対向配置し、該2ケ所のギャップ部には寸法と巻数が同一の検出コイルを配設し、該検出コイル端子をその出力電圧が加算されるように直列接続することとしたので、被測定電流が作る磁束による発生電圧は加算、外部磁界が作る磁束による発生電圧は相殺されるよう検出コイルを接続でき、外部磁界による電流検出誤差を極めて小さくできる。

In the present invention, the annular magnetism collecting cores divided into two substantially in the same shape are arranged to face each other with a gap, and detection coils having the same size and number of turns are arranged in the gap portions at the two locations. Since the terminals are connected in series so that their output voltages are added, the detection voltage can be connected so that the voltage generated by the magnetic flux generated by the current to be measured is added, and the voltage generated by the magnetic flux generated by the external magnetic field is offset, The current detection error due to the external magnetic field can be extremely reduced.

また、前記検出コイルは、同一基板上にコイルパターンとして形成することとしたため、製作上の寸法精度が向上し、2つの検出コイルの発生電圧のバラツキを小さくできる。集磁コアに形成された2ケ所のギャップにおける磁気抵抗を略同一としたことは、外部磁界による磁束が二手に分かれてギャップ部を通過する際、各々の磁束量をほぼ同一とすることができ、検出コイルの減算による誤差電圧の低減効果をより向上させることができる。   Further, since the detection coil is formed as a coil pattern on the same substrate, the dimensional accuracy in manufacturing is improved, and the variation in the voltage generated between the two detection coils can be reduced. The fact that the magnetic resistances at the two gaps formed in the magnetic collecting core are substantially the same means that when the magnetic flux due to the external magnetic field is split into two and passes through the gap, the amount of each magnetic flux can be made substantially the same. The effect of reducing the error voltage by subtracting the detection coil can be further improved.

更に、電流バーを流れる被測定電流が作る磁束が貫く磁路の磁気抵抗について、集磁コア内部のみの磁気抵抗とギャップ部を含めた全磁気抵抗の比を、電流センサの出力許容誤差より小さくなるように、集磁コアおよびギャップを構成したため、磁気飽和によって集磁コア材料の透磁率が変動した結果、電流測定値に誤差が生ずる場合でも、その誤差を許容値以下に保つことができる。   Furthermore, regarding the magnetic resistance of the magnetic path through which the magnetic flux generated by the current to be measured flowing through the current bar penetrates, the ratio of the total magnetic resistance including the gap and the magnetic resistance only inside the current collecting core is smaller than the output tolerance of the current sensor. Thus, since the magnetic flux collecting core and the gap are configured, even when an error occurs in the current measurement value as a result of the magnetic permeability of the magnetic flux collecting core material fluctuating due to magnetic saturation, the error can be kept below an allowable value.

このような電流センサを電子式電力計に用いることにより、電流に直流成分を含む場合でも、交流成分を高精度で検出することができる。   By using such a current sensor for an electronic wattmeter, an AC component can be detected with high accuracy even when the current includes a DC component.


次に、本発明による電流センサの具体的な実施形態について、図面を用いて説明する。

Next, specific embodiments of the current sensor according to the present invention will be described with reference to the drawings.


図1は本発明による電流センサの構成を示す斜視図である。図1において鉄等の強磁性材料で作られた第1集磁コア1および第2集磁コア2が、電流バー3を囲んで、ギャップを設けて対向配置され、該ギャップには基板6が挟み込まれている。基板6上のギャップ部分には寸法と巻数が同一の第1検出コイル4および第2検出コイル5が渦巻き状のコイルパターンとして形成されている。第1検出コイル4および第2検出コイル5は直列接続された後、その出力端子は積分器7の入力端子に導かれる。

FIG. 1 is a perspective view showing a configuration of a current sensor according to the present invention. In FIG. 1, a first magnetic collecting core 1 and a second magnetic collecting core 2 made of a ferromagnetic material such as iron are disposed so as to face each other with a gap surrounding a current bar 3, and a substrate 6 is disposed in the gap. It is sandwiched. In the gap portion on the substrate 6, the first detection coil 4 and the second detection coil 5 having the same dimensions and the same number of turns are formed as a spiral coil pattern. After the first detection coil 4 and the second detection coil 5 are connected in series, their output terminals are led to the input terminal of the integrator 7.

次に、上記構成の電流センサにおける電流検出原理を述べる。図2は本発明の電流センサにおける被測定電流による集磁コア内の磁束の流れを示す図である。電流バーに流れる電流は、その周囲全体に磁場を形成するが、これによって生じる磁束のほとんどは、電流バーを囲んで配置され強磁性材料で作られた集磁コアの内部を周回する。電流バーに流れる電流が増減すると、これに対応して集磁コア内の磁束も増減する。この磁束が貫通するように配置された第1検出コイル4および第2検出コイル5にはファラデーの法則に従って、磁束の変化分に比例した起電力が誘起される。2個の検出コイルは前記誘起起電力が加算される方向に直列接続されている。この出力を積分器7に導き、積分演算を行えば被測定電流が得られる。   Next, the principle of current detection in the current sensor having the above configuration will be described. FIG. 2 is a diagram showing the flow of magnetic flux in the magnetic flux collecting core due to the current to be measured in the current sensor of the present invention. The current flowing in the current bar forms a magnetic field around its entire circumference, but most of the magnetic flux generated thereby circulates around the current collecting core that is placed around the current bar and made of a ferromagnetic material. When the current flowing through the current bar increases or decreases, the magnetic flux in the magnetic flux collecting core also increases or decreases correspondingly. In accordance with Faraday's law, an electromotive force proportional to the change in the magnetic flux is induced in the first detection coil 4 and the second detection coil 5 that are arranged so that the magnetic flux penetrates. The two detection coils are connected in series in the direction in which the induced electromotive force is added. If this output is guided to the integrator 7 and integration calculation is performed, a current to be measured can be obtained.

第1検出コイル4および第2検出コイル5の巻方向は同方向あるいは逆方向のいずれもが可能である。コイル端子をその出力電圧が加算されるように直列接続することで両者は同じ性能を発揮する。
一方、この種の電流測定においては変動する外部磁場があった場合、それによる誘起起電力が出力に重畳し、誤差を増大させるという問題がある。図3は本発明の電流センサに外部磁場15が侵入した場合の磁束の流れを示す図である。図3において外部磁場15による磁束は下部から侵入し、集磁コア内を二手に分かれて通過する。本発明においては、集磁コアに形成された2ケ所のギャップにおける磁気抵抗を略同一としたため、二手に分かれた磁束φA、φBはほぼ等しい値となり、2個の検出コイルに誘起される起電力もほぼ等しい。2個の検出コイルの接続は図2に示すように被測定電流により生じる磁束が加算される方向に直列接続されているため、磁束方向が逆となる図3の外部磁場による磁束に対しては起電力が相殺されることになって測定誤差を小さくする効果を発揮する。
The winding direction of the first detection coil 4 and the second detection coil 5 can be either the same direction or the reverse direction. By connecting the coil terminals in series so that their output voltages are added, both exhibit the same performance.
On the other hand, in this type of current measurement, if there is a fluctuating external magnetic field, there is a problem that the induced electromotive force is superimposed on the output and the error is increased. FIG. 3 is a diagram showing the flow of magnetic flux when the external magnetic field 15 enters the current sensor of the present invention. In FIG. 3, the magnetic flux generated by the external magnetic field 15 enters from the lower part, and passes through the magnetic flux collecting core in two hands. In the present invention, since the magnetic resistances at the two gaps formed in the magnetic collecting core are substantially the same, the two separated magnetic fluxes φA and φB have substantially the same value, and the electromotive forces induced in the two detection coils. Is almost equal. Since the two detection coils are connected in series in the direction in which the magnetic flux generated by the current to be measured is added as shown in FIG. 2, with respect to the magnetic flux due to the external magnetic field in FIG. Since the electromotive force is offset, the effect of reducing the measurement error is exhibited.

集磁コアを使った電流センサでは集磁コア材料の磁気特性の非直線性により電流測定誤差を生ずる。この誤差を許容値以下に抑えるために、本発明では以下のように集磁コア及びギャップを構成した。図4は本発明の電流センサにおける磁気抵抗計算のための寸法図であり、第1および第2集磁コアの磁路長がli、ギャップ長がlgである。また磁路の断面積は全磁路について同一のSであり、集磁コア材料の透磁率はμi、空気の透磁率はμ0である。この磁気回路において被測定電流Iによって生ずる磁束φは磁気回路の全磁気抵抗をRmとして   In a current sensor using a magnetic collecting core, current measurement errors occur due to the non-linearity of the magnetic properties of the magnetic collecting core material. In order to suppress this error to an allowable value or less, the magnetic flux collecting core and the gap are configured as follows in the present invention. FIG. 4 is a dimension diagram for calculating the magnetic resistance in the current sensor of the present invention, where the magnetic path length of the first and second magnetic flux collecting cores is li and the gap length is lg. The cross-sectional area of the magnetic path is the same S for all the magnetic paths, the magnetic permeability of the magnetic flux collecting core material is μi, and the magnetic permeability of air is μ0. In this magnetic circuit, the magnetic flux φ generated by the current I to be measured is given by the total magnetic resistance of the magnetic circuit as Rm.

Figure 2008002876
Figure 2008002876

で表される。全磁気抵抗Rmは集磁コア部の磁気抵抗Riとギャップ部磁気抵抗Rgの和であり、RiおよびRgは図4の寸法から It is represented by The total magnetic resistance Rm is the sum of the magnetic resistance Ri of the magnetic flux collecting core portion and the gap magnetic resistance Rg. Ri and Rg are calculated from the dimensions shown in FIG.

Figure 2008002876
Figure 2008002876

Figure 2008002876
Figure 2008002876

で表される。電流測定誤差は被測定電流の大きさや周囲温度の違いにより、集磁コア部の磁気抵抗RiがΔRiだけ変化することにより発生する。「数式1」から集磁コア内の磁束の相対変化Δφ/φの関係を計算すると It is represented by The current measurement error is caused by a change in the magnetic resistance Ri of the magnetic flux collecting core portion by ΔRi due to the difference in the current to be measured and the ambient temperature. When calculating the relationship of the relative change Δφ / φ in the magnetic flux collecting core from “Equation 1”,

Figure 2008002876
Figure 2008002876

が得られるが、集磁コア部の磁気抵抗変化ΔRiは高々Riと同程度なので However, since the magnetoresistance change ΔRi of the magnetic flux collecting core is at most as high as Ri,

Figure 2008002876
Figure 2008002876

と書くことができ、集磁コア部の磁気抵抗Riと全磁気抵抗Rmの比Ri/Rmを許容値以下とすることで、集磁コア内の磁束に比例した出力である電流の測定誤差を許容値以下に抑えることができる。
例えば、集磁コア材料の比透磁率(空気の透磁率に対する倍率)を1000、許容誤差を1%とするとli/lg≒10となり、ギャップ長lgを2mmとした場合、集磁コアの磁路長liは最大20mmまで許容できる。
By setting the ratio Ri / Rm of the magnetic resistance Ri of the magnetic flux collecting core part to the total magnetic resistance Rm to be less than the allowable value, the measurement error of the current that is an output proportional to the magnetic flux in the magnetic flux collecting core can be reduced. It can be suppressed below the allowable value.
For example, if the relative magnetic permeability (magnification with respect to the air permeability) of the magnetic flux collecting core material is 1000 and the allowable error is 1%, then li / lg≈10, and the gap length lg is 2 mm, the magnetic path of the magnetic flux collecting core The length li can be allowed up to 20 mm.

本発明の電流センサの構成を示す斜視図The perspective view which shows the structure of the current sensor of this invention. 本発明の電流センサにおける被測定電流による磁束の流れを示す図The figure which shows the flow of the magnetic flux by the to-be-measured current in the current sensor of this invention 本発明の電流センサにおける外部磁場による磁束の流れを示す図The figure which shows the flow of the magnetic flux by the external magnetic field in the current sensor of this invention 本発明の電流センサにおける磁気抵抗計算のための寸法図Dimensional diagram for magnetoresistance calculation in the current sensor of the present invention 従来技術による電流センサの構成を示す斜視図The perspective view which shows the structure of the current sensor by a prior art. 従来技術による電流センサにおける外部磁場による磁束の流れを示す図The figure which shows the flow of the magnetic flux by the external magnetic field in the current sensor by the prior art

符号の説明Explanation of symbols

1 第一集磁コア 2 第二集磁コア 3 電流バー
4 第一検出コイル 5 第二検出コイル 6 基板 7 積分器
8 冷却フィン 9 コイルエンド 10 回転軸
11 集磁コア 12 ギャップ 13 電流バー 14 検出コイル
15 外部磁場
1 First magnetic collecting core 2 Second magnetic collecting core 3 Current bar
4 First detection coil 5 Second detection coil 6 Substrate 7 Integrator 8 Cooling fin 9 Coil end 10 Rotating shaft
11 current collecting core 12 gap 13 current bar 14 detection coil 15 external magnetic field

Claims (5)

電流バーに流れる被測定電流により、該電流バーを囲む集磁コア内に生ずる磁束を介して被測定電流を検出する電流センサにおいて、略同一形状に2分割された環状の集磁コアをギャップを設けて対向配置し、該ギャップ部には寸法と巻数が同一の検出コイルを配設し、該検出コイル端子をその出力電圧が加算されるように直列接続してなることを特徴とする電流センサ In a current sensor for detecting a measured current through a magnetic flux generated in a magnetic collecting core surrounding the current bar by a measured current flowing through the current bar, an annular magnetic collecting core divided into two substantially in the same shape has a gap. A current sensor comprising: a detection coil having the same size and number of turns disposed in the gap portion; and the detection coil terminals connected in series so that the output voltage is added. 請求項1に記載の電流センサにおいて、ギャップ部に配設される検出コイルは同一基板上にコイルパターンとして形成されることを特徴とする電流センサ 2. The current sensor according to claim 1, wherein the detection coil disposed in the gap portion is formed as a coil pattern on the same substrate. 請求項1または2に記載の電流センサにおいて、集磁コア間に形成される2ケ所のギャップの磁気抵抗を略同一としたことを特徴とする電流センサ 3. The current sensor according to claim 1, wherein the magnetic resistances of the gaps at two places formed between the magnetic collecting cores are substantially the same. 請求項1ないし3のいずれかの項に記載の電流センサにおいて、電流バーを流れる被測定電流が作る磁束が貫く磁路の磁気抵抗について、集磁コア内部のみの磁気抵抗とギャップ部を含めた全磁気抵抗の比が、電流センサの出力許容誤差より小さくなるように、集磁コアおよびギャップを構成することを特徴とする電流センサ 4. The current sensor according to claim 1, wherein the magnetic resistance of the magnetic path through which the magnetic flux generated by the current to be measured flowing through the current bar penetrates includes only the magnetic resistance inside the magnetic flux collecting core and the gap portion. 5. A current sensor comprising a magnetic flux collecting core and a gap so that a ratio of total magnetic resistance is smaller than an output tolerance of the current sensor. 請求項1ないし4のいずれかの項に記載の電流センサを用いて電流計測を行うことを特徴とする電子式電力量計








An electronic watt-hour meter that performs current measurement using the current sensor according to any one of claims 1 to 4.








JP2006171209A 2006-06-21 2006-06-21 Current sensor and electronic energy meter Withdrawn JP2008002876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171209A JP2008002876A (en) 2006-06-21 2006-06-21 Current sensor and electronic energy meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171209A JP2008002876A (en) 2006-06-21 2006-06-21 Current sensor and electronic energy meter

Publications (1)

Publication Number Publication Date
JP2008002876A true JP2008002876A (en) 2008-01-10

Family

ID=39007393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171209A Withdrawn JP2008002876A (en) 2006-06-21 2006-06-21 Current sensor and electronic energy meter

Country Status (1)

Country Link
JP (1) JP2008002876A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101914A (en) * 2006-10-17 2008-05-01 Fuji Electric Systems Co Ltd Current sensor and electronic energy meter
JP2010048755A (en) * 2008-08-25 2010-03-04 Fuji Electric Systems Co Ltd Current sensor and voltmeter
JP2010520448A (en) * 2007-03-02 2010-06-10 リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム High bandwidth open loop current sensor
CN102231320A (en) * 2011-04-15 2011-11-02 安徽千恩智能科技股份有限公司 Heavy current mutual inductor for electronic circular electric energy meter and production method thereof
JP2012088096A (en) * 2010-10-18 2012-05-10 Denso Corp Current detection circuit
CN102707108A (en) * 2012-04-26 2012-10-03 河北省电力研究院 Device and method resisting strong magnetic interference of electric energy meter
JP2013171013A (en) * 2012-02-23 2013-09-02 Tdk Corp Current sensor
EP3156813A1 (en) * 2015-10-16 2017-04-19 Johnson Electric S.A. Current determining device and method
JP2017156342A (en) * 2016-03-01 2017-09-07 ミツミ電機株式会社 Sensor device and semiconductor device
WO2018068963A1 (en) * 2016-10-12 2018-04-19 Siemens Aktiengesellschaft Method for producing a printed circuit board power converter
JP2018087723A (en) * 2016-11-28 2018-06-07 Jfeスチール株式会社 Design method of magnetic core for current sensor
CN110412336A (en) * 2019-07-22 2019-11-05 中国科学院上海应用物理研究所 A Detection Probe of High Precision Current Sensor
JP2021506121A (en) * 2017-12-07 2021-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Air core inductor assembly
CN116224190A (en) * 2023-05-06 2023-06-06 江苏多维科技有限公司 Magnetic sensor for eliminating manufacturing error of magnetic flux collecting element
WO2023223428A1 (en) * 2022-05-17 2023-11-23 三菱電機株式会社 Electric current sensor
CN117572060A (en) * 2024-01-17 2024-02-20 国网湖北省电力有限公司经济技术研究院 Non-contact passive distributed cable current measuring device and measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444377Y1 (en) * 1968-05-30 1969-02-18
JPS57128854A (en) * 1981-02-02 1982-08-10 Mitsubishi Electric Corp Current transformer
JPH0488866U (en) * 1990-01-23 1992-08-03
JP2000021661A (en) * 1998-06-30 2000-01-21 Omron Corp Ct type current sensor
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444377Y1 (en) * 1968-05-30 1969-02-18
JPS57128854A (en) * 1981-02-02 1982-08-10 Mitsubishi Electric Corp Current transformer
JPH0488866U (en) * 1990-01-23 1992-08-03
JP2000021661A (en) * 1998-06-30 2000-01-21 Omron Corp Ct type current sensor
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101914A (en) * 2006-10-17 2008-05-01 Fuji Electric Systems Co Ltd Current sensor and electronic energy meter
JP2010520448A (en) * 2007-03-02 2010-06-10 リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム High bandwidth open loop current sensor
JP2010048755A (en) * 2008-08-25 2010-03-04 Fuji Electric Systems Co Ltd Current sensor and voltmeter
JP2012088096A (en) * 2010-10-18 2012-05-10 Denso Corp Current detection circuit
US8604775B2 (en) 2010-10-18 2013-12-10 Denso Corporation Current detection device
CN102231320A (en) * 2011-04-15 2011-11-02 安徽千恩智能科技股份有限公司 Heavy current mutual inductor for electronic circular electric energy meter and production method thereof
WO2012139523A1 (en) * 2011-04-15 2012-10-18 安徽千恩智能科技股份有限公司 Electronic round power meter using high-current transformer and manufacturing method thereof
JP2013171013A (en) * 2012-02-23 2013-09-02 Tdk Corp Current sensor
CN102707108A (en) * 2012-04-26 2012-10-03 河北省电力研究院 Device and method resisting strong magnetic interference of electric energy meter
CN106597054A (en) * 2015-10-16 2017-04-26 德昌电机(深圳)有限公司 Current determining device and method
EP3156813A1 (en) * 2015-10-16 2017-04-19 Johnson Electric S.A. Current determining device and method
JP2017156342A (en) * 2016-03-01 2017-09-07 ミツミ電機株式会社 Sensor device and semiconductor device
WO2018068963A1 (en) * 2016-10-12 2018-04-19 Siemens Aktiengesellschaft Method for producing a printed circuit board power converter
JP2018087723A (en) * 2016-11-28 2018-06-07 Jfeスチール株式会社 Design method of magnetic core for current sensor
JP2021506121A (en) * 2017-12-07 2021-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Air core inductor assembly
CN110412336A (en) * 2019-07-22 2019-11-05 中国科学院上海应用物理研究所 A Detection Probe of High Precision Current Sensor
CN110412336B (en) * 2019-07-22 2021-12-10 中国科学院上海应用物理研究所 Detection probe of high-precision current sensor
WO2023223428A1 (en) * 2022-05-17 2023-11-23 三菱電機株式会社 Electric current sensor
CN116224190A (en) * 2023-05-06 2023-06-06 江苏多维科技有限公司 Magnetic sensor for eliminating manufacturing error of magnetic flux collecting element
CN116224190B (en) * 2023-05-06 2023-09-05 江苏多维科技有限公司 Magnetic sensor for eliminating manufacturing error of magnetic flux collecting element
CN117572060A (en) * 2024-01-17 2024-02-20 国网湖北省电力有限公司经济技术研究院 Non-contact passive distributed cable current measuring device and measuring method
CN117572060B (en) * 2024-01-17 2024-04-09 国网湖北省电力有限公司经济技术研究院 Non-contact passive distributed cable current measuring device and measuring method

Similar Documents

Publication Publication Date Title
JP2008002876A (en) Current sensor and electronic energy meter
US7583073B2 (en) Core-less current sensor
US8519704B2 (en) Magnetic-balance-system current sensor
JP5366418B2 (en) Current detector and watt-hour meter using the same
US20100207603A1 (en) Ammeter with improved current sensing
JP2009210406A (en) Current sensor and watthour meter
US8493059B2 (en) Shunt sensor and shunt sensor assembly
JP6116061B2 (en) Current sensor
US20100301836A1 (en) Device for measuring the intensity of an electric current and electric appliance including such device
JP2002243766A (en) Current sensor
JP5162376B2 (en) Current sensor, watt-hour meter
JP2009058451A (en) Magnetic core for current sensor and current sensor using the same
CN103123369A (en) Current sensing device
JP2010536011A (en) Arrangement of current measurement through a conductor
JP7222652B2 (en) Current sensor and electricity meter
JP2019152558A (en) Current sensor and voltmeter
WO2022176570A1 (en) Magnetic sensor
JP2008101914A (en) Current sensor and electronic energy meter
JP2019105546A (en) Current sensor and watt-hour meter
JP7553018B2 (en) Current Sensors and Power Meters
JP2008014921A (en) Direct-current detecting method and dc detector
CN115639390A (en) Differential current sensor for high currents
JP7706281B2 (en) Current Sensors and Power Meters
JP2013224888A (en) Magnetoresistance effect type power sensor
TWI717707B (en) Current sensing method and current sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101227