[go: up one dir, main page]

JP2007328977A - Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery Download PDF

Info

Publication number
JP2007328977A
JP2007328977A JP2006158189A JP2006158189A JP2007328977A JP 2007328977 A JP2007328977 A JP 2007328977A JP 2006158189 A JP2006158189 A JP 2006158189A JP 2006158189 A JP2006158189 A JP 2006158189A JP 2007328977 A JP2007328977 A JP 2007328977A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
negative electrode
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158189A
Other languages
Japanese (ja)
Inventor
Masanori Sumihara
正則 住原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006158189A priority Critical patent/JP2007328977A/en
Publication of JP2007328977A publication Critical patent/JP2007328977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】規定厚みに圧縮された正極板および負極板の少なくとも一方の電極板に活物質密度が異なる箇所を形成することで、非水電解液含浸速度が速くなり生産性に優れ、電池容量バラツキが少なく、かつ良好な寿命特性を示す非水系二次電池を提供するものである。
【解決手段】集電体1の少なくとも一箇所以上に、正極の合剤塗料2または負極の合剤塗料2の厚みが薄くなる箇所3を塗布形成する第一の工程、および正極の合剤塗料2または負極の合剤塗料2が乾燥されたのち、所定厚みにプレスされ、正極板11または負極板12の少なくとも一箇所以上に活物質の密度が異なる箇所5を形成することを特徴とするものである。
【選択図】図1
An object of the present invention is to form a portion having different active material densities on at least one of a positive electrode plate and a negative electrode plate compressed to a specified thickness, thereby increasing a non-aqueous electrolyte impregnation rate and improving productivity and battery capacity variation. The present invention provides a non-aqueous secondary battery that has a small amount and good life characteristics.
A first step of applying and forming a positive electrode mixture paint 2 or a negative electrode mixture paint 2 at a location 3 where the thickness of the current collector 1 is reduced, and a positive electrode mixture paint. 2 or the negative electrode mixture paint 2 is dried and then pressed to a predetermined thickness to form at least one portion of the positive electrode plate 11 or the negative electrode plate 12 where the active material density is different. It is.
[Selection] Figure 1

Description

本発明は、リチウムイオン電池に代表される非水系二次電池用電極板とその製造方法およびそれを用いた非水系二次電池に関するものである。   The present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery, a method for producing the same, and a non-aqueous secondary battery using the same.

近年、携帯用電子機器の電源として利用が広がっているリチウム二次電池は、負極にリチウムの吸蔵・放出が可能な炭素質材料等を用い、正極にLiCoO2等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって、高電位で高放電容量の二次電池を実現しているが、近年の電子機器および通信機器の多機能化に伴ってさらなる高容量化が望まれている。 In recent years, lithium secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode, and a composite oxidation of lithium and a transition metal such as LiCoO 2 for the positive electrode. As a result, secondary batteries with high potential and high discharge capacity have been realized. However, with the recent increase in functionality of electronic devices and communication devices, higher capacities are desired. ing.

ここで、高容量電池を実現するための電極板としては、正極板および負極板ともに各々の構成材料として合剤塗料を集電体上に塗布乾燥後、プレス等により規定厚みまで圧縮する方法が用いられている。この際、より多くの活物質を充填してプレスすることにより活物質密度が高くなり、一層の高容量化が可能となる。   Here, as an electrode plate for realizing a high-capacity battery, there is a method in which a mixture paint as a constituent material for both the positive electrode plate and the negative electrode plate is applied and dried on a current collector and then compressed to a specified thickness by a press or the like. It is used. At this time, the active material density is increased by filling and pressing a larger amount of the active material, and the capacity can be further increased.

一方で、電極板の活物質密度を高くすると、電極板への非水電解液の含浸性が悪くなり、極板群中での非水電解液の分布が不均一となる。そこで、非水電解液の含浸性を向上するために、例えば図3に示すように正極板21、負極板22およびセパレータ23を渦巻状に捲回して構成される電極群24において、正極板21または負極板22の少なくとも一方の活物質層の表面に溝25を形成する方法が提案されている(例えば、特許文献1参照)。   On the other hand, when the active material density of the electrode plate is increased, the impregnation property of the non-aqueous electrolyte into the electrode plate is deteriorated, and the distribution of the non-aqueous electrolyte in the electrode plate group becomes uneven. Therefore, in order to improve the impregnation property of the nonaqueous electrolytic solution, for example, in the electrode group 24 configured by winding the positive electrode plate 21, the negative electrode plate 22, and the separator 23 in a spiral shape as shown in FIG. Or the method of forming the groove | channel 25 in the surface of at least one active material layer of the negative electrode plate 22 is proposed (for example, refer patent document 1).

また、電極板の捲回時にかかる巻きのストレスを無くし、電極板のワレやセパレータの切れを防止するために、例えば図4に示すように、集電体33上に電極合剤32を形成した電極板31の表面に、巻回方向に対して垂直方向に筋溝34,35を表面側および裏面側の両面に形成する方法が提案されている(例えば、特許文献2参照)。
特開2001−176558号公報 特開平10−154506号公報
Further, in order to eliminate winding stress applied when the electrode plate is wound and to prevent cracking of the electrode plate and breakage of the separator, for example, an electrode mixture 32 is formed on the current collector 33 as shown in FIG. A method has been proposed in which the streak grooves 34 and 35 are formed on the surface of the electrode plate 31 on both the front side and the back side in a direction perpendicular to the winding direction (see, for example, Patent Document 2).
JP 2001-176558 A JP-A-10-154506

しかしながら、従来技術である特許文献では、電極板の表面に凹凸部あるいは溝部を形成するため電極板中に含まれる活物質の減量は避けられず、高容量化のために必要な活物質量を確保したまま、電極板の非水電解液の含浸性を向上させることが困難であるという課題を有していた。   However, in the patent document which is a prior art, since an uneven portion or a groove portion is formed on the surface of the electrode plate, the reduction of the active material contained in the electrode plate is unavoidable, and the amount of active material necessary for increasing the capacity is unavoidable. While ensuring, it had the subject that it was difficult to improve the impregnation property of the non-aqueous electrolyte of an electrode plate.

さらに詳しくは、上記特許文献1においては、溝を形成することによる電池容量の低下のみならず、負極板に溝を形成した際はこの部分でリチウム析出等の不具合が生じる。また、形成する溝の形状や深さの形成方法により電極板のワレ、電極板切れなどの不具合を引き起こす場合がある。   More specifically, in Patent Document 1, not only the battery capacity is reduced due to the formation of the groove, but also a defect such as lithium deposition occurs in this portion when the groove is formed in the negative electrode plate. In addition, problems such as cracking of the electrode plate and breakage of the electrode plate may be caused by the method of forming the shape and depth of the groove to be formed.

また、上記特許文献2においては、筋溝を形成することで電極板のワレやセパレータの切れを防止するだけでなく、この筋溝により非水電解液の含浸性を向上させることは可能であるが、筋溝を形成したことにより電池容量の低下は避けられない。   In Patent Document 2, it is possible not only to prevent cracking of the electrode plate and breakage of the separator by forming a streak, but also to improve the impregnation property of the nonaqueous electrolytic solution by this streak. However, a decrease in battery capacity is inevitable due to the formation of streak grooves.

本発明は上記従来の課題を鑑みて成し遂げられたものであり、活物質充填密度の大きい
非水系二次電池の電極板により構成される電極群の非水電解液の含浸性を向上させることにより、電池容量バラツキが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することを目的とするものである。
The present invention has been accomplished in view of the above-described conventional problems, and by improving the impregnation property of the non-aqueous electrolyte of the electrode group constituted by the electrode plate of the non-aqueous secondary battery having a large active material filling density. An object of the present invention is to provide a non-aqueous secondary battery that has a small battery capacity variation and exhibits good life characteristics.

上記従来の課題を解決するために本発明の非水系二次電池用電極板は、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散させた正極の合剤塗料を正極の集電体上に塗布してなる正極板、あるいは少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散させた負極の合剤塗料を負極の集電体上に塗布してなる負極板であって、上記正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を設けたことを特徴とするものである。   In order to solve the above-described conventional problems, the electrode plate for a non-aqueous secondary battery according to the present invention includes at least an active material composed of a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder using a dispersion medium. A positive electrode plate obtained by applying a kneaded and dispersed positive electrode mixture paint onto a positive electrode current collector, or an active material made of a material capable of holding at least lithium and a water-insoluble polymer binder are used as a dispersion medium. A negative electrode plate obtained by applying a negative electrode mixture paint kneaded and dispersed on a negative electrode current collector to improve the impregnation of a non-aqueous electrolyte in at least one of the positive electrode plate and the negative electrode plate. It is characterized in that a portion having a different density of the active material is provided.

本発明の非水系二次電池用電極板によると、電極板の表面の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を形成した正極板または負極板を用いることにより、非水電解液の含浸性を向上させるための活物質層を除去する加工を行っていないため、活物質が減量されることがなく、電池容量の低下を招くという不具合の発生を抑止することが可能である。また、活物質密度を高くした場合でも、電極板に活物質密度の異なる箇所を設けたことで、非水電解液の含浸性を向上することが可能なため、電池容量バラツキを抑制し、さらには良好な電池寿命特性をも得ることができる。   According to the electrode plate for a non-aqueous secondary battery of the present invention, a positive electrode plate or a negative electrode plate in which at least one location on the surface of the electrode plate is formed with a location where the density of the active material that improves the impregnation property of the non-aqueous electrolyte is different is formed. The use of the active material layer for improving the impregnation property of the non-aqueous electrolyte is not performed, so that the active material is not reduced and the battery capacity is reduced. It can be deterred. In addition, even when the active material density is increased, it is possible to improve the impregnation property of the non-aqueous electrolyte by providing the electrode plate with a portion having a different active material density. Can also obtain good battery life characteristics.

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散させた正極合剤塗料を正極の集電体上に塗布してなる正極板、あるいは少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散させた負極の合剤塗料を負極の集電体上に塗布してなる負極板であって、正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を設けたことにより、電極活物質が減量されることがなく、電池容量の低下を招くという不具合の発生を抑止し、活物質密度を高くした場合でも、この箇所で非水電解液の含浸性を向上することができる非水系二次電池用電極板を得ることが可能である。   In the first invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium is collected. A positive electrode plate coated on an electric body, or a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding at least lithium and a water-insoluble polymer binder in a dispersion medium. A negative electrode plate coated on a current collector, wherein at least one portion of the positive electrode plate or the negative electrode plate is provided with a portion having a different density of the active material that improves the impregnation property of the non-aqueous electrolyte. Even when the active material is not reduced, the occurrence of a problem that causes a decrease in battery capacity is suppressed, and the active material density is increased, the impregnation of the non-aqueous electrolyte can be improved at this point. Obtaining electrode plates for water-based secondary batteries Possible it is.

本発明の第2の発明においては、正極板または負極板の活物質の密度が異なる箇所が、正極板または負極板の他の活物質密度に比べて活物質の密度が小さくなるように形成された箇所であることにより、この低密度部分で非水電解液の吸液性を高めた電極板を得ることが可能である。   In the second invention of the present invention, the portion where the density of the active material of the positive electrode plate or the negative electrode plate is different is formed such that the density of the active material is smaller than the other active material density of the positive electrode plate or the negative electrode plate. Therefore, it is possible to obtain an electrode plate with improved non-aqueous electrolyte absorption at this low density portion.

本発明の第3の発明においては、正極板または負極板の活物質の密度が異なる箇所が、正極板または負極板の表面に形成された凹部であることにより、この凹部で非水電解液の吸液性を高めた電極板を得ることが可能である。   In the third aspect of the present invention, the portion where the density of the active material of the positive electrode plate or the negative electrode plate is a recess formed on the surface of the positive electrode plate or the negative electrode plate. It is possible to obtain an electrode plate with improved liquid absorption.

本発明の第4の発明においては、正極板または負極板の活物質の密度が小さい箇所または凹部が、正極板または負極板の長手方向に対して、直角方向の表面に形成されることにより、電極群を構成した際、電極群の縦方向に空隙が形成されるため、非水電解液の吸液性をさらに高めた電極板を得ることが可能である。   In the fourth invention of the present invention, the portion or the concave portion where the density of the active material of the positive electrode plate or the negative electrode plate is small is formed on the surface perpendicular to the longitudinal direction of the positive electrode plate or the negative electrode plate, When the electrode group is configured, voids are formed in the longitudinal direction of the electrode group, and therefore it is possible to obtain an electrode plate that further enhances the liquid absorption of the nonaqueous electrolyte.

本発明の第5の発明においては、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散した正極の合剤塗料を正極の集電体上に塗布してなる正極板、または少なくともリチウムを保持しうる材料よりなる活
物質および非水溶性高分子の結着材を分散媒にて混練分散した負極の合剤塗料を負極の集電体上に塗布してなる負極板の製造方法であって、集電体の少なくとも一箇所以上に正極の合剤塗料または負極の合剤塗料の厚みが薄くなる箇所を塗布形成する第一の工程、および正極の合剤塗料または負極の合剤塗料が乾燥されたのち、所定厚みにプレスされる第二の工程を経て正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を形成することにより、電極活物質を減量することなく、この箇所で非水電解液の吸液性を高めることができる非水系二次電池を得るための製造方法を提供することが可能である。
In the fifth aspect of the present invention, a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium is used. A positive electrode plate coated on an electric conductor, or a negative electrode mixture paint prepared by kneading and dispersing an active material made of a material capable of holding at least lithium and a water-insoluble polymer binder in a dispersion medium. A method for producing a negative electrode plate that is applied on an electric current body, wherein a first electrode coating material or a negative electrode material mixture coating material is formed at least in one or more locations on a current collector. Step, and after the positive electrode mixture paint or negative electrode mixture paint is dried, it is subjected to a second step in which the positive electrode plate or negative electrode plate is pressed to a predetermined thickness. Where the active material density is different By forming, without loss of electrode active material, it is possible to provide a manufacturing method for obtaining a non-aqueous secondary battery which can increase the liquid absorption of the nonaqueous electrolytic solution at this point.

本発明の第6の発明においては、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散させた正極合剤塗料を正極の集電体上に塗布してなる正極板と、少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散させた負極の合剤塗料を負極の集電体上に塗布してなる負極板と、セパレータを渦巻状に巻回した電極郡、および非水溶媒からなる電解液により構成される二次電池であって、正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を設けたことにより、電極群の非水電解液の含浸性を向上させ、電池容量バラツキが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することが可能である。   In a sixth aspect of the present invention, a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium is used. A negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding lithium and a water-insoluble polymer binder in a dispersion medium, and a positive electrode plate coated on an electric body. A secondary battery composed of a negative electrode plate coated on a current collector, an electrode group in which a separator is wound in a spiral shape, and an electrolyte solution comprising a non-aqueous solvent, at least of the positive electrode plate or the negative electrode plate Improve the non-aqueous electrolyte impregnation performance of the electrode group by providing a location where the density of the active material that improves the impregnation performance of the non-aqueous electrolyte solution is improved at one or more locations. Providing non-aqueous secondary batteries that exhibit life characteristics Rukoto is possible.

以下、本発明の一実施形態について図面を参照しながら説明する。角形のリチウムイオン二次電池は、図3に示すように複合リチウム酸化物を活物質とする正極板11と、リチウムを保持しうる材料を活物質とする負極板12とをセパレータ13を介して渦巻状に巻回した後、この渦巻状の電極群14を有底角形の電池ケース15の内部に収容し、次いでこの電池ケースに所定量の非水溶媒からなる非水電解液(図示せず)を注液した後、電池ケース15の開口部にガスケット(図示せず)を周縁に取り付けた封口板17を挿入し、電池ケース15の開口部を封口している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 3, the prismatic lithium ion secondary battery includes a positive electrode plate 11 using a composite lithium oxide as an active material and a negative electrode plate 12 using a material capable of holding lithium as an active material through a separator 13. After being wound in a spiral shape, the spiral electrode group 14 is housed in a bottomed rectangular battery case 15, and then a nonaqueous electrolyte solution (not shown) made of a predetermined amount of a nonaqueous solvent is placed in the battery case. ) Is injected, a sealing plate 17 having a gasket (not shown) attached to the periphery thereof is inserted into the opening of the battery case 15 to seal the opening of the battery case 15.

本発明ではこの電池の形態において、正極板11または負極板12は、図1(a)に示すように集電体1の少なくとも一箇所以上に、後述するような合剤塗料2の厚みが薄くなる箇所3を塗布形成する第一の工程、およびこの合剤塗料2が乾燥されたのち所定厚みにプレスされる第二の工程を経て、正極板11または負極板12の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を合剤塗料2に形成している。   According to the present invention, in the form of this battery, the positive electrode plate 11 or the negative electrode plate 12 has a thin mixture paint 2 as described later in at least one place of the current collector 1 as shown in FIG. After the first step of coating and forming the portion 3 and the second step of pressing the mixture paint 2 to a predetermined thickness after drying, it is not applied to at least one portion of the positive electrode plate 11 or the negative electrode plate 12. A portion where the density of the active material that improves the impregnation property of the water electrolyte is different is formed in the mixture paint 2.

まず第一の工程において、合剤塗料2の厚みが薄くなる箇所3を塗布形成する方法としては、ダイコーター等を用い電極板11、12の長手方向に集電体露出部を間欠状に形成するための間欠塗布システムを用いることができる。この間欠システムにおいては、ダイのマニホールド内部の圧力を負圧に調整することで、ダイ先端部から吐出する合剤塗料2を止めるわけであるが、図1(a)に示したような合剤塗料2の厚みが薄くなる箇所3を塗布形成するためには、ダイのマニホールド内部を負圧にした後に圧力を開放し合剤塗料2を再吐出際のタイミングが重要であり、精度よくタイミング調整することにより、合剤塗料2の厚みが薄くなる箇所3を形成することが可能である。   First, in the first step, as a method of coating and forming the portion 3 where the thickness of the mixture paint 2 is reduced, a current collector exposed portion is formed intermittently in the longitudinal direction of the electrode plates 11 and 12 using a die coater or the like. An intermittent coating system can be used. In this intermittent system, the mixture paint 2 discharged from the tip of the die is stopped by adjusting the pressure inside the die manifold to a negative pressure, but the mixture as shown in FIG. In order to apply and form the portion 3 where the thickness of the paint 2 is reduced, the timing when releasing the pressure after releasing the pressure inside the manifold of the die and re-dispensing the mixture paint 2 is important. By doing so, it is possible to form the location 3 where the thickness of the mixture paint 2 is reduced.

また、前記活物質の密度が異なる箇所を形成する手段としては、図1(a)に示すように、合剤塗料2の厚みが薄くなるTの厚みの箇所3を設け、続いて図1(b)に示すように、前記厚みT以下の厚みにプレスすることで、活物質層の活物質密度が低くなる箇所5を形成する方法、および図1(c)に示すように、前記厚みT以上の厚みにプレスすることで、活物質密度は塗布乾燥後のままで電極板11、12上に凹部6を形成する方法があるが、これらに何ら限定されるものではない。   Further, as a means for forming a portion where the density of the active material is different, as shown in FIG. 1A, a portion 3 having a thickness T where the thickness of the mixture paint 2 is reduced is provided, and then FIG. As shown in b), a method of forming the portion 5 where the active material density of the active material layer is reduced by pressing to a thickness equal to or less than the thickness T, and as shown in FIG. There is a method of forming the recess 6 on the electrode plates 11 and 12 with the active material density kept after coating and drying by pressing to the above thickness, but is not limited thereto.

ここで、電極板11、12の表面に上記のように、活物質の密度が異なる箇所を形成す
ることで、電極群を構成した際に非水電解液がこの箇所を伝わり、また電極板の合剤層の表面より密度が小さいため電極板の表面全体に行渡り易くなり非水電解液の吸液性を高めることが可能で、従来の電極板より非水電解液の含浸性を向上させるとともに、電池容量の低下等の不具合を抑止している。
Here, as described above, a portion having a different density of the active material is formed on the surfaces of the electrode plates 11 and 12, so that when the electrode group is formed, the non-aqueous electrolyte is transmitted through this portion. Since the density is smaller than the surface of the mixture layer, it is easy to spread over the entire surface of the electrode plate, and it is possible to increase the liquid-absorbing property of the non-aqueous electrolyte, and to improve the impregnation property of the non-aqueous electrolyte than the conventional electrode plate At the same time, problems such as a decrease in battery capacity are suppressed.

以下、本発明における電極板の製造方法の一例を示す。本発明に適用される電極板は巻回して電極群を構成する際に、活物質層のワレや脱落が発生しない強靭性を備える必要が有る。前記強靱性を発揮することができれば電極板の処方は以下の方法に限られるものではない。   Hereinafter, an example of the manufacturing method of the electrode plate in this invention is shown. When the electrode plate applied to the present invention is wound to form an electrode group, it is necessary to have toughness that does not cause cracking or dropping of the active material layer. The prescription of the electrode plate is not limited to the following method as long as the toughness can be exhibited.

まず、正極活物質、導電材、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、集電体への塗布に最適な粘度に調整して混練を行い、正極合剤塗料を作製した。   First, the positive electrode active material, conductive material, and binder are placed in an appropriate dispersion medium, mixed and dispersed by a disperser such as a planetary mixer, and adjusted to an optimum viscosity for application to the current collector. The positive electrode mixture paint was prepared.

正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)・ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)・マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。このときの導電材種としては、例えばアセチレンブラック・ケッチェンブラック・チャンネルブラック・ファーネスブラック・ランプブラック・サーマルブラック等のカーボンブラック・各種グラファイトを単独、あるいは組み合わせて用いても良い。また、このときの正極用結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着剤中に混入させることも可能である。上記のように作製した正極合剤塗料を、ダイコーターを用い、前記ダイのマニホールド内部の圧力を負圧に調整することで、アルミ箔上に前記正極合剤塗料の厚みが薄くなる箇所を塗布形成、次いで乾燥後プレスにて所定厚みまで圧縮した。   Examples of positive electrode active materials include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (such as those in which nickel is partially substituted with cobalt). -Complex oxides, such as lithium manganate and its modified body, can be mentioned. As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites may be used alone or in combination. Further, as the positive electrode binder at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, or the like is used. In this case, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder. Applying the positive electrode mixture paint prepared as described above onto the aluminum foil by adjusting the pressure inside the die manifold to a negative pressure using a die coater. After forming and then drying, it was compressed to a predetermined thickness with a press.

次に、負極活物質、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、集電体への塗布に最適な粘度に調整して混練を行い、負極合剤塗料を作製した。負極用活物質としては、各種天然黒鉛および人造黒鉛・シリサイドなどのシリコン系複合材料および各種合金組成材料を用いることができる。   Next, the negative electrode active material and the binder are put in an appropriate dispersion medium, mixed and dispersed by a disperser such as a planetary mixer, and adjusted to an optimum viscosity for application to the current collector and kneaded. A negative electrode mixture paint was prepared. As the negative electrode active material, various natural graphites, silicon-based composite materials such as artificial graphite and silicide, and various alloy composition materials can be used.

このときの負極用結着材としてはPVDFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用したり少量添加するのがより好ましいといえる。   Various binders such as PVDF and modified products thereof can be used as the negative electrode binder at this time. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are used. In addition, it can be said that it is more preferable to use a cellulose resin such as carboxymethyl cellulose (CMC) in combination or to add a small amount.

非水電解液については、電解質塩としてLiPF6およびLIBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正負極上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。 For the non-aqueous electrolyte, various lithium compounds such as LiPF 6 and LIBF 4 can be used as the electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof in order to form a good film on the positive and negative electrodes and to ensure stability during overcharge.

セパレータについては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレン・ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。このセ
パレータの厚みは特に限定されないが、10〜25μmとすれば良い。
The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium ion secondary battery, but a microporous film of an olefin resin such as polyethylene / polypropylene is generally used singly or in combination. Also preferred as an embodiment. The thickness of the separator is not particularly limited, but may be 10 to 25 μm.

本発明の実施例1について図面および表を参照しながら説明する。まず、活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックを活物質100重量部に対して2重量部、結着剤としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極の合剤塗料2を作製した。   Embodiment 1 of the present invention will be described with reference to the drawings and tables. First, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive agent with respect to 100 parts by weight of the active material, and 2 parts by weight of polyvinylidene fluoride as a binder with respect to 100 parts by weight of the active material Was mixed with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader to prepare a positive electrode mixture paint 2.

次いで、図1(a)に示したように、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが100μmで、合剤の厚みが薄くなる箇所の厚みTが75μmとなる正極板11を作製した。さらに、図1(b)に示したように、この正極板11を総厚が165μmとなるようにプレスすることで、合剤の片面の厚みが75μmとなる正極の活物質層4の活物質密度が低くなる箇所5を形成した。その後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して正極板11を作製した。   Next, as shown in FIG. 1 (a), this positive electrode mixture paint 2 is applied to a 15 μm thick aluminum foil current collector 1 with a thinned portion 3 applied, and after drying, a single-sided mixture is applied. A positive electrode plate 11 having a thickness of 100 μm and a thickness T of 75 μm at a portion where the thickness of the mixture becomes thin was produced. Further, as shown in FIG. 1B, the active material of the active material layer 4 of the positive electrode in which the thickness of one side of the mixture becomes 75 μm by pressing the positive electrode plate 11 so that the total thickness becomes 165 μm. A portion 5 where the density was lowered was formed. Thereafter, the positive electrode plate 11 was manufactured by slitting to a prescribed width of a square lithium ion secondary battery.

一方、負極の活物質として人造黒鉛を100重量部、結着剤としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着剤の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。   On the other hand, 100 parts by weight of artificial graphite as the active material of the negative electrode, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder with respect to 100 parts by weight of the active material ( 1 part by weight in terms of the solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water are stirred in a double-arm kneader, An agent paint was prepared.

次いで、この負極の合剤塗料2を10μm厚の銅箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが110μmとなる負極板12を作製した。さらに、この負極板12を総厚が180μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して、負極板12を作製した。   Next, the negative electrode mixture paint 2 was applied to a current collector 1 made of 10 μm thick copper foil, and a negative electrode plate 12 having a thickness of 110 μm on one side after drying was prepared. Further, after this negative electrode plate 12 was pressed to a total thickness of 180 μm, it was slitted to a width defined by a square lithium ion secondary battery to produce a negative electrode plate 12.

これらの正極板11および負極板12を20μm厚のポリエチレン微多孔フィルムをセパレータとして巻回構成し、所定の長さで切断して電池ケース内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた非水電解液を添加して封口し、角形のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、正極板11だけに活物質層4の活物質密度が低くなる箇所5を図2に示す11Aに設けたリチウムイオン二次電池を実施例1とした。 These positive electrode plate 11 and negative electrode plate 12 are formed by winding a polyethylene microporous film having a thickness of 20 μm as a separator, cut to a predetermined length, inserted into a battery case, and LiPF 6 in an EC / DMC / MEC mixed solvent. A non-aqueous electrolyte in which 3 parts by weight of 1M and VC were dissolved was added and sealed to prepare a rectangular lithium ion secondary battery. Example 1 is a lithium ion secondary battery in which the portion 5 where the active material density of the active material layer 4 is reduced only in the positive electrode plate 11 is provided in 11A shown in FIG.

まず、実施例1と同様の正極の合剤塗料2を用いて、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に塗布し、乾燥後に片面合剤厚みが100μmとなる正極板11を作製した。次に、この正極板11を総厚が165μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して、正極板11を作製した。   First, using the same positive electrode mixture paint 2 as in Example 1, this positive electrode mixture paint 2 was applied to an aluminum foil current collector 1 having a thickness of 15 μm, and after drying, the thickness of the single-sided mixture became 100 μm. A positive electrode plate 11 was produced. Next, this positive electrode plate 11 was pressed to a total thickness of 165 μm, and then slitted to the width defined for the rectangular lithium ion secondary battery, to produce the positive electrode plate 11.

一方、負極板12としては、実施例1と同様の負極の合剤塗料2を用いて、図1(a)に示したように、この負極の合剤塗料2を10μm厚の銅箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが110μmで、かつ合剤の厚みが薄くなる箇所3の厚みTが85μmとなる負極板12を作製した。さらに、図1(b)に示したように、この負極板12を総厚が180μmとなるようにプレスすることで、合剤の片面の厚みが85μmとなる負極の活物質層4の活物質密度が低くなる箇所5を形成した後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。   On the other hand, as the negative electrode plate 12, the negative electrode mixture paint 2 similar to that of Example 1 was used, and as shown in FIG. 1A, the negative electrode mixture paint 2 was collected from a 10 μm thick copper foil. The electric conductor 1 is provided with a portion 3 where the thickness is reduced and applied, and after drying, the thickness of the mixture on one side is 110 μm and the thickness T of the portion 3 where the thickness of the mixture is reduced is 85 μm. did. Further, as shown in FIG. 1 (b), the negative electrode plate 12 is pressed so that the total thickness becomes 180 μm, whereby the active material of the negative electrode active material layer 4 in which the thickness of one side of the mixture becomes 85 μm. After forming the portion 5 where the density was lowered, the negative electrode plate 12 was produced by slitting to a width defined by the rectangular lithium ion secondary battery.

これらの正極板11および負極板12を実施例1と同様にして角形のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、負極板12だけに活物質層4の活物質密度が低くなる箇所5を、図2に示す12Aに設けたリチウムイオン二次電池を実施例2とした。   A square lithium ion secondary battery was produced using the positive electrode plate 11 and the negative electrode plate 12 in the same manner as in Example 1. Example 2 is a lithium ion secondary battery in which the active material layer 4 has a location 5 where the active material density is reduced only in the negative electrode plate 12 in 12A shown in FIG.

まず、正極板11としては、実施例1と同様の正極の合剤塗料2を用いて、図1(a)に示したように、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが100μmで、かつ合剤厚みが薄くなる箇所3の厚みTが75μmとなる正極板11を作製し、さらに図1(b)に示したように、この正極板11を総厚が165μmとなるようにプレスすることで、合剤の片面の厚みが75μmとなる正極の活物質層4の活物質密度が低くなる箇所5を形成した後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工し正極板11を作製した。   First, as the positive electrode plate 11, the positive electrode mixture paint 2 similar to that of Example 1 was used, and as shown in FIG. 1 (a), the positive electrode mixture paint 2 was collected from a 15 μm thick aluminum foil. A portion 3 where the thickness is reduced is applied to the electric body 1 and applied, and after drying, a positive electrode plate 11 is manufactured in which the thickness of the mixture on one side is 100 μm and the thickness T of the portion 3 where the mixture thickness is reduced is 75 μm. Further, as shown in FIG. 1B, the active material of the active material layer 4 of the positive electrode in which the thickness of one side of the mixture becomes 75 μm by pressing the positive electrode plate 11 so that the total thickness becomes 165 μm. After forming the portion 5 where the density was lowered, the positive electrode plate 11 was manufactured by slitting to the width defined for the rectangular lithium ion secondary battery.

一方、負極板12としては、実施例1と同様の負極の合剤塗料2を用いて、図1(a)に示したように、この負極の合剤塗料2を10μm厚の銅箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが110μmで、かつ合剤の厚みが薄くなる箇所3の厚みTが85μmとなる負極板12を作製し、次いで図1(b)に示したように、この負極板12を総厚が180μmとなるようにプレスすることで、合剤の片面の厚みが85μmとなる負極の活物質層4の活物質密度が低くなる箇所5を形成した後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。   On the other hand, as the negative electrode plate 12, the negative electrode mixture paint 2 similar to that of Example 1 was used, and as shown in FIG. 1A, the negative electrode mixture paint 2 was collected from a 10 μm thick copper foil. The electric conductor 1 is provided with a portion 3 where the thickness is reduced and applied, and after drying, the thickness of the mixture on one side is 110 μm and the thickness T of the portion 3 where the thickness of the mixture is reduced is 85 μm. Then, as shown in FIG. 1B, the negative electrode plate 12 is pressed so that the total thickness becomes 180 μm, whereby the active material layer 4 of the negative electrode whose thickness on one side of the mixture becomes 85 μm is obtained. After forming the portion 5 where the material density is low, the negative electrode plate 12 was manufactured by slitting to a width defined in the rectangular lithium ion secondary battery.

これらの正極板11および負極板12を実施例1と同様にして角型のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、正極板11と負極板12の両方に活物質密度が低くなる箇所5を、図2に示す11Aおよび12Aに設けた角形のリチウムイオン二次電池を実施例3とした。   A square lithium ion secondary battery was fabricated using the positive electrode plate 11 and the negative electrode plate 12 in the same manner as in Example 1. In the prismatic lithium ion secondary battery described above, the prismatic lithium ion secondary battery in which the active material density is lowered on both the positive electrode plate 11 and the negative electrode plate 12 at 11A and 12A shown in FIG. It was set to 3.

(比較例1)
まず、正極板11としては、実施例1と同様の正極の合剤塗料2を用い、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが100μmとなる正極板11を作製し、この正極板11を総厚が165μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して正極板11を作製した。
(Comparative Example 1)
First, as the positive electrode plate 11, the positive electrode mixture paint 2 similar to that of Example 1 was used, and this positive electrode mixture paint 2 was applied to a current collector 1 made of 15 μm thick aluminum foil. A positive electrode plate 11 having a thickness of 100 μm was prepared, the positive electrode plate 11 was pressed to a total thickness of 165 μm, and then slitted to a specified width of a square lithium ion secondary battery. A plate 11 was produced.

一方、負極板12としては、実施例1と同様の負極の合剤塗料2を用い、この負極の合剤塗料2を10μm厚の銅箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが110μmとなる負極板12を作製し、この負極板12を総厚が180μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。   On the other hand, as the negative electrode plate 12, the negative electrode mixture paint 2 similar to that of Example 1 was used, and this negative electrode mixture paint 2 was applied to the 10 μm thick copper foil current collector 1, and after drying, the single-sided mixture paint 2 was applied. A negative electrode plate 12 having a thickness of 110 μm was prepared, the negative electrode plate 12 was pressed to a total thickness of 180 μm, and then slitted to a specified width of a square lithium ion secondary battery. A plate 12 was produced.

これらの正極板11および負極板12を実施例1と同様にして角形のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、正極板11、負極板12共に活物質密度が低くなる箇所5が形成されていない角形のリチウムイオン二次電池を比較例1とした。   A square lithium ion secondary battery was produced using the positive electrode plate 11 and the negative electrode plate 12 in the same manner as in Example 1. In the prismatic lithium ion secondary battery, a rectangular lithium ion secondary battery in which the portion 5 where the active material density is low in both the positive electrode plate 11 and the negative electrode plate 12 is not formed is used as Comparative Example 1.

上記の条件で作製された角形のリチウムイオン二次電池について、以下の内容で評価を行なった。まず、非水電解液の含浸速度については、正極板11および負極板12を、ポ
リエチレン微多孔フィルムをセパレータとして巻回構成し、電池ケース内に挿入し、規定量の非水電解液を数回に分けて注液したのち、電池20個の非水電解液の含浸時間を測定し、20個の平均含浸時間を非水電解液含浸速度として算出を行なった。
The prismatic lithium ion secondary battery manufactured under the above conditions was evaluated as follows. First, regarding the impregnation rate of the non-aqueous electrolyte, the positive electrode plate 11 and the negative electrode plate 12 are wound using a polyethylene microporous film as a separator, inserted into the battery case, and a prescribed amount of the non-aqueous electrolyte is applied several times. After injecting the solution separately, the impregnation time of the 20 nonaqueous electrolytes of the batteries was measured, and the 20 average impregnation time was calculated as the nonaqueous electrolyte impregnation rate.

また、電池容量バラツキとしては、封口後の完成電池(巻回による電極板の破断、活物質の脱落のない良品)について慣らし充放電を2回行い、45℃環境で7日間保存した後の電池20個の電池容量を測定して20個中の容量バラツキの測定を行なった。   In addition, the battery capacity variation was such that the battery after being sealed was subjected to charge / discharge twice for a completed battery (a non-defective product without breakage of the electrode plate due to winding and removal of the active material) and stored in a 45 ° C. environment for 7 days. Twenty battery capacities were measured, and the capacity variation among the twenty was measured.

さらに、300サイクル容量維持率としては、封口後の完成電池について慣らし充放電を2回行い、45℃環境で7日間保存した後、以下の充放電サイクルを300回繰り返した。充電については、定電圧4.2V、1400mAで充電を行い、充電電流が100mAまで低下したとき充電を終了し、放電は2000mAの定電流で終止電圧3Vまで放電することを1サイクルとして、1サイクル目に対する300サイクル目の放電容量比を300サイクル容量維持率として測定を行なった。以上の項目について評価した内容を(表1)に示す。   Furthermore, as a capacity maintenance rate of 300 cycles, after charge and discharge was performed twice for the completed battery after sealing and the battery was stored in a 45 ° C. environment for 7 days, the following charge / discharge cycle was repeated 300 times. For charging, charging is performed at a constant voltage of 4.2 V and 1400 mA. When charging current is reduced to 100 mA, charging is terminated, and discharging is performed at a constant current of 2000 mA and discharging to a final voltage of 3 V as one cycle. The discharge capacity ratio at the 300th cycle relative to the eye was measured as a 300 cycle capacity retention rate. The contents evaluated for the above items are shown in (Table 1).

Figure 2007328977
Figure 2007328977

(表1)に示されるように電極板に活物質密度が低くなる箇所が形成されていない比較例1の角形のリチウムイオン二次電池に比べ、活物質密度が低くなる箇所が形成された実施例1〜3の電池は非水電解液の含浸速度が速くなり、電池容量バラツキも少なく、しかも充放電300サイクル後の容量維持率も向上することが判る。   As shown in (Table 1), compared with the prismatic lithium ion secondary battery of Comparative Example 1 in which the part where the active material density is low is not formed on the electrode plate, the part where the active material density is low is formed. It can be seen that the batteries of Examples 1 to 3 have a faster impregnation rate with the non-aqueous electrolyte, less battery capacity variation, and improved capacity retention after 300 cycles of charge and discharge.

少なくとも一方の電極板に活物質密度が低くなる箇所を形成する場合、プレスでの圧縮度合を同一条件とした際には、電極群を構成する際に正極板に活物質密度が低くなる箇所を形成した実施例1の方が、負極板に活物質密度が低くなる箇所を形成した実施例2より、非水電解液の含浸速度が速くなり、電池容量バラツキも少なく、しかも300サイクル後の容量維持率も向上する。   When forming a portion where the active material density is low on at least one of the electrode plates, when the compression degree in the press is set to the same condition, a portion where the active material density is low is formed on the positive electrode plate when forming the electrode group. The formed Example 1 is faster in impregnation with the non-aqueous electrolyte, has less battery capacity variation, and has a capacity after 300 cycles than the Example 2 in which the active material density is reduced in the negative electrode plate. The maintenance rate is also improved.

この理由は定かではないが、非水電解液の含浸速度は、正極板および負極板の材料組成にも依存するが、本実施例の場合においては、負極板よりも正極板の方が律速となり非水電解液の含浸速度を支配しているもと考えられる。よって、活物質密度が低くなる箇所を形成するための製造条件に電池特性を加味すると、正極板の表面に活物質密度が低くなる箇所を形成することが好ましく、さらに、正極板および負極板の両方に活物質密度が低くなる箇所を形成することがより好ましい。   The reason for this is not clear, but the impregnation rate of the non-aqueous electrolyte depends on the material composition of the positive electrode plate and the negative electrode plate, but in this example, the positive electrode plate is rate-limiting than the negative electrode plate. This is considered to dominate the impregnation rate of the non-aqueous electrolyte. Therefore, in consideration of battery characteristics in the manufacturing conditions for forming the portion where the active material density is lowered, it is preferable to form the portion where the active material density is lowered on the surface of the positive electrode plate. It is more preferable to form portions where the active material density is low in both.

本発明における別の一実施例について図面および表を参照しながら説明する。   Another embodiment of the present invention will be described with reference to the drawings and tables.

まず、実施例1と同様にして正極の合剤塗料2を作製した。次いで、図1(a)に示したように、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが100μmで、かつ合剤の厚み
が薄くなる箇所3の厚みTが75μmとなる正極板11を作製した。
First, a positive electrode mixture paint 2 was prepared in the same manner as in Example 1. Next, as shown in FIG. 1 (a), this positive electrode mixture paint 2 is applied to a 15 μm thick aluminum foil current collector 1 with a thinned portion 3 applied, and after drying, a single-sided mixture is applied. A positive electrode plate 11 having a thickness of 100 μm and a thickness T of the portion 3 where the thickness of the mixture is reduced to 75 μm was produced.

さらに、図1(c)に示したように、この正極板11を総厚が175μmとなるようにプレスすることで、深さ5μmの凹部6を両面に形成した。その後、角型電池の規定されている幅にスリッタ加工して正極板11を作製した。   Further, as shown in FIG. 1 (c), the positive electrode plate 11 was pressed to a total thickness of 175 μm, thereby forming recesses 6 having a depth of 5 μm on both sides. Then, the positive electrode plate 11 was produced by slitting to a specified width of the square battery.

一方、実施例1と同様にして負極の合剤塗料12を作製した。次いで、この負極の合剤塗料2を10μm厚の銅箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが110μmとなる負極板12を作製した。さらに、この負極板12を総厚が190μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。   On the other hand, a negative electrode mixture paint 12 was prepared in the same manner as in Example 1. Next, the negative electrode mixture paint 2 was applied to a current collector 1 made of 10 μm thick copper foil, and a negative electrode plate 12 having a thickness of 110 μm on one side after drying was prepared. Further, this negative electrode plate 12 was pressed to a total thickness of 190 μm, and then slitted to the width defined by the rectangular lithium ion secondary battery, to produce the negative electrode plate 12.

これらの正極板11および負極板12を20μm厚のポリエチレン微多孔フィルムをセパレータとして巻回構成し、所定の長さで切断して電池ケース内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた非水電解液を、添加して封口し、角形のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、正極板11だけに凹部6を図2に示す11Aに設けた角形のリチウムイオン二次電池を実施例4とした。 These positive electrode plate 11 and negative electrode plate 12 are formed by winding a polyethylene microporous film having a thickness of 20 μm as a separator, cut to a predetermined length, inserted into a battery case, and LiPF 6 in an EC / DMC / MEC mixed solvent. A non-aqueous electrolyte in which 3 parts by weight of 1M and VC were dissolved was added and sealed to prepare a square lithium ion secondary battery. In the above prismatic lithium ion secondary battery, a prismatic lithium ion secondary battery in which the concave portion 6 is provided only on the positive electrode plate 11 in 11A shown in FIG.

まず、実施例1と同様の正極の合剤塗料2を用いて、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが100μmとなる正極板11を作製した。次いで、この正極板11を総厚が175μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して正極板11を作製した。   First, using the same positive electrode mixture paint 2 as in Example 1, this positive electrode mixture paint 2 was applied to an aluminum foil current collector 1 having a thickness of 15 μm, and after drying, the thickness of the mixture on one side was 100 μm. A positive electrode plate 11 was produced. Next, the positive electrode plate 11 was pressed to a total thickness of 175 μm, and then slitted to the width defined by the rectangular lithium ion secondary battery, to produce the positive electrode plate 11.

一方、実施例1と同様の負極の合剤塗料2を用いて、図1(a)に示したように、この負極の合剤塗料2を10μm厚の銅箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが110μmで、かつ合剤の厚みが薄くなる箇所3の厚みTが85μmとなる負極板12を作製した。次いで、図1(c)に示したように、この負極板12を総厚が195μmとなるようにプレスすることで、深さ5μmの凹部6を両面に形成した。その後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。これらの正極板11および負極板12を実施例4と同様にして角形のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、負極板12だけに凹部6を図2に示す12Aに設けたリチウムイオン二次電池を実施例5とした。   On the other hand, using the negative electrode mixture paint 2 similar to that of Example 1, as shown in FIG. 1 (a), the negative electrode mixture paint 2 was formed into a 10 μm thick copper foil current collector 1. A thinned portion 3 was provided and applied, and a negative electrode plate 12 having a thickness of 110 μm on one side after drying and a thickness T of 85 μm in a portion 3 where the thickness of the mixed material was reduced was prepared. Next, as shown in FIG. 1C, the negative electrode plate 12 was pressed to a total thickness of 195 μm, thereby forming recesses 6 having a depth of 5 μm on both sides. Thereafter, the negative electrode plate 12 was manufactured by slitting to a prescribed width of the rectangular lithium ion secondary battery. These positive electrode plate 11 and negative electrode plate 12 were formed in the same manner as in Example 4 to produce a square lithium ion secondary battery. Example 5 is a lithium ion secondary battery in which the concave portion 6 is provided only on the negative electrode plate 12 in 12A shown in FIG.

まず、正極板11としては、実施例1と同様の正極の合剤塗料2を用いて、図1(a)に示したように、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが100μmで、かつ合剤の厚みが薄くなる箇所3の厚みTが75μmとなる正極板11を作製し、次いで図1(c)に示したように、この正極板11を総厚が175μmとなるようにプレスすることで、深さ5μmの凹部6を両面に形成した後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して正極板11を作製した。   First, as the positive electrode plate 11, the positive electrode mixture paint 2 similar to that of Example 1 was used, and as shown in FIG. 1 (a), the positive electrode mixture paint 2 was collected from a 15 μm thick aluminum foil. A portion 3 where the thickness is reduced is provided on the electric body 1 and applied, and after drying, the thickness of the mixture on one side is 100 μm, and the positive electrode plate 11 where the thickness T of the portion 3 where the thickness of the mixture is reduced is 75 μm is manufactured. Then, as shown in FIG. 1 (c), the positive electrode plate 11 is pressed to a total thickness of 175 μm to form the recesses 6 having a depth of 5 μm on both sides, and then the rectangular lithium ion two The positive electrode plate 11 was manufactured by slitting to the width specified for the next battery.

一方、負極板12としては、実施例1と同様の負極の合剤塗料2を用いて、図1(a)に示したように、この負極の合剤塗料2を10μm厚の銅箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の合剤の厚みが110μmで、かつ合剤の厚みが薄くなる箇所3の厚みTが85μmとなる負極板12を作製し、次いで図1(c)に示した
ように、この負極板12を総厚が195μmとなるようにプレスすることで、深さ5μmの凹部6を両面に形成した後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。
On the other hand, as the negative electrode plate 12, the negative electrode mixture paint 2 similar to that of Example 1 was used, and as shown in FIG. 1A, the negative electrode mixture paint 2 was collected from a 10 μm thick copper foil. The electric conductor 1 is provided with a portion 3 where the thickness is reduced and applied, and after drying, the thickness of the mixture on one side is 110 μm and the thickness T of the portion 3 where the thickness of the mixture is reduced is 85 μm. Then, as shown in FIG. 1 (c), the negative electrode plate 12 was pressed to a total thickness of 195 μm to form recesses 6 with a depth of 5 μm on both sides, The negative electrode plate 12 was manufactured by slitting to the width specified for the next battery.

これらの正極板11および負極板12を実施例4と同様にして角形のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、正極板11と負極板12の両方に凹部6を、図2に示す11Aおよび12Aに設けた角形のリチウムイオン二次電池を実施例6とした。   These positive electrode plate 11 and negative electrode plate 12 were formed in the same manner as in Example 4 to produce a square lithium ion secondary battery. In the above prismatic lithium ion secondary battery, the prismatic lithium ion secondary battery in which the concave portions 6 are provided in both the positive electrode plate 11 and the negative electrode plate 12 and 11A and 12A shown in FIG.

(比較例2)
まず、正極板11としては、実施例1と同様の正極の合剤塗料2を用い、この正極の合剤塗料2を15μm厚のアルミニウム箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが100μmとなる正極板11を作製し、この正極板11を総厚が175μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して正極板11を作製した。
(Comparative Example 2)
First, as the positive electrode plate 11, the positive electrode mixture paint 2 similar to that of Example 1 was used, and this positive electrode mixture paint 2 was applied to a current collector 1 made of 15 μm thick aluminum foil. A positive electrode plate 11 having a thickness of 100 μm was prepared, the positive electrode plate 11 was pressed to a total thickness of 175 μm, and slitted to a specified width of a square lithium ion secondary battery. A plate 11 was produced.

一方、負極板12としては、実施例1と同様の負極の合剤塗料2を用い、この負極の合剤塗料2を10μm厚の銅箔の集電体1に塗布し、乾燥後に片面の合剤の厚みが110μmとなる負極板12を作製し、この負極板12を総厚が190μmとなるようにプレスした後、角形のリチウムイオン二次電池の規定されている幅にスリッタ加工して負極板12を作製した。   On the other hand, as the negative electrode plate 12, the negative electrode mixture paint 2 similar to that of Example 1 was used, and this negative electrode mixture paint 2 was applied to the 10 μm thick copper foil current collector 1, and after drying, the single-sided mixture paint 2 was applied. A negative electrode plate 12 having a thickness of 110 μm was prepared, and the negative electrode plate 12 was pressed to a total thickness of 190 μm, and then slitted to a prescribed width of a square lithium ion secondary battery. A plate 12 was produced.

これらの正極板11および負極板12を実施例4と同様にして角型のリチウムイオン二次電池を作製した。上記角形のリチウムイオン二次電池において、正極板11、負極板12共に凹部6が形成されていない角形のリチウムイオン二次電池を比較例2とした。   A square lithium ion secondary battery was fabricated using the positive electrode plate 11 and the negative electrode plate 12 in the same manner as in Example 4. In the prismatic lithium ion secondary battery, a prismatic lithium ion secondary battery in which the positive electrode plate 11 and the negative electrode plate 12 are not formed with the recesses 6 is referred to as Comparative Example 2.

次いで、上記の条件で作製された角形のリチウムイオン二次電池について、実施例1〜3と同様の評価を行った結果を(表2)に示す。   Next, the results of evaluation similar to those of Examples 1 to 3 are shown in Table 2 for the prismatic lithium ion secondary battery manufactured under the above conditions.

Figure 2007328977
Figure 2007328977

(表2)に示されるように電極板に凹部が形成されていない比較例2の角形のリチウムイオン二次電池に比べ、凹部形成された実施例4〜6の電池は非水電解液の含浸速度が速くなり、電池容量バラツキも少なく、しかも充放電300サイクル後の容量維持率も向上することが判る。   As shown in Table 2, in comparison with the prismatic lithium ion secondary battery of Comparative Example 2 in which no concave portion was formed on the electrode plate, the batteries of Examples 4 to 6 in which the concave portions were formed were impregnated with the non-aqueous electrolyte. It can be seen that the speed is increased, the battery capacity variation is small, and the capacity retention rate after 300 cycles of charge / discharge is improved.

少なくとも一方の電極板に凹部を形成する場合、凹部深さを同一条件とした際には、電極群を構成する際に正極板に凹部を形成した実施例4の方が、負極板に凹部を形成した実施例5より、非水電解液の含浸速度が速くなり、電池容量バラツキも少なく、しかも300サイクル後の容量維持率も向上する。   In the case where the recesses are formed on at least one of the electrode plates, when the recess depth is set to the same condition, Example 4 in which the recesses are formed on the positive electrode plate when the electrode group is formed is less in the negative electrode plate. From the formed Example 5, the impregnation rate of the non-aqueous electrolyte is increased, the battery capacity variation is small, and the capacity retention rate after 300 cycles is improved.

この理由は定かではないが、非水電解液の含浸速度は、正極板および負極板の材料組成
にも依存するが、本実施例の場合においては、負極板よりも正極板の方が律速となり非水電解液の含浸速度を支配しているもと考えられる。よって、凹部形成の製造条件に電池特性を加味すると、正極板に凹部を形成することが好ましく、さらに、正極板および負極板の両方に凹部を形成することがより好ましい。以上の結果から、本発明を用いることにより、非水電解液の含浸性が良好で、容量バラツキが少なく、しかもサイクル特性に優れた非水系二次電池が実現可能である。
The reason for this is not clear, but the impregnation rate of the non-aqueous electrolyte depends on the material composition of the positive electrode plate and the negative electrode plate, but in this example, the positive electrode plate is rate-limiting than the negative electrode plate. This is considered to dominate the impregnation rate of the non-aqueous electrolyte. Therefore, when the battery characteristics are taken into consideration in the manufacturing conditions for forming the recesses, it is preferable to form the recesses in the positive electrode plate, and it is more preferable to form the recesses in both the positive electrode plate and the negative electrode plate. From the above results, by using the present invention, it is possible to realize a non-aqueous secondary battery having good non-aqueous electrolyte impregnation property, small capacity variation, and excellent cycle characteristics.

本発明に係る非水系二次電池は、規定厚みに圧縮された正極板および負極板の少なくとも一方の電極板に活物質密度が異なる箇所を形成した電極板を使用することで、従来の非水系二次電池より非水電解液含浸速度が速くなり生産性に優れ、容量バラツキが少なく、充放電サイクル特性に優れているので、電子機器および通信機器の多機能化に伴って高容量化が望まれているポータブル用電源等として有用である。   The non-aqueous secondary battery according to the present invention uses a conventional non-aqueous battery by using an electrode plate in which portions having different active material densities are formed on at least one of the positive electrode plate and the negative electrode plate compressed to a specified thickness. Non-aqueous electrolyte impregnation rate is faster than secondary batteries, resulting in excellent productivity, small capacity variation, and excellent charge / discharge cycle characteristics. Higher capacity is expected as electronic and communication devices become more multifunctional. It is useful as a portable power source.

(a)本発明の一実施形態に係る電極板における合剤塗料を塗布乾燥させた後の状態を示す断面模式図、(b)同実施形態に係る電極板をプレス加工した後の状態を示す断面模式図、(c)本発明の別の実施形態に係る電極板をプレス加工した後の状態を示す断面模式図(A) The cross-sectional schematic diagram which shows the state after apply | coating and drying the mixture paint in the electrode plate which concerns on one Embodiment of this invention, (b) The state after pressing the electrode plate which concerns on the same embodiment is shown. Cross-sectional schematic diagram, (c) Schematic cross-sectional diagram showing the state after pressing an electrode plate according to another embodiment of the present invention 本発明の一実施の形態に係る電極群の横断面模式図Schematic cross-sectional view of an electrode group according to an embodiment of the present invention 本発明の角形のリチウムイオン二次電池における電極板を示す分解断面図Exploded sectional view showing an electrode plate in a rectangular lithium ion secondary battery of the present invention 従来例の円筒形電池における電極板を示す断面模式図Cross-sectional schematic diagram showing an electrode plate in a conventional cylindrical battery 従来例における電極板の部分断面図Partial sectional view of the electrode plate in the conventional example

符号の説明Explanation of symbols

1 集電体
2 合剤塗料
3 合剤塗料の厚みが薄くなる箇所
4 活物質層
5 活物質層の活物質密度が低くなる箇所
6 凹部
11 正極板
11A 正極板の曲率が最も小さくなる箇所
12 負極板
12A 負極板の曲率が最も小さくなる箇所
13 セパレータ
14 電極群
15 電池ケース
16 正極リード
17 封口板

DESCRIPTION OF SYMBOLS 1 Current collector 2 Mixture paint 3 Place where thickness of mixture paint becomes thin 4 Active material layer 5 Place where active material density of active material layer becomes low 6 Recess 11 Positive electrode plate 11A Place where curvature of positive electrode plate is smallest 12 Negative electrode plate 12A Where the negative electrode plate has the smallest curvature 13 Separator 14 Electrode group 15 Battery case 16 Positive electrode lead 17 Sealing plate

Claims (6)

少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散させた正極合剤塗料を正極の集電体上に塗布してなる正極板、あるいは少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散させた負極の合剤塗料を負極の集電体上に塗布してなる負極板であって、前記正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を設けたことを特徴とする非水系二次電池用電極板。   A positive electrode plate obtained by applying a positive electrode mixture coating material obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium onto a positive electrode current collector Or a negative electrode formed by applying a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding lithium and a water-insoluble polymer binder in a dispersion medium onto a negative electrode current collector An electrode plate for a non-aqueous secondary battery, wherein at least one portion of the positive electrode plate or the negative electrode plate is provided with a portion having a different density of the active material that improves the impregnation property of the non-aqueous electrolyte. . 正極板または負極板における活物質の密度の異なる箇所が、前記正極板または負極板の他の活物質密度に比べて活物質の密度が小さくなるように形成された箇所であることを特徴とする請求項1に記載の非水系二次電池用電極板。   The location where the density of the active material in the positive electrode plate or the negative electrode plate is different from the other active material density of the positive electrode plate or the negative electrode plate is a location where the density of the active material is reduced. The electrode plate for non-aqueous secondary batteries according to claim 1. 正極板または負極板の活物質の密度が異なる箇所が、前記正極板または負極板の表面に形成された凹部であることを特徴とする請求項1に記載の非水系二次電池用電極板。   2. The electrode plate for a non-aqueous secondary battery according to claim 1, wherein the portion where the density of the active material of the positive electrode plate or the negative electrode plate is different is a recess formed on the surface of the positive electrode plate or the negative electrode plate. 正極板または負極板の活物質の密度が小さい箇所または凹部が、前記正極板または負極板の長手方向に対して、直角方向の表面に形成することを特徴とする請求項2または請求項3に記載の非水系二次電池用電極板。   4. The method according to claim 2, wherein a portion or a recess having a low density of the active material of the positive electrode plate or the negative electrode plate is formed on a surface perpendicular to the longitudinal direction of the positive electrode plate or the negative electrode plate. The electrode plate for non-aqueous secondary batteries as described. 少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散した正極の合剤塗料を正極の集電体上に塗布してなる正極板、または少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散した負極の合剤塗料を負極の集電体上に塗布してなる負極板の製造方法であって、前記集電体の少なくとも一箇所以上に前記正極の合剤塗料または負極の合剤塗料の厚みが薄くなる箇所を塗布形成する第一の工程、および前記正極の合剤塗料または負極の合剤塗料が乾燥されたのち、所定厚みにプレスされる第二の工程を経て前記正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を形成することを特徴とする非水系二次電池用電極板の製造方法。   A positive electrode plate obtained by applying a positive electrode mixture coating material, in which an active material comprising at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder are kneaded and dispersed in a dispersion medium on a positive electrode current collector Or a negative electrode plate obtained by applying a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding lithium and a water-insoluble polymer in a dispersion medium onto a negative electrode current collector A first step of applying and forming a portion where the thickness of the positive electrode mixture paint or the negative electrode mixture paint is reduced at least at one place of the current collector, and the positive electrode mixture After the coating material or the negative electrode mixture coating material is dried, an active material that improves the impregnation property of the non-aqueous electrolyte in at least one place of the positive electrode plate or the negative electrode plate through a second step of pressing to a predetermined thickness. To form places with different densities. Method for producing a nonaqueous secondary battery electrode plate according to symptoms. 少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散させた正極合剤塗料を正極の集電体上に塗布してなる正極板と、少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散させた負極の合剤塗料を負極の集電体上に塗布してなる負極板と、セパレータを渦巻状に巻回した電極郡、および非水電解液により構成される二次電池であって、前記正極板または負極板の少なくとも一箇所以上に非水電解液の含浸性をよくする活物質の密度が異なる箇所を設けたことを特徴とする非水系二次電池。

A positive electrode plate obtained by applying a positive electrode mixture coating material obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium onto a positive electrode current collector And a negative electrode mixture paint applied to a negative electrode current collector by kneading and dispersing an active material made of a material capable of holding lithium and a water-insoluble polymer binder in a dispersion medium. A secondary battery comprising a plate, an electrode group in which a separator is wound in a spiral shape, and a non-aqueous electrolyte solution, wherein at least one of the positive electrode plate or the negative electrode plate has a non-aqueous electrolyte impregnation property. A non-aqueous secondary battery characterized in that a portion having a different density of active material to be improved is provided.

JP2006158189A 2006-06-07 2006-06-07 Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery Pending JP2007328977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158189A JP2007328977A (en) 2006-06-07 2006-06-07 Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158189A JP2007328977A (en) 2006-06-07 2006-06-07 Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2007328977A true JP2007328977A (en) 2007-12-20

Family

ID=38929303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158189A Pending JP2007328977A (en) 2006-06-07 2006-06-07 Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2007328977A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008523A (en) * 2011-06-23 2013-01-10 Hitachi Vehicle Energy Ltd Electrode for battery and method for manufacturing the same
JP2013073763A (en) * 2011-09-27 2013-04-22 Mitsubishi Motors Corp Secondary battery
WO2014054617A1 (en) * 2012-10-05 2014-04-10 シャープ株式会社 Non-aqueous electrolyte secondary battery and method for producing same
US9905854B2 (en) 2013-09-03 2018-02-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN115000340A (en) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 Electrode for secondary battery and method for manufacturing the same
JP2022133085A (en) * 2021-03-01 2022-09-13 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY ELECTRODE AND METHOD FOR MANUFACTURING SAME ELECTRODE
CN116364847A (en) * 2023-05-30 2023-06-30 惠州亿纬动力电池有限公司 Manufacturing method of battery pole piece, battery pole piece and battery
WO2024041664A1 (en) * 2023-05-30 2024-02-29 惠州亿纬动力电池有限公司 Manufacturing method for battery electrode sheet, battery electrode sheet, and battery
WO2024108418A1 (en) * 2022-11-23 2024-05-30 宁德时代新能源科技股份有限公司 Electrode sheet, electrode assembly, battery, and electrical device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008523A (en) * 2011-06-23 2013-01-10 Hitachi Vehicle Energy Ltd Electrode for battery and method for manufacturing the same
JP2013073763A (en) * 2011-09-27 2013-04-22 Mitsubishi Motors Corp Secondary battery
WO2014054617A1 (en) * 2012-10-05 2014-04-10 シャープ株式会社 Non-aqueous electrolyte secondary battery and method for producing same
US9905854B2 (en) 2013-09-03 2018-02-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP7334200B2 (en) 2021-03-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY ELECTRODE AND METHOD FOR MANUFACTURING SAME ELECTRODE
JP2022133085A (en) * 2021-03-01 2022-09-13 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY ELECTRODE AND METHOD FOR MANUFACTURING SAME ELECTRODE
JP2022133084A (en) * 2021-03-01 2022-09-13 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY ELECTRODE AND METHOD FOR MANUFACTURING SAME ELECTRODE
CN115000340A (en) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 Electrode for secondary battery and method for manufacturing the same
JP7334201B2 (en) 2021-03-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY ELECTRODE AND METHOD FOR MANUFACTURING SAME ELECTRODE
CN115000340B (en) * 2021-03-01 2024-03-01 泰星能源解决方案有限公司 Electrode for secondary battery and method for manufacturing the same
US12283684B2 (en) 2021-03-01 2025-04-22 Prime Planet Energy & Solutions, Inc. Secondary battery electrode and method for producing the electrode
US12288873B2 (en) 2021-03-01 2025-04-29 Prime Planet Energy & Solutions, Inc. Secondary battery electrode and method for producing the electrode
WO2024108418A1 (en) * 2022-11-23 2024-05-30 宁德时代新能源科技股份有限公司 Electrode sheet, electrode assembly, battery, and electrical device
CN116364847A (en) * 2023-05-30 2023-06-30 惠州亿纬动力电池有限公司 Manufacturing method of battery pole piece, battery pole piece and battery
WO2024041664A1 (en) * 2023-05-30 2024-02-29 惠州亿纬动力电池有限公司 Manufacturing method for battery electrode sheet, battery electrode sheet, and battery
CN116364847B (en) * 2023-05-30 2024-03-15 惠州亿纬动力电池有限公司 Manufacturing method of battery pole piece, battery pole piece and battery

Similar Documents

Publication Publication Date Title
JP4362544B2 (en) Secondary battery and manufacturing method thereof
KR102824105B1 (en) Secondary battery
US20110200886A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2005285607A (en) Non-aqueous secondary battery and manufacturing method thereof
JP2007328977A (en) Non-aqueous secondary battery electrode plate, method for producing the same, and non-aqueous secondary battery
US20220255150A1 (en) Method of manufacturing secondary battery
US20110236748A1 (en) Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP7536331B2 (en) Secondary battery manufacturing method
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2012033372A (en) Positive electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
KR20130135101A (en) Collector, electrode and secondary battery having the same
JP2007324074A (en) Non-aqueous secondary battery electrode plate, manufacturing method thereof, and non-aqueous secondary battery using the same
JP2014211944A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2011192506A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
US10312520B2 (en) Non-aqueous electrolyte secondary battery
JP6825701B2 (en) Spacer-containing electrode structure and its application to high energy density and fast-chargeable lithium-ion batteries
JP2009134916A (en) Non-aqueous secondary battery electrode plate and non-aqueous secondary battery using the same
JP2001196095A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2009181831A (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using the same
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2012129040A (en) Negative electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same