[go: up one dir, main page]

JP2007326183A - Magnetic polishing liquid - Google Patents

Magnetic polishing liquid Download PDF

Info

Publication number
JP2007326183A
JP2007326183A JP2006159529A JP2006159529A JP2007326183A JP 2007326183 A JP2007326183 A JP 2007326183A JP 2006159529 A JP2006159529 A JP 2006159529A JP 2006159529 A JP2006159529 A JP 2006159529A JP 2007326183 A JP2007326183 A JP 2007326183A
Authority
JP
Japan
Prior art keywords
magnetic
polishing
particles
polishing liquid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006159529A
Other languages
Japanese (ja)
Inventor
Rei Hanamura
玲 花村
Yoshio Matsuo
良夫 松尾
Keita Yamamoto
慶太 山本
Teruhisa Nakamura
輝久 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006159529A priority Critical patent/JP2007326183A/en
Publication of JP2007326183A publication Critical patent/JP2007326183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】 環境安全性の面で有利にするため溶媒として水を含む組成を採り、さらに、他の組成との干渉がなく、分散状態の安定性が高く、研磨能力を良好に得ることができる磁気研磨液を提供する。
【解決手段】 磁気研磨液は、少なくとも磁性粒子41と、研磨粒子42と、樹脂粒子43と、溶媒44との4成分を含み、溶媒44は水とし、樹脂粒子43は溶媒に溶解しない樹脂材料から形成し、乾燥抑制および分散状態の安定性を向上させる添加物としてグリセリン等の多価アルコールを加える組成にする。永久磁石20の磁場が作用すると磁性粒子41が互いに吸着し合い、磁気クラスタが生成する。磁性粒子41の間に樹脂粒子43が存在しているので、研磨時の流動動作では樹脂粒子41が弾性を示して変形する弾性部材となり、また磁気クラスタのかさを増すスペーサ部材としても機能する。
【選択図】 図2
PROBLEM TO BE SOLVED: To adopt a composition containing water as a solvent in order to make it advantageous in terms of environmental safety, and furthermore, there is no interference with other compositions, high stability of dispersion state, and good polishing ability can be obtained. A magnetic polishing liquid is provided.
A magnetic polishing liquid includes at least four components of magnetic particles 41, polishing particles 42, resin particles 43, and a solvent 44. The solvent 44 is water, and the resin particles 43 are resin materials that do not dissolve in the solvent. And a composition in which a polyhydric alcohol such as glycerin is added as an additive for improving drying control and dispersion stability. When the magnetic field of the permanent magnet 20 acts, the magnetic particles 41 are attracted to each other and magnetic clusters are generated. Since the resin particles 43 are present between the magnetic particles 41, the resin particles 41 become elastic members that are elastically deformed in the flow operation during polishing, and also function as spacer members that increase the bulk of the magnetic clusters.
[Selection] Figure 2

Description

本発明は、磁場の作用により連動させることで非接触の流体研磨を行うための磁気研磨液に関するもので、より具体的には、少なくとも磁性粒子と、研磨粒子と、樹脂粒子と、溶媒との4成分を含む組成についての改良に関する。   The present invention relates to a magnetic polishing liquid for performing non-contact fluid polishing by interlocking with the action of a magnetic field, and more specifically, at least magnetic particles, polishing particles, resin particles, and a solvent. The present invention relates to an improvement regarding a composition containing four components.

研磨対象の表面を精密研磨するための研磨技術として、例えばラッピング,CMP(Chemical Mechanical Polishing),フロートポリッシングなどの加工方法がよく知られている。   As polishing techniques for precisely polishing the surface to be polished, processing methods such as lapping, CMP (Chemical Mechanical Polishing), and float polishing are well known.

また、磁気を利用した仕上げ研磨として、磁性流体(MF:Magnetic Fluid)や磁気粘性流体(MRF:Magneto Rheological Fluid)を使用する研磨技術が知られており、MFやMRFを砥粒と混合させ、磁界により混合液を運動させることで研磨を行っている。   Further, as a final polishing using magnetism, a polishing technique using a magnetic fluid (MF) or a magnetorheological fluid (MRF) is known, and MF or MRF is mixed with abrasive grains. Polishing is performed by moving the liquid mixture by a magnetic field.

しかしながら、そうした従来の磁気研磨の技術では以下に示すような問題がある。MFによる磁気研磨では、磁界を作用させた際に磁性粒子の固定が弱く、研磨効率が低いため長時間の磁気研磨が必要になる。また、MFは粒子径10nm程度の磁性粒子を均一に分散させたものであるため、研磨加工後の洗浄が困難であり、微小な隙間に磁性粒子がつまってしまい、除去できなくなる問題が起きる。   However, such conventional magnetic polishing techniques have the following problems. Magnetic polishing by MF requires a long time magnetic polishing because magnetic particles are weakly fixed when a magnetic field is applied and polishing efficiency is low. Further, since MF is obtained by uniformly dispersing magnetic particles having a particle diameter of about 10 nm, it is difficult to clean after polishing, and magnetic particles are clogged in minute gaps and cannot be removed.

MRFによる研磨は、強磁性の磁性粒子が磁界により針状に強く固定し、いわゆる磁気クラスタをなし、この磁気クラスタにより砥粒が研磨面に押し付けられることで研磨を行うが、磁気クラスタの制御が難しく、研磨対象の表面に深いスクラッチ痕ができ易く、精細な仕上げ加工への適用に改善の余地がある。   In the polishing by MRF, ferromagnetic magnetic particles are strongly fixed in a needle shape by a magnetic field to form a so-called magnetic cluster, and polishing is performed by pressing abrasive grains against the polishing surface by this magnetic cluster. Difficult, deep scratch marks are easily formed on the surface to be polished, and there is room for improvement in application to fine finishing.

ところで、磁気研磨液には組成として溶媒を含み、溶媒は各組成の混合性の向上のため、および潤滑作用を付加するために添加している。したがって、溶媒は他の組成と混合し得るものであればよく、一般にはケロシン,シリコーンオイル,植物油,アルコールなどを使用することが多い。しかし、有機溶媒とした場合、可燃性で引火を防ぐため防爆構造や局所排気が必要になる問題があり、このため設備コストがかかり、環境安全性の面から制限が多くなる。   Incidentally, the magnetic polishing liquid contains a solvent as a composition, and the solvent is added to improve the mixing property of each composition and to add a lubricating action. Therefore, the solvent is not particularly limited as long as it can be mixed with other compositions, and in general, kerosene, silicone oil, vegetable oil, alcohol and the like are often used. However, when an organic solvent is used, there is a problem that an explosion-proof structure or local exhaust is required to prevent flammability and flammability. Therefore, the equipment cost is increased, and restrictions are increased from the viewpoint of environmental safety.

この発明は上記した課題を解決するもので、その目的は、環境安全性の面で有利にするため溶媒として水を含む組成を採り、さらに他の組成との干渉がなく、分散状態の安定性が高く、研磨能力を良好に得ることができる磁気研磨液を提供することにある。   The object of the present invention is to solve the above-mentioned problems. The object of the present invention is to adopt a composition containing water as a solvent in order to make it more advantageous in terms of environmental safety, and there is no interference with other compositions and the stability of the dispersed state. Therefore, it is an object of the present invention to provide a magnetic polishing liquid that has a high polishing ability and can obtain a good polishing ability.

上記した目的を達成するために、本発明に係る磁気研磨液は、流体研磨を行うために、研磨対象と非接触に対面する研磨バイトの周辺に存在させ、磁場の作用により連動させる磁気研磨液であって、少なくとも磁性粒子と、研磨粒子と、樹脂粒子と、溶媒との4成分を含み、溶媒は水とし、樹脂粒子は溶媒に溶解しない樹脂材料から形成した組成にする。   In order to achieve the above-described object, the magnetic polishing liquid according to the present invention is present around the polishing bite facing the object to be polished in a non-contact manner for fluid polishing, and is magnetically linked by the action of a magnetic field. The composition includes at least four components of magnetic particles, abrasive particles, resin particles, and a solvent, the solvent is water, and the resin particles are formed from a resin material that is not dissolved in the solvent.

そして、乾燥抑制および分散状態の安定性を向上させる添加物としてグリセリン等の多価アルコールを加えるとよい。また、磁気研磨液には、研磨対象や研磨装置などへの錆を抑制する防錆剤を混合することがよい。さらに、磁性粒子は水に対して酸化耐性を有する磁性材料から形成することがよく、体積磁化において7kG以上の飽和磁化を有する磁性材料から形成し、具体的には磁性粒子はコバルトから形成することが好ましい。さらにまた、磁性粒子は、非球形の粒子形状とするのがよい。   And it is good to add polyhydric alcohols, such as glycerol, as an additive which improves drying suppression and the stability of a dispersed state. Moreover, it is preferable to mix the magnetic polishing liquid with a rust preventive agent that suppresses rust on the object to be polished and the polishing apparatus. Further, the magnetic particles are preferably formed from a magnetic material having oxidation resistance to water, and are formed from a magnetic material having a saturation magnetization of 7 kG or more in volume magnetization, and specifically, the magnetic particles are formed from cobalt. Is preferred. Furthermore, the magnetic particles are preferably non-spherical particles.

本発明では、溶媒として水を使用したため、可燃性がなく防爆構造や局所排気の設備をとる必要が無く、設備コストが低減化されると共に、環境安全性の面からも好ましい。そして、本発明では、磁場を作用させた際は磁性粒子が互いに吸着し合い、このとき、磁性粒子の間に水に不溶性の樹脂粒子が存在している。そして、研磨バイトの運動に連動する際は、樹脂粒子が弾性を示して変形する動きとなるため、流体研磨における加工の圧力が低減し、樹脂粒子は弾性部材の機能を発現する。その結果、スクラッチが起こりにくくなる。   In the present invention, since water is used as a solvent, it is not flammable, it is not necessary to provide an explosion-proof structure or local exhaust equipment, and the equipment cost is reduced, and it is also preferable from the viewpoint of environmental safety. In the present invention, when a magnetic field is applied, the magnetic particles adsorb each other, and at this time, resin particles that are insoluble in water exist between the magnetic particles. When the polishing tool is interlocked with the movement of the polishing tool, the resin particles are elastically deformed, so that the processing pressure in fluid polishing is reduced, and the resin particles exhibit the function of an elastic member. As a result, scratches are less likely to occur.

この樹脂粒子は分散して各組成の間に挟まった状態に存在し、磁性粒子の集合体(磁気クラスタ)は全体的に膨らみを持つことになる。つまり、樹脂粒子は磁気クラスタ全体のかさを増すスペーサ部材の機能を発現する。したがって、磁気クラスタは磁場発生源側からの張り出しが大きくなり、研磨対象に対して研磨バイトの間隔を広く設定することができ、磁気研磨の利便性が増す。この場合、樹脂粒子は溶媒に溶解しない樹脂材料から形成するので、その溶媒である水との干渉がなく、研磨能力を良好に得ることができ、高度に精密な表面研磨が行える。なお、従来一般に用いられたαセルロースは水に溶解するため、使用できない。   The resin particles are dispersed and sandwiched between the respective compositions, and the aggregate (magnetic cluster) of the magnetic particles is swollen as a whole. That is, the resin particles exhibit the function of a spacer member that increases the bulk of the entire magnetic cluster. Accordingly, the magnetic cluster has a large protrusion from the magnetic field generation source side, and the interval between the polishing tools can be set wide with respect to the object to be polished, thereby increasing the convenience of magnetic polishing. In this case, since the resin particles are formed from a resin material that does not dissolve in the solvent, there is no interference with water as the solvent, the polishing ability can be obtained well, and highly accurate surface polishing can be performed. It should be noted that α cellulose which has been generally used conventionally cannot be used because it dissolves in water.

添加剤としてグリセリン等の多価アルコールを加えた場合、蒸発を抑制することができ、分散状態の安定性を向上できる。また、防錆剤を添加するので研磨対象や研磨装置の錆を防止できる。   When a polyhydric alcohol such as glycerin is added as an additive, evaporation can be suppressed and the stability of the dispersed state can be improved. Moreover, since a rust inhibitor is added, rusting of the polishing object and the polishing apparatus can be prevented.

磁性粒子は水に対して酸化耐性を有する磁性材料から形成し、磁性材料は体積磁化において7kG以上の飽和磁化を有する磁性材料とした場合、磁気研磨液の研磨特性の劣化を防ぐことができ、研磨能力が高く得られる。   When the magnetic particles are formed of a magnetic material having oxidation resistance to water, and the magnetic material is a magnetic material having a saturation magnetization of 7 kG or more in volume magnetization, it is possible to prevent deterioration of the polishing characteristics of the magnetic polishing liquid, High polishing ability can be obtained.

磁性粒子を非球形状の粒子形状とした場合、磁場を作用させた際は空間を持った凝集体を形成し、水を吸収し易い状態となる。したがって、吸水性が上がり水分を保持しやすくなり重力による沈殿を起こしにくくなるため、分散状態の安定性の高い磁気研磨液を得ることができる。このとき、有機性の分散剤は使用しないので、環境安全性を損なうことがない。   When the magnetic particles are made into a non-spherical particle shape, when a magnetic field is applied, an aggregate having a space is formed, and water is easily absorbed. Accordingly, the water absorption is increased and moisture is easily retained and precipitation due to gravity is difficult to occur, so that a highly stable magnetic polishing liquid in a dispersed state can be obtained. At this time, since an organic dispersant is not used, environmental safety is not impaired.

本発明に係る磁気研磨液では、研磨バイトの運動に連動する際は、樹脂粒子が弾性を示して変形する動きとなり弾性部材の機能を発現し、その結果、スクラッチが起こりにくくなる。また、樹脂粒子は分散して各組成の間に挟まった状態に存在し、磁性粒子の集合体(磁気クラスタ)のかさを増すスペーサ部材の機能を発現し、磁場発生源側からの張り出しが大きくなり、研磨対象に対して研磨バイトの間隔を広く設定することができ、磁気研磨の利便性が増す。   In the magnetic polishing liquid according to the present invention, when the polishing tool is interlocked with the movement of the polishing tool, the resin particles are elastically deformed to exhibit the function of the elastic member, and as a result, scratches are less likely to occur. In addition, the resin particles are dispersed and sandwiched between the respective compositions, exhibit the function of a spacer member that increases the bulk of the magnetic particle aggregate (magnetic cluster), and the overhang from the magnetic field generation source side is large. Thus, the interval between the polishing tools can be set wide with respect to the object to be polished, and the convenience of magnetic polishing is increased.

樹脂粒子は溶媒に溶解しない樹脂材料から形成するので、その溶媒である水との干渉がなく、分散状態の安定性が高く、研磨能力を良好に得ることができ、高度に精密な表面研磨が行える。   Since the resin particles are formed from a resin material that does not dissolve in the solvent, there is no interference with water, which is the solvent, the stability of the dispersed state is high, the polishing ability can be obtained well, and highly precise surface polishing is achieved. Yes.

図1は本発明の好適な一実施の形態を示している。本形態において、磁気研磨を行う構成には磁場発生源(20)を有する研磨バイト2を備え、研磨対象1はy軸ステージ3に固定し、その研磨対象1に対して研磨バイト2が非接触に対面する配置とし、研磨対象1との間に磁気研磨液4を存在させて当該磁気研磨液4には研磨粒子を混合しておき、研磨バイト2にはこれと連係させた駆動手段5を起動することにより所定の運動動作を行わせ、そしてy軸ステージ3を起動することにより研磨対象1にはy軸について所定の運動動作を行わせ、磁気研磨液4に生成した磁気クラスタにより流体研磨を行うようになっている。   FIG. 1 shows a preferred embodiment of the present invention. In this embodiment, the configuration for performing magnetic polishing includes a polishing bit 2 having a magnetic field generation source (20), the polishing object 1 is fixed to the y-axis stage 3, and the polishing bit 2 is not in contact with the polishing object 1. The magnetic polishing liquid 4 is present between the polishing object 1 and the magnetic polishing liquid 4 is mixed with abrasive particles, and the polishing tool 2 is connected to a driving means 5 associated therewith. By starting, a predetermined motion operation is performed, and by starting the y-axis stage 3, the polishing object 1 is caused to perform a predetermined motion operation on the y-axis, and fluid polishing is performed by the magnetic cluster generated in the magnetic polishing liquid 4. Is supposed to do.

研磨バイト2は、先端に永久磁石20を設けて磁場の発生源としている。磁場発生源としては永久磁石20に限らず、例えば電磁石なども好ましく適用でき、磁気研磨液4に対して磁界を作用し得るものであればよい。磁場の発生は時間的に定常的である必要はなく、時間的に変動的な磁場を発生させることもよい。   The polishing tool 2 is provided with a permanent magnet 20 at its tip to serve as a magnetic field generation source. The magnetic field generation source is not limited to the permanent magnet 20, and for example, an electromagnet can be preferably applied as long as it can act on the magnetic polishing liquid 4. The generation of the magnetic field does not have to be stationary in time, and a magnetic field that varies in time may be generated.

駆動手段5は、少なくともx軸,z軸について多軸制御の機能を有するものとし、当該駆動手段5を起動することにより研磨バイト2には回転動作およびx軸,z軸について所定に移動する運動動作を行わせる。駆動手段5としては例えばNC工作機を用いればよく、ボール盤,旋盤,NC旋盤,フライス盤などの回転軸(チャック部)に研磨バイト2の軸部を取り付けし、着脱を行うようにする。   The driving means 5 has a multi-axis control function for at least the x-axis and z-axis. When the driving means 5 is activated, the polishing tool 2 rotates and moves in a predetermined manner with respect to the x-axis and z-axis. Let the action take place. As the driving means 5, for example, an NC machine tool may be used, and the shaft portion of the polishing tool 2 is attached to and detached from a rotating shaft (chuck portion) such as a drilling machine, a lathe, an NC lathe, or a milling machine.

図2は本発明に係る磁気研磨液を模式的に示す説明図であり、磁場が作用した状況を示し、いわゆる磁気クラスタを示している。   FIG. 2 is an explanatory view schematically showing a magnetic polishing liquid according to the present invention, showing a state in which a magnetic field acts, and showing a so-called magnetic cluster.

磁気研磨液4は、少なくとも磁性粒子41と、研磨粒子42と、樹脂粒子43と、溶媒44との4成分を含む。溶媒44は、水とした。樹脂粒子43は、溶媒に溶解しない樹脂材料から形成した。そして、乾燥抑制および分散状態の安定性を向上させる添加物としてグリセリン等の多価アルコールを加えてもよい。この磁気研磨液4には、研磨対象1や研磨装置などへの錆を抑制する防錆剤を混合するとよい。防錆剤には例えばアニオン系界面活性剤などを用い、研磨能力に悪影響がない適宜な量を添加する。この磁気研磨液4は研磨対象1と研磨バイト2との狭間へ供給手段により供給するようになっている。   The magnetic polishing liquid 4 includes at least four components of magnetic particles 41, polishing particles 42, resin particles 43, and a solvent 44. The solvent 44 was water. The resin particles 43 were formed from a resin material that did not dissolve in the solvent. And you may add polyhydric alcohols, such as glycerol, as an additive which improves drying control and stability of a dispersion state. The magnetic polishing liquid 4 may be mixed with a rust preventive agent that suppresses rust on the polishing object 1 and the polishing apparatus. For example, an anionic surfactant is used as the rust inhibitor, and an appropriate amount that does not adversely affect the polishing ability is added. This magnetic polishing liquid 4 is supplied by a supply means between the polishing object 1 and the polishing bit 2.

本発明では溶媒44は水とするため、磁性粒子41は水に対して酸化耐性を有する磁性材料から形成するのがよく、体積磁化(4πM)において7kG以上の飽和磁化を有する磁性材料から形成している。具体的には磁性粒子はコバルトから形成することが好ましく、さらに磁性粒子41は非球形状の粒子形状とすることがよい。   In the present invention, since the solvent 44 is water, the magnetic particles 41 are preferably formed of a magnetic material having oxidation resistance to water, and are formed of a magnetic material having a saturation magnetization of 7 kG or more in volume magnetization (4πM). ing. Specifically, the magnetic particles are preferably formed from cobalt, and the magnetic particles 41 are preferably aspherical particles.

この磁性粒子41は、平均粒子径を0.01μmから100μmとし、より好ましくは0.5μmから10μmに設定することがよい。これは平均粒子径が過剰に小さいときは磁場による応答が極端に弱くなり研磨できなくなる問題を生じ、逆に粒子径が過大では分散状態の安定性が悪くなり研磨について制御が難しくなるためである。   The magnetic particles 41 may have an average particle diameter of 0.01 μm to 100 μm, more preferably 0.5 μm to 10 μm. This is because when the average particle size is excessively small, the response due to the magnetic field becomes extremely weak and polishing becomes impossible. Conversely, when the particle size is excessively large, the stability of the dispersion state is deteriorated and it becomes difficult to control the polishing. .

なお、磁性粒子41として、鉄や鉄系の合金など、水に対する酸化耐性の面で不利になる磁性材料を利用することもできる。すなわち、係る磁性材料では、例えば表面を被覆して水と反応しないようにすればよく、耐水,耐酸化について適切な対策を施すことにより不都合なく使用することができる。   As the magnetic particles 41, a magnetic material that is disadvantageous in terms of oxidation resistance to water, such as iron or an iron-based alloy, can be used. In other words, such a magnetic material may be used without any inconvenience, for example, by covering the surface so as not to react with water and by taking appropriate measures for water resistance and oxidation resistance.

研磨粒子42は、例えばアルミナ,ダイヤ,酸化セリウム,炭化ケイ素などから形成し、平均粒子径を0.01μmから300μmとする。なお、研磨粒子42の粒子径や種類は、研磨対象1の材質や面粗さにより適宜に変更,設定すればよく、原材料には一般に市販されているものを使用することができる。   The abrasive particles 42 are made of, for example, alumina, diamond, cerium oxide, silicon carbide, or the like, and have an average particle diameter of 0.01 μm to 300 μm. The particle diameter and type of the abrasive particles 42 may be appropriately changed and set according to the material and surface roughness of the object 1 to be polished, and commercially available materials can be used as raw materials.

樹脂粒子43は、溶媒44に溶解しない樹脂材料から形成し、平均粒子径を数μmから数百μmとする。樹脂粒子43の形状は例えば球形状とすればよく、あるいは繊維状等の非球形状に形成することもよい。水に溶解しない樹脂材料では、例えばポリエチレン(PE),ポリスチレン(PS),ポリメチルメタクリレート(PMMA),ポリエチレンテレフタレート(PET),ポリ塩化ビニル(PVC)などが利用できる。   The resin particles 43 are formed of a resin material that does not dissolve in the solvent 44, and have an average particle diameter of several μm to several hundreds of μm. The shape of the resin particles 43 may be, for example, a spherical shape, or may be formed in a non-spherical shape such as a fibrous shape. Examples of resin materials that do not dissolve in water include polyethylene (PE), polystyrene (PS), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyvinyl chloride (PVC).

研磨バイト2の運動動作は、例えば研磨対象1の表面に関してくまなく走査する動作としたり、あるいはy軸ステージ3および駆動手段5の動作設定により、研磨対象1にはx−y平面について所定の運動動作を行わせることもよい。このとき、研磨バイト2の周辺には磁気研磨液4を供給し、研磨バイト2には当該軸方向において正逆反転する回転動作を行わせる。あるいは所定に振動させる振動動作を行わせることもよい。   The movement operation of the polishing tool 2 is, for example, an operation of scanning the entire surface of the polishing object 1 or a predetermined movement of the polishing object 1 with respect to the xy plane by setting the operation of the y-axis stage 3 and the driving means 5. An operation may be performed. At this time, the magnetic polishing liquid 4 is supplied to the periphery of the polishing tool 2, and the polishing tool 2 is caused to perform a rotating operation that reverses forward and backward in the axial direction. Or it is good also to perform the vibration operation | movement which vibrates predetermined.

研磨バイト2と研磨対象1との間には磁気研磨液4が存在し、当該磁気研磨液4は研磨粒子42を含み、永久磁石20により磁気研磨液4に時間的に定常的あるいは変動的な磁場が加わると磁気クラスタが生成する。つまり、磁気研磨液中の磁性粒子41が、磁気吸引力により多数凝集して磁気クラス夕となる。磁気クラス夕は、磁束に沿うので研磨対象1に対立して針状に多数が立ち並び、これにより磁気研磨液中に存在する研磨粒子42が研磨対象1の表面に抑えつけられる。このとき、研磨バイト2と研磨対象1とは相対運動することから、研磨粒子42は研磨対象1の表面上を接触しつつ運動して切削(研削)を行う。   A magnetic polishing liquid 4 exists between the polishing tool 2 and the polishing object 1, and the magnetic polishing liquid 4 includes abrasive particles 42, and the permanent magnet 20 changes the magnetic polishing liquid 4 to be constant or variable in time. When a magnetic field is applied, a magnetic cluster is generated. That is, a large number of magnetic particles 41 in the magnetic polishing liquid are aggregated by the magnetic attractive force to form a magnetic class. Since the magnetic class is along the magnetic flux, a large number of needles are arranged in opposition to the object 1 to be polished, whereby the abrasive particles 42 present in the magnetic polishing liquid are held down on the surface of the object 1 to be polished. At this time, since the polishing tool 2 and the polishing object 1 move relative to each other, the abrasive particles 42 move while contacting the surface of the polishing object 1 to perform cutting (grinding).

磁気研磨液4に磁場を作用させた際は、図2に示すように、磁性粒子41が互いに吸着し合い、このとき磁性粒子41の間に樹脂粒子43が存在している。そして、研磨バイト2の運動に連動する際は、樹脂粒子41が弾性を示して変形する動きとなるため、流体研磨における加工の圧力が低減し、樹脂粒子43は弾性部材の機能を発現する。その結果、スクラッチが起こりにくくなる。   When a magnetic field is applied to the magnetic polishing liquid 4, the magnetic particles 41 adsorb each other as shown in FIG. 2, and at this time, resin particles 43 exist between the magnetic particles 41. When interlocking with the movement of the polishing tool 2, the resin particles 41 are elastically deformed, so that the processing pressure in fluid polishing is reduced and the resin particles 43 exhibit the function of an elastic member. As a result, scratches are less likely to occur.

この樹脂粒子43は分散して各組成の間に挟まった状態に存在し、磁性粒子41の集合体(磁気クラスタ)は全体的に膨らみを持つことになる。つまり、樹脂粒子43は磁気クラスタ全体のかさを増すスペーサ部材の機能を発現する。したがって、磁気クラスタは磁場発生源側からの張り出しが大きくなり、研磨対象1に対して研磨バイト2の間隔を広く設定することができ、磁気研磨の利便性が増す。   The resin particles 43 are present in a state of being dispersed and sandwiched between the respective compositions, and the aggregate (magnetic cluster) of the magnetic particles 41 is swollen as a whole. That is, the resin particle 43 expresses the function of a spacer member that increases the bulk of the entire magnetic cluster. Therefore, the magnetic cluster has a large protrusion from the magnetic field generation source side, and the interval between the polishing tools 2 can be set wider with respect to the object 1 to be polished, thereby increasing the convenience of magnetic polishing.

この場合、樹脂粒子43は溶媒44に溶解しない樹脂材料から形成するので、その溶媒44である水との干渉がなく、研磨能力を良好に得ることができ、高度に精密な表面研磨が行える。   In this case, since the resin particles 43 are formed from a resin material that does not dissolve in the solvent 44, there is no interference with the water that is the solvent 44, a good polishing ability can be obtained, and highly precise surface polishing can be performed.

溶媒44は水とし、有機溶媒は使用しないので防爆構造や局所排気が必要なく、環境安全性の面で有利になる。添加剤としてグリセリン等の多価アルコールを加えているので、蒸発を抑制することができ、分散状態の安定性を向上できる。また、防錆剤を添加するので研磨対象1や研磨装置の錆を防止できる。   Since the solvent 44 is water and no organic solvent is used, an explosion-proof structure and local exhaust are not required, which is advantageous in terms of environmental safety. Since a polyhydric alcohol such as glycerin is added as an additive, evaporation can be suppressed and the stability of the dispersed state can be improved. Moreover, since a rust inhibitor is added, rusting of the polishing object 1 and the polishing apparatus can be prevented.

また、磁性粒子41は水に対して酸化耐性を有する磁性材料から形成し、磁性材料は体積磁化(4πM)において7kG以上の飽和磁化を有する磁性材料とするので、磁気研磨液の研磨特性の劣化を防ぐことができ、研磨能力が高く得られる。   Further, the magnetic particles 41 are formed of a magnetic material having oxidation resistance to water, and the magnetic material is a magnetic material having a saturation magnetization of 7 kG or more in volume magnetization (4πM), so that the polishing characteristics of the magnetic polishing liquid are deteriorated. Can be prevented, and a high polishing ability can be obtained.

ここで、磁性粒子41は非球形状の粒子形状とするので、磁場を作用させた際は空間を持った凝集体を形成し、水を吸収し易い状態となる。したがって、吸水性が上がり水分を保持しやすくなり重力による沈殿を起こしにくくなるため、分散状態の安定性の高い磁気研磨液を得ることができる。このとき、有機性の分散剤は使用しないので、環境安全性を損なうことがない。   Here, since the magnetic particle 41 has a non-spherical particle shape, when a magnetic field is applied, an aggregate having a space is formed and water is easily absorbed. Accordingly, the water absorption is increased and moisture is easily retained and precipitation due to gravity is difficult to occur, so that a highly stable magnetic polishing liquid in a dispersed state can be obtained. At this time, since an organic dispersant is not used, environmental safety is not impaired.

図1に示す磁気研磨のための構成により試料の研磨を行った。つまり、研磨能力に関する本発明の効果を実証するため、磁気研磨液は組成を変更した複数を用意し、それぞれの磁気研磨液により試料の研磨を行い、研磨後の表面粗さRa(算術平均粗さ),Ry(最大粗さ)を評価した。   The sample was polished according to the configuration for magnetic polishing shown in FIG. That is, in order to demonstrate the effect of the present invention on the polishing ability, a plurality of magnetic polishing liquids having different compositions are prepared, the sample is polished with each magnetic polishing liquid, and the surface roughness Ra (arithmetic average roughness) after polishing is prepared. And Ry (maximum roughness).

磁気研磨液は、組成として、粒子径約1μmのカルボニル鉄と、粒子径約3μmのアルミナ砥粒と、粒子径20μmのPMMA粒子と、水とを表1に示すwt%とし、さらにグリセリンを水に対して5%混合の割合で添加し、これらを均一に混合することによりNo1からNo6までの6種類を調製した。   The composition of the magnetic polishing liquid was carbonyl iron having a particle diameter of about 1 μm, alumina abrasive grains having a particle diameter of about 3 μm, PMMA particles having a particle diameter of 20 μm, and water in the wt% shown in Table 1, and glycerin in water. 6 types from No1 to No6 were prepared by adding them at a mixing ratio of 5% and mixing them uniformly.

試料(研磨対象1)は、ステンレス(SUS304)から形成した外径30mm,厚さ1mmの円形状の板片とし、その表面の研磨を行った。この研磨対象1にはx−y平面について円運動を行わせ、これはy軸ステージ3および駆動手段5の動作設定により半径20mmで60rpmの運動動作としている。磁場発生源の永久磁石20にはネオジウム磁石を用い、研磨バイト2の回転は回転数を500rpmとし、研磨時間は30分とした。表面粗さは表面粗さ段差計により測定し、これにはテンコール社製P−10を使用した。   The sample (polishing object 1) was a circular plate having an outer diameter of 30 mm and a thickness of 1 mm formed from stainless steel (SUS304), and the surface was polished. This polishing object 1 is caused to perform a circular motion on the xy plane, which is a motion motion of 60 rpm with a radius of 20 mm according to the operation settings of the y-axis stage 3 and the driving means 5. A neodymium magnet was used as the permanent magnet 20 of the magnetic field generation source. The rotation of the polishing tool 2 was set at 500 rpm and the polishing time was 30 minutes. The surface roughness was measured by a surface roughness level meter, and P-10 manufactured by Tencor Corporation was used for this.

試料の研磨を行ったところ、表1に示すような結果を得た。

Figure 2007326183
When the sample was polished, the results shown in Table 1 were obtained.

Figure 2007326183

表1から明らかなように、樹脂粒子の成分が少ない場合(No2)では、試料と研磨バイトとの間隔を広くしたときは研磨能力が低下しているが、樹脂粒子の成分を増した場合(No6)では、試料と研磨バイトとの間隔を広くしても研磨能力の低下がほとんど見られない。すなわち、樹脂粒子の成分が増すほど、試料と研磨バイトとの間隔を広くした場合であっても磁気研磨を良好に行うことができ、樹脂粒子がスペーサ部材の機能を発現していることがわかる。そして、樹脂粒子が弾性部材の機能を発現するので表面粗さもよくなる傾向にあることを確認した。   As is clear from Table 1, when the resin particle component is small (No 2), the polishing ability is reduced when the interval between the sample and the polishing tool is widened, but when the resin particle component is increased ( In No. 6), even if the distance between the sample and the polishing tool is widened, the polishing ability is hardly reduced. That is, as the resin particle component increases, magnetic polishing can be performed well even when the distance between the sample and the polishing bit is increased, and the resin particles express the function of the spacer member. . And since the resin particle expressed the function of the elastic member, it confirmed that it exists in the tendency for surface roughness to improve.

次に、磁化度と研磨能力および分散状態の安定性に関する本発明の効果を実証するため、磁性粒子の種類について組成を変更した磁気研磨液を複数用意して試料の研磨を行い、表面粗さRa(算術平均粗さ),Ry(最大粗さ)を評価した。   Next, in order to demonstrate the effect of the present invention on the degree of magnetization, the polishing ability, and the stability of the dispersed state, a plurality of magnetic polishing liquids having different compositions with respect to the type of magnetic particles are prepared, and the sample is polished to obtain the surface roughness. Ra (arithmetic mean roughness) and Ry (maximum roughness) were evaluated.

磁気研磨液の組成は、磁性粒子は50wt%とし、研磨粒子は20wt%とし、樹脂粒子は6wt%とし、溶媒は24wt%とした。磁性粒子は粒子径約1μmとし、表2に示すように、鉄,コバルト,パーマロイ,センダスト,MnZnフェライト,ニッケル,ステンレスをそれぞれ使用した。研磨粒子には粒子径約3μmのアルミナ砥粒を使用し、樹脂粒子には粒子径20μmのPMMA粒子を使用し、溶媒は水とし、さらにグリセリンを水に対して5%混合の割合で添加し、これらを均一に混合することにより7種類を調製した。   The composition of the magnetic polishing liquid was 50 wt% for magnetic particles, 20 wt% for abrasive particles, 6 wt% for resin particles, and 24 wt% for the solvent. The magnetic particles had a particle diameter of about 1 μm, and as shown in Table 2, iron, cobalt, permalloy, sendust, MnZn ferrite, nickel, and stainless steel were used. Alumina abrasive grains with a particle size of about 3 μm are used for the abrasive particles, PMMA particles with a particle size of 20 μm are used for the resin particles, the solvent is water, and glycerin is added in a ratio of 5% to water. These were prepared by mixing them uniformly.

試料(研磨対象1)は、ステンレス(SUS304)から形成した外径30mm,厚さ1mmの円形状の板片とし、その表面の研磨を行った。この研磨対象1にはx−y平面について円運動を行わせ、これはy軸ステージ3および駆動手段5の動作設定により半径20mmで60rpmの運動動作としている。磁場発生源の永久磁石20にはネオジウム磁石を用い、研磨バイト2の回転は回転数を500rpmとし、研磨時間は30分とした。表面粗さは表面粗さ段差計により測定し、これにはテンコール社製P−10を使用した。また、磁化度は粉体そのままで振動試料磁力計(VSM:Vibrating Sample Magnetometer)により測定を行った。   The sample (polishing object 1) was a circular plate having an outer diameter of 30 mm and a thickness of 1 mm formed from stainless steel (SUS304), and the surface was polished. This polishing object 1 is caused to perform a circular motion on the xy plane, which is a motion motion of 60 rpm with a radius of 20 mm according to the operation settings of the y-axis stage 3 and the driving means 5. A neodymium magnet was used as the permanent magnet 20 of the magnetic field generation source. The rotation of the polishing tool 2 was set at 500 rpm and the polishing time was 30 minutes. The surface roughness was measured by a surface roughness level meter, and P-10 manufactured by Tencor Corporation was used for this. Further, the degree of magnetization was measured with a vibrating sample magnetometer (VSM) with the powder as it was.

試料の研磨を行ったところ、表2および表3に示すような結果を得た。

Figure 2007326183
Figure 2007326183
When the sample was polished, the results shown in Table 2 and Table 3 were obtained.

Figure 2007326183
Figure 2007326183

表2から明らかなように、磁性粒子の持つ磁化度の値によって研磨能力に差がでるのは明白であり、鉄,コバルト,パーマロイ,センダストでは、表面粗さが10nm程度のオーダであって研磨能力が良好に得られることを確認した。   As is clear from Table 2, it is clear that the polishing ability varies depending on the magnetization value of the magnetic particles. The surface roughness of iron, cobalt, permalloy, and sendust is on the order of about 10 nm. It was confirmed that the ability was obtained well.

表3から明らかなように、鉄は調製完了後の日数が経つ程、水との反応が進んで劣化するため研磨ができなくなり、磁気研磨液としては好ましくないことがわかる。そして表3からは明らかに、コバルトは研磨能力に劣化が見られなく、安定性が高いことを確認した。   As is clear from Table 3, it can be seen that as the number of days after the preparation is completed, the reaction with water progresses and deteriorates, so that polishing cannot be performed, which is not preferable as a magnetic polishing liquid. As apparent from Table 3, it was confirmed that cobalt was highly stable with no deterioration in polishing ability.

なお前述したように、鉄は利用できないわけではなく、耐水,耐酸化について適切な対策を施すことにより不都合なく使用することができる。   As described above, iron is not necessarily unavailable, and can be used without any inconvenience by taking appropriate measures for water resistance and oxidation resistance.

次に、分散状態の安定性に関する本発明の効果を実証するため、磁性粒子についてその粒子形状を変更した磁気研磨液を複数用意して試料の研磨を行い、表面粗さRa(算術平均粗さ),Ry(最大粗さ)を評価した。   Next, in order to verify the effect of the present invention regarding the stability of the dispersed state, a plurality of magnetic polishing liquids having different particle shapes are prepared for the magnetic particles, the sample is polished, and the surface roughness Ra (arithmetic average roughness) ), Ry (maximum roughness).

磁気研磨液の組成は、磁性粒子は50wt%とし、研磨粒子は20wt%とし、樹脂粒子は4wt%とし、溶媒は26wt%とした。磁性粒子はコバルトを使用し、表4および図3に示すように、粒子径が大きい球形粒子1と、粒子径が小さい球形粒子2と、ひょうたん形状の非球形粒子1と、円柱形状の非球形粒子2とをそれぞれ使用した。研磨粒子には粒子径約3μmのアルミナ砥粒を使用し、樹脂粒子には粒子径20μmのPMMA粒子を使用し、溶媒は水とし、さらにグリセリンを水に対して5%混合の割合で添加し、これらを均一に混合することにより4種類を調製した。なお、図3は電子顕微鏡(SEM:Scanning Electron Microscope)による磁性粒子の画像を示している。   The composition of the magnetic polishing liquid was 50 wt% for magnetic particles, 20 wt% for abrasive particles, 4 wt% for resin particles, and 26 wt% for the solvent. Cobalt is used for the magnetic particles, and as shown in Table 4 and FIG. 3, spherical particles 1 having a large particle size, spherical particles 2 having a small particle size, gourd-shaped non-spherical particles 1, and cylindrical non-spherical particles. Particle 2 was used respectively. Alumina abrasive grains with a particle size of about 3 μm are used for the abrasive particles, PMMA particles with a particle size of 20 μm are used for the resin particles, the solvent is water, and glycerin is added in a ratio of 5% to water. These were uniformly mixed to prepare 4 types. In addition, FIG. 3 has shown the image of the magnetic particle by an electron microscope (SEM: Scanning Electron Microscope).

試料(研磨対象1)は、ステンレス(SUS304)から形成した外径30mm,厚さ1mmの円形状の板片とし、その表面の研磨を行った。この研磨対象1にはx−y平面について円運動を行わせ、これはy軸ステージ3および駆動手段5の動作設定により半径20mmで60rpmの運動動作としている。磁場発生源の永久磁石20にはネオジウム磁石を用い、研磨バイト2の回転は回転数を500rpmとし、研磨バイト2と試料(研磨対象1)との間隔は0.5mmとし、研磨時間は30分とした。表面粗さは表面粗さ段差計により測定し、これにはテンコール社製P−10を使用した。また、分散状態の安定性は、磁気研磨液の沈殿状況により評価を行った。   The sample (polishing object 1) was a circular plate having an outer diameter of 30 mm and a thickness of 1 mm formed from stainless steel (SUS304), and the surface was polished. This polishing object 1 is caused to perform a circular motion on the xy plane, which is a motion motion of 60 rpm with a radius of 20 mm according to the operation settings of the y-axis stage 3 and the driving means 5. A neodymium magnet is used as the permanent magnet 20 of the magnetic field generation source. The rotation of the polishing tool 2 is set to 500 rpm, the interval between the polishing tool 2 and the sample (polishing object 1) is 0.5 mm, and the polishing time is 30 minutes. It was. The surface roughness was measured by a surface roughness level meter, and P-10 manufactured by Tencor Corporation was used for this. The stability of the dispersed state was evaluated based on the precipitation state of the magnetic polishing liquid.

試料の研磨を行ったところ、表4に示すような結果を得た。

Figure 2007326183
When the sample was polished, the results shown in Table 4 were obtained.

Figure 2007326183

表4から明らかなように、磁性粒子の形状を非球形状とすることでは分散状態の安定性を高めることができ、研磨能力を劣化なく高く保つことができることを確認した。   As is apparent from Table 4, it was confirmed that the stability of the dispersed state can be enhanced by making the magnetic particles non-spherical and the polishing ability can be kept high without deterioration.

本発明では分散状態の安定性が高く、研磨能力を良好に得ることができることから、セラミック材料,光学材料,金属材料,樹脂材料などの表面の精密研磨を行うことに有効であり、半導体プロセス等の各種ウェハープロセスでの研磨加工に好ましく適用できる。   In the present invention, since the dispersion state is highly stable and the polishing ability can be obtained satisfactorily, it is effective for precision polishing of the surface of ceramic materials, optical materials, metal materials, resin materials, etc. It can be preferably applied to polishing processing in various wafer processes.

本発明の好適な一実施の形態を示す側面図である。1 is a side view showing a preferred embodiment of the present invention. 本発明に係る磁気研磨液を模式的に示す説明図である。It is explanatory drawing which shows typically the magnetic polishing liquid which concerns on this invention. 磁性粒子のSEM画像を示し、(a)は球形状のコバルト粒子その1、(b)は球形状のコバルト粒子その2、(c)はひょうたん形状のコバルト粒子、(d)は円柱形状のコバルト粒子である。The SEM image of a magnetic particle is shown, (a) is a spherical cobalt particle 1, (b) is a spherical cobalt particle 2, (c) is a gourd-shaped cobalt particle, (d) is a cylindrical cobalt particle Particles.

符号の説明Explanation of symbols

1 研磨対象
2 研磨バイト
20 永久磁石
3 y軸ステージ
4 磁気研磨液
41 磁性粒子
42 研磨粒子
43 樹脂粒子
44 溶媒
5 駆動手段
DESCRIPTION OF SYMBOLS 1 Polishing object 2 Polishing tool 20 Permanent magnet 3 Y-axis stage 4 Magnetic polishing liquid 41 Magnetic particle 42 Polishing particle 43 Resin particle 44 Solvent 5 Driving means

Claims (7)

流体研磨を行うために、研磨対象と非接触に対面する研磨バイトの周辺に存在させ、磁場の作用により連動させる磁気研磨液であって、
少なくとも磁性粒子と、研磨粒子と、樹脂粒子と、溶媒との4成分を含み、前記溶媒は水とし、前記樹脂粒子は前記溶媒に溶解しない樹脂材料から形成したことを特徴とする磁気研磨液。
In order to perform fluid polishing, there is a magnetic polishing liquid that is present around a polishing bite that faces non-contact with the object to be polished and is interlocked by the action of a magnetic field,
A magnetic polishing liquid comprising at least four components of magnetic particles, abrasive particles, resin particles, and a solvent, wherein the solvent is water and the resin particles are formed from a resin material that is not soluble in the solvent.
乾燥抑制および分散状態の安定性を向上させる添加物としてグリセリン等の多価アルコールを加えたことを特徴とする請求項1に記載の磁気研磨液。 2. The magnetic polishing liquid according to claim 1, wherein a polyhydric alcohol such as glycerin is added as an additive for suppressing drying and improving the stability of the dispersed state. 前記磁気研磨液に、研磨対象や研磨装置などへの錆を抑制する防錆剤を混合することを特徴とする請求項1または2に記載の磁気研磨液。   The magnetic polishing liquid according to claim 1, wherein a rust preventive agent that suppresses rusting on a polishing target or a polishing apparatus is mixed with the magnetic polishing liquid. 前記磁性粒子は水に対して酸化耐性を有する磁性材料から形成することを特徴とする請求項1から3のいずれか1項に記載の磁気研磨液。   The magnetic polishing liquid according to any one of claims 1 to 3, wherein the magnetic particles are formed of a magnetic material having oxidation resistance to water. 前記磁性粒子は体積磁化において7kG以上の飽和磁化を有する磁性材料から形成することを特徴とする請求項1から4の何れか1項に記載の磁気研磨液。   5. The magnetic polishing liquid according to claim 1, wherein the magnetic particles are formed of a magnetic material having a saturation magnetization of 7 kG or more in volume magnetization. 前記磁性粒子はコバルトから形成することを特徴とする請求項1から5の何れか1項に記載の磁気研磨液。   The magnetic polishing liquid according to claim 1, wherein the magnetic particles are made of cobalt. 前記磁性粒子は非球形の粒子形状とすることを特徴とする請求項1から6の何れか1項に記載の磁気研磨液。
The magnetic polishing liquid according to claim 1, wherein the magnetic particles have a non-spherical particle shape.
JP2006159529A 2006-06-08 2006-06-08 Magnetic polishing liquid Pending JP2007326183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159529A JP2007326183A (en) 2006-06-08 2006-06-08 Magnetic polishing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159529A JP2007326183A (en) 2006-06-08 2006-06-08 Magnetic polishing liquid

Publications (1)

Publication Number Publication Date
JP2007326183A true JP2007326183A (en) 2007-12-20

Family

ID=38927026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159529A Pending JP2007326183A (en) 2006-06-08 2006-06-08 Magnetic polishing liquid

Country Status (1)

Country Link
JP (1) JP2007326183A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248205A (en) * 2007-03-30 2008-10-16 Fdk Corp Paste material
EP2073310A1 (en) 2007-12-18 2009-06-24 Kabushiki Kaisha Toshiba Array antenna system and transmit/receive module thereof
JP2010052123A (en) * 2008-08-29 2010-03-11 Utsunomiya Univ Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
WO2014106944A1 (en) * 2013-01-04 2014-07-10 株式会社 フジミインコーポレーテッド Method for polishing alloy material and method for manufacturing alloy material
JP2014133203A (en) * 2013-01-10 2014-07-24 Jikei Univ Purification method using magnetically capturing particle, and purification system using the magnetically capturing particle
WO2020110812A1 (en) * 2018-11-26 2020-06-04 日本ペイントホールディングス株式会社 Magnetic viscoelastic fluid and device
CN114571293A (en) * 2022-05-09 2022-06-03 江苏克莱德激光技术有限责任公司 Magnetorheological polishing device for metal surface treatment and application method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305566A (en) * 1992-05-01 1993-11-19 Ohara:Kk Polishing method and polishing device
JPH10329002A (en) * 1997-05-26 1998-12-15 Matsushita Electric Works Ltd Magnetic polishing device
JP2000263415A (en) * 1999-03-15 2000-09-26 Priority Co Transverse electromagnetic polishing machine and polishing method
JP2005040944A (en) * 1993-06-04 2005-02-17 Byelocorp Scientific Inc Magnetorheological polishing apparatus and method
JP2005290233A (en) * 2004-03-31 2005-10-20 Utsunomiya Univ Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method
JP2005302973A (en) * 2004-04-12 2005-10-27 Jsr Corp Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2006082213A (en) * 2004-09-17 2006-03-30 Fdk Corp Sharpening and mirror polishing method and sharpening / mirror polishing apparatus
JP2006089586A (en) * 2004-09-24 2006-04-06 Utsunomiya Univ Magnetic abrasive grains and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305566A (en) * 1992-05-01 1993-11-19 Ohara:Kk Polishing method and polishing device
JP2005040944A (en) * 1993-06-04 2005-02-17 Byelocorp Scientific Inc Magnetorheological polishing apparatus and method
JPH10329002A (en) * 1997-05-26 1998-12-15 Matsushita Electric Works Ltd Magnetic polishing device
JP2000263415A (en) * 1999-03-15 2000-09-26 Priority Co Transverse electromagnetic polishing machine and polishing method
JP2005290233A (en) * 2004-03-31 2005-10-20 Utsunomiya Univ Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method
JP2005302973A (en) * 2004-04-12 2005-10-27 Jsr Corp Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2006082213A (en) * 2004-09-17 2006-03-30 Fdk Corp Sharpening and mirror polishing method and sharpening / mirror polishing apparatus
JP2006089586A (en) * 2004-09-24 2006-04-06 Utsunomiya Univ Magnetic abrasive grains and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248205A (en) * 2007-03-30 2008-10-16 Fdk Corp Paste material
EP2073310A1 (en) 2007-12-18 2009-06-24 Kabushiki Kaisha Toshiba Array antenna system and transmit/receive module thereof
JP2010052123A (en) * 2008-08-29 2010-03-11 Utsunomiya Univ Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
WO2014106944A1 (en) * 2013-01-04 2014-07-10 株式会社 フジミインコーポレーテッド Method for polishing alloy material and method for manufacturing alloy material
JP2014133203A (en) * 2013-01-10 2014-07-24 Jikei Univ Purification method using magnetically capturing particle, and purification system using the magnetically capturing particle
WO2020110812A1 (en) * 2018-11-26 2020-06-04 日本ペイントホールディングス株式会社 Magnetic viscoelastic fluid and device
CN113167354A (en) * 2018-11-26 2021-07-23 日本涂料控股有限公司 Magneto-viscoelastic fluid and device
CN113167354B (en) * 2018-11-26 2022-11-15 日本涂料控股有限公司 Magnetic viscoelastic fluid and device
US11996223B2 (en) 2018-11-26 2024-05-28 Nippon Paint Holdings Co., Ltd. Magnetorheological fluid and device
CN114571293A (en) * 2022-05-09 2022-06-03 江苏克莱德激光技术有限责任公司 Magnetorheological polishing device for metal surface treatment and application method thereof
CN114571293B (en) * 2022-05-09 2022-07-29 江苏克莱德激光技术有限责任公司 A magnetorheological polishing device for metal surface treatment and using method thereof

Similar Documents

Publication Publication Date Title
JP2007326183A (en) Magnetic polishing liquid
JP5036374B2 (en) Paste material
Zhai et al. Synthesis and characterization of nanocomposite Fe3O4/SiO2 core–shell abrasives for high-efficiency ultrasound-assisted magneto-rheological polishing of sapphire
Mutalib et al. Magnetorheological finishing on metal surface: A review
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
Srivastava et al. Review on the various strategies adopted for the polishing of silicon wafer—A chemical perspective
CN101152701A (en) Vertical Vibration Magnetic Grinding Process and Device
Li et al. Multi-pole magnetorheological shear thickening polishing on inner surface of aluminum alloy slender tubes
JP2007021661A (en) Mirror polishing method and mirror polishing apparatus for complex shaped body
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
Patil et al. Study of mechanically alloyed magnetic abrasives in magnetic abrasive finishing
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
JP4471197B2 (en) Polishing method that does not require processing pressure control
Wu et al. Mirror surface finishing of acrylic resin using MCF-based polishing liquid
Wu et al. Effects of particles blend ratio on surface quality in surface polishing using magnetic polishing liquid (MPL)
Patil et al. Magnetic abrasive finishing–A Review
JP7583556B2 (en) Magnetic functional polishing fluid
JP2007210073A (en) Magnetic polishing apparatus and magnetic polishing tool
JP5569998B2 (en) Paste material
JP4263673B2 (en) Magnetic inner surface polishing method and apparatus
CN112646496A (en) Magnetorheological polishing solution containing nano mixed polishing powder and preparation method thereof
JP7564409B2 (en) Fixed abrasive polishing method and polishing device using magnetically assisted machining
JP2005144643A (en) Abrasive for magnetic polishing, processing liquid and method of manufacturing abrasive for magnetic polishing
Beak et al. Ultra-Precise Polishing of Mica Glass Ceramics Using MR Fluids and Nano Abrasives
Vahdati et al. Measurement and simulation of magnetic field strenght in the nano magnetic abrasive finishing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110922