[go: up one dir, main page]

JP2007322718A - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
JP2007322718A
JP2007322718A JP2006152475A JP2006152475A JP2007322718A JP 2007322718 A JP2007322718 A JP 2007322718A JP 2006152475 A JP2006152475 A JP 2006152475A JP 2006152475 A JP2006152475 A JP 2006152475A JP 2007322718 A JP2007322718 A JP 2007322718A
Authority
JP
Japan
Prior art keywords
led
illuminance
light source
power consumption
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152475A
Other languages
Japanese (ja)
Inventor
Masutaka Inoue
益孝 井上
Nobuyuki Kondo
信幸 近藤
Takashi Ikeda
貴司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006152475A priority Critical patent/JP2007322718A/en
Publication of JP2007322718A publication Critical patent/JP2007322718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Projection Apparatus (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display device capable of optimizing the environment temperature of each light source while saving power of the display device. <P>SOLUTION: The projection type display apparatus 100 having a plurality of LEDs 10 includes: a plurality of cooling devices 20 provided for the corresponding LEDs 10 and used for adjusting the environment temperatures of the LEDs 10; an illuminance sensor 30 for detecting the state of each LED 10; and a control section 92 used for comparing the state of each LED 10 detected by the illuminance sensor 30 with a target state determined for each LED 10 and then controlling each of the cooling devices 20 based on the result of the comparison between the state of the corresponding LED 10 and its target state. The control section 92 controls the cooling devices 20 while maintaining the total consumption power of the cooling devices 20 at the maximum power consumption level for an adjustment section or below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の光源を有する表示装置に関する。   The present invention relates to a display device having a plurality of light sources.

従来、複数の光源(例えば、赤色、緑色及び青色の光源)を有する表示装置が一般的に広く知られている。なお、表示装置とは、LCDディスプレイ、リアプロジェクションテレビ、プロジェクタなどである。   Conventionally, display devices having a plurality of light sources (for example, red, green, and blue light sources) are generally widely known. The display device is an LCD display, a rear projection television, a projector, or the like.

また、光源の環境温度が高くなると、光源の照度や寿命が劣化するため、このような表示装置には、光源を冷却する冷却装置が設けられている(例えば、特許文献1)。   In addition, since the illuminance and life of the light source deteriorate when the environmental temperature of the light source increases, such a display device is provided with a cooling device that cools the light source (for example, Patent Document 1).

表示装置に設けられる冷却装置としては、各光源に対する冷却能力が一律に同じである冷却装置が挙げられる。このような冷却装置によれば、冷却能力の制御を一元化することができるため、冷却能力の制御が容易である。一方で、各光源の照度や寿命に対して環境温度が与える影響は光源の種類(色など)によって異なるため、各光源の環境温度を個別に最適化することが好ましい。   An example of the cooling device provided in the display device is a cooling device having the same cooling capacity for each light source. According to such a cooling device, the control of the cooling capacity can be unified, so that the control of the cooling capacity is easy. On the other hand, since the influence of environmental temperature on the illuminance and lifetime of each light source varies depending on the type (color, etc.) of the light source, it is preferable to optimize the environmental temperature of each light source individually.

また、各光源の照度や寿命などを光源毎に考慮して、各光源に対する冷却能力が個別に制御される冷却装置も提案されている。このような冷却装置によれば、各光源に対する冷却能力が個別に制御されるため、各光源の環境温度を個別に最適化することができる。
特開2005−149943号公報(請求項1、図1など)
In addition, a cooling device is proposed in which the cooling capacity for each light source is individually controlled in consideration of the illuminance and life of each light source for each light source. According to such a cooling device, since the cooling capacity for each light source is individually controlled, the environmental temperature of each light source can be individually optimized.
Japanese Patent Laying-Open No. 2005-149943 (Claim 1, FIG. 1, etc.)

ところで、近年では、地球温暖化などの問題に対応するために、装置の省電力化が叫ばれている。これに伴って、上述した表示装置でも省電力化を図りたいという要望が高まっている。   By the way, in recent years, in order to cope with problems such as global warming, power saving of devices has been screamed. Along with this, there is an increasing demand for power saving even in the display device described above.

ここで、各光源に対する冷却能力が個別に制御される冷却装置では、冷却装置の全体に係る冷却能力は、光源毎に個別に制御される冷却能力の合計である。従って、冷却装置を有する表示装置の設置場所が高温となれば、各光源に対応する冷却能力がそれぞれ強化されるため、冷却装置の全体に係る冷却能力も強化される。すなわち、冷却装置を有する表示装置の設置場所が高温となった場合には、冷却装置の全体に係る消費電力が増加する。   Here, in the cooling device in which the cooling capacity for each light source is individually controlled, the cooling capacity for the entire cooling device is the sum of the cooling capacities controlled individually for each light source. Therefore, if the installation location of the display device having the cooling device becomes high temperature, the cooling capability corresponding to each light source is enhanced, so that the cooling capability of the entire cooling device is also enhanced. That is, when the installation location of the display device having the cooling device becomes high temperature, power consumption related to the entire cooling device increases.

このように、各光源に対する冷却能力を個別に最適化しようとすると、表示装置(冷却装置)の全体に係る消費電力が増加してしまう場合があった。すなわち、各光源の環境温度の最適化のみを考慮すると、表示装置の省電力化を図ることができない場合があった。   Thus, when trying to optimize the cooling capacity for each light source individually, the power consumption of the entire display device (cooling device) may increase. That is, when only the optimization of the environmental temperature of each light source is taken into consideration, there is a case where power saving of the display device cannot be achieved.

そこで、本発明は、上述した課題を解決するためになされたものであり、表示装置の省電力化を図りながら、各光源の環境温度を最適化することを可能とする表示装置を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and provides a display device that can optimize the environmental temperature of each light source while reducing the power consumption of the display device. With the goal.

本発明の一の特徴は、複数の光源(LED10)を有する表示装置(投写型表示装置100)が、前記光源毎に設けられており、前記光源の環境温度を調節する複数の温度調節部(冷却装置20)と、前記光源の状態を前記光源毎に検出する状態検出部(照度センサ30)と、前記状態検出部によって検出された前記光源の状態と前記光源毎に定められた目標状態とを比較して、前記光源の状態と前記目標状態とを比較した結果に基づいて、前記複数の温度調節部をそれぞれ制御する制御部(制御部92)とを備え、前記制御部が、前記複数の温度調節部の消費電力の合計を調節部最大消費電力以下に保ちながら、前記温度調節部を制御することを要旨とする。   One feature of the present invention is that a display device (projection display device 100) having a plurality of light sources (LEDs 10) is provided for each of the light sources, and a plurality of temperature adjusting units (adjusting the ambient temperature of the light sources). A cooling device 20), a state detection unit (illuminance sensor 30) for detecting the state of the light source for each light source, a state of the light source detected by the state detection unit, and a target state determined for each light source And a control unit (control unit 92) for controlling each of the plurality of temperature control units based on the result of comparing the state of the light source and the target state, and the control unit includes the plurality of The gist is to control the temperature adjusting unit while keeping the total power consumption of the temperature adjusting unit below the maximum power consumption of the adjusting unit.

かかる特徴によれば、制御部が、複数の温度調節部の消費電力の合計を調節部最大消費電力以下に保ちながら温度調節部を制御することによって、表示装置の設置場所が高温となった場合などに、表示装置の消費電力が無制限に増加することを抑制することができる。また、制御部が複数の温度調節部を個別に制御することによって、光源の環境温度を個別に最適化することができる。   According to such a feature, when the control unit controls the temperature adjustment unit while keeping the total power consumption of the plurality of temperature adjustment units below the maximum adjustment unit power consumption, the display device is installed at a high temperature For example, it is possible to suppress an unlimited increase in power consumption of the display device. Moreover, the environmental temperature of the light source can be individually optimized by the control unit individually controlling the plurality of temperature adjustment units.

本発明の一の特徴は、本発明の上述した特徴において、前記制御部が、前記複数の光源の照度の比率(ホワイトバランス)を一定比率に保ちながら、前記温度調節部を制御することを要旨とする。   One feature of the present invention is that, in the above-described feature of the present invention, the control unit controls the temperature adjusting unit while maintaining a illuminance ratio (white balance) of the plurality of light sources at a constant ratio. And

本発明の一の特徴は、本発明の上述した特徴において、前記制御部が、前記光源の状態が前記目標状態に達さずに、前記複数の温度調節部の消費電力の合計が前記調節部最大消費電力を超えた場合に、前記複数の光源の照度の比率(ホワイトバランス)を一定比率に保ちながら、前記温度調節部を制御することを要旨とする。   One feature of the present invention is that in the above-described feature of the present invention, the control unit is configured such that a state of the light source does not reach the target state, and the total power consumption of the plurality of temperature control units is the control unit. When the maximum power consumption is exceeded, the gist is to control the temperature adjusting unit while maintaining the illuminance ratio (white balance) of the plurality of light sources at a constant ratio.

本発明の一の特徴は、本発明の上述した特徴において、前記制御部が、前記温度調節部に加えて、前記複数の光源をそれぞれ制御しており、前記複数の温度調節部の消費電力及び前記複数の光源の消費電力の合計を最大消費電力以下に保ちながら、前記温度調節部及び前記光源を制御することを要旨とする。   One feature of the present invention is that in the above-described feature of the present invention, the control unit controls each of the plurality of light sources in addition to the temperature control unit, and the power consumption of the plurality of temperature control units and The gist is to control the temperature adjusting unit and the light source while keeping the total power consumption of the plurality of light sources below the maximum power consumption.

本発明の一の特徴は、本発明の上述した特徴において、前記温度調節部が、前記光源の環境温度を液体の流量によって調節しており、前記制御部が、前記液体の流量を制御することを要旨とする。   One feature of the present invention is that, in the above-described feature of the present invention, the temperature adjusting unit adjusts the environmental temperature of the light source by the flow rate of the liquid, and the control unit controls the flow rate of the liquid. Is the gist.

本発明の一の特徴は、本発明の上述した特徴において、前記光源の状態が、前記光源の照度又は前記光源の環境温度であることを要旨とする。   One aspect of the present invention is summarized in that, in the above-described characteristics of the present invention, the state of the light source is an illuminance of the light source or an environmental temperature of the light source.

本発明によれば、表示装置の省電力化を図りながら、各光源の環境温度を最適化することを可能とする表示装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the display apparatus which makes it possible to optimize the environmental temperature of each light source can be provided, aiming at the power saving of a display apparatus.

以下において、本発明の実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。   Embodiments of the present invention will be described below with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic.

ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[第1実施形態]
(投写型表示装置の構成)
以下において、本発明の第1実施形態に係る投写型表示装置の構成について、図面を参照しながら説明する。図1及び図2は、本発明の第1実施形態に係る投写型表示装置100を示す図である。図1に示すように、投写型表示装置100は、投写レンズ80を有しており、投写レンズ80によって拡大された像をスクリーン200上に投写する。
[First Embodiment]
(Configuration of projection display device)
The configuration of the projection display apparatus according to the first embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are views showing a projection display apparatus 100 according to the first embodiment of the present invention. As shown in FIG. 1, the projection display apparatus 100 includes a projection lens 80 and projects an image enlarged by the projection lens 80 on a screen 200.

図2に示すように、投写型表示装置100は、複数のLED10と、複数の冷却装置20と、複数の照度センサ30と、複数のテーパロッド40と、複数の導光部材50と、複数の液晶パネル60と、ダイクロイックプリズム70と、投写レンズ80とを有する。   As shown in FIG. 2, the projection display device 100 includes a plurality of LEDs 10, a plurality of cooling devices 20, a plurality of illuminance sensors 30, a plurality of tapered rods 40, a plurality of light guide members 50, and a plurality of liquid crystals. A panel 60, a dichroic prism 70, and a projection lens 80 are included.

LED10は、各色の光を発する光源(LED10r、LED10g及びLED10b)である。なお、LED10の照度(輝度)は、LED10の環境温度に依存する。   The LED 10 is a light source (LED 10r, LED 10g, and LED 10b) that emits light of each color. Note that the illuminance (luminance) of the LED 10 depends on the environmental temperature of the LED 10.

冷却装置20は、LED10毎に設けられており、各LED10の環境温度を個別に調節する冷却装置(冷却装置20r、冷却装置20g及び冷却装置20b)である。具体的には、冷却装置20は、液冷や空冷などの方法で各LED10の環境温度を下げる装置であり、制御部(図2では、不図示)によって個別に制御される。また、各冷却装置20の冷却能力を上げようとすると、冷却装置20が消費する消費電力が大きくなる。   The cooling device 20 is provided for each LED 10, and is a cooling device (cooling device 20r, cooling device 20g, and cooling device 20b) that individually adjusts the environmental temperature of each LED 10. Specifically, the cooling device 20 is a device that lowers the environmental temperature of each LED 10 by a method such as liquid cooling or air cooling, and is individually controlled by a control unit (not shown in FIG. 2). Moreover, if it is going to raise the cooling capacity of each cooling device 20, the power consumption which the cooling device 20 consumes will become large.

例えば、液冷に係る冷却装置20で冷却能力を上げるためには、液体の流量を増やす必要がある。また、液体の流量を増やすためにポンプの駆動力を上げる必要があるため、冷却装置20の消費電力が大きくなる。一方、空冷に係る冷却装置20で冷却能力を上げるためには、空気の流量を増やす必要がある。また、空気の流量を増やすためにファンの駆動力を上げる必要があるため、冷却装置20の消費電力が大きくなる。   For example, in order to increase the cooling capacity with the cooling device 20 related to liquid cooling, it is necessary to increase the flow rate of the liquid. Further, since it is necessary to increase the driving force of the pump in order to increase the liquid flow rate, the power consumption of the cooling device 20 increases. On the other hand, in order to increase the cooling capacity with the cooling device 20 related to air cooling, it is necessary to increase the flow rate of air. Further, since it is necessary to increase the driving force of the fan in order to increase the air flow rate, the power consumption of the cooling device 20 increases.

なお、冷却装置20は、液冷や空冷に係る装置だけではなくて、ベルチェ素子などであってもよい。   The cooling device 20 is not limited to a device related to liquid cooling or air cooling, but may be a Beltier element or the like.

照度センサ30は、LED10が発する光の照度(輝度)をLED10毎に検出するセンサ(照度センサ30r、照度センサ30g及び照度センサ30b)である。なお、照度センサ30が配置される位置は、LED10が発する光の照度が検出可能であれば、どこに配置されてもよいことは勿論である。   The illuminance sensor 30 is a sensor (illuminance sensor 30r, illuminance sensor 30g, and illuminance sensor 30b) that detects the illuminance (luminance) of light emitted from the LED 10 for each LED 10. Of course, the position where the illuminance sensor 30 is disposed may be disposed anywhere as long as the illuminance of the light emitted from the LED 10 can be detected.

テーパロッド40は、各LED10が発する光を導光部材50側に導くロッド(テーパロッド40r、テーパロッド40g及びテーパロッド40b)であり、テーパ形状を有している。   The taper rod 40 is a rod (taper rod 40r, taper rod 40g, and taper rod 40b) that guides light emitted from each LED 10 to the light guide member 50 side, and has a taper shape.

導光部材50は、各LED10が発する光を液晶パネル60側に導く部材(導光部材50r、導光部材50g及び導光部材50b)であり、角柱状の形状を有している。   The light guide member 50 is a member (light guide member 50r, light guide member 50g, and light guide member 50b) that guides light emitted from each LED 10 to the liquid crystal panel 60 side, and has a prismatic shape.

液晶パネル60は、各LED10が発する光を変調する光変調素子(液晶パネル60r、液晶パネル60g及び液晶パネル60b)である。   The liquid crystal panel 60 is a light modulation element (a liquid crystal panel 60r, a liquid crystal panel 60g, and a liquid crystal panel 60b) that modulates light emitted from each LED 10.

ダイクロイックプリズム70は、各液晶パネル60から出射された光を合成して、合成された光を投写レンズ80側に出射する。   The dichroic prism 70 combines the light emitted from the liquid crystal panels 60 and emits the combined light to the projection lens 80 side.

投写レンズ80は、ダイクロイックプリズム70から出射された光を拡大して、スクリーン200上に映像を投写する。   The projection lens 80 enlarges the light emitted from the dichroic prism 70 and projects an image on the screen 200.

(投写型表示装置の機能ブロック)
以下において、本発明の第1実施形態に係る投写型表示装置の機能ブロックについて、図面を参照しながら説明する。図3は、本発明の第1実施形態に係る投写型表示装置100の機能ブロックを示す図である。なお、図3では、本発明について明確に説明するために、投写型表示装置100の構成の一部が省略されている点に留意すべきである。
(Functional block of projection display device)
Hereinafter, functional blocks of the projection display device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a diagram showing functional blocks of the projection display apparatus 100 according to the first embodiment of the present invention. In FIG. 3, it should be noted that a part of the configuration of the projection display apparatus 100 is omitted in order to clearly explain the present invention.

図3に示すように、投写型表示装置100は、上述した構成に加えて、記憶部91と、制御部92とを有する。   As shown in FIG. 3, the projection display apparatus 100 includes a storage unit 91 and a control unit 92 in addition to the configuration described above.

記憶部91は、LED10毎に定められた各LED10の照度の目標照度を記憶している。ここで、目標照度は、LED10毎に定められた照度の絶対値である。また、記憶部91は、各LED10の照度の比率に係る目標比率(ホワイトバランス)を記憶する。なお、ホワイトバランスは、LED10毎に定められた目標照度の比率によって算出されてもよい。   The storage unit 91 stores a target illuminance of the illuminance of each LED 10 determined for each LED 10. Here, the target illuminance is an absolute value of illuminance determined for each LED 10. The storage unit 91 also stores a target ratio (white balance) related to the illuminance ratio of each LED 10. The white balance may be calculated based on a target illuminance ratio determined for each LED 10.

さらに、記憶部91は、各冷却装置20の消費電力の合計に対して許容可能な最大消費電力を記憶している。なお、記憶部91は、最大消費電力に代えて、各冷却装置20の冷却能力の合計に対して許容可能な最大冷却能力を記憶していてもよい。   Furthermore, the storage unit 91 stores the maximum power consumption allowable for the total power consumption of each cooling device 20. Note that the storage unit 91 may store the maximum cooling capacity allowable for the total cooling capacity of each cooling device 20 instead of the maximum power consumption.

制御部92は、各冷却装置20(冷却装置20r、冷却装置20g、冷却装置20b)、各照度センサ30(照度センサ30r、照度センサ30g及び照度センサ30b)及び記憶部91に接続されている。また、制御部92は、各冷却装置20に供給される電流を制御することによって、各冷却装置20の冷却能力を制御する。   The control unit 92 is connected to each cooling device 20 (cooling device 20r, cooling device 20g, cooling device 20b), each illuminance sensor 30 (illuminance sensor 30r, illuminance sensor 30g, and illuminance sensor 30b) and the storage unit 91. Further, the control unit 92 controls the cooling capacity of each cooling device 20 by controlling the current supplied to each cooling device 20.

具体的には、制御部92は、各照度センサ30から取得する検出照度と記憶部91に記憶された目標照度とを比較して、検出照度が目標照度に達していないLED10に対応する冷却装置20の冷却能力を強化する。   Specifically, the control unit 92 compares the detected illuminance acquired from each illuminance sensor 30 with the target illuminance stored in the storage unit 91, and the cooling device corresponding to the LED 10 whose detected illuminance does not reach the target illuminance. Strengthen the cooling capacity of 20.

また、制御部92は、各冷却装置20の消費電力の合計を記憶部91に記憶された最大消費電力以下に保ちながら、各冷却装置20に供給する電流(冷却能力)を制御する。   The control unit 92 controls the current (cooling capacity) supplied to each cooling device 20 while keeping the total power consumption of each cooling device 20 below the maximum power consumption stored in the storage unit 91.

例えば、制御部92は、LED10の照度を目標照度に近づけるために、各冷却装置20の冷却能力を強化しようとすると、各冷却装置20の消費電力の合計が最大消費電力を超えてしまう場合には、記憶部91に記憶されたホワイトバランスを保ちながら、冷却装置20に供給する電流(冷却能力)を最適化する。すなわち、制御部92は、LED10の照度が目標照度となるまで冷却装置20の冷却能力を強化せずに、最大消費電力を超えない範囲内でホワイトバランスを保ちながら冷却装置20を最適に制御する。   For example, when the control unit 92 attempts to enhance the cooling capacity of each cooling device 20 in order to bring the illuminance of the LED 10 close to the target illuminance, the total power consumption of each cooling device 20 exceeds the maximum power consumption. Optimizes the current (cooling capacity) supplied to the cooling device 20 while maintaining the white balance stored in the storage unit 91. That is, the control unit 92 optimally controls the cooling device 20 while maintaining the white balance within a range not exceeding the maximum power consumption without enhancing the cooling capacity of the cooling device 20 until the illuminance of the LED 10 reaches the target illuminance. .

(照度制御の一例)
以下において、本発明の第1実施形態に係る照度制御の一例について、図面を参照しながら説明する。図4及び図5は、本発明の第1実施形態に係る照度制御の一例について説明するための図である。
(Example of illumination control)
Hereinafter, an example of illuminance control according to the first embodiment of the present invention will be described with reference to the drawings. 4 and 5 are diagrams for explaining an example of illuminance control according to the first embodiment of the present invention.

最初に、LED10の環境温度に応じて、LED10の照度が変化する例について、図4を参照しながら説明する。なお、図4において、縦軸はLED10の照度であり、横軸はLED10に供給される電流である。   First, an example in which the illuminance of the LED 10 changes according to the environmental temperature of the LED 10 will be described with reference to FIG. In FIG. 4, the vertical axis represents the illuminance of the LED 10, and the horizontal axis represents the current supplied to the LED 10.

図4に示すように、電流―照度特性は、LED10の環境温度が低くなること(冷却能力を強化すること)によって向上し、LED10の環境温度が高くなること(冷却能力を緩和すること)によって低下する。例えば、LED10に供給される電流がIであり、目標照度がLである場合を例に挙げると、検出照度がLである場合には、冷却能力を強化することによってLED10の照度を目標照度(L)とすることができる。一方、検出照度がLである場合には、冷却能力を緩和することによってLED10の照度を目標照度(L)とすることができる。 As shown in FIG. 4, the current-illuminance characteristics are improved by lowering the environmental temperature of the LED 10 (increasing the cooling capacity), and increasing the environmental temperature of the LED 10 (releasing the cooling capacity). descend. For example, when the current supplied to the LED 10 is I 0 and the target illuminance is L 0 , when the detected illuminance is L 1 , the illuminance of the LED 10 is increased by enhancing the cooling capacity. It can be set as a target illuminance (L 0 ). On the other hand, when the detected illuminance is L 2 may be the illumination of the LED10 by mitigating the cooling capacity and target illuminance (L 0).

次に、検出照度と目標照度とを比較して、冷却装置20の冷却能力を制御する例について、図5を参照しながら説明する。なお、図5(a)は、記憶部91に記憶された目標照度の一例を示しており、図5(b)は、照度センサ30によって検出された検出照度の一例を示している。   Next, an example of controlling the cooling capacity of the cooling device 20 by comparing the detected illuminance with the target illuminance will be described with reference to FIG. 5A illustrates an example of the target illuminance stored in the storage unit 91, and FIG. 5B illustrates an example of the detected illuminance detected by the illuminance sensor 30.

このような場合には、制御部92は、検出照度と目標照度との差分比率に応じて、各冷却装置20の冷却能力を以下のように割り当てる。具体的には、LED10rの差分比率(Rw)は、Rw=(30−20)/30≒0.33である。同様に、LED10gの差分比率(Gw)は、Gw=(60−50)/60≒0.17であり、LED10bの差分比率(Bw)は、Bw=(10−10)/10=0である。   In such a case, the control unit 92 assigns the cooling capacity of each cooling device 20 as follows according to the difference ratio between the detected illuminance and the target illuminance. Specifically, the difference ratio (Rw) of the LED 10r is Rw = (30−20) /30≈0.33. Similarly, the difference ratio (Gw) of the LED 10g is Gw = (60−50) /60≈0.17, and the difference ratio (Bw) of the LED 10b is Bw = (10−10) / 10 = 0. .

続いて、冷却装置20rに割り当てられる冷却能力の割合(R)は、R=Rw/(Rw+Gw+Bw)=0.33(0.33+0.17+0)=0.66となる。同様に、冷却装置20gに割り当てられる冷却能力の割合(G)は、G=Gw/(Rw+Gw+Bw)=0.17(0.33+0.17+0)=0.34となり、冷却装置20bに割り当てられる冷却能力の割合(B)は、B=Bw/(Rw+Gw+Bw)=0(0.33+0.17+0)=0となる。   Subsequently, the ratio (R) of the cooling capacity allocated to the cooling device 20r is R = Rw / (Rw + Gw + Bw) = 0.33 (0.33 + 0.17 + 0) = 0.66. Similarly, the ratio (G) of the cooling capacity allocated to the cooling device 20g is G = Gw / (Rw + Gw + Bw) = 0.17 (0.33 + 0.17 + 0) = 0.34, and the cooling capacity allocated to the cooling device 20b. The ratio (B) of B is B = Bw / (Rw + Gw + Bw) = 0 (0.33 + 0.17 + 0) = 0.

なお、制御部92は、算出された割合(割合(R)、割合(G)及び割合(B))に応じて、複数の冷却装置20の全体に許容される最大冷却能力を各冷却装置20に割り当てる。   The control unit 92 sets the maximum cooling capacity allowed for the entirety of the plurality of cooling devices 20 in accordance with the calculated ratios (ratio (R), ratio (G), and ratio (B)). Assign to.

このように、制御部92が、検出照度と目標照度との差分比率に応じて各冷却装置20に冷却能力を割り当てることによって、各冷却装置20の冷却能力(消費電力)の合計が最大冷却能力(最大消費電力)を超えずに、ホワイトバランスを維持することができる。   Thus, the control unit 92 assigns the cooling capacity to each cooling device 20 according to the difference ratio between the detected illuminance and the target illuminance, so that the total cooling capacity (power consumption) of each cooling device 20 is the maximum cooling capacity. White balance can be maintained without exceeding (maximum power consumption).

(投写型表示装置の動作)
以下において、本発明の第1実施形態に係る投写型表示装置の動作について、図面を参照しながら説明する。図6は、本発明の第1実施形態に係る投写型表示装置100の動作を示すフロー図である。
(Operation of projection display device)
The operation of the projection display apparatus according to the first embodiment of the present invention will be described below with reference to the drawings. FIG. 6 is a flowchart showing the operation of the projection display apparatus 100 according to the first embodiment of the present invention.

図6に示すように、ステップ10において、投写型表示装置100は、LED10毎にLED10の照度を検出する。   As shown in FIG. 6, in step 10, the projection display apparatus 100 detects the illuminance of the LED 10 for each LED 10.

ステップ20において、投写型表示装置100は、ステップ10で検出された検出照度と記憶部91に記憶された目標照度と比較する。   In step 20, the projection display apparatus 100 compares the detected illuminance detected in step 10 with the target illuminance stored in the storage unit 91.

ステップ30において、投写型表示装置100は、検出照度が目標照度と一致するか否かをLED10毎に判定する。また、投写型表示装置100は、全てのLED10について検出照度が目標照度と一致する場合には、一連の処理を終了する。一方、投写型表示装置100は、検出照度が目標照度と一致しないLED10がある場合には、ステップ40の処理に移る。   In step 30, the projection display apparatus 100 determines for each LED 10 whether or not the detected illuminance matches the target illuminance. In addition, the projection display apparatus 100 ends the series of processes when the detected illuminance matches the target illuminance for all the LEDs 10. On the other hand, when there is an LED 10 whose detected illuminance does not match the target illuminance, the projection display apparatus 100 proceeds to the process of step 40.

ステップ40において、投写型表示装置100は、各LED10の照度を目標照度と一致させるために必要な各冷却装置20の消費電力を見積もる。   In step 40, the projection display apparatus 100 estimates the power consumption of each cooling device 20 required to make the illuminance of each LED 10 coincide with the target illuminance.

ステップ50において、投写型表示装置100は、ステップ40で見積もられた消費電力の合計(消費電力見積)が最大消費電力を超えるか否かを判定する。また、投写型表示装置100は、消費電力見積が最大消費電力を超える場合には、ステップ70の処理に移り、消費電力見積が最大消費電力以下である場合には、ステップ60の処理に移る。   In step 50, the projection display apparatus 100 determines whether or not the total power consumption (power consumption estimation) estimated in step 40 exceeds the maximum power consumption. The projection display apparatus 100 proceeds to the process of step 70 when the power consumption estimate exceeds the maximum power consumption, and proceeds to the process of step 60 when the power consumption estimate is equal to or less than the maximum power consumption.

ステップ60において、投写型表示装置100は、各LED10の照度を目標照度と一致させるために、各冷却装置20に供給すべき電流を個別に決定する。具体的には、投写型表示装置100は、検出照度と目標照度との差分に応じて、低下させる必要がある温度を算出し、算出した温度だけLED10の環境温度を低下させるために必要な電流を決定する。   In step 60, the projection display apparatus 100 individually determines the current to be supplied to each cooling device 20 in order to make the illuminance of each LED 10 coincide with the target illuminance. Specifically, the projection display apparatus 100 calculates a temperature that needs to be reduced according to the difference between the detected illuminance and the target illuminance, and the current required to reduce the environmental temperature of the LED 10 by the calculated temperature. To decide.

ステップ70において、投写型表示装置100は、ホワイトバランスを維持しながら、各冷却装置20に供給すべき電流(各冷却装置20に割り当てるべき冷却能力)を決定する。具体的には、投写型表示装置100は、検出照度と目標照度との差分比率に応じて、冷却装置20に供給すべき電流(冷却装置20に割り当てるべき冷却能力)を決定する。   In step 70, the projection display apparatus 100 determines the current to be supplied to each cooling device 20 (the cooling capacity to be assigned to each cooling device 20) while maintaining the white balance. Specifically, the projection display apparatus 100 determines the current to be supplied to the cooling device 20 (the cooling capacity to be assigned to the cooling device 20) according to the difference ratio between the detected illuminance and the target illuminance.

ステップ80において、投写型表示装置100は、ステップ60又はステップ70で決定された電流(冷却能力)に従って冷却装置20を個別に制御する。   In step 80, the projection display apparatus 100 individually controls the cooling device 20 according to the current (cooling capacity) determined in step 60 or 70.

なお、投写型表示装置100は、ステップ80の処理が終了すると、再びステップ10の処理に戻って、ステップ10〜ステップ80をループ処理することによって、LED10の環境温度を最適化する。   When the process of step 80 is completed, the projection display apparatus 100 returns to the process of step 10 again and optimizes the environmental temperature of the LED 10 by performing the loop process of steps 10 to 80.

(作用及び効果)
本発明の第1実施形態に係る投写型表示装置100によれば、制御部92が、複数の冷却装置20の消費電力の合計を最大消費電力以下に保ちながら冷却装置20を制御することによって、投写型表示装置100の設置場所が高温となった場合などに、投写型表示装置100の消費電力が無制限に増加することを抑制することができる。また、制御部92が複数の冷却装置20を個別に制御することによって、LED10の環境温度を個別に最適化することができる。
(Action and effect)
According to the projection display device 100 according to the first embodiment of the present invention, the control unit 92 controls the cooling device 20 while keeping the total power consumption of the plurality of cooling devices 20 below the maximum power consumption. When the installation location of the projection display apparatus 100 becomes high temperature or the like, it is possible to suppress an unlimited increase in power consumption of the projection display apparatus 100. Moreover, the control part 92 can control the several cooling device 20 separately, and can optimize the environmental temperature of LED10 separately.

また、本発明の第1実施形態に係る投写型表示装置100によれば、制御部92は、LED10の照度を目標照度と一致させようとすると、各冷却装置20の消費電力の合計が最大消費電力を超えてしまう場合に、LED10の照度が目標照度と一致するまで冷却装置20の冷却能力を強化せずに、ホワイトバランスを保ちながら冷却装置20を制御する。従って、投写型表示装置100の消費電力が無制限に増加することなく、LED10の照度を最適化することができる。   Further, according to the projection display apparatus 100 according to the first embodiment of the present invention, when the control unit 92 tries to match the illuminance of the LED 10 with the target illuminance, the total power consumption of each cooling device 20 is the maximum consumption. In the case where the electric power is exceeded, the cooling device 20 is controlled while maintaining the white balance without enhancing the cooling capacity of the cooling device 20 until the illuminance of the LED 10 matches the target illuminance. Therefore, the illuminance of the LED 10 can be optimized without increasing the power consumption of the projection display device 100 without limitation.

[第2実施形態]
以下において、本発明の第2実施形態について説明する。なお、以下においては、上述した第1実施形態と第2実施形態との相違点について主として説明する。
[Second Embodiment]
In the following, a second embodiment of the present invention will be described. In the following, differences between the above-described first embodiment and the second embodiment will be mainly described.

具体的には、上述した第1実施形態では、投写型表示装置100は、冷却装置20に供給される電流(冷却能力)のみについて制御する。これに対して、第2実施形態では、投写型表示装置100は、冷却装置20に供給される電流(冷却能力)に加えて、LED10に供給される電流を制御する。   Specifically, in the first embodiment described above, the projection display apparatus 100 controls only the current (cooling capacity) supplied to the cooling apparatus 20. On the other hand, in the second embodiment, the projection display apparatus 100 controls the current supplied to the LED 10 in addition to the current (cooling capacity) supplied to the cooling device 20.

(投写型表示装置の機能ブロック)
以下において、本発明の第2実施形態に係る投写型表示装置の機能ブロックについて、図面を参照しながら説明する。図7は、本発明の第2実施形態に係る投写型表示装置100の機能ブロックを示す図である。なお、図7では、上述した図3と同一の構成については同一の符号を付している。また、図7では、上述した図3と同様に、投写型表示装置100の構成の一部が省略されている点に留意すべきである。
(Functional block of projection display device)
Hereinafter, functional blocks of the projection display apparatus according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a diagram showing functional blocks of the projection display apparatus 100 according to the second embodiment of the present invention. In FIG. 7, the same components as those in FIG. 3 described above are denoted by the same reference numerals. In FIG. 7, it should be noted that a part of the configuration of the projection display apparatus 100 is omitted as in FIG. 3 described above.

図7に示すように、投写型表示装置100は、LED10と、冷却装置20と、照度センサ30と、記憶部91と、制御部92とを有する。   As shown in FIG. 7, the projection display apparatus 100 includes an LED 10, a cooling device 20, an illuminance sensor 30, a storage unit 91, and a control unit 92.

記憶部91は、各冷却装置20の消費電力及び各LED10の消費電力の合計に対する最大消費電力(冷却装置+光源)を記憶している。また、記憶部91は、LED10に供給することが許容される電流の最大定格をLED10毎に記憶している。   The storage unit 91 stores the maximum power consumption (cooling device + light source) with respect to the sum of the power consumption of each cooling device 20 and the power consumption of each LED 10. In addition, the storage unit 91 stores a maximum rating of current allowed to be supplied to the LED 10 for each LED 10.

制御部92は、冷却装置20、照度センサ30及び記憶部91に加えて、LED10にも接続されており、各冷却装置20に供給する電流(冷却能力)に加えて、各LED10に供給する電流を制御する。また、制御部92は、各冷却装置20の消費電力及び各LED10の消費電力の合計を記憶部91に記憶された最大消費電力(冷却装置+光源)以下に保つとともに、各LED10に供給される電流を記憶部91に記憶された最大定格以下に保ちながら、各冷却装置20に供給する電流及び各LED10に供給する電流を制御する。   The control unit 92 is connected to the LED 10 in addition to the cooling device 20, the illuminance sensor 30, and the storage unit 91. In addition to the current (cooling capacity) supplied to each cooling device 20, the current supplied to each LED 10. To control. The control unit 92 keeps the total power consumption of each cooling device 20 and each LED 10 below the maximum power consumption (cooling device + light source) stored in the storage unit 91 and is supplied to each LED 10. While maintaining the current below the maximum rating stored in the storage unit 91, the current supplied to each cooling device 20 and the current supplied to each LED 10 are controlled.

具体的には、制御部92は、冷却装置20に供給する電流を増やすことによってLED10の照度が向上する割合(以下、冷却装置電流制御効率)と、LED10に供給する電流を増やすことによってLED10の照度が向上する割合(以下、光源電流制御効率)とを比較する。   Specifically, the control unit 92 increases the ratio of the illuminance of the LED 10 by increasing the current supplied to the cooling device 20 (hereinafter referred to as cooling device current control efficiency) and the current supplied to the LED 10 to increase the current of the LED 10. The ratio of illuminance improvement (hereinafter, light source current control efficiency) is compared.

また、制御部92は、光源電流制御効率が冷却装置電流制御効率よりも高い場合には、各LED10に供給する電流を各冷却装置20に供給する電流よりも優先して制御する。一方、制御部92は、光源電流制御効率が冷却装置電流制御効率以下である場合には、各冷却装置20に供給する電流を各LED10に供給する電流よりも優先して制御する。   Further, when the light source current control efficiency is higher than the cooling device current control efficiency, the control unit 92 controls the current supplied to each LED 10 with priority over the current supplied to each cooling device 20. On the other hand, when the light source current control efficiency is equal to or lower than the cooling device current control efficiency, the control unit 92 controls the current supplied to each cooling device 20 with priority over the current supplied to each LED 10.

(照度制御の一例)
以下において、本発明の第2実施形態に係る照度制御の一例について、図面を参照しながら説明する。図8及び図9は、本発明の第2実施形態に係る照度制御の一例について説明するための図である。
(Example of illumination control)
Hereinafter, an example of illuminance control according to the second embodiment of the present invention will be described with reference to the drawings. 8 and 9 are diagrams for explaining an example of illuminance control according to the second embodiment of the present invention.

最初に、冷却装置電流制御効率について図8(a)及び図8(b)を参照しながら説明する。なお、図8(a)において、縦軸はLED10の照度であり、横軸はLED10の環境温度である。また、図8(b)において、縦軸はLED10の環境温度あり、横軸は冷却装置20に供給される電流であり、Tは投写型表示装置100の外気温である。 First, the cooling device current control efficiency will be described with reference to FIGS. 8 (a) and 8 (b). In FIG. 8A, the vertical axis represents the illuminance of the LED 10, and the horizontal axis represents the environmental temperature of the LED 10. Further, in FIG. 8 (b), the vertical axis is the ambient temperature of the LED 10, the horizontal axis is the current supplied to the cooling device 20, T a is the ambient temperature of the projection display device 100.

図8(a)に示すように、LED10の照度は、LED10の環境温度が上がるに従って低下する。例えば、LED10の環境温度がTである場合には、LED10の照度はLであり、LED10の環境温度がTである場合には、LED10の照度はLである。 As shown to Fig.8 (a), the illumination intensity of LED10 falls as the environmental temperature of LED10 goes up. For example, if the environmental temperature of LED10 is T 2 are, illuminance of LED10 is L 2, when the environmental temperature of LED10 is T 1, the illuminance of LED10 is L 1.

なお、目標照度がLである場合を例に挙げると、LED10の照度がLである場合には、LED10の環境温度を上げることによってLED10の照度を下げることが可能である。一方、LED10の照度がLである場合には、LED10の環境温度を下げることによってLED10の照度を上げることが可能である。 For example, when the target illuminance is L 0 , when the illuminance of the LED 10 is L 2 , the illuminance of the LED 10 can be decreased by increasing the environmental temperature of the LED 10. On the other hand, if the illuminance of the LED 10 is L 1, it is possible to raise the intensity of the LED 10 by lowering the environmental temperature of the LED 10.

一方、図8(b)に示すように、冷却装置20に供給される電流(冷却装置20の消費電力)を増やすことによってLED10の環境温度が低下する割合(以下、環境温度低下割合)は、LED10の環境温度が外気温(T)に近づくに従って小さくなる。例えば、環境温度がTである場合には環境温度低下割合が高いが、環境温度がTである場合には環境温度低下割合が非常に低い。 On the other hand, as shown in FIG. 8B, the rate at which the environmental temperature of the LED 10 decreases by increasing the current supplied to the cooling device 20 (power consumption of the cooling device 20) (hereinafter referred to as the environmental temperature reduction rate) is: The environmental temperature of the LED 10 decreases as it approaches the outside air temperature (T a ). For example, when the environmental temperature is T 3 , the environmental temperature decrease rate is high, but when the environmental temperature is T 4 , the environmental temperature decrease rate is very low.

図8(a)及び図8(b)に示したように、LED10の環境温度が外気温(T)に近づくに従って環境温度低下割合が小さくなるため、冷却装置20に供給される電流(冷却装置20の消費電力)を増やしても、LED10の照度を上げることが難しくなる。すなわち、冷却装置電流制御効率は、LED10の環境温度が外気温(T)に近づくに従って小さくなる。 As shown in FIGS. 8A and 8B, since the environmental temperature decrease rate decreases as the environmental temperature of the LED 10 approaches the outside air temperature (T a ), the current (cooling) supplied to the cooling device 20 is reduced. Even if the power consumption of the device 20 is increased, it is difficult to increase the illuminance of the LED 10. That is, the cooling device current control efficiency decreases as the environmental temperature of the LED 10 approaches the outside air temperature (T a ).

次に、光源電流制御効率について図9を参照しながら説明する。なお、図9において、縦軸はLED10の照度であり、横軸はLED10に供給される電流である。   Next, the light source current control efficiency will be described with reference to FIG. In FIG. 9, the vertical axis represents the illuminance of the LED 10, and the horizontal axis represents the current supplied to the LED 10.

図9に示すように、LED10の照度は、LED10に供給される電流(LED10の消費電力)が増えるに従って上昇する。例えば、LED10の照度が目標照度(L)である場合を例に挙げると、LED10に供給される電流はIであるが、LED10に供給される電流を最大定格(IMAX)まで上げると、LED10の照度はLMAXまで上昇する
このように、LED10の消費電力が最大定格(IMAX)を超えない範囲内であれば、LED10の照度を上げることが可能である。
As shown in FIG. 9, the illuminance of the LED 10 increases as the current supplied to the LED 10 (power consumption of the LED 10) increases. For example, when the illuminance of the LED 10 is the target illuminance (L 0 ), for example, the current supplied to the LED 10 is I 0 , but the current supplied to the LED 10 is increased to the maximum rating (I MAX ). Thus, the illuminance of the LED 10 rises to L MAX As described above, the illuminance of the LED 10 can be increased as long as the power consumption of the LED 10 does not exceed the maximum rating (I MAX ).

図8及び図9を参照しながら説明したように、冷却装置電流制御効率は、外気温(T)とLED10の環境温度との温度差によって制約を受け、光源電流制御効率は、各LED10の最大定格によって制約を受ける。 As described with reference to FIGS. 8 and 9, the cooling device current control efficiency is limited by the temperature difference between the outside air temperature (T a ) and the environmental temperature of the LED 10, and the light source current control efficiency is determined by the LED 10. Limited by maximum rating.

(投写型表示装置の動作)
以下において、本発明の第2実施形態に係る投写型表示装置の動作について、図面を参照しながら説明する。図10は、本発明の第2実施形態に係る投写型表示装置100の動作を示すフロー図である。なお、図10において、ステップ10〜ステップ70の処理は、上述した図6と同様であるため、その説明については省略する。
(Operation of projection display device)
The operation of the projection display apparatus according to the second embodiment of the present invention will be described below with reference to the drawings. FIG. 10 is a flowchart showing the operation of the projection display apparatus 100 according to the second embodiment of the present invention. In FIG. 10, the processing from step 10 to step 70 is the same as that in FIG.

図10に示すように、ステップ110において、投写型表示装置100は、光源電流制御効率が冷却装置電流制御効率よりも高いか否かを判定する。また、投写型表示装置100は、光源電流制御効率が冷却装置電流制御効率よりも高い場合には、ステップ120の処理に移り、光源電流制御効率が冷却装置電流制御効率以下である場合には、ステップ40の処理に移る。   As shown in FIG. 10, in step 110, the projection display apparatus 100 determines whether or not the light source current control efficiency is higher than the cooling apparatus current control efficiency. Further, when the light source current control efficiency is higher than the cooling device current control efficiency, the projection display apparatus 100 proceeds to the processing of step 120, and when the light source current control efficiency is equal to or lower than the cooling device current control efficiency, The process proceeds to step 40.

なお、ステップ110は、ステップ30で検出照度が目標照度と一致しないLED10があると判定された場合に行われる処理である。   Step 110 is processing performed when it is determined in step 30 that there is an LED 10 whose detected illuminance does not match the target illuminance.

ステップ120において、投写型表示装置100は、LED10の照度を目標照度と一致させるために、LED10に供給すべき電流を見積もる。具体的には、投写型表示装置100は、照度センサ30によって検出された検出照度と記憶部91に記憶された目標照度との差分に基づいて、LED10に供給すべき電流を見積もる。   In step 120, the projection display apparatus 100 estimates a current to be supplied to the LED 10 in order to make the illuminance of the LED 10 coincide with the target illuminance. Specifically, the projection display apparatus 100 estimates the current to be supplied to the LED 10 based on the difference between the detected illuminance detected by the illuminance sensor 30 and the target illuminance stored in the storage unit 91.

ステップ130において、投写型表示装置100は、ステップ120で見積もられた電流(供給電流見積)が最大定格を超えるか否かをLED10毎に判定する。また、投写型表示装置100は、供給電流見積が最大定格を超えるLED10がある場合には、ステップ40の処理に移り、供給電流見積が最大定格を超えるLED10がない場合には、ステップ140の処理に移る。   In step 130, the projection display apparatus 100 determines for each LED 10 whether or not the current estimated in step 120 (estimated supply current) exceeds the maximum rating. If there is an LED 10 whose supply current estimate exceeds the maximum rating, the projection display apparatus 100 proceeds to the process of step 40. If there is no LED 10 whose supply current estimate exceeds the maximum rating, the projection display apparatus 100 performs the process of step 140. Move on.

ステップ140において、投写型表示装置100は、各LED10の照度を目標照度と一致させるために、各LED10に供給すべき電流を個別に決定する。具体的には、投写型表示装置100は、検出温度と目標温度との差分に応じて、LED10に供給すべき電流を決定する。   In step 140, the projection display apparatus 100 individually determines the current to be supplied to each LED 10 in order to make the illuminance of each LED 10 coincide with the target illuminance. Specifically, the projection display apparatus 100 determines a current to be supplied to the LED 10 according to the difference between the detected temperature and the target temperature.

ステップ80aにおいて、投写型表示装置100は、ステップ60、ステップ70又はステップ130で決定された供給電流に従って、LED10又は冷却装置20を個別に制御する。   In Step 80a, the projection display apparatus 100 individually controls the LED 10 or the cooling device 20 according to the supply current determined in Step 60, Step 70, or Step 130.

なお、投写型表示装置100は、ステップ80の処理が終了すると、再びステップ10の処理に戻って、ステップ10〜ステップ80をループ処理することによって、LED10の環境温度を最適化する。   When the process of step 80 is completed, the projection display apparatus 100 returns to the process of step 10 again and optimizes the environmental temperature of the LED 10 by performing the loop process of steps 10 to 80.

このように、投写型表示装置100がステップ10〜ステップ80をループ処理することによって、LED10に供給する電流を増やすことに起因してLED10の環境温度が増加しても、LED10の環境温度が最適化される。   In this way, even if the environmental temperature of the LED 10 increases due to the increase in the current supplied to the LED 10 by the projection display device 100 performing steps 10 to 80 in a loop, the environmental temperature of the LED 10 is optimal. It becomes.

(作用及び効果)
本発明の第2実施形態に係る投写型表示装置100によれば、制御部92は、各冷却装置20に供給される電流だけではなく、LED10に供給される電流を制御する。また、制御部92は、複数のLED10及び複数の冷却装置20の消費電力の合計が最大消費電力(光源+冷却装置)を超えない範囲内で、LED10及び冷却装置20を制御する。従って、LED10の環境温度が外気温(T)に近づいて冷却装置電流制御効率が低下する場合であっても、LED10の照度を効率的に高めることができる。その結果、投写型表示装置100の消費電力の増加を抑制することができる。
(Action and effect)
According to the projection display device 100 according to the second embodiment of the present invention, the control unit 92 controls not only the current supplied to each cooling device 20 but also the current supplied to the LED 10. In addition, the control unit 92 controls the LEDs 10 and the cooling device 20 within a range where the total power consumption of the plurality of LEDs 10 and the plurality of cooling devices 20 does not exceed the maximum power consumption (light source + cooling device). Therefore, even when the environmental temperature of the LED 10 approaches the outside air temperature (T a ) and the cooling device current control efficiency decreases, the illuminance of the LED 10 can be efficiently increased. As a result, an increase in power consumption of the projection display apparatus 100 can be suppressed.

[その他の実施形態]
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、上述した第1実施形態及び第2実施形態では、表示装置が投写型表示装置100であるものとして説明したが、これに限定されるものではない。具体的には、表示装置は、複数の光源を有する表示装置であればよく、LCDディスプレイ、プロジェクタ、リアプロジェクションテレビなどであってもよい。   For example, in the first embodiment and the second embodiment described above, the display device is described as the projection display device 100, but the present invention is not limited to this. Specifically, the display device may be a display device having a plurality of light sources, and may be an LCD display, a projector, a rear projection television, or the like.

また、上述した第1実施形態及び第2実施形態では、光源の状態を検出する状態検出部が照度センサ30であるものとして説明したが、これに限定されるものではない。具体的には、状態検出部は、光源の環境温度を検出する温度センサであってもよい。   In the first embodiment and the second embodiment described above, the state detection unit that detects the state of the light source has been described as the illuminance sensor 30, but the present invention is not limited to this. Specifically, the state detection unit may be a temperature sensor that detects the ambient temperature of the light source.

なお、状態検出部が温度センサである場合には、制御部92は、光源の照度ではなくて、光源の環境温度を用いて、冷却装置20やLED10に供給される電流を制御する。   When the state detection unit is a temperature sensor, the control unit 92 controls the current supplied to the cooling device 20 and the LED 10 using the ambient temperature of the light source instead of the illuminance of the light source.

さらに、上述した第1実施形態及び第2実施形態では、光源がLED10であるものとして説明したが、これに限定されるものではない。具体的には、光源が温度依存性を有していれば、本発明を適用可能であり、光源は、レーザダイオードなどであってもよい。   Furthermore, in the first embodiment and the second embodiment described above, the light source is described as being the LED 10, but the present invention is not limited to this. Specifically, the present invention can be applied as long as the light source has temperature dependence, and the light source may be a laser diode or the like.

また、上述した第1実施形態及び第2実施形態では、温度調節部がLED10の環境温度を下げる冷却装置20であるものとして説明したが、これに限定されるものではない。例えば、温度調節部は、LED10の環境温度を下げるとともに、LED10の環境温度を上げることも可能な装置であってもよい。   Moreover, in 1st Embodiment and 2nd Embodiment mentioned above, although the temperature control part demonstrated as what was the cooling device 20 which reduces the environmental temperature of LED10, it is not limited to this. For example, the temperature adjustment unit may be a device that can lower the environmental temperature of the LED 10 and also increase the environmental temperature of the LED 10.

さらに、上述した第1実施形態及び第2実施形態では特に触れていないが、制御部92は、LED10の経時劣化を考慮して、冷却装置20やLED10に供給される電流を制御してもよい。   Further, although not particularly mentioned in the first embodiment and the second embodiment described above, the control unit 92 may control the current supplied to the cooling device 20 and the LED 10 in consideration of the deterioration of the LED 10 over time. .

また、上述した第2実施形態では、制御部92は、LED10に供給される電流の見積(供給電流見積)が最大定格を超える場合には、LED10に供給される電流を制御せずに、冷却装置20に供給される電流を制御するが、これに限定されるものではない。具体的には、制御部92は、供給電流見積が最大定格を超える場合であっても、最大定格内でLED10に供給される電流を制御するとともに、冷却装置20に供給される電流を制御することによって、各LED10の照度の向上を図ってもよい。   In the second embodiment described above, the control unit 92 controls the cooling without controlling the current supplied to the LED 10 when the estimated current supplied to the LED 10 (estimated supply current) exceeds the maximum rating. Although the electric current supplied to the apparatus 20 is controlled, it is not limited to this. Specifically, the control unit 92 controls the current supplied to the LED 10 within the maximum rating and the current supplied to the cooling device 20 even when the estimated supply current exceeds the maximum rating. Thus, the illuminance of each LED 10 may be improved.

本発明の第1実施形態に係る投写型表示装置100を示す図である(その1)。It is a figure which shows the projection display apparatus 100 which concerns on 1st Embodiment of this invention (the 1). 本発明の第1実施形態に係る投写型表示装置100を示す図である(その2)。It is a figure which shows the projection display apparatus 100 which concerns on 1st Embodiment of this invention (the 2). 本発明の第1実施形態に係る投写型表示装置100の機能ブロックを示す図である。It is a figure which shows the functional block of the projection type display apparatus 100 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る照度制御の一例について説明するための図である(その1)。It is a figure for demonstrating an example of the illumination intensity control which concerns on 1st Embodiment of this invention (the 1). 本発明の第1実施形態に係る照度制御の一例について説明するための図である(その2)。It is a figure for demonstrating an example of the illumination intensity control which concerns on 1st Embodiment of this invention (the 2). 本発明の第1実施形態に係る投写型表示装置100の動作を示すフロー図である。It is a flowchart which shows operation | movement of the projection type display apparatus 100 which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る投写型表示装置100の機能ブロックを示す図である。It is a figure which shows the functional block of the projection display apparatus 100 which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る照度制御の一例について説明するための図である(その1)。It is a figure for demonstrating an example of the illumination intensity control which concerns on 2nd Embodiment of this invention (the 1). 本発明の第2実施形態に係る照度制御の一例について説明するための図である(その2)。It is a figure for demonstrating an example of the illumination intensity control which concerns on 2nd Embodiment of this invention (the 2). 本発明の第2実施形態に係る投写型表示装置100の動作を示すフロー図である。It is a flowchart which shows operation | movement of the projection type display apparatus 100 which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

LED10、冷却装置20、照度センサ30、テーパロッド40、導光部材50、液晶パネル60、ダイクロイックプリズム70、投写レンズ80、記憶部91、制御部92、投写型表示装置100、スクリーン200   LED 10, cooling device 20, illumination sensor 30, taper rod 40, light guide member 50, liquid crystal panel 60, dichroic prism 70, projection lens 80, storage unit 91, control unit 92, projection display device 100, screen 200

Claims (6)

複数の光源を有する表示装置であって、
前記光源毎に設けられており、前記光源の環境温度を調節する複数の温度調節部と、
前記光源の状態を前記光源毎に検出する状態検出部と、
前記状態検出部によって検出された前記光源の状態と前記光源毎に定められた目標状態とを比較して、前記光源の状態と前記目標状態とを比較した結果に基づいて、前記複数の温度調節部をそれぞれ制御する制御部とを備え、
前記制御部は、前記複数の温度調節部の消費電力の合計を調節部最大消費電力以下に保ちながら、前記温度調節部を制御することを特徴とする表示装置。
A display device having a plurality of light sources,
A plurality of temperature adjusting units provided for each of the light sources, for adjusting an environmental temperature of the light sources;
A state detector for detecting the state of the light source for each light source;
The plurality of temperature adjustments based on a result of comparing the state of the light source and the target state by comparing the state of the light source detected by the state detection unit with a target state determined for each light source. A control unit for controlling each of the units,
The said control part controls the said temperature control part, keeping the sum total of the power consumption of these temperature control parts below adjustment part maximum power consumption.
前記制御部は、前記複数の光源の照度の比率を一定比率に保ちながら、前記温度調節部を制御することを特徴とする請求項1に記載の表示装置。   The display device according to claim 1, wherein the control unit controls the temperature adjusting unit while maintaining a ratio of illuminance of the plurality of light sources at a constant ratio. 前記制御部は、前記光源の状態が前記目標状態に達さずに、前記複数の温度調節部の消費電力の合計が前記調節部最大消費電力を超えた場合に、前記複数の光源の照度の比率を一定比率に保ちながら、前記温度調節部を制御することを特徴とする請求項1に記載の表示装置。   The controller controls the illuminance of the plurality of light sources when the state of the light sources does not reach the target state and the total power consumption of the plurality of temperature adjustment units exceeds the maximum power consumption of the adjustment unit. The display device according to claim 1, wherein the temperature control unit is controlled while maintaining the ratio at a constant ratio. 前記制御部は、
前記温度調節部に加えて、前記複数の光源をそれぞれ制御しており、
前記複数の温度調節部の消費電力及び前記複数の光源の消費電力の合計を最大消費電力以下に保ちながら、前記温度調節部及び前記光源を制御することを特徴とする請求項1に記載の表示装置。
The controller is
In addition to the temperature control unit, each of the plurality of light sources is controlled,
2. The display according to claim 1, wherein the temperature control unit and the light source are controlled while maintaining a total power consumption of the plurality of temperature control units and the power consumption of the plurality of light sources equal to or less than a maximum power consumption. apparatus.
前記温度調節部は、前記光源の環境温度を液体の流量によって調節しており、
前記制御部は、前記液体の流量を制御することを特徴とする請求項1に記載の表示装置。
The temperature adjusting unit adjusts the environmental temperature of the light source by the flow rate of the liquid,
The display device according to claim 1, wherein the control unit controls a flow rate of the liquid.
前記光源の状態は、前記光源の照度又は前記光源の環境温度であることを特徴とする請求項1に記載の表示装置。   The display device according to claim 1, wherein the state of the light source is an illuminance of the light source or an environmental temperature of the light source.
JP2006152475A 2006-05-31 2006-05-31 Display apparatus Pending JP2007322718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152475A JP2007322718A (en) 2006-05-31 2006-05-31 Display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152475A JP2007322718A (en) 2006-05-31 2006-05-31 Display apparatus

Publications (1)

Publication Number Publication Date
JP2007322718A true JP2007322718A (en) 2007-12-13

Family

ID=38855585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152475A Pending JP2007322718A (en) 2006-05-31 2006-05-31 Display apparatus

Country Status (1)

Country Link
JP (1) JP2007322718A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067120B1 (en) * 2009-05-19 2011-09-22 투아이시스(주) Temperature reduction device of light emitting diode junction
JP2012078682A (en) * 2010-10-05 2012-04-19 Seiko Epson Corp Projector and projection control method
JP2012518816A (en) * 2009-02-24 2012-08-16 マニュファクチャリング・リソーシズ・インターナショナル・インコーポレーテッド System and method for controlling operating parameters of a display in response to current consumption
CN103105717A (en) * 2011-11-15 2013-05-15 宏碁股份有限公司 Projector and related control method
WO2014188533A1 (en) * 2013-05-22 2014-11-27 Necディスプレイソリューションズ株式会社 Display device, display system, image output device, and method for controlling display device
JP2015019097A (en) * 2014-09-05 2015-01-29 キヤノン株式会社 Light quantity control device, control method of the same and display device
US9801305B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US9797588B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US9799306B2 (en) 2011-09-23 2017-10-24 Manufacturing Resources International, Inc. System and method for environmental adaptation of display characteristics
US9835893B2 (en) 2008-03-03 2017-12-05 Manufacturing Resources International, Inc. Heat exchanger for back to back electronics displays
US9867253B2 (en) 2008-05-21 2018-01-09 Manufacturing Resources International, Inc. Backlight adjustment system
JP2018018677A (en) * 2016-07-27 2018-02-01 日亜化学工業株式会社 Light source device
US9894800B2 (en) 2008-03-03 2018-02-13 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US9924583B2 (en) 2015-05-14 2018-03-20 Mnaufacturing Resources International, Inc. Display brightness control based on location data
US10080316B2 (en) 2009-11-13 2018-09-18 Manufacturing Resources International, Inc. Electronic display assembly having thermal cooling plate and optional convective air cooling loop
US10088702B2 (en) 2013-07-08 2018-10-02 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
US10194564B2 (en) 2014-04-30 2019-01-29 Manufacturing Resources International, Inc. Back to back electronic display assembly
US10212845B2 (en) 2014-03-11 2019-02-19 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for electronic display
US10278311B2 (en) 2015-02-17 2019-04-30 Manufacturing Resources International, Inc. Perimeter ventilation system
US10314212B2 (en) 2008-12-18 2019-06-04 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US10398066B2 (en) 2017-04-27 2019-08-27 Manufacturing Resources International, Inc. System and method for preventing display bowing
US10420257B2 (en) 2008-03-26 2019-09-17 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
US10524397B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
US10578658B2 (en) 2018-05-07 2020-03-03 Manufacturing Resources International, Inc. System and method for measuring power consumption of an electronic display assembly
JP2020034628A (en) * 2018-08-28 2020-03-05 キヤノン株式会社 Light source device and image projection device
US10586508B2 (en) 2016-07-08 2020-03-10 Manufacturing Resources International, Inc. Controlling display brightness based on image capture device data
US10593255B2 (en) 2015-05-14 2020-03-17 Manufacturing Resources International, Inc. Electronic display with environmental adaptation of display characteristics based on location
US10607520B2 (en) 2015-05-14 2020-03-31 Manufacturing Resources International, Inc. Method for environmental adaptation of display characteristics based on location
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US10782276B2 (en) 2018-06-14 2020-09-22 Manufacturing Resources International, Inc. System and method for detecting gas recirculation or airway occlusion
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US10820445B2 (en) 2016-03-04 2020-10-27 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US11019735B2 (en) 2018-07-30 2021-05-25 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11526044B2 (en) 2020-03-27 2022-12-13 Manufacturing Resources International, Inc. Display unit with orientation based operation
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US12010813B2 (en) 2022-07-22 2024-06-11 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12022635B2 (en) 2021-03-15 2024-06-25 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US12027132B1 (en) 2023-06-27 2024-07-02 Manufacturing Resources International, Inc. Display units with automated power governing
US12035486B1 (en) 2022-07-25 2024-07-09 Manufacturing Resources International, Inc. Electronic display assembly with fabric panel communications box
US12072561B2 (en) 2022-07-22 2024-08-27 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12105370B2 (en) 2021-03-15 2024-10-01 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US12127383B2 (en) 2007-11-16 2024-10-22 Manufacturing Resources International, Inc. Electronic display assembly with thermal management

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122606A (en) * 1998-10-19 2000-04-28 Mitsubishi Electric Corp Pdp display device
JP2001050653A (en) * 1999-08-05 2001-02-23 Sanyo Electric Co Ltd Controller for equipment
JP2003083978A (en) * 2001-09-10 2003-03-19 Olympus Optical Co Ltd Automatic analyzer
JP2005121890A (en) * 2003-10-16 2005-05-12 Seiko Epson Corp Image display device and light source temperature control method
JP2005208231A (en) * 2004-01-21 2005-08-04 Seiko Epson Corp Light source device, light source device control device, light source device control method, and projector
JP2005257873A (en) * 2004-03-10 2005-09-22 Seiko Epson Corp projector
JP2005338251A (en) * 2004-05-25 2005-12-08 Seiko Epson Corp Light source device and projector
JP2006017801A (en) * 2004-06-30 2006-01-19 Olympus Corp Light source device and image projecting device
JP2007147868A (en) * 2005-11-25 2007-06-14 Sony Corp Self-luminous display device, peak luminance adjusting device, electronic device, peak luminance adjusting method and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122606A (en) * 1998-10-19 2000-04-28 Mitsubishi Electric Corp Pdp display device
JP2001050653A (en) * 1999-08-05 2001-02-23 Sanyo Electric Co Ltd Controller for equipment
JP2003083978A (en) * 2001-09-10 2003-03-19 Olympus Optical Co Ltd Automatic analyzer
JP2005121890A (en) * 2003-10-16 2005-05-12 Seiko Epson Corp Image display device and light source temperature control method
JP2005208231A (en) * 2004-01-21 2005-08-04 Seiko Epson Corp Light source device, light source device control device, light source device control method, and projector
JP2005257873A (en) * 2004-03-10 2005-09-22 Seiko Epson Corp projector
JP2005338251A (en) * 2004-05-25 2005-12-08 Seiko Epson Corp Light source device and projector
JP2006017801A (en) * 2004-06-30 2006-01-19 Olympus Corp Light source device and image projecting device
JP2007147868A (en) * 2005-11-25 2007-06-14 Sony Corp Self-luminous display device, peak luminance adjusting device, electronic device, peak luminance adjusting method and program

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12127383B2 (en) 2007-11-16 2024-10-22 Manufacturing Resources International, Inc. Electronic display assembly with thermal management
US12207452B2 (en) 2007-11-16 2025-01-21 Manufacturing Resources International, Inc. Electronic display assembly with thermal management
US12207453B1 (en) 2007-11-16 2025-01-21 Manufacturing Resources International, Inc. Electronic display assembly with thermal management
US12185512B2 (en) 2007-11-16 2024-12-31 Manufacturing Resources International, Inc. Electronic display assembly with thermal management
US9801305B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US12207438B2 (en) 2008-03-03 2025-01-21 Manufacturing Resources International, Inc. Electronic display with cooling
US10506740B2 (en) 2008-03-03 2019-12-10 Manufacturing Resources International, Inc. Electronic display with cooling
US10506738B2 (en) 2008-03-03 2019-12-10 Manufacturing Resources International, Inc. Constricted convection cooling for an electronic display
US12274022B2 (en) 2008-03-03 2025-04-08 Manufacturing Resources International, Inc. Electronic display with cooling
US9797588B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US10721836B2 (en) 2008-03-03 2020-07-21 Manufacturing Resources International, Inc. Electronic display with cooling
US12108562B2 (en) 2008-03-03 2024-10-01 Manufacturing Resources International, Inc. Electronic display with cooling
US9835893B2 (en) 2008-03-03 2017-12-05 Manufacturing Resources International, Inc. Heat exchanger for back to back electronics displays
US12207437B2 (en) 2008-03-03 2025-01-21 Manufacturing Resources International, Inc. Electronic display with cooling
US11596081B2 (en) 2008-03-03 2023-02-28 Manufacturing Resources International, Inc. Electronic display with cooling
US9894800B2 (en) 2008-03-03 2018-02-13 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US11540418B2 (en) 2008-03-03 2022-12-27 Manufacturing Resources International, Inc. Electronic display with cooling
US11013142B2 (en) 2008-03-03 2021-05-18 Manufacturing Resources International, Inc. Electronic display with cooling
US10420257B2 (en) 2008-03-26 2019-09-17 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
US10440790B2 (en) 2008-05-21 2019-10-08 Manufacturing Resources International, Inc. Electronic display system with illumination control
US9867253B2 (en) 2008-05-21 2018-01-09 Manufacturing Resources International, Inc. Backlight adjustment system
US11191193B2 (en) 2008-12-18 2021-11-30 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US10314212B2 (en) 2008-12-18 2019-06-04 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
JP2012518816A (en) * 2009-02-24 2012-08-16 マニュファクチャリング・リソーシズ・インターナショナル・インコーポレーテッド System and method for controlling operating parameters of a display in response to current consumption
KR101759265B1 (en) * 2009-02-24 2017-07-18 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 System and method for controlling the operation parameters of a display in response to current draw
KR101067120B1 (en) * 2009-05-19 2011-09-22 투아이시스(주) Temperature reduction device of light emitting diode junction
US10080316B2 (en) 2009-11-13 2018-09-18 Manufacturing Resources International, Inc. Electronic display assembly having thermal cooling plate and optional convective air cooling loop
US10736245B2 (en) 2009-11-13 2020-08-04 Manufacturing Resources International, Inc. Electronic display assembly with combined conductive and convective cooling
JP2012078682A (en) * 2010-10-05 2012-04-19 Seiko Epson Corp Projector and projection control method
US9799306B2 (en) 2011-09-23 2017-10-24 Manufacturing Resources International, Inc. System and method for environmental adaptation of display characteristics
US10255884B2 (en) 2011-09-23 2019-04-09 Manufacturing Resources International, Inc. System and method for environmental adaptation of display characteristics
CN103105717A (en) * 2011-11-15 2013-05-15 宏碁股份有限公司 Projector and related control method
CN103105717B (en) * 2011-11-15 2015-04-08 宏碁股份有限公司 Projector and related control method
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US10524397B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
WO2014188533A1 (en) * 2013-05-22 2014-11-27 Necディスプレイソリューションズ株式会社 Display device, display system, image output device, and method for controlling display device
US9812071B2 (en) 2013-05-22 2017-11-07 Nec Display Solutions, Ltd. Display device, display system, video output device, and control method of display device
US10088702B2 (en) 2013-07-08 2018-10-02 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
US10359659B2 (en) 2013-07-08 2019-07-23 Manufactruing Resources Internatonal, Inc. Cooling system for electronic display
US10212845B2 (en) 2014-03-11 2019-02-19 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for electronic display
US10973156B2 (en) 2014-04-30 2021-04-06 Manufacturing Resources International, Inc. Dual electronic display assembly
US10687446B2 (en) 2014-04-30 2020-06-16 Manufacturing Resources International, Inc. Back to back electronic display assembly
US10194564B2 (en) 2014-04-30 2019-01-29 Manufacturing Resources International, Inc. Back to back electronic display assembly
JP2015019097A (en) * 2014-09-05 2015-01-29 キヤノン株式会社 Light quantity control device, control method of the same and display device
US10278311B2 (en) 2015-02-17 2019-04-30 Manufacturing Resources International, Inc. Perimeter ventilation system
US10548247B2 (en) 2015-02-17 2020-01-28 Manufacturing Resources International, Inc. Perimeter ventilation system
US9924583B2 (en) 2015-05-14 2018-03-20 Mnaufacturing Resources International, Inc. Display brightness control based on location data
US10321549B2 (en) 2015-05-14 2019-06-11 Manufacturing Resources International, Inc. Display brightness control based on location data
US10412816B2 (en) 2015-05-14 2019-09-10 Manufacturing Resources International, Inc. Display brightness control based on location data
US10607520B2 (en) 2015-05-14 2020-03-31 Manufacturing Resources International, Inc. Method for environmental adaptation of display characteristics based on location
US10593255B2 (en) 2015-05-14 2020-03-17 Manufacturing Resources International, Inc. Electronic display with environmental adaptation of display characteristics based on location
US10820445B2 (en) 2016-03-04 2020-10-27 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
US11744036B2 (en) 2016-03-04 2023-08-29 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
US10586508B2 (en) 2016-07-08 2020-03-10 Manufacturing Resources International, Inc. Controlling display brightness based on image capture device data
JP2018018677A (en) * 2016-07-27 2018-02-01 日亜化学工業株式会社 Light source device
US10499516B2 (en) 2017-04-27 2019-12-03 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10925174B2 (en) 2017-04-27 2021-02-16 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US11032923B2 (en) 2017-04-27 2021-06-08 Manufacturing Resources International, Inc. Field serviceable display assembly
US11822171B2 (en) 2017-04-27 2023-11-21 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10716224B2 (en) 2017-04-27 2020-07-14 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
US10624218B2 (en) 2017-04-27 2020-04-14 Manufacturing Resources International, Inc. Field serviceable and replaceable display assembly
US10757844B2 (en) 2017-04-27 2020-08-25 Manufacturing Resources International, Inc. System and method for reducing or combating display bowing
US10398066B2 (en) 2017-04-27 2019-08-27 Manufacturing Resources International, Inc. System and method for preventing display bowing
US11934054B2 (en) 2017-04-27 2024-03-19 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
US11022635B2 (en) 2018-05-07 2021-06-01 Manufacturing Resources International, Inc. Measuring power consumption of an electronic display assembly
US10578658B2 (en) 2018-05-07 2020-03-03 Manufacturing Resources International, Inc. System and method for measuring power consumption of an electronic display assembly
US11656255B2 (en) 2018-05-07 2023-05-23 Manufacturing Resources International, Inc. Measuring power consumption of a display assembly
US11293908B2 (en) 2018-06-14 2022-04-05 Manufacturing Resources International, Inc. System and method for detecting gas recirculation or airway occlusion
US10782276B2 (en) 2018-06-14 2020-09-22 Manufacturing Resources International, Inc. System and method for detecting gas recirculation or airway occlusion
US11774428B2 (en) 2018-06-14 2023-10-03 Manufacturing Resources International, Inc. System and method for detecting gas recirculation or airway occlusion
US11019735B2 (en) 2018-07-30 2021-05-25 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11889636B2 (en) 2018-07-30 2024-01-30 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US12004311B2 (en) 2018-07-30 2024-06-04 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
JP2020034628A (en) * 2018-08-28 2020-03-05 キヤノン株式会社 Light source device and image projection device
JP7204379B2 (en) 2018-08-28 2023-01-16 キヤノン株式会社 Light source device and image projection device
US11617287B2 (en) 2019-02-26 2023-03-28 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US12096607B1 (en) 2019-02-26 2024-09-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US12010824B2 (en) 2019-02-26 2024-06-11 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US11989059B2 (en) 2019-04-03 2024-05-21 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US12271229B2 (en) 2019-04-03 2025-04-08 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US11507141B2 (en) 2019-04-03 2022-11-22 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US12117684B2 (en) 2020-03-27 2024-10-15 Manufacturing Resources International, Inc. Display unit with orientation based operation
US12326626B2 (en) 2020-03-27 2025-06-10 Manufacturing Resources International, Inc. Display unit with monitoring features
US11526044B2 (en) 2020-03-27 2022-12-13 Manufacturing Resources International, Inc. Display unit with orientation based operation
US12007637B2 (en) 2020-03-27 2024-06-11 Manufacturing Resources International, Inc. Display unit with orientation based operation
US11815755B2 (en) 2020-03-27 2023-11-14 Manufacturing Resources International, Inc. Display unit with orientation based operation
US12298614B2 (en) 2020-03-27 2025-05-13 Manufacturing Resources International, Inc. Display unit with monitoring features
US12052850B2 (en) 2020-10-02 2024-07-30 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US12022624B2 (en) 2020-10-23 2024-06-25 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US12004310B2 (en) 2020-10-23 2024-06-04 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US12200877B2 (en) 2020-10-23 2025-01-14 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US12245399B2 (en) 2021-03-15 2025-03-04 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US12022635B2 (en) 2021-03-15 2024-06-25 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US12321058B2 (en) 2021-03-15 2025-06-03 Manufacturing Resources International, Inc. Display assemblies with condensation mitigation and related systems and methods
US12105370B2 (en) 2021-03-15 2024-10-01 Manufacturing Resources International, Inc. Fan control for electronic display assemblies
US12153479B2 (en) 2021-07-28 2024-11-26 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US12314093B2 (en) 2021-07-28 2025-05-27 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
US12317461B2 (en) 2021-08-23 2025-05-27 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US12089382B2 (en) 2021-11-23 2024-09-10 Manufacturing Resources International, Inc. Display assembly with divided interior space
US12185513B2 (en) 2021-11-23 2024-12-31 Manufacturing Resources International, Inc. Display assembly with divided interior space
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
US12197058B2 (en) 2022-07-22 2025-01-14 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12222592B2 (en) 2022-07-22 2025-02-11 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12072561B2 (en) 2022-07-22 2024-08-27 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12193187B2 (en) 2022-07-22 2025-01-07 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12010813B2 (en) 2022-07-22 2024-06-11 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12108546B1 (en) 2022-07-25 2024-10-01 Manufacturing Resources International, Inc. Electronic display assembly with fabric panel communications box
US12035486B1 (en) 2022-07-25 2024-07-09 Manufacturing Resources International, Inc. Electronic display assembly with fabric panel communications box
US12217713B2 (en) 2023-06-27 2025-02-04 Manufacturing Resources International, Inc. Display units with automated power governing
US12027132B1 (en) 2023-06-27 2024-07-02 Manufacturing Resources International, Inc. Display units with automated power governing
US12118953B1 (en) 2023-06-27 2024-10-15 Manufacturing Resources International, Inc. Display units with automated power governing

Similar Documents

Publication Publication Date Title
JP2007322718A (en) Display apparatus
JP5399035B2 (en) Projection display device
JP4107266B2 (en) Display device and dimming method thereof
US20060139245A1 (en) Projection video display apparatus and brightness adjustment method therefor
US8259097B2 (en) Backlight assembly, display comprising the same and control method thereof
JP2004361462A (en) Projection type image display device
JP2010060746A (en) Liquid crystal display device
US20130249958A1 (en) Light source control apparatus, control method for controlling the same, and liquid crystal display apparatus
JP5766040B2 (en) LIGHT EMITTING DEVICE, ITS CONTROL METHOD, AND IMAGE DISPLAY DEVICE
KR100967736B1 (en) Cooling unit, projector and cooling method
JP2012048209A (en) Projection type video display device
JP2010199501A (en) Led device and imaging apparatus using the led device
US10026365B2 (en) Display device including a calculation order change section
JP2008305791A (en) LIGHTING DEVICE, VIDEO DISPLAY DEVICE, AND PROJECTION TYPE DISPLAY DEVICE
JP2007292823A (en) Projection device
CN102955341B (en) Projection device and brightness adjustment method thereof
US9959836B2 (en) Image output apparatus, operation method for an image output apparatus, electronic circuit, electronic apparatus, and program
JP2009093098A (en) Liquid crystal display device
JP2008003257A (en) Backlight driver for liquid crystal display module and liquid crystal display module
JP2018013656A (en) Projection type display device
JP2016024267A (en) Image projection device and light source electric power control program
JP2009025437A (en) Display device
JP2012155049A (en) Projector and light source control method of the same
US20220005391A1 (en) Image display device and image display method
JP2009069679A (en) Projector

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080118

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803