JP2007319869A - Highly efficient method of producing electric resistance welded tube having good weld zone characteristic - Google Patents
Highly efficient method of producing electric resistance welded tube having good weld zone characteristic Download PDFInfo
- Publication number
- JP2007319869A JP2007319869A JP2006149889A JP2006149889A JP2007319869A JP 2007319869 A JP2007319869 A JP 2007319869A JP 2006149889 A JP2006149889 A JP 2006149889A JP 2006149889 A JP2006149889 A JP 2006149889A JP 2007319869 A JP2007319869 A JP 2007319869A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- forming
- electric resistance
- shape
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000003466 welding Methods 0.000 claims abstract description 27
- 238000005520 cutting process Methods 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 19
- 238000005498 polishing Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 7
- 239000004575 stone Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 32
- 239000010959 steel Substances 0.000 abstract description 32
- 230000015556 catabolic process Effects 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 4
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 7
- 239000011324 bead Substances 0.000 description 6
- 230000006698 induction Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Abstract
Description
本発明は、溶接部特性の良好な電縫管の高能率製造方法に関し、特に、油井ラインパイプ向けなどの溶接部の靭性が要求される管あるいは油井のケーシングパイプなどの溶接部強度が要求される管の製造に好ましく用いうる、溶接部特性の良好な電縫管の高能率製造方法に関する。 The present invention relates to a high-efficiency manufacturing method for electric resistance welded pipes with good welded part characteristics, and particularly, the strength of welded parts such as pipes that require toughness of welded parts for oil well line pipes or casing pipes of oil wells is required. The present invention relates to a high-efficiency manufacturing method for an electric resistance welded tube having good welded portion characteristics, which can be preferably used for manufacturing a welded tube.
通常、管は溶接管と継目無管に大別される。溶接管は、電縫鋼管を例とするように、板(帯材の意。以下同じ)を丸めて端部を突き合わせて溶接して製造し、継目無管は、材料の塊を高温で穿孔しマンドレルミル等で圧延して製造する。溶接管の場合、一般に溶接部の特性は母材より劣ると言われ、管の適用に当たって、用途ごとに溶接部の靭性や強度の保証が常に議論されて問題となってきた。 Usually, pipes are roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rolling plates (meaning strips; the same shall apply hereinafter) and welding the ends together, as in the case of ERW steel pipes. It is manufactured by rolling with a mandrel mill or the like. In the case of a welded pipe, it is generally said that the properties of the welded part are inferior to that of the base metal, and in the application of the pipe, guarantees of toughness and strength of the welded part have always been discussed for each application.
例えば、原油や天然ガスなどを輸送するラインパイプでは、管を寒冷地に敷設することが多いため低温靭性が重要であり、また、原油採掘の油井では採掘管を保護するためのケーシングパイプが必要とされ、管の強度が重要視される。
また、通常、管の母材となる熱延板は、管製造後の母材特性を考慮して成分設計や熱処理等が行われて、母材の靭性や強度等の特性は確保される。
For example, in line pipes that transport crude oil, natural gas, etc., low temperature toughness is important because pipes are often laid in cold regions, and casing pipes are required to protect mining pipes in oil wells for crude oil mining. The strength of the tube is regarded as important.
In general, a hot-rolled sheet serving as a base material of a pipe is subjected to component design, heat treatment, and the like in consideration of the base material characteristics after the manufacture of the pipe, and characteristics such as toughness and strength of the base material are ensured.
しかし、溶接部の特性は、母材の成分設計や熱処理等以上に、電縫溶接方法によって大きく左右されるため、溶接技術の開発が重要であった。
電縫溶接の不良原因としては、ペネトレータと呼ばれる溶接板材の端面に生成する酸化物が、電縫溶接時に溶鋼とともに端面から排出されずに残留し、この残留したペネトレータを原因として靭性が低下したり強度不足になる例が多かった。
However, since the characteristics of the welded part are greatly influenced by the electric resistance welding method more than the component design and heat treatment of the base metal, development of the welding technique has been important.
The reason for the failure of ERW welding is that the oxide generated on the end face of the welded plate material called penetrator remains without being discharged from the end face together with the molten steel during ERW welding, and the toughness decreases due to this residual penetrator. There were many examples of insufficient strength.
そこで、従来技術として電縫溶接不良の主原因であるペネトレータを溶接部から除くため、溶接部の板端面から積極的に溶鋼を排出する技術が鋭意検討されてきた。例えば、特許文献1〜4などに、板端面の形状について検討した例が記載されている。
また、特許文献5には、電縫管の溶接時における板条材の両側縁部の突き合わせ圧力の調整を容易にし、溶接信頼性を高める目的で、板幅端部を種々の形状に面取り加工する旨記載されている。
Further, in
特許文献1〜4は、いずれも板端面にテーパを付与して、溶鋼とともにペネトレータを排出することを意図している。テーパを付与する理由は、板端面に容易に形状を与えやすいためと考えられる。しかし、直線あるいは平面状のテーパを与えると、溶鋼排出に伴う酸化物等の欠陥排出には十分でない場合が生じていた。
また、特許文献5には、突き合わせ圧力の調整を容易にする種々の面取り形状が開示されているものの、溶鋼とともにペネトレータを排出する点、およびそれにより溶接部特性(特に低温靭性)を改善する点については、一切記載がないから、そこに開示されている多様な面取り形状のうち、いずれの形状が溶接部特性(特に低温靭性)を改善するものなのか、全く不明である。
Patent Documents 1 to 4 all intend to give a taper to the plate end surface and discharge the penetrator together with the molten steel. The reason for imparting the taper is considered to be because the shape is easily given to the end face of the plate. However, when a linear or planar taper is provided, there has been a case where it is not sufficient for discharging defects such as oxides accompanying discharge of molten steel.
また、実際の電縫管製造工程では種々の厚みの板をロール成形して管にしている。板端部にテーパ形状を付与する手段を単独で用いた場合、例えば、切削バイトまたは研削ロールを板厚と同等の精度良い間隔で設置するための位置調整が必要で、従来は製造能率を著しく低下させていた。
そこで、本発明は、溶鋼排出に伴う酸化物等の欠陥排出を十分促進でき、しかも製造能率の低下を伴わない、溶接部特性の良好な電縫管の高能率製造方法を提供することを目的とする。
In an actual electric resistance welded tube manufacturing process, various thickness plates are roll-formed into a tube. When a means for giving a taper shape to the plate end is used alone, for example, it is necessary to adjust the position for installing cutting tools or grinding rolls with an accurate interval equivalent to the plate thickness. It was decreasing.
Accordingly, the object of the present invention is to provide a high-efficiency manufacturing method for an ERW pipe that can sufficiently promote the discharge of defects such as oxides accompanying discharge of molten steel, and that does not involve a decrease in manufacturing efficiency, and that has good weld joint characteristics. And
前記目的を達成した本発明は、以下のとおりである。
1.帯材を成形し、その幅方向両端部を突き合わせて電縫溶接して管とする過程の中で、前記幅方向両端部に対し、その上下いずれか一面側の角部を切削または砥石研磨でR加工し、他面側の角部を帯材成形途中のフィンパス成形でR加工することを特徴とする溶接部特性の良好な電縫管の高能率製造方法。
The present invention that has achieved the above object is as follows.
1. In the process of forming a band material, butting both ends in the width direction and electro-welding to form a pipe, the corner on either the upper or lower side of the width direction both ends is cut or grinded by grinding stone A high-efficiency manufacturing method of an electric resistance welded tube with good welded portion characteristics, characterized in that R processing is performed, and a corner portion on the other surface side is subjected to R processing by fin pass forming in the middle of forming a band material.
2.管内径側になる帯材上面側の角部を前記切削または砥石研磨でR加工し、管外径側になる帯材下面側の角部を前記フィンパス成形でR加工することを特徴とする前項1に記載の溶接部特性の良好な電縫管の高能率製造方法。
3.前記R加工により付与するR形状の半径Rを、帯材厚みの20〜50%とすることを特徴とする前項1または2に記載の溶接部特性の良好な電縫管の高能率製造方法。
2. The above-mentioned item is characterized in that the corner on the upper surface side of the strip that becomes the inner diameter side of the tube is R-processed by the above-mentioned cutting or grindstone polishing, and the corner portion on the lower surface side of the strip that becomes the outer diameter side of the tube is R-processed by the above-mentioned fin pass molding. 2. A high-efficiency manufacturing method of an electric resistance welded tube having good weld-part characteristics according to 1.
3. 3. A highly efficient method for producing an electric resistance welded tube having good weld joint characteristics according to
本発明によれば、電縫溶接時に突き合わせされる帯材幅方向両端部の形状をR形状とし、かつ、このR形状を帯材上面側角部と下面側角部とにそれぞれ別個の適切なR加工手段で付与するようにしたことにより、溶接部特性(特に低温靭性)に優れた電縫管を高能率に製造することが可能になる。 According to the present invention, the shape of the both ends in the width direction of the band material to be abutted at the time of ERW welding is an R shape, and the R shape is separately applied to the upper surface side corner portion and the lower surface side corner portion of the band material. By giving it by the R processing means, it becomes possible to produce an ERW pipe excellent in welded portion characteristics (particularly low temperature toughness) with high efficiency.
以下、本発明について、従来技術と対比しながら詳しく説明する。
前述のように、電縫溶接の不良原因としては、ペネトレータと呼ばれる板端面に生成する酸化物が、電縫溶接時に溶鋼とともに端面から排出されずに残留し、この残留したペネトレータを原因として靭性が低下し強度不足になる例が多かった。
そこで、従来の技術はいずれも板端面にテーパを付与して、溶鋼とともにペネトレータを排出することを意図していた。テーパを付与する理由は、板端面に容易に形状を与えやすいためと考えられる。しかし、直線あるいは平面状のテーパを与えると、溶鋼排出に伴う酸化物等の欠陥排出には十分でない場合が生じた。
Hereinafter, the present invention will be described in detail in comparison with the prior art.
As described above, the cause of the failure of ERW welding is that the oxide generated on the plate end face called penetrator remains without being discharged from the end face together with the molten steel during ERW welding, and the toughness is caused by this remaining penetrator. There were many cases where the strength decreased and the strength was insufficient.
Therefore, all of the conventional techniques intended to taper the plate end surface and discharge the penetrator together with the molten steel. The reason for imparting the taper is considered to be because the shape is easily given to the end face of the plate. However, when a linear or flat taper is given, there are cases where it is not sufficient for discharging defects such as oxides accompanying discharge of molten steel.
この原因を明らかにするため、本発明者らが鋭意検討した結果、次のことがわかった。すなわち、テーパを付与した板端面で、溶接開始時に発生する溶鋼は接触面積が小さいために少なく、電縫溶接のアプセット(圧接)によって溶接した部分の面積が増加し、これに伴って溶鋼の量は増加してくる。しかし、従来のテーパ形状では、溶鋼の排出角度(排出量)が一定になるため、板厚端部付近の溶鋼排出は十分であっても、板厚中央付近の排出は不十分となる場合があって、溶鋼が溢れて板表面で固化して蓋となり、後から溶接面から出ようとする溶鋼を妨害する場合があることを見出した。 In order to clarify this cause, the present inventors have intensively studied and found the following. In other words, the molten steel generated at the start of welding on the plate end face with taper is small because the contact area is small, and the area of the welded part increases due to the upset (pressure welding) of ERW welding. Will increase. However, in the conventional taper shape, the discharge angle (discharge amount) of the molten steel is constant, so even if the molten steel discharge near the end of the plate thickness is sufficient, the discharge near the center of the plate thickness may be insufficient. Thus, it was found that the molten steel overflows and solidifies on the plate surface to become a lid, which may interfere with the molten steel that is about to come out from the welding surface later.
そこで、本発明者らは溶接の時間経過に伴って、溶鋼が常に良好に排出される方法を鋭意検討した。その結果、板厚中央付近の溶接時には溶鋼が少なくて、板厚端部付近の溶接時には溶鋼が増加することから、常にほぼ一定の溶鋼を排出する端面形状が必要なことを把握した。
本結果に基づいて、種々の形状について検討したところ、板端面にR加工を施すことによって、溶鋼排出を常に良好できることを見出した。すなわち、R加工を施すと、板厚中央付近の溶接時には時間の経過とともに接触面積が急激に増加するため、溶鋼の排出量が増加し、板厚端部付近の溶接時には時間が経過しても接触面積が緩やかに増加するため、溶鋼の排出量は減少する。これらの作用によって、溶鋼排出を安定して行うことができて、溶接面から先に出た溶鋼が固化して蓋となって後から出ようとする溶鋼を妨害することがなくなるわけである。
Therefore, the present inventors diligently studied a method in which molten steel is always discharged satisfactorily with the lapse of time of welding. As a result, the amount of molten steel was small at the time of welding near the center of the plate thickness, and the amount of molten steel increased at the time of welding near the plate thickness end.
Based on this result, various shapes were examined, and it was found that the discharge of molten steel can always be improved by subjecting the plate end surface to R processing. That is, when the R processing is performed, the contact area increases rapidly with the passage of time when welding near the center of the plate thickness, so that the discharge amount of molten steel increases, and even when the time passes when welding near the end of the plate thickness. Since the contact area gradually increases, the discharge of molten steel decreases. By these actions, the molten steel can be discharged stably, and the molten steel that has come out from the welded surface solidifies and becomes a lid that does not interfere with the molten steel that comes out later.
これらにより、板端部からの溶鋼排出が十分行われてペネトレータを十分除去できる結果、溶接部の靭性や強度などの特性を良好に保持することが可能なわけである。
また、板端部のR加工は板厚方向の両側(上下両面側の角部)に付与すると効果が大きい。
また、R加工を孔型ロールで行うと、中途半端な塑性加工を板端部が受けるため、所望する形状を得ることが難しいが、切削または砥石研磨で行うことにより、所望する形状をそのまま得ることが可能である。また、フィンパス成形では、板を丸めて断面を円形形状とするため、板端部はフィンに強圧される。従って、所望するR形状を予めフィンに与えておくことによって、板端部形状を所望するR形状に十分近づけることが可能となるわけである。
As a result, the molten steel is sufficiently discharged from the end portion of the plate, and the penetrator can be sufficiently removed. As a result, the properties such as the toughness and strength of the welded portion can be satisfactorily maintained.
Further, the R processing of the plate end portion is effective when applied to both sides in the plate thickness direction (corner portions on both the upper and lower surfaces).
In addition, when the R processing is performed with a perforated roll, it is difficult to obtain the desired shape because the plate end receives halfway plastic processing, but the desired shape is obtained as it is by cutting or grinding with a grindstone. It is possible. In fin pass molding, the plate is rounded to have a circular cross section, and the plate end is strongly pressed by the fin. Therefore, by giving the desired R shape to the fins in advance, the plate end shape can be made sufficiently close to the desired R shape.
そこで、ロール成形入側では、板はほぼ平坦であるため、切削または砥石研磨によってR形状を付与するとよい。これらR形状の付与手段は、装置が比較的大きいために設置スペースが必要であり、ロール成形途中やロール成形後では板端部同士の間隔が狭まるため設置し難い。また、切削や研削の装置は、装置単独で板を上下に拘束することが難しいため、板が通過する位置精度を保持する装置と合わせて、装置設置位置の精度が要求される。 Therefore, since the plate is substantially flat on the roll forming entry side, it is preferable to give an R shape by cutting or grinding with a grindstone. These R-shaped imparting means require an installation space because the apparatus is relatively large, and are difficult to install because the interval between the plate end portions becomes narrow during or after roll forming. In addition, since it is difficult for a cutting or grinding apparatus to restrain the plate up and down by itself, accuracy of the apparatus installation position is required together with an apparatus that maintains the positional accuracy through which the plate passes.
従って、その装置の架台は剛性を高くする必要があって設置スペースがより広く必要とされるわけである。ここで、板の上下両端部(上下両面側の角部)ともに切削または砥石研磨すると、ロール成形途中のフィンパス圧延(フィンパス成形の意。以下同じ)において、板をフィンパス圧延ロールに充満させるため、板端部が強圧されて事前に付与したR形状が潰れて所望する形状が得られない場合がある。従って、フィンパス圧延における板端部の潰れを考慮して、予め大きなR形状を付与しておくのがよいが、板の上下両端部(上下両面側の角部)ともにR形状を付与するのは板厚の制限から大きなR形状を得るのが難しいため、片側(上下いずれか一面側の角部)のみを切削または砥石研磨するのがよいわけである。 Therefore, it is necessary to increase the rigidity of the gantry of the apparatus, and a larger installation space is required. Here, when both the upper and lower ends of the plate (the corners on the upper and lower surfaces) are cut or grinded, in the fin pass rolling in the middle of roll forming (meaning of fin pass forming, the same applies hereinafter), in order to fill the fin pass rolling roll with the plate, There is a case where the desired shape is not obtained because the R shape applied in advance is crushed due to the plate edge being strongly pressed. Therefore, it is better to give a large R shape in advance in consideration of the crushing of the end of the plate in fin pass rolling, but the R shape is given to both the upper and lower end portions (upper and lower side corners) of the plate. Since it is difficult to obtain a large R shape due to the limitation of the plate thickness, it is preferable to cut or grind only one side (upper or lower corner).
次に、R形状を付与していない他方の端部(他面側の角部)については、フィンパス圧延を活用してR形状を付与することとした。上記の理由で片側のみR形状を付与したため、両端部ともR形状を付与するには、ロール成形途中またはロール成形後に反対側のR形状を付与すればよいであろう。
そこで、本発明者らは上記のフィンパス圧延で板端部が潰れやすいことに着目し、これを活用することとした。すなわち、フィンパス圧延ロールのフィンにR形状を付与して、フィンパス圧延の絞り量(アプセット量)に応じて、その角度と板端部が当たる位置を最適化すれば、上記ロール成形前にR形状を付与した板端部の反対側にもR形状を付与することができる。これはフィンパス圧延そのもので行うため、ロール成形によって板幅を丸められて狭められた板幅方向両端部間の距離が短くて近接していても、十分加工可能である。
Next, with respect to the other end portion (corner portion on the other surface side) not imparted with the R shape, the R shape was imparted by utilizing fin pass rolling. For the above reason, the R shape is given to only one side. Therefore, in order to give the R shape to both ends, the opposite side R shape may be given during or after roll forming.
Therefore, the present inventors have paid attention to the fact that the end portion of the plate is easily crushed by the above-described fin pass rolling, and decided to utilize this. That is, if an R shape is imparted to the fins of the fin pass rolling roll, and the angle and the position where the plate edge hits are optimized according to the drawing amount (upset amount) of the fin pass rolling, the R shape is formed before the roll forming. An R shape can also be imparted on the opposite side of the plate end portion to which the is imparted. Since this is performed by fin pass rolling itself, even if the distance between both end portions in the plate width direction, which is rounded and narrowed by roll forming, is short and close, sufficient processing is possible.
こうして、電縫溶接直前には板上下両端部(板の上下両面側の角部)にR形状を付与できるわけである。
なお、切削や研削によるR加工は、比較的大きいその装置がロール成形入側のテーブルと干渉しないように板の上面側の角部に付与するとよく、また、板の下面側はロール成形後には管の外面側(外径側)となるため、下面側の角部へのR加工はフィンパス圧延のフィン形状の変更により付与するのがよい。
In this way, an R shape can be imparted to the upper and lower ends of the plate (corners on the upper and lower surfaces of the plate) immediately before the electric welding.
In addition, R processing by cutting or grinding may be applied to the corner on the upper surface side of the plate so that the relatively large apparatus does not interfere with the table on the roll forming entrance side. Since it becomes the outer surface side (outer diameter side) of the tube, it is preferable to apply R processing to the corner portion on the lower surface side by changing the fin shape of the fin pass rolling.
また、電縫溶接部直前のR形状について、上記の切削または研磨、フィンパス圧延を活用して最適化を図った結果、R加工の半径Rを板厚の20〜50%とすると良いことを把握した。すなわち、電縫溶接直前のR加工の半径Rを板厚の20%未満とすると板厚中央部からの溶鋼排出がやや不十分となってペネトレータが幾分残留し、電縫溶接後の靭性や強度が若干低下するためである。 In addition, as a result of optimization of the R shape just before the ERW weld using the above cutting or polishing and fin pass rolling, it is understood that the radius R of R processing should be 20 to 50% of the plate thickness. did. In other words, if the radius R of the R processing immediately before electric seam welding is less than 20% of the plate thickness, the molten steel discharge from the central portion of the plate thickness is somewhat insufficient, and the penetrator remains somewhat. This is because the strength slightly decreases.
また、半径Rを板厚の50%超にすると、R加工部の板幅方向距離が過小あるいは過大となり、過小の場合は、板厚中央部からの溶鋼排出が不十分となってペネトレータが残留し、電縫溶接後の靭性や強度が低下することになり、一方、過大の場合は、アプセットが困難となって溶接部と母材部の境界付近で管肉厚不足(管肉厚が板厚未満となる現象)が生じやすくなる。 Further, if the radius R is more than 50% of the plate thickness, the distance in the plate width direction of the R processed portion becomes too small or too large. If it is too small, the molten steel discharge from the center portion of the plate thickness becomes insufficient and the penetrator remains. However, the toughness and strength after ERW welding will be reduced. On the other hand, if it is too large, it will be difficult to upset and the pipe thickness will be insufficient near the boundary between the welded part and the base metal part. Phenomenon of less than thickness) is likely to occur.
以下、実施例に基づいて説明する。実施例では、図1に示す造管設備あるいはこれの一部を変更したものを用いた。この造管設備は、アンコイラー1、レべラー2、ロール成形機5、誘導加熱手段(誘導加熱コイル)7、スクイズロール8、ビード部切削手段(ビード部切削バイト)9、サイザ−10、管切断機11をこの順に配置してなる。ロール成形機5は、ブレークダウン第1スタンド4を含む粗成形段からフィンパス成形ロール6を含む仕上成形段まで、複数のロールスタンドを配列してなる。
Hereinafter, a description will be given based on examples. In the embodiment, the pipe making facility shown in FIG. 1 or a part of it was changed. This pipe making equipment includes an uncoiler 1,
この造管設備では、帯材(板)100をアンコイラー1で払出し、レべラー2で平らに矯正した後、ロール成形機5の粗成形段から仕上成形段にかけての複数のロールスタンドで、幅を徐々に丸めていき、フィンパス成形ロール6で仕上成形を行う。なお、帯材100の幅が実質的に丸められ始めるのはブレークダウン第1スタンド4からであるので、ロール成形前というのは、レべラー2出側からブレークダウン第1スタンド4の入側までを指す。
In this pipe making equipment, the strip material (plate) 100 is discharged by the uncoiler 1 and flattened by the
仕上成形後のオープン管状となった帯材100の幅方向(オープン管周方向)両端部を、誘導加熱手段6で加熱してスクイズロール8で圧接(電縫溶接)し、管となす。この管を、その溶接部のビードをビード切削手段9で切削除去した後、サイザ−10で定径圧延し、管切断機11で所定の長さに切断する。
図1の造管設備では、本発明の実施形態の1例として、ロール成形入側に、板上面側の角部を砥石研磨でR加工する(図2参照)ための砥石研磨手段3を配置するとともに、フィンパス成形ロール6のフィン隅部に、フィンパス成形で板下面側(管外径側)の角部をR加工する(図3参照)ためのR形状を付与している。
Both ends in the width direction (open pipe circumferential direction) of the
1, as an example of the embodiment of the present invention, a grindstone polishing means 3 for performing R processing on a corner on the upper surface side of the plate by grinding stone polishing (see FIG. 2) is arranged on the roll forming entrance side. At the same time, an R shape is applied to the fin corners of the fin
帯材として、板幅1920mm×板厚19.1mmの鋼帯と、板幅1920mm×板厚15.3mmの鋼帯とをこの順に用い、いずれの帯材の場合も製品管外径を600mmとして鋼管(電縫管)を製造した。
製造した鋼管の溶接部から試験片を切り出してシャルピー試験を行い、性能を評価した。シャルピー試験片は、管長手方向の相違する10点から1本ずつ、試験片長さ方向を管円周方向にとり、ノッチ長さ中心を溶接部肉厚中心位置として採取し、JIS5号の2mmVノッチ衝撃試験片とした。試験片温度−46℃で衝撃試験を行い、吸収エネルギー、脆性破面率を測定した。
As a strip, a steel strip with a plate width of 1920 mm × plate thickness of 19.1 mm and a steel strip with a plate width of 1920 mm × plate thickness of 15.3 mm are used in this order. ERW pipe) was manufactured.
A test piece was cut out from the welded portion of the manufactured steel pipe and a Charpy test was performed to evaluate the performance. Each Charpy test piece is taken from 10 points with different pipe longitudinal directions, the specimen length direction is taken in the pipe circumferential direction, the notch length center is taken as the weld thickness center position, and the JIS5 2mmV notch impact is taken. A test piece was obtained. An impact test was conducted at a specimen temperature of -46 ° C., and the absorbed energy and the brittle fracture surface ratio were measured.
なお、吸収エネルギーは125J以上、脆性破面率が35%以下を性能許容範囲とした。
製造条件は以下の4通り(No.1〜4)とした。
(No.1) 本発明例として、図1の造管設備を用いて造管した。造管中に、ロール成形前の砥石研磨により板上面側の角部にR形状を付与し、次いでフィンパス成形により板下面側(管外径側)の角部にR形状を付与した。付与したR形状の半径Rは7mm(19.1mm板厚の47%、15.3mm板厚の46%)とした。
In addition, the allowable energy performance was 125 J or more and the brittle fracture surface ratio was 35% or less.
The manufacturing conditions were as follows (No. 1 to 4).
(No. 1) As an example of the present invention, the pipe was made using the pipe making equipment of FIG. During pipe making, an R shape was imparted to the corner portion on the upper surface side of the plate by grinding the grindstone before roll forming, and then an R shape was imparted to the corner portion on the lower surface side (tube outer diameter side) by fin pass molding. The radius R of the imparted R shape was 7 mm (47% of the 19.1 mm plate thickness, 46% of the 15.3 mm plate thickness).
なお、19.1mmから15.3mmへの板厚切替の際に、研磨砥石の位置を下側に3.8mm移動させる微調整を行った。
(No.2) 本発明例として、図1において砥石研磨手段3の代りに切削ロール(図示省略)を配置した造管設備を用いて造管した。造管中に、ロール成形前の前記切削ロールを用いたロール切削により板上面側の角部にR形状を付与し、次いでフィンパス成形により板下面側(管外径側)の角部にR形状を付与した。付与したR形状の半径Rは4mm(19.1mm板厚の21%、15.3mm板厚の26%)とした。
When the plate thickness was switched from 19.1 mm to 15.3 mm, fine adjustment was performed to move the position of the polishing grindstone downward by 3.8 mm.
(No. 2) As an example of the present invention, a pipe was formed using a pipe making facility in which a cutting roll (not shown) was disposed in place of the grindstone polishing means 3 in FIG. During pipe making, an R shape is applied to the corner on the upper surface side of the plate by roll cutting using the cutting roll before roll forming, and then an R shape is applied to the corner on the lower surface side of the plate (tube outer diameter side) by fin pass molding. Was granted. The radius R of the imparted R shape was 4 mm (21% of the 19.1 mm plate thickness and 26% of the 15.3 mm plate thickness).
なお、19.1mmから15.3mmへの板厚切替の際に、前記切削ロールの位置を下側に3.8mm移動させる微調整を行った。
(No.3) 比較例として、図1において砥石研磨手段3の代りに幅端部成形用孔型ロール(図示省略)を配置し、かつフィンパス成形ロール6のフィン隅部をほぼ直角形状とした造管設備を用いて造管した。造管中に、ロール成形前の前記幅端部成形用孔型ロールを用いた孔型圧延により板上下両面側の角部にR形状を付与した。付与したR形状の半径Rは3mm(19.1mm板厚の16%、15.3mm板厚の19%)とした。
In addition, when the plate thickness was switched from 19.1 mm to 15.3 mm, fine adjustment was performed to move the position of the cutting roll downward by 3.8 mm.
(No. 3) As a comparative example, instead of the grindstone polishing means 3 in FIG. 1, a wide end forming hole roll (not shown) is arranged, and the fin corners of the fin
なお、19.1mmから15.3mmへの板厚切替の際に、一旦製造ラインを止めて、前記孔型ロールを19.1mm用から15.3mm用へ交換した。
(No.4) 従来例として、比較例(No.3)で用いた造管設備において前記幅端部成形用孔型ロールを取外した造管設備を用いて造管した。板上下両面側の角部はほぼ矩形(ほぼ直角形状)のままである。
When the plate thickness was switched from 19.1 mm to 15.3 mm, the production line was temporarily stopped and the hole-type roll was changed from 19.1 mm to 15.3 mm.
(No. 4) As a conventional example, the pipe was made using the pipe making equipment used in the pipe making equipment used in the comparative example (No. 3), from which the hole roll for forming the width end portion was removed. The corners on both the upper and lower sides of the plate remain substantially rectangular (substantially perpendicular).
これらの条件で製造した鋼管の溶接部におけるシャルピー衝撃値(吸収エネルギー)と脆性破面率を測定した結果を表1に示す。また、同表には各例の製造時間を、比較例(No.3)のそれを1としてこれとの相対比で示した。
表1より、本発明例では、溶接部の衝撃強度が高く脆性破面率が小さくて、靭性が良好であって、製品の信頼性が高いのに対し、従来例では、溶接部の衝撃強度が低く脆性破面率が大きくて、靭性が低下しており、製品の信頼性に乏しかった。
Table 1 shows the results of measuring the Charpy impact value (absorbed energy) and the brittle fracture surface ratio in the welded portion of the steel pipe manufactured under these conditions. In the same table, the production time of each example is shown as a relative ratio with respect to 1 for the comparative example (No. 3).
From Table 1, in the present invention example, the impact strength of the welded portion is high, the brittle fracture surface ratio is small, the toughness is good, and the reliability of the product is high, whereas in the conventional example, the impact strength of the welded portion is high. The brittle fracture surface ratio was low, the toughness was reduced, and the reliability of the product was poor.
また、本発明例では、比較例に比べて、著しく製造時間が短縮されており、本発明によれば、溶接部特性に優れた電縫管製品を高能率に製造可能であることがわかった。 Moreover, in the example of the present invention, the manufacturing time is remarkably shortened as compared with the comparative example, and according to the present invention, it was found that the electric resistance welded tube product excellent in welded portion characteristics can be manufactured with high efficiency. .
1 アンコイラー
2 レべラー
3 砥石研磨手段
4 ブレークダウン第1スタンド
5 ロール成形機
6 フィンパス成形ロール
7 誘導加熱手段(誘導加熱コイル)
8 スクイズロール
9 ビード部切削手段(ビード部切削バイト)
10 サイザ−
11 管切断機
100 帯材(板)
DESCRIPTION OF SYMBOLS 1
8 Squeeze roll 9 Bead cutting means (bead cutting tool)
10 Sizer
11 Pipe cutting machine
100 strip (plate)
Claims (3)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006149889A JP2007319869A (en) | 2006-05-30 | 2006-05-30 | Highly efficient method of producing electric resistance welded tube having good weld zone characteristic |
AU2006312544A AU2006312544B8 (en) | 2005-11-11 | 2006-11-09 | Method of manufacturing electric resistance welding pipes having excellent characterization of welded seams |
PCT/JP2006/322793 WO2007055405A1 (en) | 2005-11-11 | 2006-11-09 | Method of producing seam-welded pipe having good welded portion characteristics |
EP06823441.8A EP2000247B1 (en) | 2005-11-11 | 2006-11-09 | Method of producing seam-welded pipe having good welded portion characteristics |
US11/992,916 US8912462B2 (en) | 2005-11-11 | 2006-11-09 | Method of manufacturing electric resistance welding pipes having excellent characterization of welded seams |
KR1020087010508A KR101026971B1 (en) | 2005-11-11 | 2006-11-09 | Manufacturing method of electric resistance welded tube having good characteristics of welded part |
CN200680040896.XA CN101300103B (en) | 2005-11-11 | 2006-11-09 | Method of producing seam-welded pipe having good welded portion characteristics |
TW095141639A TW200726535A (en) | 2005-11-11 | 2006-11-10 | Fabricating method of seam welding tube having high-quality welding characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006149889A JP2007319869A (en) | 2006-05-30 | 2006-05-30 | Highly efficient method of producing electric resistance welded tube having good weld zone characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007319869A true JP2007319869A (en) | 2007-12-13 |
Family
ID=38853095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006149889A Pending JP2007319869A (en) | 2005-11-11 | 2006-05-30 | Highly efficient method of producing electric resistance welded tube having good weld zone characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007319869A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011000602A (en) * | 2009-06-17 | 2011-01-06 | Nippon Steel Corp | Method of producing electric resistance welded tube excellent in weld zone properties |
JP2013132671A (en) * | 2011-12-27 | 2013-07-08 | Jfe Steel Corp | Method for manufacturing thick-walled electric resistance welded tube |
-
2006
- 2006-05-30 JP JP2006149889A patent/JP2007319869A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011000602A (en) * | 2009-06-17 | 2011-01-06 | Nippon Steel Corp | Method of producing electric resistance welded tube excellent in weld zone properties |
JP2013132671A (en) * | 2011-12-27 | 2013-07-08 | Jfe Steel Corp | Method for manufacturing thick-walled electric resistance welded tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006312544B8 (en) | Method of manufacturing electric resistance welding pipes having excellent characterization of welded seams | |
AU2006349207B2 (en) | Manufacturing equipment of electric resistance welding pipes having excellent characterization of welded seam | |
JP4816015B2 (en) | High-efficiency manufacturing method for ERW pipes with good weld characteristics | |
JP2007319869A (en) | Highly efficient method of producing electric resistance welded tube having good weld zone characteristic | |
JP5055848B2 (en) | Manufacturing method of electric resistance welded tube with good weld characteristics | |
JP5055843B2 (en) | Manufacturing method of electric resistance welded tube with good weld characteristics | |
JP4720479B2 (en) | High-efficiency manufacturing method for ERW pipes with good weld characteristics | |
JP4682780B2 (en) | ERW pipe manufacturing method with good weld characteristics | |
JP2008105062A (en) | Manufacturing method of electric welded tube having excellent characteristic of weld zone | |
JP2008105061A (en) | Method for manufacturing electric resistance welded tube having excellent characteristic of weld zone | |
JP5050479B2 (en) | ERW pipe manufacturing equipment with good weld characteristics | |
JP2008110399A (en) | Method of manufacturing electric resistance welded tube excellent in property of weld zone | |
JP5124937B2 (en) | Manufacturing method of electric resistance welded tube with good weld characteristics | |
JP5194728B2 (en) | ERW pipe manufacturing method with excellent weld properties | |
JP5055823B2 (en) | High-efficiency manufacturing method for ERW pipes with good weld characteristics | |
RU2417851C2 (en) | Producing tubes with higher properties of welded seams by contact resistance welding | |
JP4682779B2 (en) | ERW pipe manufacturing method with good weld characteristics | |
JP2007160383A (en) | Method for manufacturing electric resistance welded tube having excellent weld characteristic | |
JP2008012581A (en) | Method for manufacturing electric resistance welded tube having excellent weld characteristic | |
JP2009119484A (en) | Method for manufacturing electric resistance welded tube excellent in characteristic of weld zone | |
JP5176495B2 (en) | ERW pipe manufacturing method with excellent weld properties | |
JP2008105075A (en) | Method for manufacturing electric resistance welded tube having excellent characteristic of weld zone | |
JP2007296537A (en) | Method of manufacturing electric resistance welded tube excellent in weld zone characteristic | |
JP2008087020A (en) | Method of manufacturing electric resistance welded tube excellent in weld zone characteristic | |
JP2008030114A (en) | Method of manufacturing electric resistance welded tube with excellent weld characteristic |