[go: up one dir, main page]

JP2007319039A - Photosynthetic reaction system of alga microorganism - Google Patents

Photosynthetic reaction system of alga microorganism Download PDF

Info

Publication number
JP2007319039A
JP2007319039A JP2006150395A JP2006150395A JP2007319039A JP 2007319039 A JP2007319039 A JP 2007319039A JP 2006150395 A JP2006150395 A JP 2006150395A JP 2006150395 A JP2006150395 A JP 2006150395A JP 2007319039 A JP2007319039 A JP 2007319039A
Authority
JP
Japan
Prior art keywords
unit
pipe
broth
algal
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150395A
Other languages
Japanese (ja)
Inventor
Chao Hui Lu
朝▲輝▼ 盧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006150395A priority Critical patent/JP2007319039A/en
Publication of JP2007319039A publication Critical patent/JP2007319039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • C12M29/22Oxygen discharge
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photosynthetic reaction system of algae microorganisms and a method of photosynthetic reaction. <P>SOLUTION: This photosynthetic reaction system of the algae microorganisms is provided by injecting the algae microorganisms into the system and culturing them by circulating culturing solution in the system. The photosynthetic reaction system of the algae microorganisms contains a photosynthetic reaction unit, a pressurized liquid-exporting unit, an oxygen jet-discharging unit and a regulating division. The photosynthetic reaction unit is a transparent pipe passage. The oxygen jet-discharging unit has an oxygen-discharging cylinder and a liquid-collecting cylinder. With the regulating division, each of the photosynthetic reaction unit and oxygen jet-discharging unit is connected, and especially in the regulating division, the algae microorganisms perform a physiological regulation to solve the physiological damages of the algae microorganisms caused by the pressurized liquid-exporting unit and oxygen jet-discharging unit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光合成反応システムと方法に関し、特に藻類微生物を培養するための藻類微生物の光合成反応システムと光合成反応方法に関する。   The present invention relates to a photosynthetic reaction system and method, and more particularly, to an algal microorganism photosynthesis reaction system and a photosynthetic reaction method for culturing algal microorganisms.

藍藻(螺旋藻、Spirulina)には、豊富なタンパク質、鉄分、ビタミン、酵素などさまざまな人体に有益な栄養素が含まれており、近年食用に広く推薦されている。藍藻の培養液(ブラザ)は、光合成反応システムによる十分な光合成を経て、藻細胞が必要とする養分を満足させ、ブラザ内に酸素を発生させ、藍藻を大量繁殖させる。   Cyanobacteria (Spirulina) contains a variety of nutrients beneficial to the human body, such as abundant proteins, iron, vitamins, and enzymes, and has been widely recommended for food use in recent years. The blue-green algae culture solution (Braza) undergoes sufficient photosynthesis by the photosynthetic reaction system, satisfies the nutrients required by the algal cells, generates oxygen in the broth, and mass-produces the blue-green algae.

公知の藍藻の光合成反応システムは、屋外の大きな培養池(ブラザ)で行われる。藍藻のブラザは前記屋外のブラザ内に収納され、光合成を行う。しかし、前記ブラザは広い面積を必要とするだけでなく、エネルギーも多く消耗し、その上天候の影響によって使用上の制限を受け、また特に、汚染されやすく、前記藍藻の品質に影響が出るので、生産業者を悩ませることが多い。   A known cyanobacteria photosynthetic reaction system is carried out in a large outdoor culture pond (brother). The cyanobacteria broth is housed in the outdoor broth and performs photosynthesis. However, the brows not only require a large area, but also consume a lot of energy, and are restricted in use due to the influence of weather, and are particularly susceptible to contamination, affecting the quality of the cyanobacteria. , Often annoy producers.

公知のほかの藍藻光合成反応システムは、例えば中国の特許番号CN95219504.6に記載する螺旋藻光合成反応器があり、反応炉と立体式二列平行螺旋式パイプによって構成されている。前記反応炉と前記パイプは透明な素材で作られており、その中のブラザを流動させることで光合成を行う。前記反応炉内には、ブリスター板(blister)と冷熱交換器等の装置を含み、前記ブラザ内に酸素を排出させて、前記ブラザの温度を調節する。前記螺旋藻の光合成反応器は主に密閉式の循環システムを提供し、周知のブラザの各種の問題を解決する。しかし、前記螺旋藻光合成反応器はやはり酸素を発生させにくく、ブラザの温度を必要な基準に合わせにくく、且つ反応炉を清潔に保ちにくく、光合成作用の効果を低下させ、藍藻の品質に影響するなどの問題が存在し、工業化による大量生産に適さない。   Another known cyanobacteria photosynthetic reaction system is, for example, a spiral algae photosynthetic reactor described in Chinese Patent No. CN95219504.6, which is constituted by a reaction furnace and a three-dimensional two-row parallel spiral pipe. The reactor and the pipe are made of a transparent material, and photosynthesis is performed by flowing a broth in the reactor. The reactor includes devices such as a blister plate and a cold heat exchanger, and oxygen is exhausted into the brother to adjust the temperature of the brother. The spiral algae photosynthetic reactor mainly provides a closed circulation system and solves various problems of known brothers. However, the spiral algae photosynthetic reactor is still difficult to generate oxygen, it is difficult to adjust the temperature of the brozza to the required standard, and it is difficult to keep the reactor clean, reducing the effect of photosynthesis and affecting the quality of cyanobacteria Such problems exist and are not suitable for mass production by industrialization.

従って、本発明者は公知の藍藻の光合成反応システムの製造上及び使用上の欠点に鑑み、かつ、公知の藍藻の光合成反応システムはスピーディーな大量生産に適さないので、上述の問題を有効的に解決するために本発明を提出した。   Accordingly, the present inventor has taken into consideration the disadvantages in production and use of the known cyanobacterial photosynthetic reaction system, and the known cyanobacterial photosynthesis reaction system is not suitable for speedy mass production. The present invention was submitted to solve.

本発明の主要な目的は、藻類微生物の光合成反応システムと光合成反応方法を提供することにあり、本発明の光合成反応システムおよび光合成反応方法は、必要面積を減らすだけでなく、エネルギー使用量を減らし、天候の影響を受けずに運行でき、汚染されずに藻類のよい品質を守り、さらに、藻類による酸素発生をスムーズに排出し、かつ、ブラザの温度を正確に調節できるので、スピーディーな大量成長と大量繁殖を行うことができる。   The main object of the present invention is to provide a photosynthetic reaction system and a photosynthetic reaction method for algal microorganisms. The photosynthesis reaction system and the photosynthetic reaction method of the present invention not only reduce the required area, but also reduce the amount of energy used. It can operate without being affected by the weather, protects the quality of the algae without being polluted, smoothly discharges the oxygen generated by the algae, and adjusts the temperature of the broth accurately, so that it can be rapidly mass-produced. And mass breeding.

上述の目的を達成するために、本発明は藻類微生物の光合成反応システムと光合成反応方法を提供し、その中の前記藻類微生物の光合成反応システムは、光合成反応ユニットと、加圧液体輸出ユニットと、ジェット排出酸素装置と、調節区を含む。前記光合成反応ユニットは透明なパイプ経路であり、かつ前記加圧液体輸出ユニットの入口側が前記透明なパイプ経路の出口側に貫通している。前記ジェット排出酸素装置は中空状のパイプで、排出酸素シリンダーと液体収集シリンダーを有し、前記排出酸素シリンダーには液体進入口、上端の排気口及び中空のパイプ壁を設置し、かつ前記液体進入口が前記加圧液体輸出ユニットの出口側まで貫通し、前記上端の排気口が前記排気排出酸素シリンダーの上端に位置し、前記中空のパイプ壁が前記上端の排気口から下へ延びている。前記調節区は前記液体収集シリンダーと前記透明なパイプ経路の入口側にそれぞれ連通している。本発明の特徴は、調節区を設けることで、藻類微生物が前記調節区で生理調節を行い、前記加圧液体輸出ユニット及びジェット排出酸素ユニットによる藻類微生物の生理被害を解決し、藻類微生物が最適な生理状態で前記光合成反応ユニットに再び流入できるようにすることである。   To achieve the above object, the present invention provides a photosynthetic reaction system and a photosynthetic reaction method for algal microorganisms, wherein the algal microorganisms photosynthetic reaction system includes a photosynthetic reaction unit, a pressurized liquid export unit, Includes a jet exhaust oxygen device and a control zone. The photosynthetic reaction unit is a transparent pipe path, and the inlet side of the pressurized liquid export unit passes through the outlet side of the transparent pipe path. The jet exhaust oxygen device is a hollow pipe having an exhaust oxygen cylinder and a liquid collecting cylinder. The exhaust oxygen cylinder is provided with a liquid inlet, an upper exhaust port and a hollow pipe wall, and the liquid ingress A mouth penetrates to the outlet side of the pressurized liquid export unit, the upper exhaust port is located at the upper end of the exhaust exhaust oxygen cylinder, and the hollow pipe wall extends downward from the upper exhaust port. The adjustment zone communicates with the liquid collecting cylinder and the inlet side of the transparent pipe path. A feature of the present invention is that by providing a control zone, algal microorganisms perform physiological control in the control zone, solve the physiological damage of algal microorganisms by the pressurized liquid export unit and the jet exhaust oxygen unit, and the algal microorganism is optimal It is to be able to flow again into the photosynthetic reaction unit in a physiological state.

前記光合成反応ユニット、前記加圧液体輸出ユニット、前記ジェット排出酸素装置、前記調節区を接合し合わせることにより、注入された前記藻類微生物のブラザと藻の種が、垂直立体の複数個の直状のパイプに密封され藻類微生物を循環培養することができ、それによって、必要面積を減らすだけでなく、エネルギー使用量を減らすことができる。半密閉の空間で培養させるので、ゆえに天候の影響を受けずに運行され、汚染されずに藻類のよい品質を守ることができる。さらに、前記液体進入口、前記排気口と前記中空状のパイプ壁の配置により,ブラザ内で酸素をスムーズに発生させやすくし、生産効率を上げることができる。さらに、本発明の藻類微生物の光合成反応システムの外装にシャワーユニットを設置し、透明なパイプと加圧液体輸出ユニットの間には加熱装置を設置することで、すぐに温度を調整してブラザの温度を藻類の培養に適した範囲内に維持することができる。そのほかに、液体収集シリンダーと調節区の間を連通するパイプにバルブを設置することで、洗浄する際、システム内のブラザを排出して清潔にすることができる。   By joining the photosynthetic reaction unit, the pressurized liquid export unit, the jet exhaust oxygen device, and the control zone, the injected algal microorganism broth and algae seeds are a plurality of vertical three-dimensional straight solids. Algae microorganisms can be circulated and cultured in a pipe, thereby reducing not only the required area but also the energy consumption. Because it is cultured in a semi-enclosed space, it can be operated without being affected by the weather, and the quality of the algae can be protected without being contaminated. Further, the arrangement of the liquid inlet, the exhaust port, and the hollow pipe wall facilitates the smooth generation of oxygen in the broth and increases the production efficiency. Furthermore, by installing a shower unit on the exterior of the algal microbe photosynthesis reaction system of the present invention and installing a heating device between the transparent pipe and the pressurized liquid export unit, the temperature can be immediately adjusted and The temperature can be maintained within a range suitable for algae culture. In addition, by installing a valve in the pipe that communicates between the liquid collection cylinder and the control zone, it is possible to clean the system by draining the broth in the system.

また、本発明は藻類微生物の光合成反応方法を提供し、その方法は下記の工程を含む。
(一)透明のパイプ、加圧液体輸出ユニット、ジェット排出酸素装置、調節区を提供する工程。
(二)ブラザと藻の種を透明なパイプ内に注入し、前記ブラザが前記透明なパイプ内を流動することで光合成を行い且つ酸素を発生させ、前記ブラザが前記加圧液体輸出ユニットに向かって流れる工程。
(三)前記加圧液体輸出ユニットを開き、前記ブラザを前記ジェット排出酸素装置の方に無理に流すことで、前記ブラザを前記ジェット排出酸素装置に引っかけて噴水状を形成して酸素を排出させる工程。
(四)前記ブラザを前記ジェット排出酸素装置と前記調節区内に収集し、且つ前記ブラザは前記透明なパイプ経路へ流入し、光合成作用を再進行させる工程。
Moreover, this invention provides the photosynthesis reaction method of algal microorganisms, The method includes the following process.
(1) A process of providing a transparent pipe, a pressurized liquid export unit, a jet exhaust oxygen device, and a control zone.
(2) Injecting broth and seeds of algae into a transparent pipe, the broth flows in the transparent pipe to perform photosynthesis and generate oxygen, and the broth goes to the pressurized liquid export unit. The process that flows.
(3) Open the pressurized liquid export unit and force the brother to flow toward the jet exhaust oxygen device so that the brother is hooked on the jet exhaust oxygen device to form a fountain and exhaust oxygen. Process.
(4) A step of collecting the broth in the jet exhaust oxygen device and the control zone, and the broth flows into the transparent pipe path to allow the photosynthetic action to proceed again.

更に一層本発明の特徴と技術内容を理解するために、以下の本発明の詳細な説明と添付図面を参照するが、しかし、添付の図面は参考と説明に用いるために提供するに過ぎず、本発明に制限を加えるものではない。   For a further understanding of the features and technical contents of the present invention, reference is made to the following detailed description of the invention and the accompanying drawings, which are provided for reference and description only. The present invention is not limited.

図1,図2を参照すると、本発明は藻類微生物(藍藻など)を培養するために利用され、光合成反応ユニット1、加圧液体輸出ユニット2,ジェット排出酸素装置4、調節区5、連通装置6を含む、藻類微生物の光合成反応システムである。   1 and 2, the present invention is used for culturing algal microorganisms (such as cyanobacteria), and includes a photosynthetic reaction unit 1, a pressurized liquid export unit 2, a jet exhaust oxygen device 4, a control zone 5, a communication device. 6 is a photosynthetic reaction system for algal microorganisms.

光合成反応ユニット1は、複数個の直状のパイプ10と複数個の湾状のパイプ11を含み、これらの直状のパイプ10と湾状のパイプ11は直列に接続され、並列に傾斜した螺旋式の透明のパイプ経路を形成し、さらにもう一方の補佐開放口12が前記透明のパイプ経路の頂点にある、ガラスなどの透明な材質で作られた透光パイプである。加圧液体輸出ユニット2は、入口側が前記透明のパイプ経路の出口側に貫通している加圧液体輸出ポンプである。ジェット排出酸素装置4は、ステンレス材で作られた排出酸素シリンダー40と、ガラスもしくはアクリルなどの透明な材質で作られた液体収集シリンダー41を含む中空状のパイプである。排出酸素シリンダー40の上段には液体進入口401、上端の排気口402,中空状のパイプ壁403を設置し、前記液体進入口401はパイプ20が前記加圧液体ユニット2の出口側まで貫通し、前記上端の排気口402は排出酸素シリンダー40の上端に位置し、中空状のパイプ壁403は前記上端の排気口402から下へ延びており、前記進入液体口401の内側に対向している。前記排出酸素シリンダー40の中段にはネック部404と、前記ネック部404の下方に位置する側端の排気口405が設置されている。前記ジェット排出酸素装置4は排気パイプ42を含み、排気パイプ42は前記排出酸素シリンダー40内に接続され、前記排気パイプ42の上端は前記中空状のパイプ壁403を貫通し、前記排気パイプ42の下端に拡大部421を形成すると共に、拡大部421が前記側端の排気口405の内側に位置する。前記調節区5は拡張パイプ52を含み、ガラスなどの透明な材質で作られている。前記調節区5は一端が光合成反応システム1に連通され,他端が連通装置6を介してジェット排出酸素装置4の液体収集シリンダー41に連通し、前記連続装置6は液体収集シリンダー41の底部と調整区5の拡張パイプ52の底部に連通している。上記連通装置6は洗浄栓キット60を有する。前記透明のパイプの入口は下向きに調節区5と連通している。   The photosynthetic reaction unit 1 includes a plurality of straight pipes 10 and a plurality of bay-shaped pipes 11. The straight pipes 10 and the bay-shaped pipes 11 are connected in series and spirals inclined in parallel. A transparent pipe made of a transparent material such as glass, which forms a transparent pipe path of the formula, and the other auxiliary opening 12 is at the apex of the transparent pipe path. The pressurized liquid export unit 2 is a pressurized liquid export pump in which the inlet side penetrates the outlet side of the transparent pipe path. The jet exhaust oxygen device 4 is a hollow pipe including an exhaust oxygen cylinder 40 made of stainless steel and a liquid collection cylinder 41 made of a transparent material such as glass or acrylic. A liquid inlet 401, an upper exhaust outlet 402, and a hollow pipe wall 403 are installed in the upper stage of the exhaust oxygen cylinder 40, and the pipe 20 penetrates to the outlet side of the pressurized liquid unit 2 through the liquid inlet 401. The upper end exhaust port 402 is located at the upper end of the exhaust oxygen cylinder 40, and the hollow pipe wall 403 extends downward from the upper end exhaust port 402 and faces the inside of the ingress liquid port 401. . A neck portion 404 and an exhaust port 405 at a side end located below the neck portion 404 are installed in the middle stage of the exhaust oxygen cylinder 40. The jet exhaust oxygen device 4 includes an exhaust pipe 42, and the exhaust pipe 42 is connected to the exhaust oxygen cylinder 40, and the upper end of the exhaust pipe 42 passes through the hollow pipe wall 403, An enlarged portion 421 is formed at the lower end, and the enlarged portion 421 is positioned inside the exhaust port 405 at the side end. The adjustment zone 5 includes an expansion pipe 52 and is made of a transparent material such as glass. One end of the control zone 5 communicates with the photosynthetic reaction system 1, and the other end communicates with the liquid collecting cylinder 41 of the jet exhaust oxygen device 4 via the communicating device 6. The continuous device 6 is connected to the bottom of the liquid collecting cylinder 41. It communicates with the bottom of the expansion pipe 52 in the adjustment zone 5. The communication device 6 has a cleaning plug kit 60. The inlet of the transparent pipe communicates with the control zone 5 downward.

本発明の藻類微生物光合成反応システムは採取栓キット7を含む。前記採取栓キット7は透明のパイプの出口と加圧液体輸出ユニット2の入口の間を連接し、前記透明のパイプ内の藻類微生物及びブラザを吸い込むことで流動させる。   The algal microbial photosynthetic reaction system of the present invention includes a collection stopper kit 7. The collection stopper kit 7 is connected between the outlet of the transparent pipe and the inlet of the pressurized liquid export unit 2 and flows by sucking algal microorganisms and broth in the transparent pipe.

本発明の藻類微生物光合成反応システムを使用する際、透明のパイプの補佐開放口12により藻類微生物の藻の種および培養藻類微生物のブラザを透明のパイプ内に注入し、前記ブラザと藻類微生物が前記透明のパイプ内を流動し、同時に光合成を行い、酸素を産出し、前記ブラザは加圧液体輸出ユニット2に向かって流れる。前記加圧液体輸出ユニット2を開き、前記ブラザを無理に前記透明のパイプから前記ジェット排出酸素装置4に流す。前記ブラザが液体進入口401を通って前記排出酸素シリンダー40内に噴射されるとき、前記ブラザはまずジェット排出酸素装置4の排出酸素シリンダー40内に引っ掛かり、噴水状を形成し、前記上端の排気口402から酸素を排出する。続いて、前記ブラザが前記ネック部404に落下収集された際、前記排気パイプ42の拡張部421に引っ掛かり、噴水状を形成し、前記側端の排気口405から酸素を排出する。最後に前記ブラザは前記液体収集シリンダー41内に落下収集され、排気パイプ42の上端から酸素を排出する。このように、大部分の酸素を排出し、前記ブラザの光合成の能力を高めることができる。前記ブラザが前記排出酸素シリンダー40を通る際、酸素が飽和した状態の液体が生成されるので、光合成を続けることができず、従って、前記排出酸素シリンダー40はステンレス製などの光を通さない材料で作られている。また、前記ブラザが前記液体収集シリンダー41に収集される際、酸素の大部分はすでに排出されており、続けて光合成を行うことができるので、したがって、液体収集シリンダー41はガラスなどの透明な素材でできている。前記ブラザが前記連通装置6を通り前記調節区5まで流れるとき、前記洗浄栓キット60を一時的に開き、比較的重い沈殿物を取り除き、前記ブラザをサンプリングして測定することができる。また、前記拡張パイプ52のシリンダーの直径は連通装置6の直径と比べてとても大きいので、ブラザの流れる速度はここではかなり遅く、前記藻類微生物を十分な時間をかけて前記調節区5で生理調節し、前記加圧液体輸出ユニット2と前記ジェット排出酸素装置4の作用で発生する生理傷害を除去する。かつ前記加圧液体輸出ユニット2の圧力が前記透明なパイプに負荷をかけたとき、前記ブラザは拡張パイプ52から前記透明なパイプ内に吸収され、さらに光合成を行う。このほかに、液体収集シリンダー41に収集されたブラザの液面の高さを光合成反応ユニット1の透明なパイプの最上層まで高め、液体収集シリンダー41の液面と透明なパイプ液面の高さの差を利用し、重力の作用により、ブラザを自動的に調節区5から透明なパイプに流し込み、再び光合成作用を行い、さらに前記加圧液体輸出ユニット2の方に流す。同時に、前記補佐開放口12を開いて一定の圧力を保ち、パスカルの原理を利用して、液体収集シリンダー41と調節区5の液面の高さを一致させる。このように、前記藻類微生物ブラザは本発明の藻類微生物光合成反応システムにおいて、何度も循環培養することで藻類微生物を次第に繁殖させ、ブラザ内の藻類の含有量が採集できる程度に達したとき、採取栓キット7を開いて採取し、同時に洗浄栓キット60を開いて採集し、同時に採集の速度を上げ、また前記藻類微生物が調節区5で生理調節を行い、透明なパイプを好ましい生理状態にするので、そこで、好ましい品質の藻類微生物を採取することができる。また、もし透明なパイプ内の圧力が大きくなり、調節区5内の培養藻類微生物のブラザの水位が上昇したとき、前記加圧液体輸出ユニット2の輸出する圧力を調整することで、ブラザの水位を下げ、かつ前記透明なパイプ内の圧力を藻類微生物の成長に最もふさわしい状態に保つことができる。   When using the algal microbial photosynthetic reaction system of the present invention, the algae species of the algal microorganisms and the broth of the cultured algae microorganisms are injected into the transparent pipe through the auxiliary opening 12 of the transparent pipe, It flows in a transparent pipe and at the same time performs photosynthesis to produce oxygen, and the brother flows toward the pressurized liquid export unit 2. The pressurized liquid export unit 2 is opened and the brother is forced to flow from the transparent pipe to the jet exhaust oxygen device 4. When the brother is injected into the exhaust oxygen cylinder 40 through the liquid inlet 401, the brother is first caught in the exhaust oxygen cylinder 40 of the jet exhaust oxygen device 4 to form a fountain, and the exhaust at the upper end. Oxygen is discharged from the mouth 402. Subsequently, when the brother is dropped and collected on the neck portion 404, it is caught by the extended portion 421 of the exhaust pipe 42 to form a fountain shape, and oxygen is discharged from the exhaust port 405 at the side end. Finally, the broth falls and collects in the liquid collecting cylinder 41 and discharges oxygen from the upper end of the exhaust pipe 42. In this way, most of the oxygen can be discharged, and the photosynthesis ability of the brother can be enhanced. When the broth passes through the exhaust oxygen cylinder 40, a liquid in which oxygen is saturated is generated, so that photosynthesis cannot be continued. Therefore, the exhaust oxygen cylinder 40 is made of a material that does not transmit light, such as stainless steel. It is made with. Further, when the brother is collected in the liquid collecting cylinder 41, most of the oxygen has already been exhausted and photosynthesis can be performed continuously. Therefore, the liquid collecting cylinder 41 is made of a transparent material such as glass. Made of. When the broth flows through the communication device 6 to the control zone 5, the washing plug kit 60 can be temporarily opened to remove relatively heavy sediment, and the broth can be sampled and measured. In addition, since the diameter of the cylinder of the expansion pipe 52 is very large compared to the diameter of the communication device 6, the flow speed of the broth is considerably slow here, and the algal microorganisms are physiologically controlled in the control section 5 over a sufficient time. Then, the physiological injury caused by the action of the pressurized liquid export unit 2 and the jet exhaust oxygen device 4 is removed. When the pressure of the pressurized liquid export unit 2 applies a load to the transparent pipe, the brother is absorbed from the expansion pipe 52 into the transparent pipe and further performs photosynthesis. In addition to this, the height of the liquid level of the broth collected in the liquid collecting cylinder 41 is increased to the uppermost layer of the transparent pipe of the photosynthetic reaction unit 1, and the liquid level of the liquid collecting cylinder 41 and the level of the transparent pipe liquid level are increased. By utilizing the difference between the two, the broth is automatically poured into the transparent pipe from the control section 5 by the action of gravity, the photosynthesis action is performed again, and further flows toward the pressurized liquid export unit 2. At the same time, the assistant opening 12 is opened to maintain a constant pressure, and the liquid level of the liquid collecting cylinder 41 and the control zone 5 is made to coincide using the Pascal principle. Thus, the algal microorganism broth in the algal microorganism photosynthetic reaction system of the present invention, when the algal microorganism is gradually propagated by circulating culture many times, and the content of the algae in the broth has reached a level that can be collected, The collection stopper kit 7 is opened and collected, and at the same time the washing stopper kit 60 is opened and collected. At the same time, the collection speed is increased. Therefore, a preferable quality of algal microorganisms can be collected. Also, if the pressure in the transparent pipe increases and the broth level of the cultured algal microorganisms in the control zone 5 rises, the pressure level of the broth is adjusted by adjusting the pressure of the pressurized liquid export unit 2 to export. And the pressure in the transparent pipe can be kept in the most suitable state for the growth of algal microorganisms.

そのほか、本発明の藻類微生物光合成反応システムは、さらに、加熱ユニット8,シャワーユニット9を含み,加熱ユニット8は複数個の加熱パイプ80,入口の管続手81,出口の管続手82を含み、前記加熱パイプ80は、入口の管続手81,出口の管続手82を通って透明なパイプの出口と前記加圧液体輸出ユニット2の入口との間をそれぞれ接続する。前記加熱ユニット8は手動もしくは自動感応方式で前記加熱ユニット8内の水を加熱することができ、水の熱を加熱パイプ80まで伝え、ブラザの温度を調整する。また、シャワーユニット9は前記光合成反応ユニット1の上側にあり、また作業環境の必要に応じて、手動もしくは自動感応方式で決まった時間に決まった温度でシャワーし、前記透明なパイプ内のブラザの温度を下げることができる。   In addition, the algal microbial photosynthetic reaction system of the present invention further includes a heating unit 8 and a shower unit 9, and the heating unit 8 includes a plurality of heating pipes 80, an inlet pipe 81, and an outlet pipe 82. The heating pipe 80 connects the outlet of the transparent pipe and the inlet of the pressurized liquid export unit 2 through an inlet pipe 81 and an outlet pipe 82, respectively. The heating unit 8 can heat the water in the heating unit 8 manually or automatically, and transmits the heat of the water to the heating pipe 80 to adjust the temperature of the brother. The shower unit 9 is on the upper side of the photosynthetic reaction unit 1 and, according to the working environment, showers are performed at a predetermined time by a manual or automatic sensing method, and the brother in the transparent pipe is The temperature can be lowered.

図3に示すように、本実施例の前記藻類微生物光合成反応システムの調節区5は直状のパイプ53を有していてもよく、その調節区5の一端は前記光合成反応ユニット1と同様に連通し、もう一方は前記連通装置6により前記液体収集シリンダー41に連通し、藻類は同様に前記直状のパイプ53の調節区5を通り前記光合成反応ユニット1に流入し、循環培養する。前記調節区5の目的は藻類を調節区5で生理調節することなので、生理調節にかかる時間が比較的短い藻類微生物については前記直状のパイプ53の調節区5を用い、前記透明なパイプに早く流すことで、循環培養を行い、生理調節にかかる時間が比較的長い藻類微生物については、図1に示す拡張パイプ52の調節区5を使用しなければならず、調節区5におけるブラザの流れる速度を遅くすることで、藻類微生物が必要とする生理調節の時間を十分にとる。   As shown in FIG. 3, the control zone 5 of the algal microbial photosynthetic reaction system of the present embodiment may have a straight pipe 53, and one end of the control zone 5 is the same as the photosynthesis reaction unit 1. The other is communicated with the liquid collecting cylinder 41 by the communication device 6, and the algae similarly flows into the photosynthetic reaction unit 1 through the control section 5 of the straight pipe 53 and is circulated and cultured. Since the purpose of the control group 5 is to physiologically control algae in the control group 5, for the algal microorganisms that take a relatively short time for physiological control, the control group 5 of the straight pipe 53 is used, and the transparent pipe is used as the transparent pipe. For algal microorganisms that circulate culture by flowing quickly and take a relatively long time for physiological regulation, the regulation zone 5 of the expansion pipe 52 shown in FIG. 1 must be used. By slowing down the speed, sufficient time for physiological regulation required by algal microorganisms is taken.

図4に示した別の実施例は、主に酸素生成量の高い環境に改良を行うものである。酸素生成量が増加する際、排出しなければならない酸素量も当然増加するので、本実施例に於いては、中空状のパイプ壁403の長さを前記液体進入口401の上方に合わせて短くし、前記ブラザがジェット排出酸素装置4の液体進入口401を経て排出酸素シリンダー40内に噴射され、さらに排気パイプ42に引っ掛けられたときに、引っ掛けるによる噴水状の水の落下前に部分的に酸素を排出できるようになり、大幅に排出酸素量を増加させることができる。しかし,このように前記ブラザに於いて上端の排気口402に衝撃を与える際、上端の排気口402から部分的にブラザを引っ掛けるので、産出量はやや減少する。   Another embodiment shown in FIG. 4 is intended to improve mainly in an environment with a high oxygen production amount. As the amount of oxygen produced increases, the amount of oxygen that must be discharged naturally increases. Therefore, in this embodiment, the length of the hollow pipe wall 403 is made short above the liquid inlet 401. When the broth is injected into the exhaust oxygen cylinder 40 through the liquid inlet 401 of the jet exhaust oxygen device 4 and further caught by the exhaust pipe 42, it is partially before the fountain-like water falls due to the catch. Oxygen can be discharged, and the amount of discharged oxygen can be greatly increased. However, when an impact is applied to the exhaust port 402 at the upper end in the above-described broth, the output is slightly reduced because the brozzer is partially hooked from the exhaust port 402 at the upper end.

図1から図5を参照すると、本発明の藻類微生物の光合成反応の方法は、以下の工程を含む。
(一)透明なパイプ、加圧液体輸出ユニット2とジェット排出酸素装置4、調節区5を提供する行程。前記透明なパイプ、前記加圧液体輸出ユニット2、前記ジェット排出酸素装置4、前記調節区5は上述の藻類微生物光合成反応システムを構成するように接続・形成される。
(二)ブラザと藻類を前記透明なパイプに注入し、前記ブラザが前記透明なパイプ内を流動し、光合成を行い、酸素を生成し、前記ブラザが前記加圧液体輸出ユニット2に向かって流れる行程。前記透明なパイプは螺旋式の透明なパイプであり、このため前記ブラザが順に環流する方式で透明なパイプ内を上から下に流れ、藻類微生物が十分に光線を吸収して光合成作用を行い、迅速に繁殖する。
(三)前記加圧液体輸出ユニット2を開き、前記ジェット排出酸素装置4に向かってブラザを無理に流し、ブラザを前記ジェット排出酸素装置4に引っかけて噴水状を形成し、酸素を排出する行程。前記ブラザは前記ジェット排出酸素装置4の排出酸素シリンダー40内に衝撃を与え、噴水状の水を形成し酸素を上記上端の排気口402から排出する。続いて、前記ブラザが上記ネック部404に落下し収集された際、前記排気パイプ42の拡張部402に衝撃を与え、噴水状を形成し、前記排出口405から酸素を排出する。最後に、前記ブラザが前記液体収集シリンダー41内に落下収集され、前記排気パイプ42の上端から酸素を自然に排出する。このように、前記ブラザ内の大部分の酸素を排出し、藻類微生物に再度光合成を行わせることができる。
(四)前記ブラザを前記ジェット排出酸素装置4および前記調節区5内に収集し、かつ前記ブラザが前記透明なパイプ内に流れ再度光合成を行う行程。前記ブラザを前記液体収集シリンダー41内に収集し、かつ連通装置6を通して調節区5内に流し込む。続いて、加圧液体輸出ユニット2の作用により、前記ブラザが調節区5内で前記透明なパイプまで吸収され、再度光合成反応を行う。もしくは液体収集シリンダー41が収集するブラザの液面の高さが前記光合成反応ユニット1の透明なパイプの最上層より高くなり、高さの差を利用して重力作用により、藻類ブラザを自動的に調節区5から透明なパイプに流し込む。
さらに、前記工程(二)は更に加熱ユニット8を提供し、前記ブラザが加熱ユニット8を経て、更に前記加圧液体輸出ユニット2に向かって流れ、ブラザの温度を調整する。
さらに、前記工程(二)は更にシャワーユニット9を提供し、前記シャワーユニット9が作業環境の必要に応じて、前記透明なパイプにシャワーし、前記透明なパイプ内のブラザの温度を低く調整する。
さらに、前記工程(四)は採取栓キット7を提供し、前記ブラザが前記透明なパイプを流れた後、前記採取栓キット7が前記ブラザを吸い込む。
以上に述べたのは本発明の最良の実施例に過ぎず、本発明の特許範囲を制限することはなく、本発明の説明書及び図の内容を応用した技術的な変化については、全て本発明の範囲内に属する。
Referring to FIGS. 1 to 5, the method of photosynthesis reaction of an algal microorganism of the present invention includes the following steps.
(1) The process of providing a transparent pipe, a pressurized liquid export unit 2, a jet exhaust oxygen device 4, and a control zone 5. The transparent pipe, the pressurized liquid export unit 2, the jet exhaust oxygen device 4, and the control zone 5 are connected and formed so as to constitute the algae microorganism photosynthesis reaction system.
(2) Injecting broth and algae into the transparent pipe, the broth flows in the transparent pipe, performs photosynthesis, generates oxygen, and the broth flows toward the pressurized liquid export unit 2 Journey. The transparent pipe is a spiral transparent pipe, and therefore the broth flows in order from the top to the bottom in a transparent manner, and the algal microorganisms absorb light and perform photosynthesis. Breed quickly.
(3) Opening the pressurized liquid export unit 2, forcing the broth toward the jet exhaust oxygen device 4 and hooking the broser to the jet exhaust oxygen device 4 to form a fountain and discharging oxygen . The brother gives an impact into the discharge oxygen cylinder 40 of the jet discharge oxygen device 4 to form fountain-like water and discharge oxygen from the upper exhaust port 402. Subsequently, when the brother falls to the neck portion 404 and is collected, an impact is given to the extended portion 402 of the exhaust pipe 42 to form a fountain shape, and oxygen is discharged from the discharge port 405. Finally, the broth falls and collects in the liquid collecting cylinder 41 and naturally discharges oxygen from the upper end of the exhaust pipe 42. In this way, most of the oxygen in the broth can be discharged and the algal microorganisms can again carry out photosynthesis.
(4) The process of collecting the broth in the jet exhaust oxygen device 4 and the control zone 5, and the broth flows in the transparent pipe and performs photosynthesis again. The broth is collected in the liquid collecting cylinder 41 and poured into the control zone 5 through the communication device 6. Subsequently, due to the action of the pressurized liquid export unit 2, the broth is absorbed up to the transparent pipe in the control zone 5, and the photosynthetic reaction is performed again. Alternatively, the liquid level of the broth collected by the liquid collecting cylinder 41 is higher than the uppermost layer of the transparent pipe of the photosynthetic reaction unit 1, and the algal broth is automatically removed by gravity action using the difference in height. Pour from the control zone 5 into a transparent pipe.
Further, the step (2) further provides a heating unit 8, and the brother flows through the heating unit 8 and further toward the pressurized liquid export unit 2 to adjust the temperature of the brother.
Further, the step (2) further provides a shower unit 9, which showers on the transparent pipe and adjusts the temperature of the brother in the transparent pipe to be low as required in the working environment. .
Further, the step (4) provides a collection stopper kit 7, and after the brother flows through the transparent pipe, the collection stopper kit 7 sucks the brother.
The above description is only the best embodiment of the present invention, does not limit the patent scope of the present invention, and all technical changes applying the contents of the description and drawings of the present invention are described in this book. It belongs to the scope of the invention.

本発明の藻類微生物の光合成反応システムの部分断面略図である。It is a partial section schematic diagram of the photosynthesis reaction system of algae microorganisms of the present invention. 本発明の藻類微生物の光合成反応システムのジェット排出酸素装置の立体略図である。It is the three-dimensional schematic of the jet exhaust oxygen apparatus of the photosynthetic reaction system of the algal microorganisms of this invention. 本発明の実施例の変形例の略図である。6 is a schematic diagram of a variation of an embodiment of the present invention. 本発明の別の実施例の略図である。3 is a schematic diagram of another embodiment of the present invention. 本発明の藻類微生物の光合成反応システムの流れ図である。It is a flowchart of the photosynthesis reaction system of the algal microorganisms of this invention.

符号の説明Explanation of symbols

1 光合成反応ユニット
10 直状のパイプ
11 湾状のパイプ
12 補佐開放口
2 加圧液体輸出ユニット
20 パイプ
4 ジェット排出酸素装置
40 排出酸素シリンダー
401 液体進入口
402 上端の排気口
403 中空状のパイプ壁
404 ネック部
405 側端の排気口
41 液体収集シリンダー
42 排気パイプ
421 拡張部
5 調節区
52 拡張パイプ
53 直状のパイプ
6 連通装置
60 洗浄栓キット
7 採取栓キット
8 加熱ユニット
80 加熱パイプ
81 入口の管続手
82 出口の管続手
9 シャワーユニット
DESCRIPTION OF SYMBOLS 1 Photosynthesis reaction unit 10 Straight pipe 11 Bay-shaped pipe 12 Auxiliary opening 2 Pressurized liquid export unit 20 Pipe 4 Jet exhaust oxygen apparatus 40 Exhaust oxygen cylinder 401 Liquid inlet 402 Upper exhaust port 403 Hollow pipe wall 404 Neck portion 405 Side end exhaust port 41 Liquid collection cylinder 42 Exhaust pipe 421 Expansion portion 5 Control zone 52 Expansion pipe 53 Straight pipe 6 Communication device 60 Washing plug kit 7 Sampling plug kit 8 Heating unit 80 Heating pipe 81 Inlet Pipe joint 82 Pipe joint at the outlet 9 Shower unit

Claims (16)

透明なパイプ経路である光合成反応ユニットと、
入口側が前記透明なパイプ経路の出口側に貫通される加圧液体輸出ユニットと、
中空状のパイプであるジェット排出酸素装置であって、このジェット排出酸素装置はさらに接続された排出酸素シリンダーと液体収集シリンダーを有し、前記排出酸素シリンダーに液体進入口、上端の排気口及び中空のパイプ壁を設置し、前記液体進入口が前記加圧液体輸出ユニットの出口側まで貫通し、前記上端の排気口が前記排気排出酸素シリンダーの上端に位置し、前記中空のパイプ壁が前記上端の排気口から下へ延びるジェット排出酸素装置と、
前記液体収集シリンダーと前記透明なパイプ経路にそれぞれ連通し、藻類微生物が生理調節を行って前記加圧液体輸出ユニット及びジェット排出酸素ユニットによる藻類微生物の生理被害を解決し、最適な生理状態で前記光合成反応ユニットに再び流入できるようにするための調節区とを含む藻類微生物の光合成反応システム。
A photosynthetic reaction unit that is a transparent pipe path;
A pressurized liquid export unit having an inlet side penetrating the outlet side of the transparent pipe path;
A jet exhaust oxygen device, which is a hollow pipe, further comprising an exhaust oxygen cylinder and a liquid collection cylinder connected to the exhaust oxygen cylinder, a liquid inlet, an upper exhaust port and a hollow A pipe wall extending through to the outlet side of the pressurized liquid export unit, the upper end exhaust port being located at the upper end of the exhaust exhaust oxygen cylinder, and the hollow pipe wall being the upper end A jet exhaust oxygen device extending downward from the exhaust port of
The liquid collection cylinder and the transparent pipe path communicate with each other, the algal microorganisms adjust physiologically, solve the physiological damage of the algal microorganisms by the pressurized liquid export unit and the jet exhaust oxygen unit, and in the optimal physiological state A photosynthetic reaction system for algae microorganisms, comprising a control zone for allowing the photosynthesis reaction unit to flow again.
前記光合成反応ユニットは複数個の直状のパイプと複数個の湾状のパイプを含み、これらの直状のパイプと湾状のパイプは直列に接続され、並列に傾斜している螺旋式の透明のパイプ経路を形成することを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The photosynthetic reaction unit includes a plurality of straight pipes and a plurality of bay-shaped pipes, and these straight pipes and the bay-shaped pipes are connected in series and spirally transparent that are inclined in parallel. The photosynthesis reaction system for algal microorganisms according to claim 1, wherein the pipe pathway is formed. 前記透明なパイプ経路の頂点に補佐開放口を設置したことを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The photosynthesis reaction system for algal microorganisms according to claim 1, wherein an assistant opening is installed at the apex of the transparent pipe path. 前記加圧液体輸出ユニットが加圧液体輸出ポンプであることを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The photosynthetic reaction system for algal microorganisms according to claim 1, wherein the pressurized liquid export unit is a pressurized liquid export pump. 前記ジェット排出酸素装置がさらに前記排出酸素シリンダー内に接続された排気パイプを有し、前記排気シリンダーの中段にはネック部と側端排気口を設置し、前記側端排気口が前記ネック部の下に位置し、前記排気パイプの上端は前記中空のパイプ壁内を貫通し、前記排気パイプの下端に拡大部を形成すると共に、前記拡大部が前記側端排気口の内側に位置することを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The jet exhaust oxygen device further has an exhaust pipe connected to the exhaust oxygen cylinder, a neck portion and a side end exhaust port are installed in a middle stage of the exhaust cylinder, and the side end exhaust port is connected to the neck portion. The upper end of the exhaust pipe passes through the hollow pipe wall, and an enlarged portion is formed at the lower end of the exhaust pipe, and the enlarged portion is located inside the side end exhaust port. The photosynthetic reaction system for algal microorganisms according to claim 1. 前記調節区が拡張パイプか直状のパイプのいずれかを有することを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The photosynthetic reaction system for algal microorganisms according to claim 1, wherein the control zone has either an expansion pipe or a straight pipe. さらに前記液体収集シリンダーの底部と前記調節区の底部とに接続される連通装置を含み、前記連通装置は栓洗浄キットを有することを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The photosynthesis reaction system for algal microorganisms according to claim 1, further comprising a communication device connected to a bottom portion of the liquid collecting cylinder and a bottom portion of the control zone, wherein the communication device includes a plug cleaning kit. さらに前記透明なパイプ経路の出口側と前記加圧液体輸出ユニットの入口側との間に接続される採取栓キットを含むことを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   2. The algal microbe photosynthesis reaction system according to claim 1, further comprising a collection plug kit connected between an outlet side of the transparent pipe path and an inlet side of the pressurized liquid export unit. さらに前記透明なパイプ経路の出口側と前記加圧液体輸出ユニットの入口側との間に接続される加熱ユニットを含むことを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The algal microbe photosynthesis reaction system according to claim 1, further comprising a heating unit connected between an outlet side of the transparent pipe path and an inlet side of the pressurized liquid export unit. さらにシャワーユニットを含み、前記シャワーユニットは前記光合成反応ユニットの上側にあることを特徴とする請求項1に記載する藻類微生物の光合成反応システム。   The algal microorganisms photosynthetic reaction system according to claim 1, further comprising a shower unit, wherein the shower unit is located above the photosynthetic reaction unit. 藻類微生物の光合成反応方法であって、
透明なパイプ経路、加圧液体輸出ユニット、ジェット排出酸素装置及び調節区を提供する工程(一)と、
前記透明なパイプ経路内にブラザと藻類の種を注入し、前記ブラザを前記透明なパイプに流し、光合成作用を行わせ、且つ、酸素を発生させ、前記ブラザが同時に前記加圧液体輸出ユニットに流入する工程(二)と、
前記加圧液体輸出ユニットを起動し、無理に前記ブラザを前記ジェット排出酸素装置に流入させ、前記ブラザを前記ジェット排出酸素装置に引っ掛け、噴水状を形成して酸素を排出させる工程(三)と、
前記ブラザを前記ジェット排出酸素装置及び調節区内に収集し、且つ前記ブラザを前記調節区から前記透明なパイプ経路へ流入させ、光合成作用を再進行させる工程(四)と含むことを特徴とする藻類微生物の光合成反応方法。
A photosynthesis reaction method for algal microorganisms,
Providing a transparent pipe path, a pressurized liquid export unit, a jet exhaust oxygen device and a regulating zone;
Injecting broth and algae seeds into the transparent pipe path, allowing the broth to flow through the transparent pipe, causing photosynthetic action, and generating oxygen, the broth simultaneously to the pressurized liquid export unit Inflowing process (2),
(3) starting the pressurized liquid export unit, forcibly forcing the brother into the jet exhaust oxygen device, hooking the brother on the jet exhaust oxygen device, forming a fountain and discharging oxygen; ,
And (4) collecting the broth in the jet exhaust oxygen device and the control zone, and allowing the broth to flow from the control zone into the transparent pipe path to re- proceed with photosynthesis. Photosynthesis reaction method of algal microorganisms.
前記工程(二)はさらに加熱ユニットを提供し、前記ブラザは前記加熱ユニットへ流入した後、前記加圧液体輸出ユニットへ再び流入することを特徴とする請求項11に記載する藻類微生物の光合成反応方法。   The photosynthesis reaction of algal microorganisms according to claim 11, wherein the step (2) further provides a heating unit, and the broth flows into the heating unit and then flows back into the pressurized liquid export unit. Method. 前記工程(二)はさらにシャワーユニットを提供し、前記シャワーユニットは前記透明なパイプにシャワーをかけることを特徴とする請求項11に記載する藻類微生物の光合成反応方法。   The method of photosynthetic reaction of algal microorganisms according to claim 11, wherein the step (2) further provides a shower unit, and the shower unit showers the transparent pipe. 前記工程(四)は採取栓キットを提供し、前記ブラザが前記透明なパイプを流れた後、前記採取栓キットにより前記ブラザを取り込むことを特徴とする請求項11に記載する藻類微生物の光合成反応方法。   12. The photosynthesis reaction of algal microorganisms according to claim 11, wherein the step (4) provides a collection stopper kit, and the broth is taken in by the collection stopper kit after the brother flows through the transparent pipe. Method. 前記工程(四)のブラザが前記調節区内に吸い込まれて前記透明なパイプに流れることを特徴とする請求項11に記載する藻類微生物の光合成反応方法。   12. The method of photosynthetic reaction of algal microorganisms according to claim 11, wherein the broth of the step (4) is sucked into the control zone and flows into the transparent pipe. 前記工程(四)のブラザが前記調節区内において位置エネルギー差により前記透明なパイプに自動的に流れることを特徴とする請求項11に記載する藻類微生物の光合成反応方法。   12. The method of photosynthetic reaction of algae microorganisms according to claim 11, wherein the broth of the step (4) automatically flows into the transparent pipe due to potential energy difference in the control zone.
JP2006150395A 2006-05-30 2006-05-30 Photosynthetic reaction system of alga microorganism Pending JP2007319039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150395A JP2007319039A (en) 2006-05-30 2006-05-30 Photosynthetic reaction system of alga microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150395A JP2007319039A (en) 2006-05-30 2006-05-30 Photosynthetic reaction system of alga microorganism

Publications (1)

Publication Number Publication Date
JP2007319039A true JP2007319039A (en) 2007-12-13

Family

ID=38852353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150395A Pending JP2007319039A (en) 2006-05-30 2006-05-30 Photosynthetic reaction system of alga microorganism

Country Status (1)

Country Link
JP (1) JP2007319039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023990A (en) * 2010-07-21 2012-02-09 Kairos Global Co Ltd Circular type culture method of photosynthesis microalgae
KR101503768B1 (en) * 2013-07-22 2015-03-18 서울대학교산학협력단 Device for controlling temperature and Method of operating the same
CN112779138A (en) * 2021-03-12 2021-05-11 甘肃凯源生物技术开发中心 Three-dimensional pipeline closed type edible microalgae culture device and use method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543899U (en) * 1990-12-29 1993-06-15 バブコツク日立株式会社 Incubator for photosynthetic organisms
JPH05168463A (en) * 1991-06-07 1993-07-02 Nippon Sanso Kk Method for fixing carbon dioxide using photosynthetic organism and apparatus therefor
CN2234443Y (en) * 1995-07-31 1996-09-04 缪坚人 Spirulina photosynthesis reactor
JPH11509402A (en) * 1995-02-02 1999-08-24 アスピタリア エッセ.エレ.エレ. Method and apparatus for culturing microalgae in a closed circuit
JP3111873U (en) * 2004-09-21 2005-07-28 盧 朝輝 Plant algae / microorganism photosynthesis reactor
CN2744690Y (en) * 2004-10-11 2005-12-07 卢朝辉 Plant algae and microorganism photosynthetic reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543899U (en) * 1990-12-29 1993-06-15 バブコツク日立株式会社 Incubator for photosynthetic organisms
JPH05168463A (en) * 1991-06-07 1993-07-02 Nippon Sanso Kk Method for fixing carbon dioxide using photosynthetic organism and apparatus therefor
JPH11509402A (en) * 1995-02-02 1999-08-24 アスピタリア エッセ.エレ.エレ. Method and apparatus for culturing microalgae in a closed circuit
CN2234443Y (en) * 1995-07-31 1996-09-04 缪坚人 Spirulina photosynthesis reactor
JP3111873U (en) * 2004-09-21 2005-07-28 盧 朝輝 Plant algae / microorganism photosynthesis reactor
CN2744690Y (en) * 2004-10-11 2005-12-07 卢朝辉 Plant algae and microorganism photosynthetic reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023990A (en) * 2010-07-21 2012-02-09 Kairos Global Co Ltd Circular type culture method of photosynthesis microalgae
KR101503768B1 (en) * 2013-07-22 2015-03-18 서울대학교산학협력단 Device for controlling temperature and Method of operating the same
CN112779138A (en) * 2021-03-12 2021-05-11 甘肃凯源生物技术开发中心 Three-dimensional pipeline closed type edible microalgae culture device and use method thereof

Similar Documents

Publication Publication Date Title
US7056725B1 (en) Vegetable alga and microbe photosynthetic reaction system and method for the same
JP4405980B2 (en) Plant algae / microorganism photosynthesis reactor
CN105462807A (en) Novel multifunctional airlift tube photobioreactor
EP3167042B1 (en) Bioreactor with interruptible gas supply
CN101497473A (en) Aeration type photobioreactor and method of use thereof
CN102533528B (en) Sealed continuous culture experimental apparatus based on simulation of microalgae amplification culture
CN102660448A (en) Sleeve type photobiological reaction system for culturing microalgae on scale by utilizing waste gas and waste heat
CN201132831Y (en) Circle releasing device for carbonic acid gas by pool-cultured spirulina
CN107099458A (en) A kind of biological respinse kettle and the method for promoting haematococcus pluvialis propagation and redden
JP2007319039A (en) Photosynthetic reaction system of alga microorganism
CN201395593Y (en) Device for quantitatively and fast cultivating microalgae
CN101353619B (en) algae microbe photosynthetic reaction system
CN101306879A (en) Three-phase fluidized algae photobioreactor system for treating high-concentration organic wastewater
CN100404661C (en) Plant algae and microorganism photosynthetic reaction system and method
CN204742224U (en) Ecological farming systems
AU2006201799B1 (en) Alga microbe photosynthetic reaction system and method for the same
CN208300723U (en) A kind of industrial circulating water fry rearing system
CN105010213A (en) Ecological culture system
CN102660449A (en) Sleeve-type photo-bioreactor
TW200932903A (en) Process and system for photosynthesis of alga microorganisms
CN104928172B (en) Ventilation temperature control system and algal culture system for algal culture
CN109251847A (en) Utilize the device and method of sunlight culture photosynthetic microorganism
CN101033448B (en) algae microbe photosynthetic reaction system
CN1563346A (en) Method for cultivating micro alga and photo-biologic reactor system utilized
CN205431631U (en) Indoor shore shrimp circulation recirculating aquaculture system that all receives

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413