[go: up one dir, main page]

JP2007318942A - Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof - Google Patents

Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof Download PDF

Info

Publication number
JP2007318942A
JP2007318942A JP2006146964A JP2006146964A JP2007318942A JP 2007318942 A JP2007318942 A JP 2007318942A JP 2006146964 A JP2006146964 A JP 2006146964A JP 2006146964 A JP2006146964 A JP 2006146964A JP 2007318942 A JP2007318942 A JP 2007318942A
Authority
JP
Japan
Prior art keywords
magnet
laminated
laminated core
holes
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006146964A
Other languages
Japanese (ja)
Inventor
Giichi Ukai
義一 鵜飼
Hiroki Matsubara
浩樹 松原
Takashi Miyazaki
高志 宮崎
Hiroshi Aoyanagi
浩 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006146964A priority Critical patent/JP2007318942A/en
Publication of JP2007318942A publication Critical patent/JP2007318942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】永久磁石をバランス良く確実に固定するとともに、樹脂部材の充填時に積層鉄心に樹脂の成形圧力が加わった場合にも積層鉄心の破損を防止し、信頼性の向上を図ることが可能な磁石埋込型回転子を提供する。
【解決手段】板状磁性部材を積層して形成された積層鉄心3の複数の穴部に永久磁石6を嵌挿し、樹脂部材8を注入穴部を介して注入する磁石埋込型回転子を製造する装置において、積層鉄心3の外周の一部または全部と当接するスライド部材11cを備え、上型10及び下型11によりスライド部材11cを挟持し固定した状態で上記穴部と上記永久磁石の間に樹脂部材を充填させるようにした。
【選択図】図14
[PROBLEMS] To fix a permanent magnet in a well-balanced manner, and to prevent damage to the laminated core even when resin molding pressure is applied to the laminated core when the resin member is filled, thereby improving reliability. An embedded magnet rotor is provided.
A magnet-embedded rotor in which a permanent magnet 6 is inserted into a plurality of holes of a laminated core 3 formed by laminating plate-like magnetic members and a resin member 8 is injected through the injection hole. The apparatus to be manufactured includes a slide member 11c that comes into contact with part or all of the outer periphery of the laminated iron core 3. The slide member 11c is sandwiched and fixed between the upper mold 10 and the lower mold 11 so that the holes and the permanent magnets are fixed. The resin member was filled in between.
[Selection] Figure 14

Description

この発明は、積層鉄心の外周部に設けられた穴部に複数の永久磁石が装着され、回転電機の回転子として機能する磁石埋込型回転子に係り、特に永久磁石を穴部内に固定する製造装置および製造方法に関するものである。   The present invention relates to an embedded magnet type rotor in which a plurality of permanent magnets are mounted in a hole provided in an outer peripheral portion of a laminated iron core and functions as a rotor of a rotating electrical machine, and in particular, the permanent magnet is fixed in the hole. The present invention relates to a manufacturing apparatus and a manufacturing method.

従来、この種の磁石埋込型回転子として、例えば、特許文献1に示されるように、永久磁石の外周部に接着剤を含浸または塗布した接着シートを配することにより、永久磁石を積層鉄心に設けられた打抜き穴内に固定することが提案されている。   Conventionally, as this type of magnet-embedded rotor, for example, as shown in Patent Document 1, a permanent magnet is laminated by placing an adhesive sheet impregnated or coated with an adhesive on the outer periphery of the permanent magnet. It has been proposed to fix in a punched hole provided in.

しかしながら、上記のような磁石埋込型回転子は、永久磁石の外周部に接着剤を含浸または塗布した接着シートを配置しているので、各打抜き穴内における永久磁石の位置が一定せず、磁気特性および重量バランスが悪くなり、性能の低下を招くという問題点があった。   However, since the embedded magnet rotor as described above has an adhesive sheet impregnated or coated with an adhesive on the outer periphery of the permanent magnet, the position of the permanent magnet in each punched hole is not constant, and the magnetic There was a problem that the balance of characteristics and weight deteriorated and the performance deteriorated.

そこで、この出願と同一出願人によって出願された特許文献2、特許文献3によれば、永久磁石が嵌挿される穴部の積層鉄心の中心側に沿って軸方向に貫通し、永久磁石と対応する位置で穴部と連通する注入用穴部を形成し、この注入用穴部を介して穴部と永久磁石の間に樹脂部材を充填することにより、永久磁石をバランス良く確実に固定することを提案している。   Therefore, according to Patent Document 2 and Patent Document 3 filed by the same applicant as this application, it penetrates in the axial direction along the center side of the laminated core of the hole portion into which the permanent magnet is inserted, and corresponds to the permanent magnet. By forming a hole for injection that communicates with the hole at the position where the hole is to be filled, and filling the resin member between the hole and the permanent magnet via this hole for injection, the permanent magnet can be securely fixed in a balanced manner. Has proposed.

特開平9−163649号公報JP-A-9-163649 特開2001−157394号公報JP 2001-157394 A 特開2002−34187号公報JP 2002-34187 A

上記の特許文献2、特許文献3のように、永久磁石が嵌挿される穴部の積層鉄心の中心側に沿って軸方向に貫通し、永久磁石と対応する位置で穴部と連通する注入用穴部を形成し、この注入用穴部を介して穴部と永久磁石の間に熱可塑性樹脂部材を充填する場合、樹脂を流動させて穴部と永久磁石の間に充填するため、樹脂には大きな圧力(50MPa程度)を加える必要がある。積層鉄心の穴部にこのような圧力が加わった場合、積層鉄心の薄肉部が樹脂の圧力で破損する等のおそれがあるという問題点があった。   As in Patent Document 2 and Patent Document 3 above, for injection that penetrates in the axial direction along the center side of the laminated core of the hole portion into which the permanent magnet is inserted and communicates with the hole portion at a position corresponding to the permanent magnet When a hole is formed and a thermoplastic resin member is filled between the hole and the permanent magnet through the hole for injection, the resin flows and fills between the hole and the permanent magnet. Need to apply a large pressure (about 50 MPa). When such a pressure is applied to the hole of the laminated core, there is a problem that the thin-walled portion of the laminated core may be damaged by the pressure of the resin.

この発明は上記のような問題点を解消するためになされたもので、永久磁石をバランス良く確実に固定するとともに、樹脂部材の充填時に積層鉄心に樹脂の成形圧力が加わった場合にも積層鉄心の破損を防止し、信頼性の向上を図ることが可能な磁石埋込型回転子の成層装置及び製造方法を提供することを目的とするものである。   The present invention has been made to solve the above-described problems. The permanent magnet is securely fixed in a well-balanced manner, and the laminated iron core is applied even when resin molding pressure is applied to the laminated iron core during filling of the resin member. It is an object of the present invention to provide a stratified apparatus and a manufacturing method for an embedded magnet rotor capable of preventing damage to the rotor and improving reliability.

この発明の磁石埋込型回転子の射出成形用金型装置は、板状磁性部材を積層して形成された積層鉄心と、積層鉄心の端面に周方向に所定の間隔を介して配置されるとともに軸方向に貫通して形成された複数の穴部と、各穴部にそれぞれ嵌挿される永久磁石と、各穴部の積層鉄心の中心側に沿ってそれぞれ延在し永久磁石と対応する位置で穴部と連通して形成される注入穴部と、注入穴部を介して注入され穴部と永久磁石の間に充填される樹脂部材とを備えた磁石埋込型回転子を製造するための射出成形用金型装置において、射出成形用金型装置は上型及び下型から構成されると共に、積層鉄心の外周の一部または全部と当接する当接部材(発明の詳細な説明におけるスライド部材)を備え、上型及び下型により当接部材を挟持し固定した状態で穴部と永久磁石の間に樹脂部材を充填させるものである。   A mold apparatus for injection molding of a magnet-embedded rotor according to the present invention has a laminated core formed by laminating plate-like magnetic members, and is disposed on the end surface of the laminated core at a predetermined interval in the circumferential direction. And a plurality of holes formed so as to penetrate in the axial direction, permanent magnets inserted into the holes, and positions corresponding to the permanent magnets extending along the center side of the laminated core of the holes. In order to manufacture a magnet-embedded rotor including an injection hole portion formed in communication with the hole portion and a resin member injected through the injection hole portion and filled between the hole portion and the permanent magnet In the injection mold apparatus, the injection mold apparatus is composed of an upper mold and a lower mold, and a contact member that contacts a part or all of the outer periphery of the laminated core (slide in the detailed description of the invention). Member), and the contact member is clamped and fixed by the upper die and the lower die It is intended to fill a resin member between the bore and the permanent magnet.

この発明の磁石埋込型回転子の製造方法は、板状磁性部材を積層して形成された積層鉄心と、積層鉄心の端面に周方向に所定の間隔を介して配置されるとともに軸方向に貫通して形成された複数の穴部と、各穴部にそれぞれ嵌挿される永久磁石と、各穴部の積層鉄心の中心側に沿ってそれぞれ延在し永久磁石と対応する位置で穴部と連通して形成される注入穴部と、注入穴部を介して注入され穴部と永久磁石の間に充填される樹脂部材とを備えた磁石埋込型回転子を製造する方法であって、積層鉄心の外周の一部または全部を当接部材により当接した状態で、穴部と永久磁石の間に樹脂部材を充填させるものである。   A method for manufacturing a magnet-embedded rotor according to the present invention includes a laminated iron core formed by laminating plate-like magnetic members, and an end face of the laminated iron core disposed at a predetermined interval in the circumferential direction and in the axial direction. A plurality of holes formed so as to penetrate, permanent magnets that are respectively inserted into the holes, holes extending at the center side of the laminated iron core of the holes and holes corresponding to the permanent magnets A method of manufacturing a magnet-embedded rotor including an injection hole portion formed in communication and a resin member injected through the injection hole portion and filled between the hole portion and a permanent magnet, A resin member is filled between the hole and the permanent magnet in a state where a part or all of the outer periphery of the laminated iron core is in contact with the contact member.

この発明によれば、当接部材を積層鉄心の外周の一部または全部と接した状態で上型と下型により挟み込みこんで固定し、穴部と永久磁石の間に樹脂部材を充填するようにしたので、積層鉄心に樹脂部材を充填するための成形圧力が加わっても、積層鉄心の薄肉部が破損する恐れがなく、信頼性が高い磁石埋込型回転子を生産性よく提供することができる。   According to this invention, the contact member is sandwiched and fixed between the upper die and the lower die while being in contact with part or all of the outer periphery of the laminated core, and the resin member is filled between the hole and the permanent magnet. Therefore, even if molding pressure for filling the laminated core with the resin member is applied, the thin-walled portion of the laminated core is not damaged, and a highly reliable embedded magnet rotor is provided with high productivity. Can do.

以下、本発明を実施するための最良の形態を図に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

実施の形態1.
図1はこの発明の実施の形態1における磁石埋込型回転子の回転中心軸を通る平面で切断した断面図、図2は図1のA−A線に沿う断面を示す図、図3は図1のB−B線に沿う断面を示す図、図4は図1のC−C線に沿う断面を示す図、図5は図1のD−D線に沿う断面を示す図、図6は図1のE−E線に沿う断面を示す図である。図7は図1の磁石埋込型回転子を構成する第1の板状磁性部材を示す平面図、図8は図1の磁石埋込型回転子を構成する第2の板状磁性部材を示す平面図である。図9は本実施の形態の磁石埋込型回転子を構成する積層鉄心を示す平面図、図10及び図11は図9の積層鉄心のFF線及びGG線の断面図であり、積層鉄心の回転中心軸を通る平面で切断した断面図である。図12及び図13は本実施の形態の永久磁石の平面図及び正面図である。
Embodiment 1 FIG.
1 is a cross-sectional view taken along a plane passing through the rotation center axis of an embedded magnet rotor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. FIG. 4 is a diagram showing a section taken along line B-B in FIG. 1, FIG. 4 is a diagram showing a section taken along line CC in FIG. 1, FIG. 5 is a diagram showing a section taken along line DD in FIG. FIG. 2 is a view showing a cross section taken along line EE of FIG. 1. 7 is a plan view showing a first plate-like magnetic member constituting the magnet-embedded rotor of FIG. 1, and FIG. 8 is a diagram showing a second plate-like magnetic member constituting the magnet-embedded rotor of FIG. FIG. 9 is a plan view showing a laminated core constituting the magnet-embedded rotor of the present embodiment, and FIGS. 10 and 11 are cross-sectional views of the FF line and GG line of the laminated core of FIG. It is sectional drawing cut | disconnected by the plane which passes a rotation center axis | shaft. 12 and 13 are a plan view and a front view of the permanent magnet of the present embodiment.

図1に示すように、本実施の形態の磁石埋込型回転子は、第1の板状磁性部材1及び第2の板状磁性部材2を積層して成る積層鉄心3に永久磁石6及び回転子軸7を装着することにより構成される。そして、図7に示すように、第1の板状磁性部材1には、外周近傍の周方向に所定の間隔を介して配置される複数の穴部1a、これら各穴部1aの積層鉄心3の中心側の周方向中央部に配置される注入用穴部1b、積層鉄心3の中心部に配置される軸用穴部1c、注入用穴部1bと軸用穴部1cの間の領域に配置されている抜きカシメ部1e、および後述する成形金型との位置決め用穴部1fが、それぞれ形成されている。また、図8に示すように、第2の板状磁性部材2には、第1の板状磁性部材1の各部1a、1b、1c、1e、1fと同様の、穴部2a、注入用穴部2b、軸用穴部2c、カシメ部2e、位置決め用穴部2fとが形成され、さらに、穴部2aと注入用穴部2bの間を連通するスリット部2dが形成されている。   As shown in FIG. 1, the magnet-embedded rotor according to the present embodiment includes a permanent magnet 6 and a laminated iron core 3 formed by laminating a first plate-like magnetic member 1 and a second plate-like magnetic member 2. It is configured by mounting the rotor shaft 7. As shown in FIG. 7, the first plate-like magnetic member 1 has a plurality of holes 1 a arranged at predetermined intervals in the circumferential direction near the outer periphery, and a laminated core 3 of these holes 1 a. Injection hole 1b disposed at the center in the circumferential direction on the center side, shaft hole 1c disposed at the center of the laminated iron core 3, and regions between the injection hole 1b and the shaft hole 1c. Disposed caulking portions 1e and positioning hole portions 1f for forming molds to be described later are respectively formed. Further, as shown in FIG. 8, the second plate-like magnetic member 2 has holes 2a, injection holes similar to the respective portions 1a, 1b, 1c, 1e, and 1f of the first plate-like magnetic member 1. A portion 2b, a shaft hole portion 2c, a caulking portion 2e, and a positioning hole portion 2f are formed, and further, a slit portion 2d that communicates between the hole portion 2a and the injection hole portion 2b is formed.

また、図1〜図11に示すように、本実施の形態の積層鉄心3は、その軸方向両端部および永久磁石6の軸方向略中心部に対応する位置に、第2の板状磁性部材2を例えば3〜4枚程度、残りの位置に第1の板状磁性部材1をそれぞれ配置した組み合わせで積層して、各穴部1aと2a、1bと2b、1cと2c、1fと2fをそれぞれ一致させ、抜きカシメ1e、2eで固着一体化することにより構成される。そして、第2の板状磁性部材2が配置された部分には、各スリット部2dにより、板状磁性部材の板厚の例えば3〜4倍分の深さおよびスリットと同じ幅を有する連通溝部4および連通穴部5が形成される。また、第1及び第2の板状磁性部材1及び2の位置決め用穴部1f及び2fは一致させて積層されているので、図9〜図11に示すように積層鉄心3には成形金型との位置決め穴12が形成される。   Moreover, as shown in FIGS. 1-11, the laminated iron core 3 of this Embodiment is the 2nd plate-shaped magnetic member in the position corresponding to the axial direction both ends and the axial direction substantially center part of the permanent magnet 6. As shown in FIG. 2 are stacked in a combination of, for example, about 3 to 4 sheets, and the first plate-like magnetic member 1 is disposed in the remaining positions, and the holes 1a and 2a, 1b and 2b, 1c and 2c, 1f and 2f are formed. They are configured to match each other, and are fixed and integrated with the crimping caulking 1e, 2e. And in the part by which the 2nd plate-shaped magnetic member 2 is arrange | positioned, by each slit part 2d, the communicating groove part which has the same width as a slit and the depth for 3-4 times the plate | board thickness of a plate-shaped magnetic member, for example 4 and the communication hole 5 are formed. Further, since the positioning holes 1f and 2f of the first and second plate-like magnetic members 1 and 2 are laminated so as to coincide with each other, as shown in FIGS. The positioning hole 12 is formed.

また、図1〜図13に示すように、複数の永久磁石6は、第1及び第2の板状磁性部材1及び2の両穴部1a及び2aにそれぞれ挿入される。回転子軸7は、第1及び第2の板状磁性部材1及び2の軸用穴部1c及び2cに嵌合される。樹脂部材8は、第1及び第2の板状磁性部材1及び2の注入用穴部1b及び2bから注入され、連通溝部4および連通穴部5を介して各穴部1a、2aに注入され、各永久磁石6の軸中心側に一部空間を残して装填される。   Moreover, as shown in FIGS. 1-13, the some permanent magnet 6 is inserted in both the hole parts 1a and 2a of the 1st and 2nd plate-shaped magnetic members 1 and 2, respectively. The rotor shaft 7 is fitted into the shaft holes 1c and 2c of the first and second plate-like magnetic members 1 and 2. The resin member 8 is injected from the injection holes 1b and 2b of the first and second plate-like magnetic members 1 and 2, and is injected into the holes 1a and 2a via the communication groove 4 and the communication hole 5. The permanent magnets 6 are loaded while leaving a partial space on the axial center side.

本実施の形態の磁石埋込型回転子は、図示の通り、6個の永久磁石6で構成される6つの磁極を有する回転子であり、積層鉄心3のそれぞれの磁極の中心部が外径方向に凸となる形状を有している。なお、本発明は6極の磁石埋込型回転子に限るものではなく、例えば4極、8極、10極、12極等、極数に限定されず適用可能である。   The magnet-embedded rotor according to the present embodiment is a rotor having six magnetic poles composed of six permanent magnets 6 as shown in the drawing, and the central part of each magnetic pole of the laminated core 3 has an outer diameter. It has a shape that is convex in the direction. The present invention is not limited to a 6-pole embedded magnet rotor, and can be applied without being limited to the number of poles, such as 4-pole, 8-pole, 10-pole, and 12-pole.

図14は本実施の形態の磁石埋込型回転子の製造に適用される成形金型の構成を示す断面図であり、積層鉄心3が嵌挿された状態で表されている。図15は図14と同じ状態における成形金型の異なる断面を示しており、積層鉄心3の位置決め穴12が示されている。図16は積層鉄心3が嵌挿され、さらに成形金型の移動可能なスライド部材が積層鉄心外周部に接するように移動・配置された状態を示す断面図である。図17は積層鉄心3が嵌挿され、スライド部材が積層鉄心の外周部と接した状態で型締め(上型と下型で挟み込まれる)された状態を示す断面図である。図18は図14に示した積層鉄心3が嵌挿された成形金型の平面図である。図19は図16に示した積層鉄心3が嵌挿されさらに成形金型の移動可能なスライド部材が積層鉄心外周部に接するように移動・配置された状態の成形金型の平面図である。   FIG. 14 is a cross-sectional view showing the configuration of a molding die applied to the manufacture of the magnet-embedded rotor of the present embodiment, and is shown in a state in which the laminated core 3 is inserted. FIG. 15 shows a different cross section of the molding die in the same state as FIG. 14, and the positioning hole 12 of the laminated iron core 3 is shown. FIG. 16 is a cross-sectional view showing a state in which the laminated iron core 3 is inserted and moved and arranged so that a movable slide member of the molding die is in contact with the outer circumference of the laminated iron core. FIG. 17 is a cross-sectional view showing a state in which the laminated iron core 3 is inserted and clamped (sandwiched between the upper die and the lower die) in a state where the slide member is in contact with the outer peripheral portion of the laminated iron core. 18 is a plan view of a molding die into which the laminated core 3 shown in FIG. 14 is inserted. FIG. 19 is a plan view of the molding die in a state where the laminated core 3 shown in FIG. 16 is inserted and the slide member in which the molding die is movable is moved and arranged so as to contact the outer peripheral portion of the laminated core.

図に示すように、成形金型9は積層鉄心3に樹脂部材8を注入するための金型であり、上型10と下型11から構成される。上型10は、樹脂供給穴部10a、この樹脂供給穴部10aから分岐する分岐穴部10b、この分岐穴部10bから積層鉄心3の各注入用穴部1b、2bと対応する位置でそれぞれ開口される複数の注入穴部10c、および積層鉄心3の各穴部1a、2a内に配置される永久磁石6の上端面に当接可能な突起部10dを備えている。下型11は、積層鉄心3の軸用穴部1c、2cに嵌挿可能な軸部11a、積層鉄心3の各穴部1a、2aと対応する位置にそれぞれ突設され、各穴部1a、2a内の永久磁石6の下端面に当接可能な突起部11b、積層鉄心3の外周部と接する同形状の部分を有し、積層鉄心3の径方向に移動可能なスライド部材11c、移動可能なスライド部材11cを径方向に移動させるためのエアシリンダ11d、及び積層鉄心3の位置決め穴12と対応する位置に設けられた位置決め用の突起(位置決めピン)11eを備えている。なお、図18及び図19に示すように、上型10と下型11はガイドピン11fによって位置合わせが可能な構成となっている。   As shown in the drawing, the molding die 9 is a die for injecting a resin member 8 into the laminated core 3, and includes an upper die 10 and a lower die 11. The upper mold 10 is opened at positions corresponding to the resin supply holes 10a, the branch holes 10b branched from the resin supply holes 10a, and the injection holes 1b and 2b of the laminated core 3 from the branch holes 10b. A plurality of injection holes 10c, and a protrusion 10d that can contact the upper end surface of the permanent magnet 6 disposed in each of the holes 1a and 2a of the laminated core 3. The lower mold 11 protrudes from the shaft 11a that can be inserted into the shaft holes 1c and 2c of the laminated core 3 and the positions corresponding to the holes 1a and 2a of the laminated core 3, respectively. 2a, a projecting part 11b capable of contacting the lower end surface of the permanent magnet 6 and a part having the same shape in contact with the outer peripheral part of the laminated core 3, and a slide member 11c movable in the radial direction of the laminated core 3, movable An air cylinder 11d for moving the sliding member 11c in the radial direction and a positioning projection (positioning pin) 11e provided at a position corresponding to the positioning hole 12 of the laminated iron core 3 are provided. As shown in FIGS. 18 and 19, the upper mold 10 and the lower mold 11 can be aligned by the guide pins 11f.

ここで、スライド部材11cの高さHsは、積層鉄心3の実質高さHtよりも大きくなるように設定されている。積層鉄心の実質高さとは、第1及び第2の板状磁性部材の厚さをt、積層枚数をnとすると
Ht=nt
で現される寸法である。通常、積層鉄心3は板状磁性部材を複数枚積層して形成されるが、板状磁性部材と板状磁性部材の間には、図20に示すように積層隙間(空間)G1が存在する。この積層隙間の寸法を除いた高さを積層鉄心3の実質高さとする。ここで、図20は本実施の形態による圧縮(型締め)前の積層鉄心間の積層隙間G1を示し、図21は本実施の形態による圧縮(型締め)後の積層鉄心間の積層隙間G2を示す。
Here, the height Hs of the slide member 11 c is set to be larger than the substantial height Ht of the laminated core 3. The actual height of the laminated iron core means that the thickness of the first and second plate-like magnetic members is t, and the number of laminated layers is n, Ht = nt
It is a dimension expressed by. Usually, the laminated core 3 is formed by laminating a plurality of plate-like magnetic members, but a laminate gap (space) G1 exists between the plate-like magnetic members and the plate-like magnetic members as shown in FIG. . The height excluding the dimension of the laminated gap is defined as the substantial height of the laminated core 3. Here, FIG. 20 shows the lamination gap G1 between the laminated cores before compression (clamping) according to the present embodiment, and FIG. 21 shows the lamination gap G2 between the laminated cores after compression (die clamping) according to the present embodiment. Indicates.

本実施の形態の場合には、板状磁性部材の厚みt=0.35mm、積層枚数n=114枚であるので、実質高さはHt=39.9mmである。スライド部材11cの高さはHs=40mmに設定されている。   In the case of the present embodiment, since the thickness t = 0.35 mm of the plate-like magnetic member and the number of stacked layers n = 114, the substantial height is Ht = 39.9 mm. The height of the slide member 11c is set to Hs = 40 mm.

スライド部材11cは、図18及び図19に示す通り、磁石埋込型回転子の2個分の磁極の外周部と接する形状を有し、スライド部材11cの外側にエアシリンダ11dが連結され、エアシリンダ11dの駆動力により径方向に移動するよう構成されている。図示はしないが、スライド部材11cのスライド方向には直線ガイド機構が備えられており、スライド部材11cと積層鉄心3の外周部は隙間なく接することができる。また、図19のように、エアシリンダ11dによってスライド部材11cが積層鉄心3に押し付けられた場合、エアシリンダ11dの加圧力は約200Nに調整されており、エアシリンダ11dの加圧力によって積層鉄心3の外周部が変形することはない。   As shown in FIGS. 18 and 19, the slide member 11c has a shape in contact with the outer periphery of the two magnetic poles of the magnet-embedded rotor, and an air cylinder 11d is connected to the outside of the slide member 11c. It is configured to move in the radial direction by the driving force of the cylinder 11d. Although not shown, a linear guide mechanism is provided in the sliding direction of the slide member 11c, and the outer peripheral portion of the slide member 11c and the laminated iron core 3 can be in contact with each other without a gap. As shown in FIG. 19, when the slide member 11c is pressed against the laminated core 3 by the air cylinder 11d, the pressure of the air cylinder 11d is adjusted to about 200 N, and the laminated core 3 is adjusted by the pressure of the air cylinder 11d. The outer peripheral portion of the is not deformed.

次に、実施の形態1による磁石埋込型回転子の製造方法について説明する。まず、図7に示すように、第1の板状磁性部材1に、打ち抜き加工により穴部1a、注入用穴部1b、軸用穴部1c、位置決め用穴部1fを形成する。また、図8に示すように、第2の板状磁性部材2に、打ち抜き加工により穴部2a、注入用穴部2b、軸用穴部2c、スリット部2d、位置決め用穴部2fを形成する。次に、図10及び図11に示すように、第2の板状磁性部材2を積層鉄心3の軸方向両端部に相当する位置、および各永久磁石6の軸方向略中心部と対応する位置にそれぞれ例えば3〜4枚ずつ配置するとともに、残りの部分には第1の板状磁性部材1を配置し、それぞれの穴部1a、2a、注入用穴部1b、2b、軸用穴部1c、2c、および位置決め用穴部1f、2fがそれぞれ一致するように積層する。そして、積層した第1及び第2の板状磁性部材1、2を、抜きカシメ1e、2eにより固着一体化して積層鉄心3を形成する。   Next, a method for manufacturing the embedded magnet rotor according to the first embodiment will be described. First, as shown in FIG. 7, a hole 1a, an injection hole 1b, a shaft hole 1c, and a positioning hole 1f are formed in the first plate-like magnetic member 1 by punching. Further, as shown in FIG. 8, a hole 2a, an injection hole 2b, a shaft hole 2c, a slit 2d, and a positioning hole 2f are formed in the second plate-like magnetic member 2 by punching. . Next, as shown in FIGS. 10 and 11, the second plate-like magnetic member 2 is positioned corresponding to both axial ends of the laminated iron core 3, and the position corresponding to the substantially axial center of each permanent magnet 6. For example, 3 to 4 sheets are respectively disposed in the first plate-like magnetic member 1 and the remaining portions are disposed with the first plate-like magnetic member 1, and the respective hole portions 1a, 2a, injection hole portions 1b, 2b, shaft hole portion 1c 2c and the positioning holes 1f and 2f are laminated so as to coincide with each other. Then, the laminated first and second plate-like magnetic members 1 and 2 are fixedly integrated with the crimping caulking 1e and 2e to form the laminated iron core 3.

上記のようにして形成された積層鉄心3を、図14及び図15に示すように、各穴部2aが各突起部11bと一致するようにして、下型11の軸部11aに積層鉄心3の軸用穴部1c、2cを嵌挿するとともに、位置決め用穴部1f、2fにより形成された位置決め用穴12を下型11の位置決め用突起11eに嵌挿する。この場合、スライド部材11cが成形金型9の中心側へ移動した際に、スライド部材11cの積層鉄心3と接する部分が積層鉄心3の外周部と隙間なく接することができるように、積層鉄心3と下型11の角度を合わせる。   As shown in FIGS. 14 and 15, the laminated core 3 formed as described above is laminated on the shaft portion 11a of the lower mold 11 so that each hole 2a coincides with each projection 11b. The shaft holes 1c and 2c are inserted and the positioning holes 12 formed by the positioning holes 1f and 2f are inserted into the positioning protrusions 11e of the lower mold 11. In this case, when the slide member 11c moves to the center side of the molding die 9, the laminated core 3 is arranged such that the portion of the slide member 11c that contacts the laminated core 3 can be in contact with the outer peripheral portion of the laminated core 3 without a gap. And the angle of the lower mold 11 are matched.

なお、積層鉄心3が下型11に嵌挿される時、下型11に装備されているスライド部材11cは、エアシリンダ11dの駆動部が後退することで成形金型9の中心から外側に移動した状態になっているため、容易に積層鉄心3を下型11に嵌挿することができる。   When the laminated core 3 is inserted into the lower mold 11, the slide member 11 c mounted on the lower mold 11 has moved outward from the center of the molding die 9 due to the drive unit of the air cylinder 11 d retreating. Since it is in a state, the laminated core 3 can be easily inserted into the lower mold 11.

次に、積層鉄心3の各穴部1a、2a内にそれぞれ永久磁石6を所定の個数ずつ挿入する。本実施の形態では各穴部1a、2aに挿入される永久磁石6の数は1個ずつであるが、磁石埋込型回転子の軸長が長い場合には、永久磁石6を複数個挿入する。例えば、本実施形態と同じ永久磁石6と軸長80mmの積層鉄心を用いて磁石埋込型回転子を製造する場合には、図37のように各穴部には2個ずつの永久磁石を挿入する。この場合、永久磁石6と対応する位置に形成される積層鉄心3の連通穴部5は永久磁石の数と同数の2個がそれぞれ形成される。   Next, a predetermined number of permanent magnets 6 are inserted into the holes 1a and 2a of the laminated iron core 3, respectively. In the present embodiment, the number of permanent magnets 6 inserted into each of the holes 1a and 2a is one, but when the axial length of the magnet-embedded rotor is long, a plurality of permanent magnets 6 are inserted. To do. For example, when manufacturing a magnet-embedded rotor using the same permanent magnet 6 as in this embodiment and a laminated iron core having an axial length of 80 mm, two permanent magnets are provided in each hole as shown in FIG. insert. In this case, two communicating hole portions 5 of the laminated core 3 formed at positions corresponding to the permanent magnets 6 are formed in the same number as the number of permanent magnets.

次に、下型11に装備されたスライド部材11cはエアシリンダ11dの駆動部の前進により、成形金型9の中心側へ移動し、積層鉄心3の外周部と隙間なく接触した状態に押し付けられる。ただし、エアシリンダ11dの加圧力は前述のように200N程度に調整されているので、押し付け力によって積層鉄心3が変形、破損することはない。   Next, the slide member 11c mounted on the lower die 11 moves to the center side of the molding die 9 by the advance of the drive portion of the air cylinder 11d, and is pressed in a state where it is in contact with the outer peripheral portion of the laminated iron core 3 without a gap. . However, since the pressing force of the air cylinder 11d is adjusted to about 200 N as described above, the laminated iron core 3 is not deformed or damaged by the pressing force.

そして、上型10を各注入穴部10cが積層鉄心3の各注入用穴部2bの位置と、各突起部10dが積層鉄心3の各穴部2aの位置とそれぞれ一致するように下型11の上部に載置する。   Then, the lower mold 11 is arranged such that the upper mold 10 is aligned with the position of each injection hole 2b of the laminated core 3 with each injection hole 10c and the position of each hole 2a with each projection 10d. Place on top of the.

次に、射出成形機の型締め機構(図示せず)により上型10および下型11を所要の力で型締めし、積層鉄心3およびスライド部材11cが上型10と下型11によって圧縮され固定される。前述のようにスライド部材11cの高さは積層鉄心3の実質高さよりも大きく設定されているので、スライド部材11cの方が積層鉄心3よりも大きな力で圧縮される。   Next, the upper mold 10 and the lower mold 11 are clamped with a required force by a mold clamping mechanism (not shown) of the injection molding machine, and the laminated iron core 3 and the slide member 11c are compressed by the upper mold 10 and the lower mold 11. Fixed. As described above, since the height of the slide member 11 c is set to be larger than the substantial height of the laminated core 3, the slide member 11 c is compressed with a greater force than the laminated core 3.

本実施の形態では、板厚t=0.35mmの板状磁性部材を114枚枚積層して積層鉄心3が形成されている。スライド部材11cの高さHsは40mmであるので、型締めによって積層鉄心3の高さは40mmにまで圧縮される。圧縮された後の平均の積層隙間Gは0.9μmである。平均積層隙間Gとは積層積層鉄心の圧縮時の高さをHcとすると
G=(Hc−t×n)/(n−1)
で示される数値であり、積層隙間の平均値を示す。
In the present embodiment, the laminated core 3 is formed by laminating 114 plate-like magnetic members having a plate thickness t = 0.35 mm. Since the height Hs of the slide member 11c is 40 mm, the height of the laminated core 3 is compressed to 40 mm by clamping. The average stacking gap G after being compressed is 0.9 μm. The average laminated gap G is G = (Hc−t × n) / (n−1) where Hc is the height of the laminated laminated core when compressed.
It is a numerical value shown by and shows the average value of the stacking gap.

積層鉄心3を圧縮する力と平均積層隙間の関係は本願の発明者の実験により、図36のようになることがわかった。従って、積層鉄心の平均積層隙間Gが0.9μmになるまで圧縮するには200KNの加圧力が必要であり、型締め力から200KNの力を差し引いた力でスライド部材11cが圧縮されることになる。   The relationship between the force for compressing the laminated iron core 3 and the average laminated gap is as shown in FIG. Therefore, in order to compress the laminated iron core until the average laminated gap G becomes 0.9 μm, a pressing force of 200 KN is required, and the slide member 11 c is compressed by a force obtained by subtracting the force of 200 KN from the clamping force. Become.

型締め力を800KNに設定するとスライド部材全部が600KNの力で圧縮されることになるので、スライド部材1個が受ける圧縮力は200KNとなる。スライド部材11c、下型11、上型10ともに鋼材であるとして、摩擦係数を0.07とすると型締め力によって上型10と下型11によりスライド部材11cが加圧されることで、スライド部材11cは14KNの摩擦力で剛体である上型10と下型11により保持されることになる。   When the mold clamping force is set to 800 KN, the entire slide member is compressed with a force of 600 KN, so the compression force received by one slide member is 200 KN. Assuming that the slide member 11c, the lower die 11, and the upper die 10 are all steel, and the friction coefficient is 0.07, the slide member 11c is pressurized by the upper die 10 and the lower die 11 by the clamping force, so that the slide member 11c is held by the upper die 10 and the lower die 11 which are rigid bodies with a frictional force of 14KN.

このようにしてスライド部材11cが上型10と下型11に固定された後、所定の圧力により上型10の樹脂供給穴部10aから樹脂部材8を注入する。   After the slide member 11c is fixed to the upper mold 10 and the lower mold 11 in this way, the resin member 8 is injected from the resin supply hole 10a of the upper mold 10 with a predetermined pressure.

注入された樹脂部材8は、分岐穴部10b、各注入穴部10cおよび積層鉄心3の各注入用穴部1b、2b内を順に流れて、スリット部2dによって形成される各連通穴部5を介して各穴部1a、2a内に導かれ、各永久磁石6を外周側に押圧し軸中心側に一部空間を残した状態で、また、積層鉄心3の両端部にスリット部2dによって形成される各連通溝部4を介して各穴部1a、2a内に導かれ、永久磁石6を積層鉄心3の上下端面側からおよび永久磁石6の両側面から押圧した状態でそれぞれ充填される。   The injected resin member 8 flows in order through the branch hole 10b, each injection hole 10c, and each injection hole 1b, 2b of the laminated iron core 3, and passes through each communication hole 5 formed by the slit 2d. Through the holes 1a and 2a, pressing the permanent magnets 6 to the outer peripheral side, leaving some space on the axial center side, and forming the slits 2d at both ends of the laminated core 3. Then, it is guided into each of the holes 1a and 2a through the respective communicating groove portions 4 and filled with the permanent magnet 6 pressed from the upper and lower end surfaces of the laminated core 3 and from both side surfaces of the permanent magnet 6.

このとき、積層鉄心3には樹脂充填のために加えられた圧力が、図23の矢印の様に作用する。図23(a)は本実施の形態における積層鉄心3の穴部1a、2a付近を示す詳細部分平面図であり、図23(b)は図23(a)のJJ線断面図である。積層鉄心3の穴部1a、2aの内径側は寸法(穴部1a、2aから軸用穴部1c、2cまでの肉厚)が大きく剛性が高いため、内径方向に樹脂成形圧力13aが作用しても、積層鉄心3が破損する心配はない。また、積層鉄心3の穴部1a、2aに充填される樹脂がそれぞれ隣の穴部に充填される樹脂から成形圧力を受け合い、両者の力が釣り合うため、周方向に作用する樹脂成形圧力13b、13cによっても積層鉄心3が破損する心配はない。   At this time, the pressure applied for resin filling acts on the laminated core 3 as shown by the arrows in FIG. FIG. 23A is a detailed partial plan view showing the vicinity of the holes 1a and 2a of the laminated core 3 in the present embodiment, and FIG. 23B is a cross-sectional view taken along the line JJ in FIG. Since the inner diameter side of the holes 1a and 2a of the laminated core 3 has large dimensions (thickness from the holes 1a and 2a to the shaft holes 1c and 2c) and high rigidity, the resin molding pressure 13a acts in the inner diameter direction. However, there is no worry that the laminated iron core 3 is damaged. Also, since the resin filled in the holes 1a, 2a of the laminated core 3 receives molding pressure from the resin filled in the adjacent holes, and the force of both balances, the resin molding pressure 13b acting in the circumferential direction, There is no concern that the laminated iron core 3 is damaged by 13c.

積層鉄心3の穴部1a、2aに充填する樹脂の成形圧力の内、外径側への樹脂成形圧力13dが作用すると積層鉄心3の薄肉部1g、1h、2g、2hに大きな応力が発生し、積層鉄心3が破損する可能性がある。   When the resin molding pressure 13d toward the outer diameter of the molding pressure of the resin filling the holes 1a and 2a of the laminated core 3 is applied, a large stress is generated in the thin-walled portions 1g, 1h, 2g and 2h of the laminated core 3. The laminated iron core 3 may be damaged.

しかしながら、本実施の形態の成形金型9にはスライド部材11cが装備され、樹脂充填時には積層鉄心3の外周部と接した状態で上型10と下型11により保持・固定されており、さらにスライド部材11cにより積層鉄心3の外周部は外径方向に対して支持されているので、積層鉄心3の薄肉部1g、1h、2g、2hは樹脂充填時の成形圧力によって破損することはない。   However, the molding die 9 of the present embodiment is equipped with a slide member 11c, which is held and fixed by the upper die 10 and the lower die 11 in contact with the outer peripheral portion of the laminated iron core 3 at the time of resin filling. Since the outer peripheral portion of the laminated core 3 is supported by the slide member 11c in the outer diameter direction, the thin-walled portions 1g, 1h, 2g, and 2h of the laminated core 3 are not damaged by the molding pressure at the time of resin filling.

板状磁性部材の厚さをt、穴部1a、2aの周方向幅寸法をL(図24参照)、樹脂の成形圧力をP(MPa)として射出成形した場合、穴部1a、2aに充填される樹脂による成形圧力によって積層鉄心3の穴部1a、2aから外径側に作用する力は、PLtである。この力が薄肉部1g、1h、2g、2hに作用するのであるが、上述のように樹脂充填時にはスライド部材11cが積層鉄心3の外周部と接した状態で型締め力より発生する摩擦力によって上型10と下型11に保持・固定されているので樹脂の成形圧力が作用しても変形することがない。   When the thickness of the plate-like magnetic member is t, the circumferential width dimension of the holes 1a and 2a is L (see FIG. 24), and the molding pressure of the resin is P (MPa), the holes 1a and 2a are filled. The force acting on the outer diameter side from the holes 1a and 2a of the laminated core 3 by the molding pressure by the resin to be applied is PLt. This force acts on the thin-walled portions 1g, 1h, 2g, and 2h. As described above, when the resin is filled, the sliding member 11c is in contact with the outer peripheral portion of the laminated iron core 3 due to the frictional force generated by the clamping force. Since it is held and fixed to the upper mold 10 and the lower mold 11, it does not deform even when a resin molding pressure is applied.

ここで、樹脂充填の際の成形圧力により積層鉄心3の外周部が受ける力について試算する。図24に示す圧力範囲Aの部分では、積層鉄心3の各穴部全体に樹脂8が充填されるが、圧力範囲Bの部分では樹脂充填部分は永久磁石6の両端部と各穴部の隙間部13だけである。ただし、正確には、連通穴部5およびその周辺の永久磁石6と各穴部の隙間にも樹脂が充填されるが、面積が小さいため、積層鉄心3の外周部が受ける力に及ぼす影響は小さく、この試算では無視する。   Here, the force which the outer peripheral part of the laminated iron core 3 receives by the molding pressure at the time of resin filling is estimated. In the portion of the pressure range A shown in FIG. 24, the resin 8 is filled in the entire hole portion of the laminated core 3, but in the pressure range B portion, the resin-filled portion is a gap between both end portions of the permanent magnet 6 and each hole portion. Only part 13 is present. However, to be precise, the resin is filled in the gaps between the communicating holes 5 and the permanent magnets 6 around the communicating holes 5 and the respective holes, but since the area is small, the influence on the force applied to the outer peripheral portion of the laminated core 3 is not affected. It is small and will be ignored in this calculation.

本実施例の磁石埋込型回転子の各部寸法は、図24を参照して、穴部1a、2aの周方向幅寸法L=50mm、板状磁性部材の厚さt=0.35mm、永久磁石の周方向幅Lm=45mm、永久磁石の軸方向長さHm=38.6mm、積層鉄心3の最大外径=75mm、積層鉄心の高さH=40mm、軸の直径=φ25mmである。樹脂としてLCP樹脂(液晶ポリマー)を用いた。ここで穴部2aの樹脂の成形圧力をP=40MPaとした場合、穴部2a(成形圧力範囲A)に充填する樹脂の成形圧力によって作用する外径側への力F1は
F1=P×L×(H−Hm)
=40×10×50×10−3×(40−38.6)×10−3
=1400N
となる。
With reference to FIG. 24, the dimensions of each part of the magnet-embedded rotor of this example are as follows. The circumferential width Lm of the magnet is 45 mm, the axial length Hm of the permanent magnet is 38.6 mm, the maximum outer diameter of the laminated core 3 is 75 mm, the height of the laminated core H is 40 mm, and the shaft diameter is φ25 mm. LCP resin (liquid crystal polymer) was used as the resin. Here, when the molding pressure of the resin in the hole 2a is P = 40 MPa, the force F1 acting on the outer diameter side due to the molding pressure of the resin filling the hole 2a (molding pressure range A) is F1 = P × L × (H-Hm)
= 40 × 10 6 × 50 × 10 -3 × (40-38.6) × 10 -3
= 1400N
It becomes.

また、成形圧力範囲Bに掛かる平均の樹脂成形圧力をP2=10MPaとすると、積層鉄心外周部に掛かる力F2は
F2=(L−Lm)×Hm×P2
=(50−45)×10−3×38.6×10−3×10×10
=1930N
となる。
Further, if the average resin molding pressure applied to the molding pressure range B is P2 = 10 MPa, the force F2 applied to the outer peripheral portion of the laminated core is F2 = (L−Lm) × Hm × P2.
= (50-45) × 10 -3 × 38.6 × 10 -3 × 10 × 10 6
= 1930N
It becomes.

樹脂の成形圧力により積層鉄心3に作用する力Fは両者の合計であるので
F=F1+F2=3.33KN
となる。なお、上述のP1およびP2は樹脂流動解析を用いて算出した。
Since the force F acting on the laminated iron core 3 due to the molding pressure of the resin is the sum of both, F = F1 + F2 = 3.33KN
It becomes. The above-described P1 and P2 were calculated using resin flow analysis.

前述のように、型締め力を800KNとした場合、スライド部材11cは上型10と下型11により14KNの摩擦力で保持される。したがって、樹脂の成形圧力により積層鉄心3に作用する力Fの2極分の力6.66KN(正確には、1極分の力のスライド部材11cがスライドする方向に作用する分力の合計であるので、6.66KNよりは小さくなり、3.33KN×COS30°×2=約5.77KNの力が作用する)がスライド部材11cに掛かっても、スライド部材11cは摩擦力によって保持されるので、移動することはない。従って、スライド部材11cと接している積層鉄心3の外周部は変形することがなく、積層鉄心3の損傷なしに積層鉄心3の穴部と永久磁石6の隙間に樹脂を充填し、永久磁石6を積層鉄心3に安定して定位置に確実に固定することができる。   As described above, when the mold clamping force is 800 KN, the slide member 11 c is held by the upper mold 10 and the lower mold 11 with a frictional force of 14 KN. Therefore, a force 6.66KN of two poles of the force F acting on the laminated iron core 3 due to the molding pressure of the resin (more precisely, the sum of the component forces acting in the sliding direction of the slide member 11c of the force of one pole) Therefore, even if a force of 3.33 KN × COS 30 ° × 2 = approximately 5.77 KN is applied to the slide member 11c, the slide member 11c is held by the frictional force. Never move. Accordingly, the outer peripheral portion of the laminated core 3 in contact with the slide member 11c is not deformed, and the gap between the hole of the laminated core 3 and the permanent magnet 6 is filled with resin without damaging the laminated core 3, and the permanent magnet 6 Can be stably fixed to the laminated iron core 3 at a fixed position.

仮にスライド部材11cがなかった場合、圧力範囲Aでは積層鉄心3の外周部に掛かる応力σは
σ=Rc×P1/Tc
で近似できる。Tcは積層鉄心3の外周部の肉厚、Rcは積層鉄心3の外周部内側の曲率半径であり、Rc=35mm、Tc=1mmであるので、
σ=35×10−3×30×10/1×10−3
=1050×10Pa=1050MPa
となる。板状磁性部材の降伏応力はおよそ300MPaであるので、スライド部材11cがなかった場合、樹脂の成形圧力が掛かると積層鉄心3の外周部は塑性変形し、破損、樹脂漏れ不良が発生することとなる。
If there is no slide member 11c, in the pressure range A, the stress σ applied to the outer peripheral portion of the laminated core 3 is σ = Rc × P1 / Tc
Can be approximated by Tc is the thickness of the outer peripheral portion of the laminated core 3, Rc is the radius of curvature inside the outer peripheral portion of the laminated core 3, and Rc = 35 mm and Tc = 1 mm,
σ = 35 × 10 -3 × 30 × 10 6/1 × 10 -3
= 1050 × 10 6 Pa = 1050 MPa
It becomes. Since the yield stress of the plate-like magnetic member is approximately 300 MPa, if the slide member 11c is not provided, the outer peripheral portion of the laminated core 3 is plastically deformed when a resin molding pressure is applied, resulting in breakage and resin leakage failure. Become.

次に、成形金型9の型締め機構(図示せず)を緩めて上型10を外し、スライド部材11cを後退させた後、積層鉄心3を下型11から取り出して軸用穴部1c、2cに、回転子軸7を嵌合させて固着することにより磁石埋込型回転子が完成する。   Next, the mold clamping mechanism (not shown) of the molding die 9 is loosened to remove the upper mold 10 and the slide member 11c is retracted. Then, the laminated iron core 3 is taken out from the lower mold 11 and the shaft hole 1c, By fitting and fixing the rotor shaft 7 to 2c, an embedded magnet type rotor is completed.

このように上記実施の形態1によれば、樹脂部材8をスリット部2dによって形成される各連通溝部4および連通穴部5を介して各穴部1a、2a内に導き、永久磁石6を外周側に押圧し軸中心側に一部空間を残した状態および永久磁石6の両側面から押圧した状態および永久磁石6を積層鉄心3の上限端面側から押圧下状態でそれぞれ充填するようにしているので、永久磁石6をバランス良く確実に固定することができ、信頼性の向上を図ることが可能になる。   As described above, according to the first embodiment, the resin member 8 is guided into the holes 1a and 2a via the communication grooves 4 and the communication holes 5 formed by the slits 2d, and the permanent magnet 6 is surrounded by the outer periphery. And the permanent magnet 6 is filled in the pressed state from the upper end surface side of the laminated core 3. Therefore, the permanent magnet 6 can be securely fixed in a balanced manner, and the reliability can be improved.

さらに、樹脂部材8を充填する際に下型11に装備されたスライド部材11cを積層鉄心外周部に接触させた状態で型締め機構により上型10と下型11で挟み込んで両者の摩擦力によって固定し、スライド部材11cにより積層鉄心3の外周部を支持した状態で樹脂部材8を充填するようにしているので、樹脂充填時の成形圧力によって積層鉄心3が破損することがなく、信頼性の向上を図ることが可能になる。   Further, when the resin member 8 is filled, the slide member 11c mounted on the lower mold 11 is brought into contact with the outer peripheral portion of the laminated core and is sandwiched between the upper mold 10 and the lower mold 11 by the mold clamping mechanism. Since the resin member 8 is filled in a state in which the outer peripheral portion of the laminated core 3 is supported by the slide member 11c, the laminated core 3 is not damaged by the molding pressure at the time of resin filling, and is reliable. Improvements can be made.

また、スライド部材11cの高さHsに対して積層鉄心3の実質高さHtが規定値よりも小さかった場合には、型締め後の平均積層隙間が4μm以上になり、樹脂充填時の成形圧力により、板状磁性部材と板状磁性部材の積層隙間に樹脂が入り込み、後述するようにバリとなって不具合を起こすことがある。例えば、本実施の形態と同じ設定で、積層枚数が113枚であった場合、平均積層隙間は4μmとなり、バリが発生してしまうことになる。   When the actual height Ht of the laminated core 3 is smaller than the specified value with respect to the height Hs of the slide member 11c, the average lamination gap after clamping is 4 μm or more, and the molding pressure at the time of resin filling As a result, the resin may enter the gap between the plate-like magnetic member and the plate-like magnetic member, resulting in burrs as described later. For example, when the number of stacked layers is 113 with the same setting as the present embodiment, the average stack gap is 4 μm, and burrs are generated.

すなわち、積層隙間が4μm以上であると、平均積層隙間寸法だけの厚み(隙間)では樹脂は入り込まないが、図22に示すように、複数の積層隙間の空間(隙間)が1箇所に偏ることによって大きな隙間が生まれる。そして、この大きな隙間に樹脂が侵入して樹脂の成形圧によりさらにその隙間が拡大し、おおきなバリとなって不良が発生することを我々は、実験によって発見した。積層鉄心3の実質高さHtを一定とし、スライド部材11cの高さHsを変化させて樹脂充填を行い、バリの発生状況を調査した実験結果を表1に示す。積層隙間を4μm未満、好ましくは3μm以下にすることがバリ防止のために必要である。   That is, when the lamination gap is 4 μm or more, the resin does not enter at a thickness (gap) of only the average lamination gap dimension, but the space (gap) of the plurality of lamination gaps is biased to one place as shown in FIG. Creates a large gap. We have discovered through experiments that the resin enters the large gap and that the gap further expands due to the molding pressure of the resin, resulting in large burrs and defects. Table 1 shows the experimental results of investigating the occurrence of burrs by making the substantial height Ht of the laminated iron core 3 constant and changing the height Hs of the slide member 11c to perform resin filling. In order to prevent burrs, it is necessary that the stacking gap is less than 4 μm, preferably 3 μm or less.

Figure 2007318942
Figure 2007318942

積層鉄心3の実質高さHtは板状磁性部材の厚みバラツキによっても変動するので、積層鉄心3を製造する鋼板ロールのロットが変わった場合には、積層枚数の調整が必要である。例えば、板状磁性部材の板厚が0.352mmであった場合、114枚積層すると積層鉄心の実質高さは40.128となり、スライド部材11cの高さよりも大きくなってしまい、スライド部材11cを上型10と下型11ではさ挟み込んで固定することができず、その状態で樹脂部材8を充填すると積層鉄心3の外周部の破損、樹脂漏れといった不良が発生してしまう。この場合、積層枚数を113枚とすると積層鉄心3の実質高さHtは39.9776mm、平均積層隙間は2μmとなり、適正な平均積層隙間を形成することができ、積層鉄心の外周部の破損、樹脂漏れといった不良なく、磁石埋込型回転子を得ることができる。   Since the actual height Ht of the laminated iron core 3 varies depending on the thickness variation of the plate-like magnetic member, it is necessary to adjust the number of laminated sheets when the lot of steel sheet rolls for producing the laminated iron core 3 changes. For example, when the plate thickness of the plate-like magnetic member is 0.352 mm, if 114 sheets are laminated, the actual height of the laminated iron core is 40.128, which is larger than the height of the slide member 11c, and the slide member 11c is The upper mold 10 and the lower mold 11 cannot be sandwiched and fixed. If the resin member 8 is filled in this state, defects such as breakage of the outer peripheral portion of the laminated iron core 3 and resin leakage occur. In this case, if the number of laminated layers is 113, the actual height Ht of the laminated iron core 3 is 39.977 mm, the average laminated gap is 2 μm, an appropriate average laminated gap can be formed, and the outer peripheral portion of the laminated iron core is damaged. An embedded magnet rotor can be obtained without defects such as resin leakage.

以上のように、積層鉄心3の実質高さHtをスライド部材10cの高さよりも小さく、かつ、平均積層隙間が4μm以下になるように積層鉄心3を製造する(積層枚数を調整する)ことにより、積層鉄心3の外周部の破損、樹脂漏れといった不良を起こすことなく、積層鉄心3の穴部と永久磁石6の隙間に樹脂を充填し、永久磁石6を積層鉄心3に安定して定位置に確実に固定することができる。   As described above, by manufacturing the laminated core 3 so that the substantial height Ht of the laminated core 3 is smaller than the height of the slide member 10c and the average laminated gap is 4 μm or less (adjusting the number of laminated layers). The resin is filled in the gap between the hole of the laminated iron core 3 and the permanent magnet 6 without causing defects such as damage to the outer peripheral portion of the laminated iron core 3 and resin leakage, and the permanent magnet 6 is stably positioned in the laminated iron core 3. Can be securely fixed.

図25〜図27はこの発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図であり、図25は積層鉄心3を下型11に装着した状態、図26はスライド部材11cを積層鉄心3の外周部に当接した状態、図27は上型10と下型11で型締めした状態を示す。図25〜図27に示すように、積層鉄心3を搭載する台座の部分が下型本体よりも突出している場合があり、また、型締め時に積層鉄心3の上端面と接する上型10の一部が上型本体よりも突出している場合がある。このような場合には、スライド部材11cの高さの設定にあたって、上型10の突出寸法、下型11の突出寸法を考慮すればよい。すなわち、実質のスライド部材の高さをスライド部材の高さから上型10の突出寸法と下型11の突出寸法を差し引いた寸法として、実質のスライド部材の高さを上述の範囲に設定すれば良い。本実施の形態の場合には、表1の結果から、実質のスライド部材の高さを40〜40.25mmに設定すれば良い。そうすれば、積層鉄心3の外周部の破損、樹脂漏れといった不良を起こすことなく、積層鉄心3の穴部と永久磁石6の隙間に樹脂を充填し永久磁石を積層鉄心に安定して定位置に確実に固定することができる。   25 to 27 are cross-sectional views showing the configuration of another molding die applied to the manufacture of the magnet-embedded rotor according to the first embodiment of the present invention. FIG. 26 shows a state where the slide member 11c is in contact with the outer peripheral portion of the laminated iron core 3, and FIG. 27 shows a state where the upper die 10 and the lower die 11 are clamped. As shown in FIGS. 25 to 27, there is a case where the pedestal portion on which the laminated iron core 3 is mounted protrudes from the lower die main body, and the upper die 10 that is in contact with the upper end surface of the laminated iron core 3 during mold clamping. The part may protrude from the upper mold body. In such a case, in setting the height of the slide member 11c, the protruding dimension of the upper mold 10 and the protruding dimension of the lower mold 11 may be considered. That is, if the height of the actual slide member is set to the above-mentioned range by setting the height of the actual slide member as a dimension obtained by subtracting the projecting dimension of the upper mold 10 and the projecting dimension of the lower mold 11 from the height of the slide member. good. In the case of the present embodiment, from the results of Table 1, the substantial height of the slide member may be set to 40 to 40.25 mm. Then, without causing defects such as damage to the outer peripheral portion of the laminated core 3 and resin leakage, the gap between the hole of the laminated core 3 and the permanent magnet 6 is filled with resin, and the permanent magnet is stably positioned in the laminated core. Can be securely fixed.

また、図28及び図29はこの発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図であり、図28は積層鉄心3を下型11に装着した状態、図29はスライド部材11cを積層鉄心3の外周部に当接した状態を示す。図28及び図29において、スライド部材11cの数量が6個で、永久磁石6の各磁極に対応した位置に配置されている成形金型9の例が記載されている。スライド部材11cの数量が異なる以外は実施の形態1の磁石埋込型回転子の成形金型およびそれを用いた磁石埋込型回転子の製造方法と同じであり、積層鉄心3の外周部の破損、樹脂漏れといった不良を起こすことなく、積層鉄心の穴部と永久磁石の隙間に樹脂を充填し、永久磁石を積層鉄心に安定して定位置に確実に固定することができ、品質のより磁石埋込型回転子を生産性よく得ることができる。   FIGS. 28 and 29 are plan views showing the configuration of another molding die applied to the manufacture of the magnet-embedded rotor according to the first embodiment of the present invention. FIG. FIG. 29 shows a state in which the slide member 11 c is in contact with the outer peripheral portion of the laminated core 3. 28 and 29, an example of the molding die 9 in which the number of the slide members 11c is six and arranged at positions corresponding to the magnetic poles of the permanent magnet 6 is described. Except for the difference in the number of slide members 11c, this is the same as the method for manufacturing the embedded magnet rotor of Embodiment 1 and the embedded magnet rotor using the same. Without causing defects such as breakage and resin leakage, the gap between the hole of the laminated core and the permanent magnet can be filled with resin, and the permanent magnet can be stably fixed to the laminated core in a fixed position. An embedded magnet rotor can be obtained with high productivity.

さらに、図30〜図33はこの発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。図30及び図31はスライド部材11cが2個の永久磁石6に対応して配置された例であり、図30は積層鉄心3を下型11に装着した状態、図31はスライド部材11cを積層鉄心3の外周部に当接した状態を示す。また、図32及び図33はスライド部材11cが各永久磁石6に対応して配置された例であり、図32は積層鉄心3を下型11に装着した状態、図33はスライド部材11cを積層鉄心3の外周部に当接した状態を示す。図30〜図33において、スライド部材11cの積層鉄心3の外周に面する部分に、凸部50及び凸部60を設ける。そして、凸部50は積層鉄心3の永久磁石6の周方向両端部分に当たる位置に当接し、凸部60は積層鉄心3の永久磁石6の周方向中央部分に当たる位置に当接するようにする。スライド部材11cを積層鉄心3の外周全周に当接する構成の場合(図18、図19、図28、図29)は、スライド部材11cの接触面を全周にわたって精度よく仕上げなければ片当たりするおそれがあるが、図30〜図33に示す構成であれば、スライド部材11cの接触面を全周にわたって精度よく仕上げる必要がなく、積層鉄心3の外周部が破損する恐れのある部分のみに当接させることにより、永久磁石を積層鉄心に安定して定位置に確実に固定することができ、品質のより磁石埋込型回転子を生産性よく得ることができる。   Further, FIGS. 30 to 33 are plan views showing configurations of other molding dies applied to manufacture of the magnet-embedded rotor according to the first embodiment of the present invention. 30 and 31 are examples in which the slide member 11c is arranged corresponding to the two permanent magnets 6, FIG. 30 shows a state in which the laminated iron core 3 is mounted on the lower mold 11, and FIG. 31 shows a laminate of the slide member 11c. The state which contact | abutted to the outer peripheral part of the iron core 3 is shown. 32 and 33 are examples in which the slide member 11c is arranged corresponding to each permanent magnet 6, FIG. 32 shows a state in which the laminated iron core 3 is mounted on the lower mold 11, and FIG. 33 shows a laminate of the slide member 11c. The state which contact | abutted to the outer peripheral part of the iron core 3 is shown. 30-33, the convex part 50 and the convex part 60 are provided in the part which faces the outer periphery of the laminated core 3 of the slide member 11c. And the convex part 50 is contact | abutted to the position which hits the circumferential direction both ends of the permanent magnet 6 of the laminated iron core 3, and the convex part 60 is made to contact | abut the position which hits the circumferential direction center part of the permanent magnet 6 of the laminated iron core 3. In the case of a configuration in which the slide member 11c is in contact with the entire outer periphery of the laminated core 3 (FIGS. 18, 19, 28, and 29), if the contact surface of the slide member 11c is not accurately finished over the entire periphery, the contact is made. 30 to 33, there is no need to finish the contact surface of the slide member 11c with high accuracy over the entire circumference, and only the portion where the outer peripheral portion of the laminated iron core 3 may be damaged. By making contact, the permanent magnet can be stably fixed to the laminated iron core at a fixed position, and a magnet-embedded rotor can be obtained with higher productivity with higher quality.

また、図34及び図35はこの発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図であり、図34は成形金型9に積層鉄心3が嵌挿された状態を示し、図35はスライド部材11cが積層鉄心3の外周部と接した状態で型締めされた状態を示す断面図である。図34及び図35において、上型10又は下型11のスライド部材11cと当接する面に摩擦部材70を配置することにより、上型10及び下型11によりスライド部材11cをより強固に型締めすることができる。摩擦部材70として、例えば自動車用ロースチール材が高摩擦係数(約0.4)を有し好適である。当該自動車用ロースチール材は、スチールウール25%、チタン酸カリウム25%、アルミナ10%、炭酸カルシウム25%、フェノール樹脂15%の組成である。その他に、セミメタリック材、NAO材(ノンアスベストオーガニック材)などを用いても良い。   34 and 35 are cross-sectional views showing the configuration of another molding die applied to the manufacture of the magnet-embedded rotor according to the first embodiment of the present invention. FIG. FIG. 35 is a cross-sectional view showing a state in which the laminated iron core 3 is inserted, and FIG. 35 is a sectional view showing a state in which the slide member 11c is clamped in a state of being in contact with the outer peripheral portion of the laminated iron core 3. 34 and 35, the friction member 70 is disposed on the surface of the upper mold 10 or the lower mold 11 that contacts the slide member 11c, whereby the slide member 11c is more firmly clamped by the upper mold 10 and the lower mold 11. be able to. As the friction member 70, for example, a low steel material for automobiles is preferable because it has a high coefficient of friction (about 0.4). The low steel material for automobiles has a composition of 25% steel wool, 25% potassium titanate, 10% alumina, 25% calcium carbonate, and 15% phenol resin. In addition, a semi-metallic material, NAO material (non-asbestos organic material), or the like may be used.

また、軸長の長い磁石埋込型回転子を製造する場合には、既に示した図37のように軸長の長い積層鉄心3を製造し、その長さに合わせて永久磁石6を複数枚、各穴部に挿入し、樹脂部材8を充填して永久磁石6を固定する方法の他に次に方法がある。すなわち、図38のように実施の形態1で示した成形金型9から取り出された積層鉄心3(積層鉄心3の各穴部には永久磁石6が挿入され、永久磁石6を固定するための樹脂部材8が充填された後の積層鉄心3)を必要個数軸方向に各積層鉄心3の穴部、軸用穴部、樹脂注入用穴部の位置がそれぞれ一致するように積み重ね、その状態で回転子軸7を嵌合させて固着することによって軸長の長い磁石埋込型回転子が得られる。
また、成形金型9から取り出された積層鉄心3を必要個数軸方向に一定角度ずらしながら積み重ね、その状態で回転子軸7を嵌合させて固着することによって磁極が段階的にスキューした磁石埋込型回転子が得られる。
Further, when manufacturing a magnet embedded rotor having a long axial length, a laminated core 3 having a long axial length is manufactured as shown in FIG. 37, and a plurality of permanent magnets 6 are arranged in accordance with the length. In addition to the method of inserting into each hole and filling the resin member 8 to fix the permanent magnet 6, there is the following method. That is, as shown in FIG. 38, the laminated core 3 taken out from the molding die 9 shown in the first embodiment (the permanent magnet 6 is inserted into each hole of the laminated core 3 to fix the permanent magnet 6). The laminated cores 3) filled with the resin member 8 are stacked in the axial direction so that the positions of the holes, shaft holes, and resin injection holes of the laminated cores 3 are aligned in the axial direction. By fitting and fixing the rotor shaft 7, a magnet-embedded rotor having a long shaft length can be obtained.
Further, the laminated cores 3 taken out from the molding die 9 are stacked while being shifted by a predetermined angle in the axial direction, and the rotor shaft 7 is fitted and fixed in that state, thereby the magnetic pole is skewed stepwise. A built-in rotor is obtained.

実施の形態2.
図39及び図40は、この発明の実施の形態2の磁石埋込型回転子の製造に適用される成形金型の構成を示す断面図である。なお、本実施の形態2の成形金型、製造方法により得られる磁石埋込型回転子は、実施の形態1と同じ構成である。
Embodiment 2. FIG.
39 and 40 are cross-sectional views showing the configuration of a molding die applied to manufacture of the magnet-embedded rotor according to the second embodiment of the present invention. Note that the magnet-embedded rotor obtained by the molding die and the manufacturing method of the second embodiment has the same configuration as that of the first embodiment.

本実施の形態の成形金型9は、実施の形態1と同様、下型11に移動可能なスライド部材14が装備されている。スライド部材14には上型10に取り付けられたテーパブロック15のテーパ面と擦り合わせられる同じ角度を有するテーパ面が形成されている。またスライド部材14には上型10に取り付けられた傾斜ピン16が嵌り込む傾斜穴17が形成されている。傾斜ピン16の角度と傾斜穴17の角度も同一に設定されている。   As in the first embodiment, the molding die 9 of the present embodiment is equipped with a slide member 14 that can move to the lower mold 11. The slide member 14 is formed with a taper surface having the same angle as the taper surface of the taper block 15 attached to the upper mold 10. The slide member 14 is formed with an inclined hole 17 into which an inclined pin 16 attached to the upper mold 10 is fitted. The angle of the inclined pin 16 and the angle of the inclined hole 17 are also set to be the same.

上型10に装備されたテーパブロック15の上部にはバネ部材18が取り付けられており、テーパブロック15の当たり面20は型開き状態ではバネ部材18に押されて上型10に設けられた上型の当たり面19に押し付けられている。   A spring member 18 is attached to the upper part of the taper block 15 mounted on the upper mold 10, and the contact surface 20 of the taper block 15 is pushed by the spring member 18 in the mold open state and is provided on the upper mold 10. It is pressed against the contact surface 19 of the mold.

型開き時には、スライド部材14は実施の形態1と同様に外側に後退した位置にあり、その状態では積層鉄心3の挿入が容易に行えるようになっている。   When the mold is opened, the slide member 14 is in a position retracted outward as in the first embodiment, and in this state, the laminated core 3 can be easily inserted.

下型11に積層鉄心3をセットした後、射出成形機の型締め機構(図示せず)により、上型10と下型11が閉じられるが、型締め途中に上型10のテーパブロック15のテーパ面が下型11のスライド部材14のテーパ面に突き当たると、テーパ面に沿ってスライド部材14は積層鉄心3の中心方向に移動し、積層鉄心3の外周部とスライド部材14は接触する。実施の形態1と同様、スライド部材14が積層鉄心3の外周部と接触する面は積層鉄心3の外周部と同形状になっている。   After the laminated core 3 is set on the lower mold 11, the upper mold 10 and the lower mold 11 are closed by a mold clamping mechanism (not shown) of an injection molding machine. When the taper surface hits the taper surface of the slide member 14 of the lower mold 11, the slide member 14 moves along the taper surface toward the center of the laminated iron core 3, and the outer peripheral portion of the laminated iron core 3 and the slide member 14 come into contact with each other. Similar to the first embodiment, the surface where the slide member 14 contacts the outer peripheral portion of the laminated core 3 has the same shape as the outer peripheral portion of the laminated core 3.

スライド部材14が積層鉄心3の外周部と接すると、スライド部材14は移動できなくなるので、その後は型締めとともにテーパ面に沿ってテーパブロック15が上方に移動し、バネ部材18が圧縮され、型締めが完了する。   When the slide member 14 comes into contact with the outer peripheral portion of the laminated iron core 3, the slide member 14 cannot move, and thereafter, the taper block 15 moves upward along the taper surface together with the mold clamping, the spring member 18 is compressed, and the mold Tightening is complete.

型締めが完了した時点で、積層鉄心3の外周面はスライド部材14のテーパ面およびテーパブロック15を経由して、バネ部材18による圧縮力を受けるが、実施の形態1と同様に積層鉄心3の外周部を押さえつける力が200N程度になるように、テーパ面の角度、バネのバネ係数、バネの圧縮量が調整されているので、型締めによって過大な力が積層鉄心3の外周部に掛かり、積層鉄心3が破損するといった不具合が発生することはない。   When the mold clamping is completed, the outer peripheral surface of the laminated iron core 3 is subjected to a compressive force by the spring member 18 via the tapered surface of the slide member 14 and the tapered block 15, but the laminated iron core 3 is the same as in the first embodiment. The angle of the taper surface, the spring coefficient of the spring, and the amount of compression of the spring are adjusted so that the force to press the outer periphery of the steel core is about 200 N. Therefore, excessive force is applied to the outer periphery of the laminated core 3 by clamping. The problem that the laminated core 3 is broken does not occur.

実施の形態1と同様に型締めによってスライド部材14を上型10と下型11で挟みこんで、固定した状態で積層鉄心3の穴部と永久磁石6の隙間に樹脂を充填することができるので、積層鉄心3の外周部の破損、樹脂漏れといった不良を起こすことなく、積層鉄心3の穴部と永久磁石6の隙間に樹脂を充填し、永久磁石6を積層鉄心に安定して定位置に確実に固定することができ、品質のより磁石埋込型回転子を生産性よく得ることができる。   As in the first embodiment, the slide member 14 is sandwiched between the upper mold 10 and the lower mold 11 by mold clamping, and the resin can be filled into the gap between the hole of the laminated core 3 and the permanent magnet 6 in a fixed state. Therefore, the resin is filled in the gap between the hole of the laminated core 3 and the permanent magnet 6 without causing defects such as breakage of the outer peripheral portion of the laminated core 3 and resin leakage, and the permanent magnet 6 is stably positioned in the laminated core. Therefore, it is possible to obtain a rotor with built-in magnet with higher quality and higher productivity.

樹脂充填完了後に、射出成形機の型開き機構(図示せず)により上型10と下型11が開かれると、上型10のテーパブロック15はバネ部材18の力を受けて下降し(上型の位置を基準とした場合は下降し、下型の位置を基準とすると停止している)、上型10の当たり面で停止する。   When the upper mold 10 and the lower mold 11 are opened by the mold opening mechanism (not shown) of the injection molding machine after the resin filling is completed, the taper block 15 of the upper mold 10 is lowered by receiving the force of the spring member 18 (upper When the position of the mold is used as a reference, the lowering is performed, and when the position of the lower mold is used as a reference, the movement is stopped).

型開き開始後、上型10が少し上昇した後に、上型10の傾斜ピン16が、下型11の傾斜穴17の外側部分に接触する。この状態から、上型10がさらに上昇すると傾斜ピン16および傾斜穴17の傾斜角度に沿って、スライド部材14が後退し(外側に移動し)、その後、傾斜ピン16が傾斜穴17から完全に抜け出る。   After the mold opening is started, the upper mold 10 is slightly raised, and the inclined pin 16 of the upper mold 10 comes into contact with the outer portion of the inclined hole 17 of the lower mold 11. From this state, when the upper mold 10 is further raised, the slide member 14 moves backward (moves outward) along the inclination angle of the inclined pin 16 and the inclined hole 17, and then the inclined pin 16 is completely removed from the inclined hole 17. Get out.

このようにスライド部材14が後退し、積層鉄心3の外周部との間に隙間ができると、樹脂充填後の積層鉄心3を容易に成形金型9から取り出すことができるとともに、次に樹脂部材を充填する積層鉄心3を成形金型に容易に嵌挿することができ、成形プロセスをスムーズに繰り返すことができる。   Thus, when the slide member 14 moves backward and a gap is formed between the outer periphery of the laminated iron core 3, the laminated iron core 3 after resin filling can be easily taken out from the molding die 9, and then the resin member. Can be easily inserted into the molding die, and the molding process can be repeated smoothly.

その後、成形金型9から取り出された積層鉄心3の軸用穴部に、回転子軸7を嵌合させて固着することにより磁石埋込型回転子が完成する。   Thereafter, the rotor shaft 7 is fitted and fixed in the shaft hole portion of the laminated iron core 3 taken out from the molding die 9 to complete the magnet-embedded rotor.

この発明の実施の形態1における磁石埋込型回転子の回転中心軸を通る平面で切断した断面図である。It is sectional drawing cut | disconnected by the plane which passes along the rotation center axis | shaft of the magnet embedded rotor in Embodiment 1 of this invention. 図1のA−A線に沿う断面を示す図である。It is a figure which shows the cross section which follows the AA line of FIG. 図1のB−B線に沿う断面を示す図である。It is a figure which shows the cross section which follows the BB line of FIG. 図1のC−C線に沿う断面を示す図である。It is a figure which shows the cross section which follows the CC line | wire of FIG. 図1のD−D線に沿う断面を示す図である。It is a figure which shows the cross section which follows the DD line | wire of FIG. 図1のE−E線に沿う断面を示す図である。It is a figure which shows the cross section which follows the EE line | wire of FIG. 図1の磁石埋込型回転子を構成する第1の板状磁性部材を示す平面図である。It is a top view which shows the 1st plate-shaped magnetic member which comprises the magnet embedded type | mold rotor of FIG. 図1の磁石埋込型回転子を構成する第2の板状磁性部材を示す平面図である。It is a top view which shows the 2nd plate-shaped magnetic member which comprises the magnet embedded type | mold rotor of FIG. 図1の磁石埋込型回転子を構成する積層鉄心を示す平面図である。It is a top view which shows the laminated iron core which comprises the magnet embedded type | mold rotor of FIG. 図9の積層鉄心のFF線に沿う断面図であり、積層鉄心の回転中心軸を通る平面で切断した断面図である。It is sectional drawing which follows the FF line | wire of the laminated core of FIG. 9, and is sectional drawing cut | disconnected by the plane which passes along the rotation center axis | shaft of a laminated core. 図9の積層鉄心のGG線に沿う断面図であり、積層鉄心の回転中心軸を通る平面で切断した断面図である。It is sectional drawing which follows the GG line of the laminated iron core of FIG. 9, and is sectional drawing cut | disconnected by the plane which passes along the rotation center axis | shaft of a laminated iron core. この発明の実施の形態に使用される永久磁石を示す平面図である。It is a top view which shows the permanent magnet used for embodiment of this invention. この発明の実施の形態に使用される永久磁石を示す正面図である。It is a front view which shows the permanent magnet used for embodiment of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. 図14と同じ状態における成形金型の異なる断面を示す図である。It is a figure which shows the different cross section of the shaping die in the same state as FIG. 成形金型に積層鉄心が嵌挿され、スライド部材が積層鉄心の外周部に接するように移動・配置された状態を示す断面図である。It is sectional drawing which shows the state by which the laminated iron core was inserted by the shaping die, and the slide member moved and arrange | positioned so that the outer peripheral part of a laminated iron core may be contact | connected. 成形金型に積層鉄心が嵌挿され、スライド部材が積層鉄心の外周部と接した状態で型締めされた状態を示す断面図である。It is sectional drawing which shows the state clamped in the state by which the laminated iron core was inserted by the shaping die, and the slide member contacted the outer peripheral part of the laminated iron core. 図14の積層鉄心が嵌挿された成形金型を示す平面図である。It is a top view which shows the shaping | molding die with which the laminated iron core of FIG. 14 was inserted. 図16の積層鉄心が嵌挿され、スライド部材が積層鉄心外周部に接するように移動・配置された状態の成形金型の平面図である。FIG. 17 is a plan view of the molding die in a state in which the laminated core of FIG. 16 is inserted and the slide member is moved and arranged so as to be in contact with the outer periphery of the laminated core. この発明の実施の形態1による圧縮(型締め)前の積層鉄心間の積層隙間を示す図である。It is a figure which shows the lamination | stacking clearance gap between the lamination | stacking iron cores before compression (die clamping) by Embodiment 1 of this invention. この発明の実施の形態1による圧縮(型締め)後の積層鉄心間の積層隙間を示す図である。It is a figure which shows the lamination | stacking clearance gap between the laminated iron cores after compression (clamping) by Embodiment 1 of this invention. 圧縮(型締め)後の積層鉄心間の積層隙間の偏りを示す図である。It is a figure which shows the bias | inclination of the lamination | stacking clearance gap between lamination | stacking iron cores after compression (die clamping). この発明の実施の形態1の積層鉄心の穴部付近を示す詳細部分平面図及びJ線断面図である。It is the detailed partial top view and J line sectional view which show the hole vicinity vicinity of the laminated iron core of Embodiment 1 of this invention. この発明の実施の形態1の積層鉄心の穴部付近を示す詳細部分平面図及びJ線断面図である。It is the detailed partial top view and J line sectional view which show the hole vicinity vicinity of the laminated iron core of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。It is a top view which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。It is a top view which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。It is a top view which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。It is a top view which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。It is a top view which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す平面図である。It is a top view which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. この発明の実施の形態1の磁石埋込型回転子の製造に適用される他の成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the other shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 1 of this invention. 成形金型の型締め力と積層隙間の関係を示す図である。It is a figure which shows the relationship between the clamping force of a shaping die, and a lamination | stacking clearance gap. この発明の実施の形態1における他の磁石埋込型回転子を示す断面図である。It is sectional drawing which shows the other magnet embedded type rotor in Embodiment 1 of this invention. この発明の実施の形態1における他の磁石埋込型回転子を示す断面図である。It is sectional drawing which shows the other magnet embedded type rotor in Embodiment 1 of this invention. この発明の実施の形態2の磁石埋込型回転子の製造に適用される成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 2 of this invention. この発明の実施の形態2の磁石埋込型回転子の製造に適用される成形金型の構成を示す断面図である。It is sectional drawing which shows the structure of the shaping die applied to manufacture of the magnet embedded type rotor of Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 第1の板状磁性部材、2 第2の板状磁性部材、3 積層鉄心、4 連通溝部、
5 連通穴部、6 永久磁石、7 回転子軸、8 樹脂部材、9 金型、10 上型、
11 下型、11c スライド部材、14 スライド部材、15 テーパブロック、
16 傾斜ピン、17 傾斜穴、18 バネ部材、50,60 凸部、
70 摩擦部材。
DESCRIPTION OF SYMBOLS 1 1st plate-shaped magnetic member, 2nd 2nd plate-shaped magnetic member, 3 laminated iron core, 4 communicating groove part,
5 communication hole, 6 permanent magnet, 7 rotor shaft, 8 resin member, 9 mold, 10 upper mold,
11 Lower mold, 11c Slide member, 14 Slide member, 15 Taper block,
16 inclined pin, 17 inclined hole, 18 spring member, 50, 60 convex part,
70 Friction member.

Claims (9)

板状磁性部材を積層して形成された積層鉄心と、上記積層鉄心の端面に周方向に所定の間隔を介して配置されるとともに軸方向に貫通して形成された複数の穴部と、上記各穴部にそれぞれ嵌挿される永久磁石と、上記各穴部の上記積層鉄心の中心側に沿ってそれぞれ延在し上記永久磁石と対応する位置で上記穴部と連通して形成される注入穴部と、上記注入穴部を介して注入され上記穴部と上記永久磁石の間に充填される樹脂部材とを備えた磁石埋込型回転子を製造するための射出成形用金型装置において、
上記射出成形用金型装置は上型及び下型から構成されると共に、上記積層鉄心の外周の一部または全部と当接する当接部材を備え、上記上型及び下型により上記当接部材を挟持し固定した状態で上記穴部と上記永久磁石の間に樹脂部材を充填させることを特徴とする磁石埋込型回転子の射出成形用金型装置。
A laminated core formed by laminating plate-like magnetic members, a plurality of holes formed in the end face of the laminated core at predetermined intervals in the circumferential direction and penetrating in the axial direction; and Permanent magnets that are respectively inserted into the holes, and injection holes that extend along the center side of the laminated iron core of the holes and that communicate with the holes at positions corresponding to the permanent magnets. In a mold apparatus for injection molding for manufacturing a magnet-embedded rotor including a portion and a resin member injected through the injection hole and filled between the hole and the permanent magnet,
The mold apparatus for injection molding includes an upper mold and a lower mold, and includes an abutting member that abuts a part or all of the outer periphery of the laminated core, and the abutting member is provided by the upper mold and the lower mold. A mold apparatus for injection molding of a magnet-embedded rotor, wherein a resin member is filled between the hole and the permanent magnet in a sandwiched and fixed state.
上記当接部材は、全ての永久磁石の磁極と対応する上記積層鉄心の外周部の一部または全部と当接することを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 The injection member for an embedded magnet rotor according to claim 1, wherein the contact member contacts a part or all of the outer peripheral portion of the laminated core corresponding to the magnetic poles of all permanent magnets. Mold equipment. 上記当接部材は複数個備えられていることを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 2. The mold apparatus for injection molding of a magnet-embedded rotor according to claim 1, wherein a plurality of the contact members are provided. 上記当接部材の高さは、上記積層鉄心の実質高さ(上記板状磁性部材の厚さ×積層枚数)よりも大きいを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 2. The injection of a magnet-embedded rotor according to claim 1, wherein a height of the contact member is larger than a substantial height of the laminated core (thickness of the plate-like magnetic member × number of laminated layers). Mold equipment for molding. 上記当接部材は、上記上型と下型が閉じていない状態では、上記上型または上記下型に固定されておらず、上記積層鉄心の径方向に移動が可能なように構成されていることを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 The contact member is not fixed to the upper mold or the lower mold in a state where the upper mold and the lower mold are not closed, and is configured to be movable in the radial direction of the laminated core. The mold apparatus for injection molding of a magnet-embedded rotor according to claim 1. 上記当接部材は、少なくとも上記永久磁石の周方向両端部分と対応する上記積層鉄心の外周部及び上記永久磁石の周方向中央部分と対応する上記積層鉄心の外周部と当接することを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 The contact member is in contact with at least the outer peripheral portion of the laminated core corresponding to both circumferential end portions of the permanent magnet and the outer peripheral portion of the laminated core corresponding to the circumferential central portion of the permanent magnet. The mold apparatus for injection molding of the magnet-embedded rotor according to claim 1. 上記上型又は上記下型の上記当接部材と当接する面に摩擦部材を配置することを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 2. The mold apparatus for injection molding of a magnet-embedded rotor according to claim 1, wherein a friction member is disposed on a surface of the upper die or the lower die that contacts the contact member. 上記当接部材には上記上型に設けられたテーパブロックのテーパ面と同じ角度を有するテーパ面が形成され、上記テーパブロックにはバネ部材が取り付けられ、上記当接部材には上記上型に取り付けられた傾斜ピンが嵌り込む傾斜穴が形成されていることを特徴とする請求項1に記載の磁石埋込型回転子の射出成形用金型装置。 The contact member is formed with a taper surface having the same angle as the taper surface of the taper block provided on the upper mold, a spring member is attached to the taper block, and the contact member is attached to the upper mold. 2. The mold apparatus for injection molding of a magnet-embedded rotor according to claim 1, wherein an inclined hole into which the attached inclined pin is fitted is formed. 板状磁性部材を積層して形成された積層鉄心と、上記積層鉄心の端面に周方向に所定の間隔を介して配置されるとともに軸方向に貫通して形成された複数の穴部と、上記各穴部にそれぞれ嵌挿される永久磁石と、上記各穴部の上記積層鉄心の中心側に沿ってそれぞれ延在し上記永久磁石と対応する位置で上記穴部と連通して形成される注入穴部と、上記注入穴部を介して注入され上記穴部と上記永久磁石の間に充填される樹脂部材とを備えた磁石埋込型回転子を製造する方法であって、
上記積層鉄心の外周の一部または全部を当接部材により当接した状態で、上記穴部と上記永久磁石の間に樹脂部材を充填させることを特徴とする磁石埋込型回転子の製造方法。
A laminated core formed by laminating plate-like magnetic members, a plurality of holes formed in the end face of the laminated core at predetermined intervals in the circumferential direction and penetrating in the axial direction; and Permanent magnets that are respectively inserted into the holes, and injection holes that extend along the center side of the laminated iron core of the holes and that communicate with the holes at positions corresponding to the permanent magnets. And a method of manufacturing a magnet embedded rotor including a resin member injected through the injection hole and filled between the hole and the permanent magnet,
A method of manufacturing a magnet-embedded rotor, wherein a resin member is filled between the hole and the permanent magnet in a state where a part or all of the outer periphery of the laminated core is in contact with the contact member .
JP2006146964A 2006-05-26 2006-05-26 Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof Pending JP2007318942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146964A JP2007318942A (en) 2006-05-26 2006-05-26 Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146964A JP2007318942A (en) 2006-05-26 2006-05-26 Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007318942A true JP2007318942A (en) 2007-12-06

Family

ID=38852274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146964A Pending JP2007318942A (en) 2006-05-26 2006-05-26 Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007318942A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081316A1 (en) * 2010-12-14 2012-06-21 株式会社三井ハイテック Method of manufacturing laminated iron core
JP2012223024A (en) * 2011-04-12 2012-11-12 Mitsui High Tec Inc Laminate iron core manufacturing method
JP2014113041A (en) * 2012-11-06 2014-06-19 Mitsui High Tec Inc Method of manufacturing laminated iron core
JP2015006088A (en) * 2013-06-21 2015-01-08 トヨタ紡織株式会社 Core of rotary electric machine and method of manufacturing the same
JP2015144501A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Rotary electric machine rotor
JP2015192575A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Rotor manufacturing method
JP2015192574A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Rotor manufacturing method
JP2015226460A (en) * 2014-05-29 2015-12-14 現代自動車株式会社Hyundaimotor Company Molding device for motor rotor molding
JP2016005396A (en) * 2014-06-18 2016-01-12 オークマ株式会社 Assembly method of rotor for motor
JP2016119766A (en) * 2014-12-19 2016-06-30 トヨタ紡織株式会社 Manufacturing method of core of rotary electric machine
US9455612B2 (en) 2010-12-07 2016-09-27 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US9705369B2 (en) 2012-10-12 2017-07-11 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
EP3457544A1 (en) * 2017-09-19 2019-03-20 Mitsui High-Tec, Inc. Method for manufacturing rotor core
EP3503362A1 (en) * 2017-12-20 2019-06-26 ABB Schweiz AG Rotor balancing/fixation via injection or compression molding
JP2020022271A (en) * 2018-07-31 2020-02-06 株式会社三井ハイテック Iron core product manufacturing method and iron core product manufacturing apparatus
CN111361094A (en) * 2020-01-17 2020-07-03 博格华纳汽车零部件(武汉)有限公司 Built-in permanent magnet motor rotor injection mold
JP2020129946A (en) * 2019-02-12 2020-08-27 ファナック株式会社 Manufacturing device for rotor core and manufacturing method of rotor core
JP2021078345A (en) * 2019-10-31 2021-05-20 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing apparatus, and rotor manufacturing method
CN113696430A (en) * 2021-07-16 2021-11-26 珠海凯邦电机制造有限公司 Multi-pole rotor mold core structure mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166755A (en) * 1986-01-16 1987-07-23 Sanyo Electric Co Ltd Rotor with permanent magnet
JP2002247784A (en) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp Magnet embedded rotor
JP2005012907A (en) * 2003-06-18 2005-01-13 Mitsubishi Electric Corp Method and device for manufacturing cage type rotor
JP2006081251A (en) * 2004-09-07 2006-03-23 Uchihama Kasei Kk Manufacturing method of motor rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166755A (en) * 1986-01-16 1987-07-23 Sanyo Electric Co Ltd Rotor with permanent magnet
JP2002247784A (en) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp Magnet embedded rotor
JP2005012907A (en) * 2003-06-18 2005-01-13 Mitsubishi Electric Corp Method and device for manufacturing cage type rotor
JP2006081251A (en) * 2004-09-07 2006-03-23 Uchihama Kasei Kk Manufacturing method of motor rotor

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177636B2 (en) 2010-12-07 2019-01-08 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US9455612B2 (en) 2010-12-07 2016-09-27 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US10283264B2 (en) 2010-12-14 2019-05-07 Mistui High-Tec, Inc. Method of manufacturing laminated core
US9947464B2 (en) 2010-12-14 2018-04-17 Mitsui High-Tec, Inc. Method of manufacturing laminated core
WO2012081316A1 (en) * 2010-12-14 2012-06-21 株式会社三井ハイテック Method of manufacturing laminated iron core
JP2012223024A (en) * 2011-04-12 2012-11-12 Mitsui High Tec Inc Laminate iron core manufacturing method
US9705369B2 (en) 2012-10-12 2017-07-11 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
JP2014113041A (en) * 2012-11-06 2014-06-19 Mitsui High Tec Inc Method of manufacturing laminated iron core
US9564790B2 (en) 2012-11-06 2017-02-07 Mitsui High-Tec, Inc. Method for manufacturing laminated core
JP2015006088A (en) * 2013-06-21 2015-01-08 トヨタ紡織株式会社 Core of rotary electric machine and method of manufacturing the same
US9653974B2 (en) 2013-06-21 2017-05-16 Toyota Boshoku Kabushiki Kaisha Core of rotating electrical machine having fixing agent for fixing permanent magnets in accommodating slots and method for manufacturing the core
JP2015144501A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Rotary electric machine rotor
JP2015192574A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Rotor manufacturing method
JP2015192575A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Rotor manufacturing method
JP2015226460A (en) * 2014-05-29 2015-12-14 現代自動車株式会社Hyundaimotor Company Molding device for motor rotor molding
JP2016005396A (en) * 2014-06-18 2016-01-12 オークマ株式会社 Assembly method of rotor for motor
JP2016119766A (en) * 2014-12-19 2016-06-30 トヨタ紡織株式会社 Manufacturing method of core of rotary electric machine
US10079529B2 (en) 2014-12-19 2018-09-18 Toyota Boshoku Kabushiki Kaisha Method for manufacturing core of rotating electric machine
US11088600B2 (en) 2017-09-19 2021-08-10 Mitsui High-Tec, Inc. Method for manufacturing rotor core
EP3457544A1 (en) * 2017-09-19 2019-03-20 Mitsui High-Tec, Inc. Method for manufacturing rotor core
US11646644B2 (en) 2017-09-19 2023-05-09 Mitsui High-Tec, Inc. Method for manufacturing rotor core
EP3503362A1 (en) * 2017-12-20 2019-06-26 ABB Schweiz AG Rotor balancing/fixation via injection or compression molding
CN110011471A (en) * 2017-12-20 2019-07-12 Abb瑞士股份有限公司 Via injection or rotor balancing/fixation of compression forming
CN110011471B (en) * 2017-12-20 2022-11-22 Abb瑞士股份有限公司 Rotor balancing/fixing via injection or compression molding
US11393623B2 (en) 2018-07-31 2022-07-19 Mitsui High-Tec, Inc. Method for manufacturing iron core product
JP7113694B2 (en) 2018-07-31 2022-08-05 株式会社三井ハイテック Iron core product manufacturing method and iron core product manufacturing apparatus
JP2020022271A (en) * 2018-07-31 2020-02-06 株式会社三井ハイテック Iron core product manufacturing method and iron core product manufacturing apparatus
JP2020129946A (en) * 2019-02-12 2020-08-27 ファナック株式会社 Manufacturing device for rotor core and manufacturing method of rotor core
JP2021078345A (en) * 2019-10-31 2021-05-20 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing apparatus, and rotor manufacturing method
WO2022091389A1 (en) * 2019-10-31 2022-05-05 株式会社アイシン Rotor manufacturing device and rotor manufacturing method
CN116325451A (en) * 2019-10-31 2023-06-23 株式会社爱信 Rotor manufacturing device and rotor manufacturing method
JP7444021B2 (en) 2019-10-31 2024-03-06 株式会社アイシン Rotor manufacturing equipment and rotor manufacturing method
CN111361094A (en) * 2020-01-17 2020-07-03 博格华纳汽车零部件(武汉)有限公司 Built-in permanent magnet motor rotor injection mold
CN113696430A (en) * 2021-07-16 2021-11-26 珠海凯邦电机制造有限公司 Multi-pole rotor mold core structure mold

Similar Documents

Publication Publication Date Title
JP2007318942A (en) Mold apparatus for injection molding of embedded magnet rotor and manufacturing method thereof
JP2007306726A (en) Magnet-embedded rotor and molding die
JP6401466B2 (en) Laminated iron core and method for manufacturing the same
CN112055934A (en) Device and method for manufacturing magnet-embedded iron core
KR101345029B1 (en) Method of manufacturing molded stator of dynamo electric machine
JP2002034187A (en) Magnet embedded rotor
WO2015105133A1 (en) Method for manufacturing laminated core
JP4968928B2 (en) Permanent magnet motor and manufacturing method thereof
EP3116103A1 (en) Method for manufacturing a rotary electric machine rotor and rotary electric machine rotor
JP2009072014A (en) Core block, core, stator for electric motor, and electric motor thereof
US9548644B2 (en) Method of resin sealing permanent magnet and laminated core manufactured thereof
JP2005006375A (en) Method of manufacturing rotor of hybrid type stepping motor
JP7302324B2 (en) ROTOR MANUFACTURING METHOD AND ROTOR MANUFACTURING APPARATUS
US10118212B2 (en) Method for forming blanked piece and manufacturing method of laminated body and laminated iron core using blanked piece formed by method for forming blanked piece
JP4862107B2 (en) Rotor manufacturing method
JP2004357349A (en) Iron core manufacturing method
JP3749490B2 (en) Laminated iron core and method for manufacturing the same
JP2006081251A (en) Manufacturing method of motor rotor
KR20190036764A (en) Method For Manufacturing Core Of Motor or Generator, Core Manufacturing System, And Split Core Of The Motor Core
JP6716125B1 (en) Laminated core, manufacturing method and manufacturing apparatus thereof
JP4648716B2 (en) Laminated iron core and manufacturing method thereof
JP4414149B2 (en) Manufacturing method of laminated iron core
CN120016769B (en) Method for forming iron core for motor
US20250149942A1 (en) Motor
JPH0549218A (en) Method for manufacturing laminated core for rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402