[go: up one dir, main page]

JP2007317565A - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
JP2007317565A
JP2007317565A JP2006147281A JP2006147281A JP2007317565A JP 2007317565 A JP2007317565 A JP 2007317565A JP 2006147281 A JP2006147281 A JP 2006147281A JP 2006147281 A JP2006147281 A JP 2006147281A JP 2007317565 A JP2007317565 A JP 2007317565A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
electrode layer
conversion element
organic photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006147281A
Other languages
Japanese (ja)
Inventor
Masatoshi Horii
正俊 堀井
Hisaya Sone
尚也 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006147281A priority Critical patent/JP2007317565A/en
Publication of JP2007317565A publication Critical patent/JP2007317565A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】入射した光線を有効に利用することができ、優れたエネルギー変換効率を得ることができる有機光電変換素子を提供する。
【解決手段】透明基板2と、透明電極層3と、光電変換層4と、金属電極層5とを備える。透明基板2の受光面に、金属電極層5で反射された光線を再反射する再反射層6を備える。再反射層6は、透明基板2と一体に形成されている。再反射層6は、複数の錐状突起7,9または錐状凹部8からなる。錐は正四角錐であり、底辺が互いに接している。前記正四角錐は、底辺が10〜100μm、頂角が20〜150°である。錐は円錐であり、底面に内接する正方形の外側の部分で互いに重なり合っている。前記円錐は、底面に内接する正方形の一辺が10〜100μm、頂角が20〜150°である。再反射層6は、紫外線遮断材を含む。
【選択図】 図1
An organic photoelectric conversion element capable of effectively using incident light and obtaining excellent energy conversion efficiency is provided.
A transparent substrate, a transparent electrode layer, a photoelectric conversion layer, and a metal electrode layer are provided. A re-reflection layer 6 that re-reflects the light beam reflected by the metal electrode layer 5 is provided on the light receiving surface of the transparent substrate 2. The re-reflection layer 6 is formed integrally with the transparent substrate 2. The re-reflection layer 6 includes a plurality of conical protrusions 7 and 9 or a conical recess 8. The cones are regular quadrangular pyramids and the bases touch each other. The regular square pyramid has a base of 10 to 100 μm and an apex angle of 20 to 150 °. The cones are cones and overlap each other at the outer part of the square inscribed in the bottom surface. The cone has a square side inscribed in the bottom of 10 to 100 μm and an apex angle of 20 to 150 °. The re-reflection layer 6 includes an ultraviolet blocking material.
[Selection] Figure 1

Description

本発明は、例えば有機太陽電池として用いられる有機光電変換素子に関する。   The present invention relates to an organic photoelectric conversion element used as an organic solar cell, for example.

有機太陽電池等として用いられる有機光電変換素子は、印刷技術を応用することにより大面積化が容易であるため、製造に要するエネルギーコストが低い等、シリコンデバイスにはない利点を備えている。   Organic photoelectric conversion elements used as organic solar cells and the like have advantages not found in silicon devices, such as low energy costs required for manufacturing, because they can be easily enlarged by applying printing technology.

有機光電変換素子は、1970年代後半から有機太陽電池として研究されており、当初はショットキー接合を利用した色素光電変換素子が盛んに研究されてきた。   Organic photoelectric conversion elements have been studied as organic solar cells since the latter half of the 1970s, and initially dye photoelectric conversion elements using Schottky junctions have been actively studied.

これに対して1986年には、C.W.Tangにより、図10に示すpn接合型有機太陽電池31が発表されている。pn接合型有機太陽電池31は、透明ガラス基板2の受光面と反対側の面に形成された透明電極層3と、透明電極層3の上に形成された光電変換層4と、光電変換層4の上に形成された金属電極層5とを備え、光電変換層4は透明電極層3の側から順に積層された、p形有機半導体層32、n形有機半導体層33により形成されている。pn接合型有機太陽電池31は、エネルギー変換効率が1%とされている(非特許文献1参照)。   In contrast, in 1986, C.I. W. Tang published a pn junction organic solar cell 31 shown in FIG. The pn junction type organic solar cell 31 includes a transparent electrode layer 3 formed on the surface opposite to the light receiving surface of the transparent glass substrate 2, a photoelectric conversion layer 4 formed on the transparent electrode layer 3, and a photoelectric conversion layer. The photoelectric conversion layer 4 is formed of a p-type organic semiconductor layer 32 and an n-type organic semiconductor layer 33 that are stacked in this order from the transparent electrode layer 3 side. . The pn junction organic solar cell 31 has an energy conversion efficiency of 1% (see Non-Patent Document 1).

一方1991年には、M.Gretzelらにより、図11に示す色素増感太陽電池41が発表されている。色素増感太陽電池41は、透明ガラス基板2aの受光面と反対側の面に形成された透明電極層3と、透明電極層3の上に形成された光電変換層4と、透明ガラス基板2bの上に形成され、透明電極層3に対向する金属電極層5とを備え、光電変換層4は透明電極層3と金属電極層5とで挟まれた構成となっている。光電変換層4は、透明電極層3の上に形成された色素吸着層42と、2枚のガラス基板2a,2b間に注入された電解液層43とにより形成されている。色素増感太陽電池41は、湿式ではあるが、10%のエネルギー変換効率が得られるとされている(非特許文献2参照)。   On the other hand, in 1991, M.M. Gretzel et al. Announced a dye-sensitized solar cell 41 shown in FIG. The dye-sensitized solar cell 41 includes a transparent electrode layer 3 formed on the surface opposite to the light receiving surface of the transparent glass substrate 2a, a photoelectric conversion layer 4 formed on the transparent electrode layer 3, and a transparent glass substrate 2b. The photoelectric conversion layer 4 is sandwiched between the transparent electrode layer 3 and the metal electrode layer 5. The photoelectric conversion layer 4 is sandwiched between the transparent electrode layer 3 and the metal electrode layer 5. The photoelectric conversion layer 4 is formed by a dye adsorption layer 42 formed on the transparent electrode layer 3 and an electrolytic solution layer 43 injected between the two glass substrates 2a and 2b. Although the dye-sensitized solar cell 41 is wet, it is said that an energy conversion efficiency of 10% is obtained (see Non-Patent Document 2).

また、近年では、図12に示すpin接合型有機太陽電池51が提案されている。pin接合型有機太陽電池51は、透明ガラス基板2の受光面と反対側の面に形成された透明電極層3と、透明電極層3の上に形成された光電変換層4と、光電変換層4の上に形成された金属電極層5とを備え、光電変換層4は透明電極層3の側から順に積層された、p形有機半導体層52、p形有機半導体とn形有機半導体とを共蒸着したナノ構造層(i層)53、n形有機半導体層54、n形有機半導体層54と金属電極層5との接続性を向上するためのバッファー層55により形成されている。pin接合型有機太陽電池51によれば、2.5〜3.5%のエネルギー変換効率が得られるとされている(非特許文献3,4参照)。   In recent years, a pin junction type organic solar cell 51 shown in FIG. 12 has been proposed. The pin junction type organic solar cell 51 includes a transparent electrode layer 3 formed on the surface opposite to the light receiving surface of the transparent glass substrate 2, a photoelectric conversion layer 4 formed on the transparent electrode layer 3, and a photoelectric conversion layer. 4, the photoelectric conversion layer 4 includes a p-type organic semiconductor layer 52, a p-type organic semiconductor, and an n-type organic semiconductor, which are sequentially stacked from the transparent electrode layer 3 side. A co-deposited nanostructure layer (i layer) 53, an n-type organic semiconductor layer 54, and a buffer layer 55 for improving the connectivity between the n-type organic semiconductor layer 54 and the metal electrode layer 5 are formed. According to the pin junction type organic solar cell 51, it is said that an energy conversion efficiency of 2.5 to 3.5% is obtained (see Non-Patent Documents 3 and 4).

しかしながら、前記従来の有機太陽電池31,41,51では、いずれも光電変換層4が有機薄膜により形成されており非常に薄いため、光吸収が小さく、入射した光線を有効に利用することができないという不都合がある。また、光吸収を大きくするために、前記有機薄膜の膜厚を厚くすると、光電変換により発生した電荷の移動が困難になり、エネルギー変換効率が低下するという不都合がある。
C.W.Tang, Appl.Phys.Lett., 48, 183 (1986) B.O'Regan, M.Gratzel, Nature, 353, 737 (1991) 當摩、近松、原、吉田、斎藤、八瀬、「電子情報通信学会技術研究報告」OME2004-90(2004) S.Uchida, J.Xue, B.P.Rand, S.R.Forrest, Appl.Phys.Lett., 84, 4218 (2004)
However, in each of the conventional organic solar cells 31, 41, 51, since the photoelectric conversion layer 4 is formed of an organic thin film and is very thin, light absorption is small and incident light cannot be used effectively. There is an inconvenience. Further, if the thickness of the organic thin film is increased in order to increase the light absorption, it becomes difficult to move the charges generated by the photoelectric conversion, and the energy conversion efficiency is lowered.
CWTang, Appl.Phys.Lett., 48, 183 (1986) B.O'Regan, M.Gratzel, Nature, 353, 737 (1991) Satsuma, Chikamatsu, Hara, Yoshida, Saito, Yase, "Technical Research Report of IEICE" OME2004-90 (2004) S. Uchida, J. Xue, BPRand, SRForrest, Appl. Phys. Lett., 84, 4218 (2004)

本発明は、かかる不都合を解消して、入射した光線を有効に利用することができ、優れたエネルギー変換効率を得ることができる有機光電変換素子を提供することを目的とする。   An object of the present invention is to provide an organic photoelectric conversion element that can eliminate such inconvenience, can effectively use incident light, and can obtain excellent energy conversion efficiency.

かかる目的を達成するために、本発明の有機光電変換素子は、一方の面を受光面とする透明基板と、該透明基板の該受光面と反対側の面上に形成された透明電極層と、該透明電極上に形成された有機色素を有する光電変換層と、該光電変換層上に形成された金属電極層とを備える有機光電変換素子において、該透明基板の該受光面に、該金属電極層で反射された光線を再反射する再反射層を備えることを特徴とする。   In order to achieve such an object, the organic photoelectric conversion element of the present invention includes a transparent substrate having one surface as a light receiving surface, and a transparent electrode layer formed on a surface of the transparent substrate opposite to the light receiving surface. In the organic photoelectric conversion element comprising a photoelectric conversion layer having an organic dye formed on the transparent electrode and a metal electrode layer formed on the photoelectric conversion layer, the metal is formed on the light receiving surface of the transparent substrate. A re-reflection layer that re-reflects the light beam reflected by the electrode layer is provided.

一般に、有機光電変換素子では、前記透明基板の受光面から入射した光線は、前記光電変換層に入射し、一部の光線が光電変換により電荷を発生させる。この後、光線の残部は前記金属電極層で反射され、前記光電変換層に再入射し、さらに一部の光線が光電変換により電荷を発生させる。そして、光電変換されなかった残余の光線が前記透明基板の受光面に向かう。   In general, in an organic photoelectric conversion element, light incident from the light receiving surface of the transparent substrate enters the photoelectric conversion layer, and a part of the light generates charges by photoelectric conversion. Thereafter, the remainder of the light beam is reflected by the metal electrode layer, reenters the photoelectric conversion layer, and a part of the light beam generates a charge by photoelectric conversion. Then, the remaining light beam that has not been subjected to photoelectric conversion travels toward the light receiving surface of the transparent substrate.

ここで、本発明の有機光電変換素子では、前記透明基板の受光面に前記再反射層が備えられているので、前記光電変換層を出射した光線は該再反射層で反射され、再び前記光電変換層に入射する。この結果、前記透明基板の受光面から入射した光線は、前記金属電極層での反射と、前記再反射層での反射とを繰り返し、前記光電変換層に繰り返し入射されることとなる。   Here, in the organic photoelectric conversion element of the present invention, since the re-reflection layer is provided on the light-receiving surface of the transparent substrate, the light emitted from the photoelectric conversion layer is reflected by the re-reflection layer, and again the photoelectric photoelectric conversion element. Incident on the conversion layer. As a result, the light incident from the light receiving surface of the transparent substrate repeats reflection at the metal electrode layer and reflection at the re-reflection layer, and is repeatedly incident on the photoelectric conversion layer.

従って、本発明の有機光電変換素子によれば、前記透明基板の受光面から入射した光線を有効に利用して光電変換を行うことができ、前記光電変換層の膜厚を厚くすることなく優れたエネルギー変換効率を達成することができる。   Therefore, according to the organic photoelectric conversion element of the present invention, it is possible to perform photoelectric conversion by effectively using the light incident from the light receiving surface of the transparent substrate, and it is excellent without increasing the film thickness of the photoelectric conversion layer. Energy conversion efficiency can be achieved.

前記再反射層は、前記透明基板と別体に形成されていてもよく、一体に形成されていてもよい。   The re-reflection layer may be formed separately from the transparent substrate, or may be formed integrally.

また、前記再反射層は、前記金属電極層で反射された光線を前記光電変換層側に再反射することができるものであれば、どのような形状であってもよいが、該光線を効率よく反射するために、複数の錐状突起または錐状凹部からなることが好ましい。前記錐状突起または錐状凹部を形成する錐は例えば正四角錐であり、底辺が互いに接していることが好ましい。前記正四角錐は、例えば、底辺の長さが10〜100μmの範囲であり、頂角が20〜150°の範囲にあることにより、前記光線を効率よく反射することができる。   The re-reflection layer may have any shape as long as it can re-reflect the light beam reflected by the metal electrode layer to the photoelectric conversion layer side. In order to reflect well, it preferably includes a plurality of conical protrusions or conical recesses. The cones forming the cone-shaped protrusions or cone-shaped recesses are preferably regular quadrangular pyramids, for example, and their bases are preferably in contact with each other. For example, the regular quadrangular pyramid has a base length in the range of 10 to 100 μm and an apex angle in the range of 20 to 150 °, whereby the light beam can be efficiently reflected.

また、前記錐状突起または錐状凹部を形成する錐は例えば円錐であり、底面に内接する正方形の外側の部分で互いに重なり合っていることが好ましい。前記円錐は、底面に内接する正方形の一辺の長さが10〜100μmの範囲であり、頂角が20〜150°の範囲にあることにより、前記光線を効率よく反射することができる。   The cones forming the cone-shaped projections or the cone-shaped recesses are, for example, cones, and preferably overlap each other at an outer portion of a square inscribed in the bottom surface. The cone has a length of one side of a square inscribed in the bottom surface in a range of 10 to 100 μm and an apex angle in a range of 20 to 150 °, whereby the light beam can be efficiently reflected.

また、前記再反射層は、紫外線遮断材を含むことにより、前記透明基板の受光面に対する紫外線の入射を阻止することができ、前記光電変換層の紫外線による劣化を防止することができる。   In addition, the re-reflective layer includes an ultraviolet blocking material, thereby preventing ultraviolet light from entering the light receiving surface of the transparent substrate and preventing the photoelectric conversion layer from being deteriorated by ultraviolet light.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の有機光電変換素子の概略構成を示す説明的断面図であり、図2(a)は図1に示す再反射層の一構成例を示す斜視図、図2(b)は図2(a)に示す再反射層の平面図、図2(c)は図2(b)のII−II線断面図であり、図3(a)は図1に示す再反射層の他の構成例を示す斜視図、図3(b)は図3(a)に示す再反射層の平面図、図3(c)は図3(b)のIII−III線断面図であり、図4(a)は図1に示す再反射層のさらに他の構成例を示す部分平面図、図4(b)は図4(a)のIV−IV線断面図である。また、図5は図1に示す有機光電変換素子における光線の入射角と光電変換層における吸収光量との関係を示すヒストグラム、図6は図2に示す再反射層の頂角と、光電変換率、再出光率、電極損失率との関係を示すグラフ、図7は図3に示す再反射層の頂角と、光電変換率、再出光率、電極損失率との関係を示すグラフである。また、図8は図1に示す有機光電変換素子の具体的構成の第1の例を示す説明的断面図であり、図9は図1に示す有機光電変換素子の具体的構成の第2の例を示す説明的断面図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing a schematic configuration of the organic photoelectric conversion element of the present embodiment, FIG. 2A is a perspective view showing a configuration example of the re-reflection layer shown in FIG. 1, and FIG. Fig. 2 (a) is a plan view of the re-reflection layer, Fig. 2 (c) is a cross-sectional view taken along the line II-II of Fig. 2 (b), and Fig. 3 (a) is a diagram of the re-reflection layer shown in Fig. 1. FIG. 3B is a plan view of the re-reflection layer shown in FIG. 3A, FIG. 3C is a cross-sectional view taken along line III-III in FIG. 4A is a partial plan view showing still another configuration example of the re-reflection layer shown in FIG. 1, and FIG. 4B is a cross-sectional view taken along line IV-IV in FIG. 4A. 5 is a histogram showing the relationship between the incident angle of light rays in the organic photoelectric conversion element shown in FIG. 1 and the amount of absorbed light in the photoelectric conversion layer, and FIG. 6 is the apex angle of the re-reflection layer shown in FIG. FIG. 7 is a graph showing the relationship between the apex angle of the re-reflection layer shown in FIG. 3, the photoelectric conversion rate, the re-emission rate, and the electrode loss rate. 8 is an explanatory cross-sectional view showing a first example of the specific configuration of the organic photoelectric conversion element shown in FIG. 1, and FIG. 9 shows a second example of the specific configuration of the organic photoelectric conversion element shown in FIG. It is explanatory sectional drawing which shows an example.

図1に示すように、本実施形態の有機光電変換素子1は、一方の面を受光面とする透明ガラス基板2と、透明ガラス基板2の該受光面と反対側の面上に形成された透明電極層3と、透明電極層3上に形成された有機色素を有する光電変換層4と、光電変換層4上に形成された金属電極層5とを備えている。そして、透明ガラス基板2の前記受光面に、金属電極層5で反射された光線を再反射する再反射層6を備えている。   As shown in FIG. 1, the organic photoelectric conversion element 1 of the present embodiment is formed on a transparent glass substrate 2 having one surface as a light receiving surface, and a surface of the transparent glass substrate 2 opposite to the light receiving surface. A transparent electrode layer 3, a photoelectric conversion layer 4 having an organic dye formed on the transparent electrode layer 3, and a metal electrode layer 5 formed on the photoelectric conversion layer 4 are provided. The light receiving surface of the transparent glass substrate 2 is provided with a re-reflection layer 6 that re-reflects the light beam reflected by the metal electrode layer 5.

透明電極層3は、例えばITOにより形成することができる。   The transparent electrode layer 3 can be formed of, for example, ITO.

光電変換層4は、それ自体公知の構成であってよく、例えば、pin接合型有機太陽電池、色素増感太陽電池等に用いられる光電変換層の構成をそのまま用いることができる。ここで、光電変換層4に含まれる前記有機色素は、例えば、亜鉛フタロシアニン、銅フタロシアニン、ルテニウム錯体等である。   The photoelectric conversion layer 4 may have a configuration known per se. For example, the configuration of the photoelectric conversion layer used for a pin junction type organic solar cell, a dye-sensitized solar cell, or the like can be used as it is. Here, the said organic pigment | dye contained in the photoelectric converting layer 4 is zinc phthalocyanine, copper phthalocyanine, a ruthenium complex etc., for example.

前記pin接合型有機太陽電池に用いられる光電変換層4は、透明電極層3の側から順に、p形有機半導体層、p形有機半導体とn形有機半導体とを共蒸着したナノ構造層(i層)、n形有機半導体層、バッファー層が積層されて形成されている。前記p形有機半導体としては、例えば、亜鉛フタロシアニン、銅フタロシアニン等を用いることができ、前記n形有機半導体としては、例えば、フラーレン(C60)、ペリレン誘導体等を用いることができる。また、前記ナノ構造層(i層)は例えば銅フタロシアニンとフラーレンとを共蒸着させることにより形成することができ、前記バッファー層例えばバソクプロイン等により形成することができる。   The photoelectric conversion layer 4 used in the pin junction type organic solar cell includes a p-type organic semiconductor layer, and a nanostructure layer (i) in which a p-type organic semiconductor and an n-type organic semiconductor are co-deposited in this order from the transparent electrode layer 3 side. Layer), an n-type organic semiconductor layer, and a buffer layer. Examples of the p-type organic semiconductor include zinc phthalocyanine and copper phthalocyanine. Examples of the n-type organic semiconductor include fullerene (C60) and perylene derivatives. The nanostructure layer (i layer) can be formed by co-evaporating copper phthalocyanine and fullerene, for example, and can be formed by the buffer layer such as bathocuproine.

一方、前記色素増感太陽電池に用いられる光電変換層4は、透明電極層3の上に形成された色素吸着層と、該色素吸着層の上に形成された電解液層とにより形成される。前記色素吸着層としては、例えば、ルテニウム錯体からなる色素を吸着させた酸化チタン等が用いられる。また、前記電解液層を形成する電解液としては、例えばヨウ素イオンを含む水溶液が用いられる。   On the other hand, the photoelectric conversion layer 4 used in the dye-sensitized solar cell is formed by a dye adsorption layer formed on the transparent electrode layer 3 and an electrolyte layer formed on the dye adsorption layer. . As the dye adsorbing layer, for example, titanium oxide adsorbed with a dye composed of a ruthenium complex is used. Moreover, as an electrolytic solution for forming the electrolytic solution layer, for example, an aqueous solution containing iodine ions is used.

金属電極層5は、例えば、MgAg共蒸着体、Pt、Al等の金属により形成することができる。   The metal electrode layer 5 can be formed of, for example, a metal such as MgAg co-deposited body, Pt, or Al.

再反射層6は、例えば図2(a)、図2(b)に示すように、正四角錐状突起7が互いに底辺を接して格子状に配列されており、正四角錐状突起7の配列方向は、例えば透明ガラス基板2の辺と同一方向とすることができる。正四角錐状突起7は互いに底辺を接していることにより、正四角錐状突起7,7間に平面が形成されることがないので、金属電極層5で反射された光線を確実に反射することができる。   For example, as shown in FIGS. 2A and 2B, the re-reflective layer 6 includes regular quadrangular pyramidal projections 7 arranged in a lattice shape with their bases in contact with each other. Can be in the same direction as the side of the transparent glass substrate 2, for example. Since the regular quadrangular pyramidal projections 7 are in contact with each other, no plane is formed between the regular quadrangular pyramidal projections 7 and 7, so that the light beam reflected by the metal electrode layer 5 can be reliably reflected. it can.

正四角錐状突起7の底辺の長さは、例えば、10〜100μmの範囲とすることができる。また、図2(c)に示す正四角錐状突起7の頂角θは、20〜150°の範囲とすることができる。   The length of the bottom side of the regular quadrangular pyramidal protrusion 7 can be set in the range of 10 to 100 μm, for example. Further, the apex angle θ of the regular quadrangular pyramidal projection 7 shown in FIG. 2C can be in the range of 20 to 150 °.

また、再反射層6は、例えば図3(a)、図3(b)に示すように、正四角錐状凹部8が互いに底辺を接して格子状に配列されているものであってもよい。正四角錐状凹部8は、図2に示す正四角錐状突起7と同一形状の正四角錐の頂点を再反射層6側に向けて凹入せしめ、該正四角錐を除去した形状に相当する。   In addition, the re-reflection layer 6 may be one in which regular quadrangular pyramid-shaped concave portions 8 are arranged in a lattice shape with their bases in contact with each other as shown in FIGS. 3A and 3B, for example. The regular quadrangular pyramid-shaped concave portion 8 corresponds to a shape in which the apex of the regular quadrangular pyramid having the same shape as the regular quadrangular pyramidal projection 7 shown in FIG. 2 is recessed toward the re-reflection layer 6 and the regular quadrangular pyramid is removed.

この場合、正四角錐状凹部8は、図2に示す正四角錐状突起7と同様に、互いに底辺を接していることにより、正四角錐状凹部8,8間に平面が形成されることがないので、金属電極層5で反射された光線を確実に反射することができる。   In this case, since the regular quadrangular pyramid-shaped recesses 8 are in contact with each other in the same manner as the regular quadrangular pyramidal projections 7 shown in FIG. 2, no plane is formed between the regular quadrangular pyramidal recesses 8, 8. The light beam reflected by the metal electrode layer 5 can be reliably reflected.

正四角錐状凹部8は、図2に示す正四角錐状突起7と同様に、配列方向を、例えば透明ガラス基板2の辺と同一方向とすることができ、底辺の長さは、例えば、10〜100μmの範囲とすることができる。また、図3(c)に示す正四角錐状凹部8の頂角θは、20〜150°の範囲とすることができる。   The regular quadrangular pyramid-shaped recess 8 can be arranged in the same direction as the side of the transparent glass substrate 2, for example, like the regular quadrangular pyramidal projection 7 shown in FIG. It can be in the range of 100 μm. Further, the apex angle θ of the regular quadrangular pyramidal recess 8 shown in FIG. 3C can be in the range of 20 to 150 °.

さらに、再反射層6は、例えば、図4(a)に示すように、円錐状突起9が格子状に配列されているものであってもよい。このとき、円錐状突起9は、仮想線で示す底面9aに内接する正方形9bの外側の部分で互いに重なり合っていることが好ましい。このようにすることにより、円錐状突起9,9間に平面が形成されることがないので、金属電極層5で反射された光線を確実に反射することができる。   Furthermore, the re-reflection layer 6 may be one in which, for example, conical protrusions 9 are arranged in a lattice pattern as shown in FIG. At this time, it is preferable that the conical protrusions 9 overlap each other at a portion outside the square 9b inscribed in the bottom surface 9a indicated by a virtual line. By doing in this way, since a plane is not formed between the conical protrusions 9 and 9, the light beam reflected by the metal electrode layer 5 can be reliably reflected.

円錐状突起9は、図2に示す正四角錐状突起7と同様に、内接正方形9bの配列方向を、例えば透明ガラス基板2の辺と同一方向とすることができ、底辺の長さは、例えば、10〜100μmの範囲とすることができる。また、図4(b)に示す円錐状突起9の頂角θは、20〜150°の範囲とすることができる。   As in the case of the regular quadrangular pyramid projection 7 shown in FIG. 2, the conical projection 9 can have the arrangement direction of the inscribed squares 9 b in the same direction as the side of the transparent glass substrate 2, for example. For example, it can be set as the range of 10-100 micrometers. Further, the apex angle θ of the conical protrusion 9 shown in FIG. 4B can be in the range of 20 to 150 °.

図示しないが、再反射層6は、図4に示す円錐状突起9と同一形状の円錐の頂点を再反射層6側に向けて凹入せしめ、該円錐を除去した形状に相当する円錐状凹部を備えるものであってもよい。   Although not shown, the re-reflection layer 6 has a conical recess corresponding to a shape in which the apex of the cone having the same shape as the conical protrusion 9 shown in FIG. 4 is recessed toward the re-reflection layer 6 and the cone is removed. May be provided.

再反射層6は、例えば、正四角錐状突起7、正四角錐状凹部8、円錐状突起9、前記円錐状凹部が前述のように配列された形状の金型(スタンパ)に、UV硬化樹脂等を注入することにより成形することができる。この場合、前記突起の高さまたは凹部の深さは、成形加工性を考慮すると、100μm程度とすることが好ましい。   The re-reflection layer 6 is, for example, a regular quadrangular pyramidal projection 7, a regular quadrangular pyramidal recess 8, a conical projection 9, and a mold (stamper) in which the conical concave portions are arranged as described above, a UV curable resin, or the like. It can be formed by injecting. In this case, the height of the protrusion or the depth of the recess is preferably about 100 μm in consideration of molding processability.

再反射層6は、透明ガラス基板2と別体に形成されていてもよく、一体に形成されていてもよい。また、再反射層6は、紫外線遮断剤を含むものであってもよい。   The re-reflection layer 6 may be formed separately from the transparent glass substrate 2 or may be formed integrally. Further, the re-reflection layer 6 may contain an ultraviolet blocking agent.

前記構成を備える本実施形態の有機光電変換素子1によれば、透明ガラス基板2の再反射層6側から光線が入射すると、該光線は光電変換層4に入射し、一部の光線が光電変換により電荷を発生させる。この後、光線の残部は金属電極層5で反射され、光電変換層4に再入射し、さらに一部の光線が光電変換により電荷を発生させる。そして、光電変換されなかった残余の光線が透明ガラス基板2の受光面に向かう。   According to the organic photoelectric conversion element 1 of the present embodiment having the above-described configuration, when a light beam is incident from the re-reflection layer 6 side of the transparent glass substrate 2, the light beam is incident on the photoelectric conversion layer 4, and a part of the light beam is photoelectric. Electric charges are generated by the conversion. Thereafter, the remainder of the light beam is reflected by the metal electrode layer 5 and re-enters the photoelectric conversion layer 4, and a part of the light beam generates a charge by photoelectric conversion. Then, the remaining light beam that has not been subjected to photoelectric conversion travels toward the light receiving surface of the transparent glass substrate 2.

ここで、透明ガラス基板2の受光面には、再反射層6が備えられているので、光電変換層4を出射した光線は再反射層6で再反射され、再び光電変換層4に入射する。この結果、透明ガラス基板2の受光面から入射した光線は、金属電極層5での反射と、再反射層6での再反射とを繰り返し、光電変換層4に繰り返し入射されることとなる。そして、光電変換層4における光電変換により生じた電荷は、透明電極層3と金属電極層5とを接続することにより、電流として取り出すことができる。   Here, since the light-receiving surface of the transparent glass substrate 2 is provided with the re-reflection layer 6, the light emitted from the photoelectric conversion layer 4 is re-reflected by the re-reflection layer 6 and enters the photoelectric conversion layer 4 again. . As a result, the light incident from the light receiving surface of the transparent glass substrate 2 repeats the reflection at the metal electrode layer 5 and the re-reflection at the re-reflection layer 6 and is incident on the photoelectric conversion layer 4 repeatedly. The charge generated by photoelectric conversion in the photoelectric conversion layer 4 can be taken out as a current by connecting the transparent electrode layer 3 and the metal electrode layer 5.

従って、有機光電変換素子1によれば、透明ガラス基板2の受光面から入射した光線を有効に利用して光電変換を行うことができ、優れたエネルギー変換効率を達成することができる。   Therefore, according to the organic photoelectric conversion element 1, photoelectric conversion can be performed by effectively using the light incident from the light receiving surface of the transparent glass substrate 2, and excellent energy conversion efficiency can be achieved.

次に、図1に示す有機光電変換素子1において、再反射層6として図2に示す正四角錐状突起7を備えるものを用いた場合(実施例)と、再反射層6を用いなかった場合(比較例)とで、透明ガラス基板2の受光面から入射する光線の入射角を変えたときの光電変換層4における吸収光量を比較した。有機光電変換素子1は、透明ガラス基板2、ITOからなる透明電極層3、有機層、Alからなる金属電極層5から構成し、透過率55%の光電変換層4を該有機層の中間に配置したものを用い、素子サイズは10mm×10mmとした。また、再反射層6の正四角錐状突起7は、底辺の長さ0.05mm、頂角90°、高さ0.025mmとした。   Next, in the case of using the organic photoelectric conversion element 1 shown in FIG. 1 having the regular tetragonal pyramidal projections 7 shown in FIG. 2 as the rereflective layer 6 (Example) and when the rereflective layer 6 is not used. In (Comparative Example), the amount of light absorbed in the photoelectric conversion layer 4 when the incident angle of the light incident from the light receiving surface of the transparent glass substrate 2 was changed was compared. The organic photoelectric conversion element 1 includes a transparent glass substrate 2, a transparent electrode layer 3 made of ITO, an organic layer, and a metal electrode layer 5 made of Al, and a photoelectric conversion layer 4 having a transmittance of 55% is placed in the middle of the organic layer. The element size used was 10 mm × 10 mm. Further, the regular quadrangular pyramidal projections 7 of the re-reflection layer 6 have a base length of 0.05 mm, a vertex angle of 90 °, and a height of 0.025 mm.

結果は、再反射層6を用いず、透明ガラス基板2の受光面から入射する光線の入射角を0°としたときの吸収光量を1とし、該吸収光量に対する比として、図5に示す。   The result is shown in FIG. 5 as the ratio of the absorbed light quantity when the incident angle of light incident from the light receiving surface of the transparent glass substrate 2 is 0 ° without using the re-reflective layer 6 and the ratio to the absorbed light quantity.

図5から、再反射層6を用いた場合(実施例)は、入射角に関わらず、再反射層6を用いなかった場合(比較例)よりも吸収光量が増加しており、光線を有機光電変換素子1に閉じ込め、繰り返し光電変換層4に入射させる効果があることが明らかである。   From FIG. 5, when the re-reflective layer 6 is used (Example), the amount of absorbed light is increased compared to the case where the re-reflective layer 6 is not used (Comparative Example) regardless of the incident angle. It is clear that there is an effect of confining in the photoelectric conversion element 1 and repeatedly entering the photoelectric conversion layer 4.

次に、図2に示す再反射層6において、正四角錐状突起7の頂角θを変えたときの、光電変換率、再出光率、電極損失率をシミュレートした結果を図6に示す。また、図3に示す再反射層6において、正四角錐状凹部8の頂角θを変えたときの、光電変換率、再出光率、電極損失率をシミュレートした結果を図7に示す。   Next, in the re-reflection layer 6 shown in FIG. 2, the result of simulating the photoelectric conversion rate, the re-emitted light rate, and the electrode loss rate when the apex angle θ of the regular quadrangular pyramidal projections 7 is changed is shown in FIG. Moreover, in the re-reflection layer 6 shown in FIG. 3, the result of having simulated the photoelectric conversion rate, the re-emitted light rate, and the electrode loss rate when changing the apex angle θ of the regular quadrangular pyramidal recess 8 is shown in FIG.

図6から、正四角錐状突起7を備える再反射層6では、頂角が小さいほど再出光率が低く、光線が有機光電変換素子1に閉じ込められ、再度金属電極層5に到達していることが明らかであり、この結果、光電変換率が高くなることが明らかである。また、図6から、光線を有機光電変換素子1に閉じ込め、繰り返し光電変換層4に入射させるために、頂角の大きさθは、20〜150°の範囲で有効であることが明らかである。   From FIG. 6, in the re-reflection layer 6 including the regular quadrangular pyramidal projections 7, the smaller the apex angle, the lower the light exit rate, and the light beam is confined in the organic photoelectric conversion element 1 and reaches the metal electrode layer 5 again. As a result, it is clear that the photoelectric conversion rate is increased. Further, from FIG. 6, it is clear that the apex angle size θ is effective in the range of 20 to 150 ° in order to confine the light beam in the organic photoelectric conversion element 1 and repeatedly enter the photoelectric conversion layer 4. .

また、図7から、正四角錐状凹部8を備える再反射層6においても、正四角錐状突起7を備える再反射層6の場合(図6)と同様の結果が得られることが明らかであり、正四角錐状凹部8を備える再反射層6によっても光線を有機光電変換素子1に閉じ込め、繰り返し光電変換層4に入射させる効果が得られることが明らかである。   Moreover, it is clear from FIG. 7 that the same result as in the case of the rereflective layer 6 including the regular quadrangular pyramidal protrusions 7 (FIG. 6) is obtained in the rereflective layer 6 including the regular quadrangular pyramidal recesses 8, It is clear that the effect of causing the light to be confined in the organic photoelectric conversion element 1 and repeatedly incident on the photoelectric conversion layer 4 also by the re-reflection layer 6 having the regular quadrangular pyramid-shaped recess 8.

次に、図1に示す有機光電変換素子1の具体的構成の第1の例を図8に示す。   Next, the 1st example of the specific structure of the organic photoelectric conversion element 1 shown in FIG. 1 is shown in FIG.

図8(a)に示す有機光電変換素子11は、透明ガラス基板2の受光面と反対側の面上に所定のパターンに形成されたITOからなる透明電極層3と、透明電極層3上に形成された光電変換層4と、光電変換層4上に形成されたAlからなる金属電極層5とを備え、金属電極層5の一部は透明ガラス基板2上にも形成されている。透明ガラス基板2の前記受光面には、金属電極層5で反射された光線を再反射するために、図2に示す正四角錐状突起7を備える再反射層6が貼付されている。   The organic photoelectric conversion element 11 shown in FIG. 8A has a transparent electrode layer 3 made of ITO formed in a predetermined pattern on the surface opposite to the light receiving surface of the transparent glass substrate 2, and the transparent electrode layer 3. The formed photoelectric conversion layer 4 and a metal electrode layer 5 made of Al formed on the photoelectric conversion layer 4 are provided, and a part of the metal electrode layer 5 is also formed on the transparent glass substrate 2. In order to re-reflect the light beam reflected by the metal electrode layer 5, a re-reflection layer 6 having regular quadrangular pyramidal projections 7 shown in FIG. 2 is attached to the light receiving surface of the transparent glass substrate 2.

また、有機光電変換素子11は、光電変換層4と金属電極層5とを収容する凹部を有するステンレス製の蓋体12を備え、蓋体12は周縁部に配設されたエポキシ樹脂層13により、透明ガラス基板2の光電変換層4と金属電極層5とが設けられている面を封止している。透明電極層3の一部と、金属電極層5の一部とは、取り出し電極として蓋体12の外部に露出している。また、蓋体12は、凹部内面側にゴアテックス(登録商標)製乾燥剤からなるゲッター材14を備えている。   The organic photoelectric conversion element 11 includes a stainless steel lid body 12 having a recess that accommodates the photoelectric conversion layer 4 and the metal electrode layer 5, and the lid body 12 is formed by an epoxy resin layer 13 disposed on the peripheral edge. The surface of the transparent glass substrate 2 on which the photoelectric conversion layer 4 and the metal electrode layer 5 are provided is sealed. A part of the transparent electrode layer 3 and a part of the metal electrode layer 5 are exposed to the outside of the lid 12 as extraction electrodes. Further, the lid 12 includes a getter material 14 made of a Gore-Tex (registered trademark) desiccant on the inner surface side of the recess.

有機光電変換素子11において、光電変換層4は、図8(b)に拡大して示すように、透明電極層3の側から順に、銅フタロシアニンからなるp形有機半導体層15、銅フタロシアニンとフラーレンとを共蒸着したナノ構造層(i層)16、フラーレンからなるn形有機半導体層17、バソクプロインからなるバッファー層18が積層されて形成されており、バッファー層18上に金属電極層5が形成されている。   In the organic photoelectric conversion element 11, the photoelectric conversion layer 4 includes a p-type organic semiconductor layer 15 made of copper phthalocyanine, copper phthalocyanine and fullerene in order from the transparent electrode layer 3 side, as shown in an enlarged view in FIG. Are formed by laminating a nanostructure layer (i layer) 16, an n-type organic semiconductor layer 17 made of fullerene, and a buffer layer 18 made of bathocuproine, and a metal electrode layer 5 is formed on the buffer layer 18. Has been.

有機光電変換素子11は、次のようにして製造した。   The organic photoelectric conversion element 11 was manufactured as follows.

まず、ITO付き透明ガラス基板2にフォトリソグラフィー加工を行い、ITOからなり所定の電極パターンを備える透明電極層3を形成した。次に、透明電極層3が形成された透明ガラス基板2を洗浄した。前記洗浄は、中性洗剤中で10分間超音波洗浄を行った後、リンスのために純水による10分間の超音波洗浄を3回行い、その後さらに、脱水及び脱脂のために、イソプロピルアルコールによる10分間の超音波洗浄と、アセトンによる10分間の超音波洗浄とを行った。洗浄後、透明ガラス基板2を、ウォーターマークが残らないように注意深くアセトン中から引き上げ、窒素気流により乾燥させた後、紫外線オゾン洗浄を30分間実施した。   First, the transparent glass substrate 2 with ITO was subjected to photolithography to form a transparent electrode layer 3 made of ITO and having a predetermined electrode pattern. Next, the transparent glass substrate 2 on which the transparent electrode layer 3 was formed was washed. In the cleaning, ultrasonic cleaning is performed in a neutral detergent for 10 minutes, and then ultrasonic cleaning with pure water is performed three times for rinsing, and then further isopropyl alcohol is used for dehydration and degreasing. Ultrasonic cleaning for 10 minutes and ultrasonic cleaning for 10 minutes with acetone were performed. After the cleaning, the transparent glass substrate 2 was carefully lifted out of acetone so as not to leave a watermark, dried with a nitrogen stream, and then subjected to ultraviolet ozone cleaning for 30 minutes.

次に、前記洗浄後の透明ガラス基板2を基板ホルダーに設置して有機槽と電極槽とが接続された真空チャンバーに導入し、該真空チャンバー内を真空排気して、透明電極層3上に光電変換層4を形成した。光電変換層4の形成は、有機槽を1×10−5Paの圧力まで排気した後、ステンレス(SUS430)製蒸着マスクを透明電極層3上に配置して、各有機物を蒸着することにより行った。各有機物の蒸着速度は、水晶振動子と水晶発振式成膜コントローラー(株式会社アルバック製、商品名:CRTM−9000)とでモニターし、1〜2オングストローム/秒とした。 Next, the cleaned transparent glass substrate 2 is placed on a substrate holder, introduced into a vacuum chamber in which an organic tank and an electrode tank are connected, and the vacuum chamber is evacuated to form a transparent electrode layer 3 on the transparent electrode layer 3. A photoelectric conversion layer 4 was formed. The photoelectric conversion layer 4 is formed by evacuating the organic tank to a pressure of 1 × 10 −5 Pa, placing a stainless steel (SUS430) deposition mask on the transparent electrode layer 3, and depositing each organic material. It was. The vapor deposition rate of each organic substance was monitored with a crystal resonator and a crystal oscillation type film formation controller (manufactured by ULVAC, Inc., trade name: CRTM-9000), and was set to 1 to 2 angstroms / second.

前記各有機物の蒸着は、まず、銅フタロシアニンを蒸着して20nmの厚さのp形有機半導体層15を形成し、次に銅フタロシアニンとフラーレンとをそれぞれ1オングストローム/秒の蒸着速度で共蒸着して10nmの厚さのナノ構造層(i層)16を形成した。次に、フラーレンを蒸着して30nmの厚さのn形有機半導体層17を形成し、最後にバソクプロインを蒸着して10nmの厚さのバッファー層18を形成した。   The organic materials are vapor-deposited by first depositing copper phthalocyanine to form a p-type organic semiconductor layer 15 having a thickness of 20 nm, and then co-depositing copper phthalocyanine and fullerene at a deposition rate of 1 angstrom / second. A nano-structure layer (i layer) 16 having a thickness of 10 nm was formed. Next, fullerene was vapor-deposited to form an n-type organic semiconductor layer 17 having a thickness of 30 nm, and finally bathocuproine was vapor-deposited to form a buffer layer 18 having a thickness of 10 nm.

前記各有機物の蒸着後、真空を維持したまま、透明電極層3上に光電変換層4が形成された透明ガラス基板2を電極槽に移動した。そして、所定の電極パターンに対応する蒸着マスクを光電変換層4上に配置し、抵抗加熱によりAlを蒸着して100nmの厚さの金属電極層5を光電変換層4上に形成した。   After the vapor deposition of each organic material, the transparent glass substrate 2 on which the photoelectric conversion layer 4 was formed on the transparent electrode layer 3 was moved to the electrode tank while maintaining the vacuum. And the vapor deposition mask corresponding to a predetermined electrode pattern was arrange | positioned on the photoelectric converting layer 4, and Al was vapor-deposited by resistance heating, and the 100-nm-thick metal electrode layer 5 was formed on the photoelectric converting layer 4. FIG.

次に、光電変換層4上に金属電極層5が形成された透明ガラス基板2を、大気に触れることなく、窒素雰囲気下のグローブボックス内に導入し、ステンレス製の蓋体12により封止した。蓋体12は、脱脂のために、イソプロピルアルコールによる10分間の超音波洗浄と、アセトンによる10分間の超音波洗浄とを行い、さらに紫外線オゾン洗浄を30分間実施した後、前記グローブボックス内に導入した。蓋体12による封止は、蓋体12の凹部内面側に乾燥剤14を貼付した後、蓋体12の周縁部に沿ってエポキシ樹脂(長瀬ケムテックス社製)を塗布して、該エポキシ樹脂を介して蓋体12を透明ガラス基板2に密着し、該エポキシ樹脂に180秒間紫外線を照射して硬化させ、エポキシ樹脂層13を形成することにより行った。   Next, the transparent glass substrate 2 having the metal electrode layer 5 formed on the photoelectric conversion layer 4 was introduced into a glove box under a nitrogen atmosphere without being exposed to the air, and sealed with a stainless steel lid 12. . The lid 12 is subjected to ultrasonic cleaning with isopropyl alcohol for 10 minutes and ultrasonic cleaning with acetone for 10 minutes for degreasing, and further subjected to ultraviolet ozone cleaning for 30 minutes and then introduced into the glove box. did. Sealing with the lid 12 is performed by applying an epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) along the peripheral edge of the lid 12 after applying the desiccant 14 to the inner surface of the concave portion of the lid 12. Then, the lid body 12 was brought into close contact with the transparent glass substrate 2, and the epoxy resin was irradiated with ultraviolet rays for 180 seconds to be cured to form an epoxy resin layer 13.

次に、図2に示す正四角錐状突起7を備える再反射層6に対応する形状の金型(スタンパ)に、UV硬化樹脂を注入して硬化させることにより、底辺の長さ100μm、頂角90°、高さ0.05mmの正四角錐状突起7を備える再反射層6を成形した。そして、再反射層6を、前記蓋体12で封止した透明ガラス基板2の蓋体12と反対側の面に貼付して、有機光電変換素子11を得た。   Next, by injecting a UV curable resin into a mold (stamper) having a shape corresponding to the re-reflection layer 6 having the regular quadrangular pyramidal projections 7 shown in FIG. 2, the base has a length of 100 μm and an apex angle. The re-reflective layer 6 including the regular quadrangular pyramidal protrusions 7 having a 90 ° height of 0.05 mm was formed. And the re-reflection layer 6 was stuck on the surface on the opposite side to the cover body 12 of the transparent glass substrate 2 sealed with the said cover body 12, and the organic photoelectric conversion element 11 was obtained.

有機光電変換素子11に、26.6mW/mのエネルギーを有する放電ランプ光を照射し、電流−電圧特性を測定した。得られた電流−電圧特性から、有機光電変換素子11のエネルギー変換効率を算出したところ、0.81%であった。 The organic photoelectric conversion element 11 was irradiated with discharge lamp light having an energy of 26.6 mW / m 2 , and current-voltage characteristics were measured. When the energy conversion efficiency of the organic photoelectric conversion element 11 was calculated from the obtained current-voltage characteristics, it was 0.81%.

一方、前記蓋体12で封止した透明ガラス基板2に再反射層6を貼付しない以外は、再反射層6を貼付した場合と全く同一にしてエネルギー変換効率を算出したところ、0.71%であった。   On the other hand, when the energy conversion efficiency was calculated in exactly the same manner as when the re-reflection layer 6 was applied except that the re-reflection layer 6 was not attached to the transparent glass substrate 2 sealed with the lid 12, 0.71% Met.

次に、図1に示す有機光電変換素子1の具体的構成の第2の例を図9に示す。   Next, a second example of a specific configuration of the organic photoelectric conversion element 1 shown in FIG. 1 is shown in FIG.

図9に示す有機光電素子21は、透明ガラス基板2の受光面と反対側の面上に所定のパターンに形成されたITOからなる透明電極層3と、透明電極層3に対向配置されたPt薄膜からなる金属電極層5との間に、光電変換層4とを備えている。金属電極層5は、透明ガラス基板22の一方の面上に形成されたITOからなる透明電極層23上に、所定のパターンに形成されている。尚、透明電極層3と金属電極層5とは、互いに取り出し電極分だけずらして対向配置されている。   The organic photoelectric element 21 shown in FIG. 9 includes a transparent electrode layer 3 made of ITO formed in a predetermined pattern on the surface opposite to the light receiving surface of the transparent glass substrate 2, and Pt disposed opposite to the transparent electrode layer 3. A photoelectric conversion layer 4 is provided between the metal electrode layer 5 made of a thin film. The metal electrode layer 5 is formed in a predetermined pattern on the transparent electrode layer 23 made of ITO formed on one surface of the transparent glass substrate 22. Note that the transparent electrode layer 3 and the metal electrode layer 5 are arranged to face each other while being shifted from each other by the amount corresponding to the extraction electrode.

光電変換層4は、透明電極層3上に形成された色素吸着層24と、金属電極層5と色素吸着層24と間に配設された電解液層25とから形成されている。色素吸着層24は、増感色素としてルテニウム錯体を吸着させたナノサイズの酸化チタン粒子からなる。また、電解液層25は、透明ガラス基板2,22間に、周囲をエポキシ樹脂層25で封止して形成された空間に注入されたヨウ素イオンを含む水溶液からなる。   The photoelectric conversion layer 4 is formed of a dye adsorption layer 24 formed on the transparent electrode layer 3 and an electrolyte layer 25 disposed between the metal electrode layer 5 and the dye adsorption layer 24. The dye adsorption layer 24 is composed of nano-sized titanium oxide particles on which a ruthenium complex is adsorbed as a sensitizing dye. The electrolyte solution layer 25 is made of an aqueous solution containing iodine ions injected into a space formed by sealing the periphery between the transparent glass substrates 2 and 22 with the epoxy resin layer 25.

そして、透明ガラス基板2の前記受光面には、金属電極層5で反射された光線を再反射するために、図2に示す正四角錐状突起7を備える再反射層6が貼付されている。   And in order to re-reflect the light ray reflected by the metal electrode layer 5, the re-reflection layer 6 provided with the regular pyramid-shaped protrusion 7 shown in FIG.

有機光電変換素子21は、次のようにして製造した。   The organic photoelectric conversion element 21 was manufactured as follows.

まず、ITO付き透明ガラス基板2にフォトリソグラフィー加工を行い、ITOからなり所定の電極パターンを備える透明電極層3を形成した。次に、透明電極層3が形成された透明ガラス基板2を洗浄した。前記洗浄は、中性洗剤中で10分間超音波洗浄を行った後、リンスのために純水による10分間の超音波洗浄を3回行い、その後さらに、脱水及び脱脂のために、イソプロピルアルコールによる10分間の超音波洗浄と、アセトンによる10分間の超音波洗浄とを行った。洗浄後、透明ガラス基板2を、ウォーターマークが残らないように注意深くアセトン中から引き上げ、窒素気流により乾燥させた後、紫外線オゾン洗浄を30分間実施した。   First, the transparent glass substrate 2 with ITO was subjected to photolithography to form a transparent electrode layer 3 made of ITO and having a predetermined electrode pattern. Next, the transparent glass substrate 2 on which the transparent electrode layer 3 was formed was washed. In the cleaning, ultrasonic cleaning is performed in a neutral detergent for 10 minutes, and then ultrasonic cleaning with pure water is performed three times for rinsing, and then further isopropyl alcohol is used for dehydration and degreasing. Ultrasonic cleaning for 10 minutes and ultrasonic cleaning for 10 minutes with acetone were performed. After the cleaning, the transparent glass substrate 2 was carefully lifted out of acetone so as not to leave a watermark, dried by a nitrogen stream, and then subjected to ultraviolet ozone cleaning for 30 minutes.

次に、前記洗浄後の透明ガラス基板2の表面の両端にメンディングテープ(3M社製)を貼付してスペーサとし、テープ間にナノサイズの酸化チタン粒子を含む酸化チタンペースト(Solaronix社製、商品名:Ti−Nanoxide)を滴下して、ガラス棒を用いるスキージ法により均一に塗布した。次に、前記酸化チタンペーストが塗布された透明ガラス基板2を50℃のホットプレート上に5分間保持して、該酸化チタンペーストを乾燥させた。前記乾燥後、前記メンディングテープを剥離し、透明ガラス基板2を450℃のホットプレート上に30分間保持して、前記酸化チタンペーストの焼成を行った。次に、透明ガラス基板2を徐冷し、80℃程度の温度となったときに、増感色素としてのルテニウム錯体のエタノール溶液に浸漬し、12時間保持した。前記浸漬後、透明ガラス基板2を乾燥させ、色素吸着層24を形成した。   Next, a mending tape (manufactured by 3M) is applied to both ends of the surface of the transparent glass substrate 2 after the washing to form a spacer, and a titanium oxide paste containing nano-sized titanium oxide particles between the tapes (manufactured by Solaronix, Product name: Ti-Nanoxide) was dropped and applied uniformly by a squeegee method using a glass rod. Next, the transparent glass substrate 2 coated with the titanium oxide paste was held on a hot plate at 50 ° C. for 5 minutes to dry the titanium oxide paste. After the drying, the mending tape was peeled off, the transparent glass substrate 2 was held on a hot plate at 450 ° C. for 30 minutes, and the titanium oxide paste was baked. Next, the transparent glass substrate 2 was gradually cooled, and when the temperature reached about 80 ° C., it was immersed in an ethanol solution of a ruthenium complex as a sensitizing dye and held for 12 hours. After the immersion, the transparent glass substrate 2 was dried to form the dye adsorption layer 24.

次に、ITO付き透明ガラス基板22のITOからなる透明電極層23上に、スパッタ方式により1000オングストロームの厚さのPt薄膜を成膜し、該Pt薄膜からなる金属電極層5を形成した。次に、透明ガラス基板2の透明電極層3が形成された面と、透明ガラス基板22の金属電極層5が形成された面とを対向させ、色素吸着層24と金属電極層5との間に50μmの厚さの高分子フィルムを挟んで透明ガラス基板2,22を重ね合わせた。尚、透明電極層3と金属電極層5とは、互いに取り出し電極分だけずれるように配置した。次に、重ね合わせた透明ガラス基板2,22の周囲にエポキシ樹脂を塗布、硬化させてエポキシ樹脂層25を形成し、透明ガラス基板2,22間に、周囲をエポキシ樹脂層25で封止された空間を形成した。そして、前記空間に電解液としてのヨウ素イオンを含む水溶液を注入して電解液層26を形成した。   Next, a Pt thin film having a thickness of 1000 angstroms was formed on the transparent electrode layer 23 made of ITO of the transparent glass substrate 22 with ITO by a sputtering method, and the metal electrode layer 5 made of the Pt thin film was formed. Next, the surface of the transparent glass substrate 2 on which the transparent electrode layer 3 is formed and the surface of the transparent glass substrate 22 on which the metal electrode layer 5 is formed are opposed to each other, and between the dye adsorbing layer 24 and the metal electrode layer 5. The transparent glass substrates 2 and 22 were overlapped with a polymer film having a thickness of 50 μm interposed therebetween. The transparent electrode layer 3 and the metal electrode layer 5 were arranged so as to be shifted from each other by the amount corresponding to the extraction electrode. Next, an epoxy resin is applied and cured around the laminated transparent glass substrates 2 and 22 to form an epoxy resin layer 25, and the periphery is sealed with the epoxy resin layer 25 between the transparent glass substrates 2 and 22. Formed a space. Then, an electrolytic solution layer 26 was formed by injecting an aqueous solution containing iodine ions as an electrolytic solution into the space.

次に、図8(a)に示す再反射層6と全く同一にして成形した再反射層6を透明ガラス基板2の透明電極層3と反対側の面に貼付して、有機光電変換素子21を得た。   Next, the re-reflective layer 6 formed in the same manner as the re-reflective layer 6 shown in FIG. 8A is stuck on the surface of the transparent glass substrate 2 opposite to the transparent electrode layer 3, and the organic photoelectric conversion element 21. Got.

有機光電変換素子21に、26.6mW/mのエネルギーを有する放電ランプ光を照射し、電流−電圧特性を測定した。得られた電流−電圧特性から、有機光電変換素子21のエネルギー変換効率を算出したところ、1.6%であった。 The organic photoelectric conversion element 21 was irradiated with discharge lamp light having an energy of 26.6 mW / m 2 , and current-voltage characteristics were measured. It was 1.6% when the energy conversion efficiency of the organic photoelectric conversion element 21 was computed from the obtained electric current-voltage characteristic.

一方、前記透明ガラス基板2に再反射層6を貼付しない以外は、再反射層6を貼付した場合と全く同一にしてエネルギー変換効率を算出したところ、1.5%であった。   On the other hand, when the energy conversion efficiency was calculated in exactly the same manner as when the re-reflection layer 6 was applied except that the re-reflection layer 6 was not attached to the transparent glass substrate 2, it was 1.5%.

本発明の有機光電変換素子の概略構成を示す説明的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory sectional drawing which shows schematic structure of the organic photoelectric conversion element of this invention. (a)は図1に示す再反射層の一構成例を示す斜視図、(b)は(a)に示す再反射層の平面図、(c)は(b)のII−II線断面図。(A) is a perspective view which shows one structural example of the re-reflection layer shown in FIG. 1, (b) is a top view of the re-reflection layer shown in (a), (c) is the II-II sectional view taken on the line of (b). . (a)は図1に示す再反射層の他の構成例を示す斜視図、(b)は(a)に示す再反射層の平面図、(c)は(b)のIII−III線断面図。(A) is a perspective view which shows the other structural example of the re-reflection layer shown in FIG. 1, (b) is a top view of the re-reflection layer shown in (a), (c) is the III-III line cross section of (b). Figure. (a)は図1に示す再反射層のさらに他の構成例を示す部分平面図、(b)は(a)のIV−IV線断面図。(A) is a partial top view which shows the further another structural example of the re-reflection layer shown in FIG. 1, (b) is the IV-IV sectional view taken on the line of (a). 図1に示す有機光電変換素子における光線の入射角と光電変換層における吸収光量との関係を示すヒストグラム。The histogram which shows the relationship between the incident angle of the light ray in the organic photoelectric conversion element shown in FIG. 1, and the absorbed light quantity in a photoelectric converting layer. 図2に示す再反射層の頂角と、光電変換率、再出光率、電極損失率との関係を示すグラフ。The graph which shows the relationship between the vertex angle of the re-reflective layer shown in FIG. 2, a photoelectric conversion rate, a re-emission rate, and an electrode loss rate. 図3に示す再反射層の頂角と、光電変換率、再出光率、電極損失率との関係を示すグラフ。The graph which shows the relationship between the apex angle of the re-reflection layer shown in FIG. 3, a photoelectric conversion rate, a re-emission rate, and an electrode loss rate. 図1に示す有機光電変換素子の具体的構成の第1の例を示す説明的断面図。Explanatory sectional drawing which shows the 1st example of the specific structure of the organic photoelectric conversion element shown in FIG. 図1に示す有機光電変換素子の具体的構成の第2の例を示す説明的断面図。Explanatory sectional drawing which shows the 2nd example of the specific structure of the organic photoelectric conversion element shown in FIG. 従来の有機光電変換素子の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the conventional organic photoelectric conversion element. 従来の有機光電変換素子の他の構成例を示す説明的断面図。Explanatory sectional drawing which shows the other structural example of the conventional organic photoelectric conversion element. 従来の有機光電変換素子のさらに他の構成例を示す説明的断面図。Explanatory sectional drawing which shows the other structural example of the conventional organic photoelectric conversion element.

符号の説明Explanation of symbols

1,11,21,31,41,51…有機光電変換素子、 2…透明基板、 3…透明電極層、 4…光電変換層、 5…金属電極層、 6…再反射層。   DESCRIPTION OF SYMBOLS 1,11,21,31,41,51 ... Organic photoelectric conversion element, 2 ... Transparent substrate, 3 ... Transparent electrode layer, 4 ... Photoelectric conversion layer, 5 ... Metal electrode layer, 6 ... Re-reflection layer.

Claims (8)

一方の面を受光面とする透明基板と、該透明基板の該受光面と反対側の面上に形成された透明電極層と、該透明電極上に形成された有機色素を有する光電変換層と、該光電変換層上に形成された金属電極層とを備える有機光電変換素子において、
該透明基板の該受光面に、該金属電極層で反射された光線を再反射する再反射層を備えることを特徴とする有機光電変換素子。
A transparent substrate having one surface as a light-receiving surface, a transparent electrode layer formed on the surface of the transparent substrate opposite to the light-receiving surface, and a photoelectric conversion layer having an organic dye formed on the transparent electrode; In an organic photoelectric conversion element comprising a metal electrode layer formed on the photoelectric conversion layer,
An organic photoelectric conversion element comprising a re-reflection layer that re-reflects a light beam reflected by the metal electrode layer on the light-receiving surface of the transparent substrate.
前記再反射層は、前記透明基板と一体に形成されていることを特徴とする請求項1記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the re-reflection layer is formed integrally with the transparent substrate. 前記再反射層は、複数の錐状突起または錐状凹部からなることを特徴とする請求項1または請求項2記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the re-reflection layer includes a plurality of conical protrusions or conical recesses. 前記錐は正四角錐であり、底辺が互いに接していることを特徴とする請求項3記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 3, wherein the pyramids are regular quadrangular pyramids, and their bases are in contact with each other. 前記正四角錐は、底辺の長さが10〜100μmの範囲であり、頂角が20〜150°の範囲にあることを特徴とする請求項4記載の有機光電変換素子。   5. The organic photoelectric conversion device according to claim 4, wherein the regular quadrangular pyramid has a base length in a range of 10 to 100 μm and a vertex angle in a range of 20 to 150 °. 前記錐は円錐であり、底面に内接する正方形の外側の部分で互いに重なり合っていることを特徴とする請求項3記載の有機光電変換素子。   4. The organic photoelectric conversion element according to claim 3, wherein the cone is a cone and overlaps each other at an outer portion of a square inscribed in a bottom surface. 前記円錐は、底面に内接する正方形の一辺の長さが10〜100μmの範囲であり、頂角が20〜150°の範囲にあることを特徴とする請求項6記載の有機光電変換素子。   7. The organic photoelectric conversion device according to claim 6, wherein the cone has a side length of 10 to 100 [mu] m inscribed in the bottom and a vertex angle of 20 to 150 [deg.]. 前記再反射層は、紫外線遮断材を含むことを特徴とする請求項1乃至請求項7のいずれか1項記載の有機光電変換素子。   The organic photoelectric conversion element according to any one of claims 1 to 7, wherein the re-reflection layer includes an ultraviolet blocking material.
JP2006147281A 2006-05-26 2006-05-26 Organic photoelectric conversion element Withdrawn JP2007317565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147281A JP2007317565A (en) 2006-05-26 2006-05-26 Organic photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147281A JP2007317565A (en) 2006-05-26 2006-05-26 Organic photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2007317565A true JP2007317565A (en) 2007-12-06

Family

ID=38851240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147281A Withdrawn JP2007317565A (en) 2006-05-26 2006-05-26 Organic photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2007317565A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144899A1 (en) * 2008-05-27 2009-12-03 株式会社フジクラ Photoelectric conversion element
WO2010079723A1 (en) * 2009-01-08 2010-07-15 旭硝子株式会社 Method for producing surface treated fluororesin film
WO2010150759A1 (en) * 2009-06-24 2010-12-29 三菱化学株式会社 Organic electronic device and method for producing the same
JP2011187852A (en) * 2010-03-11 2011-09-22 Toshiba Corp Organic thin film solar cell and method of manufacturing the same
JP2013207162A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Organic photoelectric conversion element
KR101406882B1 (en) * 2012-04-09 2014-06-16 한국과학기술원 Organic thin-film photovoltaic cell using transparent texturing film
JP2014123662A (en) * 2012-12-21 2014-07-03 Kyocera Corp Solar cell and solar cell module
WO2018092740A1 (en) * 2016-11-15 2018-05-24 株式会社フジクラ Photoelectric conversion element
CN109560198A (en) * 2018-11-26 2019-04-02 西安交通大学 Rapid-curing cutback crystallization preparation method in situ is climbed in the liquid film cold air suppression of the uniform perovskite film of flannelette

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144899A1 (en) * 2008-05-27 2009-12-03 株式会社フジクラ Photoelectric conversion element
JPWO2009144899A1 (en) * 2008-05-27 2011-10-06 株式会社フジクラ Photoelectric conversion element
JP5296785B2 (en) * 2008-05-27 2013-09-25 株式会社フジクラ Photoelectric conversion element
WO2010079723A1 (en) * 2009-01-08 2010-07-15 旭硝子株式会社 Method for producing surface treated fluororesin film
WO2010150759A1 (en) * 2009-06-24 2010-12-29 三菱化学株式会社 Organic electronic device and method for producing the same
JP5382119B2 (en) * 2009-06-24 2014-01-08 三菱化学株式会社 Organic electronic device and manufacturing method thereof
JP2011187852A (en) * 2010-03-11 2011-09-22 Toshiba Corp Organic thin film solar cell and method of manufacturing the same
JP2013207162A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Organic photoelectric conversion element
KR101406882B1 (en) * 2012-04-09 2014-06-16 한국과학기술원 Organic thin-film photovoltaic cell using transparent texturing film
JP2014123662A (en) * 2012-12-21 2014-07-03 Kyocera Corp Solar cell and solar cell module
WO2018092740A1 (en) * 2016-11-15 2018-05-24 株式会社フジクラ Photoelectric conversion element
CN109560198A (en) * 2018-11-26 2019-04-02 西安交通大学 Rapid-curing cutback crystallization preparation method in situ is climbed in the liquid film cold air suppression of the uniform perovskite film of flannelette

Similar Documents

Publication Publication Date Title
JP2007317565A (en) Organic photoelectric conversion element
Kwon et al. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells
CN103872248B (en) Perovskite thin-film photovoltaic cell and manufacturing method thereof
CN102484152B (en) There is the three-dimensional DSSC of nanoscale structures
US20050005964A1 (en) Organic photoelectric conversion element
CN104576932A (en) Mesoscopic perovskite photovoltaic cell with tin-oxide electron-transporting layer and preparation method thereof
Qi et al. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity
CN103441154A (en) ZnO nanometer array ultraviolet detector and manufacturing method thereof
CN104953030A (en) Interface-modified perovskite-type solar cell and preparation method thereof
CN109273609A (en) Perovskite solar cell and preparation method thereof
CN109103280B (en) All-inorganic perovskite ferroelectric fiber composite structure solar cell and preparation method
CN104051580A (en) Silicon solar cell and its preparation method
US9129751B2 (en) Highly efficient dye-sensitized solar cells using microtextured electron collecting anode and nanoporous and interdigitated hole collecting cathode and method for making same
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
JP2013539235A5 (en)
CN104037324A (en) Perovskite hybrid solar cell based on cadmium sulfide nanoarray
CN108695435B (en) Organic solar cell based on ultrasonic annealing process and preparation method thereof
JP3695950B2 (en) Method for manufacturing photoelectric conversion element
KR101049412B1 (en) Optically Crosslinked Organic Thin Film Devices
CN104600195A (en) Perovskite solar battery and preparation method thereof
CN104505461B (en) Multilayer anti-reflection film mixed solar cell base on organic polymer, and preparation method
Pandey et al. Investigating the Role of Dye Dipole on Open Circuit Voltage in Solid-State Dye-Sensitized Solar Cells
KR100670331B1 (en) Plastic electrode and solar cell using same
Ozuomba et al. The Viability Of Prophyrin Local Dye In The Fabrication Of Dye Sensitized Solar Cells
KR20110130040A (en) Dye-Sensitized Solar Cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804