JP2007317469A - 燃料電池システムおよび燃料電池制御装置 - Google Patents
燃料電池システムおよび燃料電池制御装置 Download PDFInfo
- Publication number
- JP2007317469A JP2007317469A JP2006145056A JP2006145056A JP2007317469A JP 2007317469 A JP2007317469 A JP 2007317469A JP 2006145056 A JP2006145056 A JP 2006145056A JP 2006145056 A JP2006145056 A JP 2006145056A JP 2007317469 A JP2007317469 A JP 2007317469A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- hydrogen
- air
- battery
- supplying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】燃料電池システムの運転停止時の残留水素によって、燃料電池内に圧力異常が発生することを防止する。
【解決手段】燃料電池(1)と、燃料電池(1)に水素を供給する手段(6)と、燃料電池(1)に空気を供給する手段(14、15)と、燃料電池への水素および空気の供給によって生成された電力を蓄積するバッテリ(5)と、燃料電池の電力生成状態から生成停止状態への遷移時に、燃料電池内に残留した水素を回収し、回収された水素に供給手段(14、15)から空気を供給して電力を発生させバッテリ(6)を充電する残留水素の消費手段と、燃料電池(1)と弁体(13)を介して接続される予備タンク(20)を備え、残留水素の消費時に空気を供給する手段(14、15)に異常が発生した場合、弁体を介して燃料電池(1)に残留した水素を予備タンク(20)に収容し、収容された水素を高温高圧下で反応させてアンモニアを生成する。
【選択図】図3
【解決手段】燃料電池(1)と、燃料電池(1)に水素を供給する手段(6)と、燃料電池(1)に空気を供給する手段(14、15)と、燃料電池への水素および空気の供給によって生成された電力を蓄積するバッテリ(5)と、燃料電池の電力生成状態から生成停止状態への遷移時に、燃料電池内に残留した水素を回収し、回収された水素に供給手段(14、15)から空気を供給して電力を発生させバッテリ(6)を充電する残留水素の消費手段と、燃料電池(1)と弁体(13)を介して接続される予備タンク(20)を備え、残留水素の消費時に空気を供給する手段(14、15)に異常が発生した場合、弁体を介して燃料電池(1)に残留した水素を予備タンク(20)に収容し、収容された水素を高温高圧下で反応させてアンモニアを生成する。
【選択図】図3
Description
本発明は燃料電池システムおよびその制御装置に関し、特に車載用に適した燃料電池システムおよび燃料電池制御装置に関する。
図1は、従来の車載用燃料電池システムの概略構造を示す。図において、1は燃料電池スタックを示し、周知のように複数の燃料電池セルを積層して構成されている。燃料電池スタック1の出力は、インバータ2を介して車両駆動用のモータ3に供給されると同時に、DC/DCコンバータ4を介してバッテリ5に供給され、これを充電する。
燃料電池システムは、水素イオンと酸素イオンが反応して水が生成される場合に発生する電子を取り出すことによって発電するシステムであり、燃料電池スタック1に水素と酸素を供給する必要がある。図1において、6は高圧水素タンクであり、燃料電池スタック1に供給用配管7を介して水素ガスを供給する。燃料電池スタック1で使用されずに残った水素ガスは循環用配管8を介して供給用配管7に再供給され、あるいはマフラー(図示せず)を介して外部に放出される。図において、9は水素循環用ポンプ、10は逆流防止弁、11は水素排気弁、12および13は遮断弁である。
燃料電池スタック1において水素ガスと反応させる酸素は、エアクリーナ(エアフィルタ)14を介して空気中より取り入れられる。15は取り入れた空気を昇圧するためのエアコンプレッサである。なお、ポンプ9、エアコンプレッサ15およびそれぞれの弁体10〜13の駆動は、電源制御部16によって制御される。電源制御部16は、イグニッションスイッチ17をオンとすることによって発生する信号により、制御を開始する。
なお、上記の一般的な燃料電池システムの構成は、例えば、下記特許文献1乃至3に記載されている。
上記従来の燃料電池システムでは、発電を行うために空気と水素を燃料電池スタック1に供給する必要がある。一方、発電を停止する、即ち、燃料電池システムを運転状態から停止状態に遷移させる場合には、遮断弁12、13を閉じて燃料電池スタック1への水素の供給を停止すると共に、エアコンプレッサ15を停止させ、空気の取り入れを停止する。空気は燃料電池スタック1のカソード側に供給されるので、エアコンプレッサ15の停止によってカソード側の圧力が大気圧まで下がってしまう。反対に、アノード側では遮断弁12、13の遮断によって水素ガス圧力が保持されるため、その結果、カソード側とアノード側で圧力差が生じ、燃料電池スタック1内の電解質膜にストレスがかかる。
したがって、従来では、発電停止時の処理として、燃料電池スタック1および水素配管7、8内に残された水素を空気と反応させて消費することにより、燃料電池スタック1内に圧力差が残らないような制御を実施している。
図2は、燃料電池システムの運転停止時の、残存水素消費処理の過程を示すフローチャートである。例えば、イグニッションスイッチ17のオフによって電源制御部16が停止処理を開始すると(ステップS1)、先ず、空気の取り入れ側の機構であるエア系に異常があるか否かが検出される(ステップS2)。ここで、異常が無いと判断されると(ステップS2のNO)、ステップS3に移行して通常の処理過程で空気が燃料電池スタック1に送出される。これによって、スタック内および配管内の残存水素が空気中の酸素と反応して電気を生成し、生成された電気はバッテリ5に蓄電される(ステップS4)。水素の消費が完了すると、停止処理を終了する(ステップS5)。
一方、ステップS2でエア系に異常があると判断されると、即座に残存水素の消費処理を中断し(ステップS6)、そのままシステムの停止処理を終了する(ステップS5)。
このように、従来の残存水素消費処理では、空気の取り入れ系に異常が発生すると水素消費制御を中断するため、燃料電池スタック1内及び配管7、8内に水素が残留したままとなり、燃料電池スタック1および配管部分の各部品が常に加圧された状態となって、部品の劣化を早める可能性がある。
また、水素消費中に発電される電力は、通常の発電動作中に電力供給の補助用に使用しているバッテリに供給されこれを充電する。しかしながら、満充電時に残留水素を取り除く作業を繰り返すと、バッテリが過充電になる可能性がある。
本発明は、従来の燃料電池システムにおける上記のような問題点を解決することを課題として成されたものである。
上記課題を解決するために、本発明の燃料電池システムは、燃料電池と、前記燃料電池に水素を供給する手段と、前記燃料電池に空気を供給する手段と、前記燃料電池への前記水素および空気の供給によって生成された電力を蓄積するバッテリと、前記燃料電池の電力生成状態から生成停止状態への遷移時に、前記燃料電池内に残留した水素を回収し、該回収された水素に前記空気の供給手段から空気を供給して電力を発生させ前記バッテリを充電する残留水素の消費手段とを備えた燃料電池システムにおいて、さらに、前記燃料電池と弁体を介して接続される予備タンクを設け、前記残留水素の消費時に、前記空気を供給する手段に異常が発生した場合、前記弁体を介して前記燃料電池に残留した水素を前記予備タンクに収容すると共に、前記予備タンクに収容された水素を高温高圧下で反応させてアンモニアを生成するように構成されている。
本発明の燃料電池制御装置は、燃料電池と、前記燃料電池に水素を供給する手段と、前記燃料電池に空気を供給する手段と、前記燃料電池への前記水素および空気の供給によって生成された電力を蓄積するバッテリと、前記燃料電池の電力生成状態から生成停止状態への遷移時に、前記燃料電池内に残留した水素を回収し、該回収された水素に前記空気の供給手段から空気を供給して電力を発生させ前記バッテリを充電する残留水素の消費手段とを備えた燃料電池システムを制御する燃料電池制御装置において、前記バッテリは、前記燃料電池の電力生成時の充電量が前記バッテリの全充電容量の一定値以下となるように充電制御される。
上記本発明にかかる燃料電池システムでは、残留水素の消費処理時に空気の供給手段に異常が発生した場合、残留水素は予備タンクに収容されるので、燃料電池内に圧力異常が発生せず、燃料電池内の電解膜及びその他の部品の加圧による劣化が防止される。燃料電池内に残留した水素は窒素成分を含んでいるため、残留水素を高温高圧に維持することによって、アンモニアが生成される。したがって、残留水素をアンモニアに変換して保存することが可能となる。なお、アンモニアを分解することによって水素が得られるため、これをガス欠時などに燃料電池に供給することによって、再利用が可能となる。再利用しない場合は、アンモニア処理場へ運搬して処理することもできる。
本発明の燃料電池制御装置によれば、前記燃料電池の電力生成時の充電量が前記バッテリの全充電容量の一定値以下となるように充電制御されているので、残りの部分に残留水素消費による生成電力を蓄積することができる。これによって、残留水素消費によってバッテリが過充電状態になることが防止される。
以下に、図面を参照して本発明の各実施形態について説明する。なお、以下の図面において、図1、2に示したものと同じ符号は、同一または類似の構成要素を示すので、重複した説明は行わない。
実施形態1
図3に本発明の実施形態1にかかる燃料電池システムの概略構成を示す。図示するように、本実施形態のシステムでは、水素の回収経路上に予備タンク20を設け、システム運転の停止時に燃料電池スタック1内および水素用の配管7、8内に残留した水素をこの予備タンク20内に回収する。これにより、燃料電池スタック1内のアノード側の圧力を下げ、空気が供給されるカソード側との間で圧力のバランスを取る。
図3に本発明の実施形態1にかかる燃料電池システムの概略構成を示す。図示するように、本実施形態のシステムでは、水素の回収経路上に予備タンク20を設け、システム運転の停止時に燃料電池スタック1内および水素用の配管7、8内に残留した水素をこの予備タンク20内に回収する。これにより、燃料電池スタック1内のアノード側の圧力を下げ、空気が供給されるカソード側との間で圧力のバランスを取る。
予備タンク20内に回収された水素は、遮蔽弁21をオープンすることによって水素供給用の配管7に送り出し、燃料電池スタック1に供給することができる。したがって、高圧水素タンク6が故障した場合や、水素タンク6内のガスが欠乏した場合など、通常のルートから水素が供給されなくなった場合に、遮蔽弁21をオープンして予備タンク20内に蓄積された水素を補助的に利用して発電を行う。
予備タンク20に蓄積された水素ガスは、水素ステーションで回収することもできる。この場合、例えば配管22の先端に設けたコネクタを水素ステーション側の回収装置に接続し、遮蔽弁11をオープンして予備タンク20内の水素ガスを水素ステーション側の回収装置に移動させる。これによって、上記の補助的な発電で使用されずに余った水素を有効利用することができる。
実施形態2
以下に、図4および5を参照して、本願の実施形態2にかかる燃料電池システムについて説明する。
以下に、図4および5を参照して、本願の実施形態2にかかる燃料電池システムについて説明する。
図4は、本実施形態にかかる燃料電池システムの概略構成を示す図であり、特に空気取り入れ側の構成を示している。なお、水素供給側および電気系統については図1に示すものと変更が無いので、この図では省略している。
図4において、30は空気の吸気側システムを示し、40は排気側システムを示す。吸気側システム30は、エアクリーナ14およびコンプレッサ15からなる従来の吸気経路とは並列に、エアタンク31、遮蔽弁32およびコンプレッサ33を備えている。なお、排気側システム40は、主にマフラーで構成される。
上記システムの動作を、図5のフローチャートを参照して説明する。先ず、図2に示した従来のフローと同様に、システムの停止処理が開始されると(ステップS1)、空気の取り入れ側システムに異常が無いか否かが検出される(ステップS2)。異常がない場合(ステップS2のNO)の処理は従来システムと同様であり、したがってステップS3においてエアクリーナ14およびコンプレッサ15を介して燃料電池スタック1に空気が取り入れられる。次のステップS4において、取り入れられた空気により燃料電池スタック内で残存水素が消費され、発電された電気がバッテリに蓄電されると(ステップS4)、処理が終了する(ステップS5)。
一方、ステップS2で、エア系に異常が発見されると(ステップS2のYES)、ステップS10において遮蔽弁32がオープンとされ、エアタンク31からコンプレッサ33を介して燃料電池スタック1に空気が供給される。ステップS4では、このようにして供給された空気により残存水素の消費処理が実行され、処理が完了すると、ステップS5でシステムの停止処理を終了する。
以上のように、本実施形態では、燃料電池システムの空気の取り入れ側に予備のエアタンクを設けたことにより、通常の空気取り入れシステムに異常が発生した場合でも残存水素の消費処理を行うことが可能であるため、燃料電池スタック内に圧力の異常が発生しない。
実施形態3
図6は、本発明の実施形態3にかかる燃料電池システムの、特に空気の取り入れ側の構成を示す図である。なお、水素供給側および電気系統については図1に示すものと変更が無いので、この図では省略している。
図6は、本発明の実施形態3にかかる燃料電池システムの、特に空気の取り入れ側の構成を示す図である。なお、水素供給側および電気系統については図1に示すものと変更が無いので、この図では省略している。
本実施形態の燃料電池システムでは、図6に示すように、空気の取り入れシステムを2系統化し、通常のシステム停止処理に当たっては一方の系統のみを使用し、その系統に異常が発生した場合に、他方の系統を使用して燃料電池スタック1に空気を供給するようにしている。これによって、エア系に異常が発生した場合でも、残存水素の消費処理を正常に行うことが可能となる。
なお、図6において、14’は、エアクリーナ14と同様のエアクリーナ、15’はコンプレッサ15と同様のコンプレッサ、34、35は遮蔽弁、さらに41はマフラーを示している。
実施形態4
図7は、本発明の実施形態4の構成を説明するための図であって、特に、燃料電池スタック1からの残存水素を、燃料電池スタック1からの空気の排気により希釈して大気に放出する経路を示している。
図7は、本発明の実施形態4の構成を説明するための図であって、特に、燃料電池スタック1からの残存水素を、燃料電池スタック1からの空気の排気により希釈して大気に放出する経路を示している。
図において、50はラジエータファン、51はポンプ、52は燃料電池スタック1からの空気の排気圧を調整するための調圧弁、53は燃料電池スタック1からの水素の排気を空気の排気で希釈して大気へ放出するための希釈用配管を示している。エア系統が異常を示さず、通常のシステム停止処理が実行されている間は、調圧弁52を介して希釈用配管53に導入される空気の排気により残留水素を希釈して大気に放出する。
ところがこのような機構では、エア系統に異常が発生した場合、水素希釈用の空気が希釈用配管53に供給されない。そのため、本実施形態では、図7に示すように、ラジエータファン50からのエアを、遮蔽弁54を介して希釈用配管53に導入する機構を設けている。なお、遮蔽弁54をオープンした場合は、調圧弁52はクローズする。
水素の大気への放出には危険が伴うため、遮蔽弁54をオープンして水素を希釈放出する条件として、エア系統に異常が発生し、ファン電圧または車速条件が設定した閾値以上であることを設定し、これらの条件が満たされた場合に、ラジエータファン50からのエアを利用して希釈された水素を大気に放出する。
またさらに、車両付近に人がいない場合にのみ水素希釈を行うという条件を付しても良い。即ち、センサーあるいはGPSなどで車両付近に人が居ないことを確認した後、水素希釈を行って大気に放出させる。車両付近に人が居る場合は、例えば図3に示した予備タンク20に水素を溜めておき、人が居なくなってから水素希釈を実施し、大気に放出させるようにしても良い。
実施形態5
図8に、本発明の実施形態5にかかる燃料電池システムの残留水素消費機構の概略構成を示す。エア系統に異常がある場合、燃料電池スタック1に残留した水素は、燃焼用のタンク54内に収納され、リザーブ用酸素タンク55から酸素を供給して燃焼させる。燃焼によって生じた熱は、車内暖房あるいは部品の温度上昇に利用する。なお、図3の予備タンク20を燃焼用タンク54として利用しても良い。
図8に、本発明の実施形態5にかかる燃料電池システムの残留水素消費機構の概略構成を示す。エア系統に異常がある場合、燃料電池スタック1に残留した水素は、燃焼用のタンク54内に収納され、リザーブ用酸素タンク55から酸素を供給して燃焼させる。燃焼によって生じた熱は、車内暖房あるいは部品の温度上昇に利用する。なお、図3の予備タンク20を燃焼用タンク54として利用しても良い。
実施形態6
図9は、本発明の実施形態6の構成を説明するためのフローチャートである。本実施形態では、エア系統に異常がある場合、燃料電池スタック内に残留した水素を別タンクに移動し、このタンク内でアンモニアを生成することにより、水素を消費するようにしている。即ち、図9のフローチャートにおいて、ステップS2でエア系統に異常があると判断されると(ステップS2のYES)、ステップS20において燃料電池スタック内の残留水素を別タンクに移動し、ステップS21でタンク内を500℃、600atmに設定して、アンモニアを生成する。
図9は、本発明の実施形態6の構成を説明するためのフローチャートである。本実施形態では、エア系統に異常がある場合、燃料電池スタック内に残留した水素を別タンクに移動し、このタンク内でアンモニアを生成することにより、水素を消費するようにしている。即ち、図9のフローチャートにおいて、ステップS2でエア系統に異常があると判断されると(ステップS2のYES)、ステップS20において燃料電池スタック内の残留水素を別タンクに移動し、ステップS21でタンク内を500℃、600atmに設定して、アンモニアを生成する。
窒素原子と水素原子はほぼ同じ大きさであるため、燃料電池スタックの水素側スタック内には、大気中の窒素がスタック内の膜を透過して窒素と水素が存在している。したがって、残留水素として別タンクに回収された水素中には窒素原子が含まれ、これらを高温高圧下で反応させることによって、アンモニアが生成される。
生成されたアンモニアがタンク内に満タンとなれば(ステップS22のYES)、ステップS23で生成されたアンモニアを大気に放出し、ステップS5において処理を終了する。一方、ステップS22で満タンでは無いと判定された場合(ステップS22のNO)、処理を続行し、生成されたアンモニアはアンモニア処理場に運搬する(ステップS24)。
その他の実施形態
残存水素の消費処理中に発生する電力により、バッテリが過充電となる問題は、通常運転中の充電量がバッテリの容量の一定値以下となるように充電制御を行うことによって、解決することができる。
残存水素の消費処理中に発生する電力により、バッテリが過充電となる問題は、通常運転中の充電量がバッテリの容量の一定値以下となるように充電制御を行うことによって、解決することができる。
図10は、本実施形態におけるバッテリの充電制御をイメージするための図である。図示するように、バッテリ5の全充電容量を、通常のシステム運転による充電領域と残留水素消費によって使用される領域とに分けることによって、通常のシステム運転では満充電が生じないようにする。これによって、残存水素消費によるバッテリの過充電を防止することが可能となる。
さらに、図示はしていないが、通常のバッテリ5とは別に残存水素消費用のバッテリを設けることによっても、バッテリの過充電の問題を解決することができる。
1 燃料電池スタック
3 モータ
5 バッテリ
6 高圧水素タンク
7、8 水素配管
9 ポンプ
10、11、12、13 弁体
14 エアクリーナ
15 エアコンプレッサ
20 予備タンク
31 エアタンク
33 コンプレッサ
41 マフラー
50 ラジエータファン
51 ポンプ
53 希釈用配管
54 燃焼用タンク
55 リザーブ酸素タンク
3 モータ
5 バッテリ
6 高圧水素タンク
7、8 水素配管
9 ポンプ
10、11、12、13 弁体
14 エアクリーナ
15 エアコンプレッサ
20 予備タンク
31 エアタンク
33 コンプレッサ
41 マフラー
50 ラジエータファン
51 ポンプ
53 希釈用配管
54 燃焼用タンク
55 リザーブ酸素タンク
Claims (2)
- 燃料電池と、
前記燃料電池に水素を供給する手段と、
前記燃料電池に空気を供給する手段と、
前記燃料電池への前記水素および空気の供給によって生成された電力を蓄積するバッテリと、
前記燃料電池の電力生成状態から生成停止状態への遷移時に、前記燃料電池内に残留した水素を回収し、該回収された水素に前記空気の供給手段から空気を供給して電力を発生させ前記バッテリを充電する残留水素の消費手段と、を備えた燃料電池システムにおいて、
さらに、前記燃料電池と弁体を介して接続される予備タンクを備え、
前記残留水素の消費時に、前記空気を供給する手段に異常が発生した場合、前記弁体を介して前記燃料電池に残留した水素を前記予備タンクに収容すると共に、前記予備タンクに収容された水素を高温高圧下で反応させてアンモニアを生成することを特徴とする、燃料電池システム。 - 燃料電池と、
前記燃料電池に水素を供給する手段と、
前記燃料電池に空気を供給する手段と、
前記燃料電池への前記水素および空気の供給によって生成された電力を蓄積するバッテリと、
前記燃料電池の電力生成状態から生成停止状態への遷移時に、前記燃料電池内に残留した水素を回収し、該回収された水素に前記空気の供給手段から空気を供給して電力を発生させ前記バッテリを充電する残留水素の消費手段と、を備えた燃料電池システムを制御する燃料電池制御装置において、
前記バッテリは、前記燃料電池の電力生成時の充電量が前記バッテリの全充電容量の一定値以下となるように充電制御されることを特徴とする、燃料電池制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006145056A JP2007317469A (ja) | 2006-05-25 | 2006-05-25 | 燃料電池システムおよび燃料電池制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006145056A JP2007317469A (ja) | 2006-05-25 | 2006-05-25 | 燃料電池システムおよび燃料電池制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007317469A true JP2007317469A (ja) | 2007-12-06 |
Family
ID=38851157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006145056A Withdrawn JP2007317469A (ja) | 2006-05-25 | 2006-05-25 | 燃料電池システムおよび燃料電池制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007317469A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009022153A (ja) * | 2007-06-12 | 2009-01-29 | Honda Motor Co Ltd | 燃料電池車両 |
US8069941B2 (en) | 2007-06-12 | 2011-12-06 | Honda Motor Co., Ltd. | Fuel cell vehicle |
JP2012190679A (ja) * | 2011-03-11 | 2012-10-04 | Honda Motor Co Ltd | 燃料電池システムの制御方法 |
US20210351423A1 (en) * | 2019-06-03 | 2021-11-11 | Microsoft Technology Licensing, Llc | Fuel cell throttle |
CN113889649A (zh) * | 2021-09-24 | 2022-01-04 | 北京亿华通科技股份有限公司 | 一种燃料电池系统尾气合成氨的装置 |
-
2006
- 2006-05-25 JP JP2006145056A patent/JP2007317469A/ja not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009022153A (ja) * | 2007-06-12 | 2009-01-29 | Honda Motor Co Ltd | 燃料電池車両 |
JP4699489B2 (ja) * | 2007-06-12 | 2011-06-08 | 本田技研工業株式会社 | 燃料電池車両 |
US8069941B2 (en) | 2007-06-12 | 2011-12-06 | Honda Motor Co., Ltd. | Fuel cell vehicle |
JP2012190679A (ja) * | 2011-03-11 | 2012-10-04 | Honda Motor Co Ltd | 燃料電池システムの制御方法 |
US20210351423A1 (en) * | 2019-06-03 | 2021-11-11 | Microsoft Technology Licensing, Llc | Fuel cell throttle |
CN113889649A (zh) * | 2021-09-24 | 2022-01-04 | 北京亿华通科技股份有限公司 | 一种燃料电池系统尾气合成氨的装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8927164B2 (en) | Fuel cell system with scavenging means and control unit thereof | |
JP5071843B2 (ja) | 水素・酸素回収機構を備えた燃料電池システム | |
JP4379922B2 (ja) | 移動体 | |
JP2007317469A (ja) | 燃料電池システムおよび燃料電池制御装置 | |
US9153827B2 (en) | Fuel cell system and method of controlling rotation speed of compressor | |
US8173312B2 (en) | Fuel cell system with electric storage device and voltage converter | |
JP4353296B2 (ja) | 燃料電池システムおよび燃料電池の起動方法 | |
US20100209796A1 (en) | Fuel cell system and method for controlling reactant gas supply amount | |
JP5077636B2 (ja) | 燃料電池システム | |
KR101274446B1 (ko) | 연료 전지 시스템 | |
JP5316834B2 (ja) | 燃料電池システム | |
WO2010070881A1 (ja) | 燃料電池システム、およびその起動時における開弁動作の制御方法 | |
CN105609822B (zh) | 燃料电池系统、移动体及控制方法 | |
JP2013232407A (ja) | 燃料電池システムおよび燃料電池システムのパージ制御方法 | |
JP4564347B2 (ja) | 燃料電池システム | |
JP5282863B2 (ja) | 燃料電池システム | |
CN113169359B (zh) | 用于降低在燃料电池堆中的碳腐蚀的方法以及机动车 | |
JP5141893B2 (ja) | 燃料電池システム | |
JP5164020B2 (ja) | 燃料電池システムおよびその始動方法 | |
JP5482867B2 (ja) | 燃料電池システム | |
JP5459627B2 (ja) | 燃料電池システム | |
JP2007123029A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090804 |