JP2007315621A - Water cooled heat pump type air conditioning heat source device - Google Patents
Water cooled heat pump type air conditioning heat source device Download PDFInfo
- Publication number
- JP2007315621A JP2007315621A JP2006142686A JP2006142686A JP2007315621A JP 2007315621 A JP2007315621 A JP 2007315621A JP 2006142686 A JP2006142686 A JP 2006142686A JP 2006142686 A JP2006142686 A JP 2006142686A JP 2007315621 A JP2007315621 A JP 2007315621A
- Authority
- JP
- Japan
- Prior art keywords
- heat source
- water
- side pipe
- source water
- temperature side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 175
- 238000004378 air conditioning Methods 0.000 title claims abstract description 54
- 238000001816 cooling Methods 0.000 claims abstract description 108
- 238000010438 heat treatment Methods 0.000 claims abstract description 77
- 230000007423 decrease Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
本発明は、水冷ヒートポンプにより冷暖房を行う水冷ヒートポンプ式空調熱源装置に関し、特に、複数の水冷ヒートポンプを有する水冷ヒートポンプ式空調熱源装置に関する。 The present invention relates to a water-cooled heat pump air-conditioning heat source apparatus that performs cooling and heating with a water-cooled heat pump, and more particularly to a water-cooled heat pump air-conditioning heat source apparatus having a plurality of water-cooled heat pumps.
従来より、建物に水冷ヒートポンプを設け、室内の冷暖房を行う空調熱源装置が用いられている。このような空調熱源装置100は、例えば図6に示すように、複数の水冷ヒートポンプ102と、熱源水を冷却又は加熱するための冷熱源機器及び温熱源機器101と、冷熱源機器及び温熱源機器101で冷却又は加熱された熱源水を水冷ヒートポンプ102に供給する供給側配管103と、水冷ヒートポンプ102より排出された熱源水を冷熱源機器及び温熱源機器101へと戻すための排出側配管104とで構成される。 2. Description of the Related Art Conventionally, air-conditioning heat source apparatuses that provide a water-cooled heat pump in a building and perform indoor air conditioning are used. For example, as shown in FIG. 6, such an air conditioning heat source device 100 includes a plurality of water-cooled heat pumps 102, a cooling and heating source device 101 for cooling or heating the heating source water, a heating source device 101, a cooling source device and a heating source device. A supply-side piping 103 that supplies the heat-source water cooled or heated in 101 to the water-cooled heat pump 102, and a discharge-side piping 104 that returns the heat-source water discharged from the water-cooled heat pump 102 to the cold-heat source device and the heat-source device 101 Consists of.
同図に示すように、従来の空調熱源装置100では、複数の水冷ヒートポンプ102に対して、一の供給側配管103により熱源水を供給している。このため、一部の水冷ヒートポンプ102が冷房運転し、他の水冷ヒートポンプ102が暖房運転するときのように、冷暖房の運転状態の異なる水冷ヒートポンプ102が混在するような場合でも、供給側配管103より供給された等しい温度の熱源水を用いて冷暖房が行われることになる。(例えば、特許文献1の第3図参照)
一般に水冷ヒートポンプは、冷房運転時は熱源水の温度が低いほど良好なエネルギー効率で冷房することができ、また、暖房運転時は熱源水の温度が高いほど良好なエネルギー効率で暖房することができる。しかし、上記の通り、従来の空調熱源装置では、暖房運転する水冷ヒートポンプと、冷房運転する水冷ヒートポンプとが混在する場合にも、同じ温度の熱源水を用いており、暖房運転及び冷房運転のエネルギー効率が悪い。 In general, a water-cooled heat pump can be cooled with better energy efficiency as the temperature of the heat source water is lower during cooling operation, and can be heated with higher energy efficiency as the temperature of the heat source water is higher during heating operation. . However, as described above, in the conventional air-conditioning heat source apparatus, even when a water-cooled heat pump for heating operation and a water-cooled heat pump for cooling operation are mixed, the heat source water at the same temperature is used, and the energy for heating operation and cooling operation is used. ineffective.
また、暖房運転している水冷ヒートポンプからは、熱を汲み上げられた後の低温の熱源水が排出され、冷房運転している水冷ヒートポンプからは、熱を与えられた後の高温の熱源水が排出される。低温の熱源水は冷房運転している水冷ヒートポンプへ、高温の熱源水は暖房運転している水冷ヒートポンプへ続けて供給できれば、省エネルギー効率の高い冷暖房を行えるが、従来は、水冷ヒートポンプから排出された熱源水は排出用配管で混合されており、熱源水の温度レベルを有効利用できていない。 In addition, the water-cooled heat pump that is operating for heating discharges low-temperature heat source water after pumping up heat, and the water-cooled heat pump that is operated for cooling discharges high-temperature heat source water after heat is applied. Is done. If low-temperature heat source water can be continuously supplied to a water-cooled heat pump that is operating for cooling, and high-temperature heat source water can be supplied continuously to a water-cooled heat pump that is operating for heating, energy-saving air conditioning can be performed, but conventionally it was discharged from the water-cooled heat pump. The heat source water is mixed in the discharge pipe, and the temperature level of the heat source water cannot be used effectively.
本発明は上記の問題に鑑みなされたものであり、その目的は、冷房運転する水冷ヒートポンプと暖房運転する水冷ヒートポンプとが混在する場合にも省エネルギー効率の高い冷暖房を行うことができる水冷ヒートポンプ式空調熱源装置を提供することである。 The present invention has been made in view of the above problems, and its object is to provide a water-cooled heat pump type air conditioner capable of performing air-conditioning with high energy saving efficiency even when a water-cooled heat pump for cooling operation and a water-cooled heat pump for heating operation coexist. It is to provide a heat source device.
本発明の水冷ヒートポンプ式空調熱源装置は、複数の水冷ヒートポンプを備えた空調熱源装置であって、低温の熱源水が流れる低温側配管と、高温の熱源水が流れる高温側配管と、各水冷ヒートポンプについて、前記高温側配管から前記低温側配管へ向けて熱源水が流れる状態と、前記低温側配管から前記高温側配管へ向けて熱源水が流れる状態とを切り替える方向切替手段と、前記高温側配管と、前記低温側配管との熱収支のバランスをとる熱バランス手段と、を備えることを特徴とする。 The water-cooled heat pump type air-conditioning heat source device of the present invention is an air-conditioning heat source device having a plurality of water-cooled heat pumps, a low-temperature side pipe through which low-temperature heat source water flows, a high-temperature side pipe through which high-temperature heat source water flows, and each water-cooled heat pump Direction switching means for switching between a state in which heat source water flows from the high temperature side pipe toward the low temperature side pipe and a state in which heat source water flows from the low temperature side pipe to the high temperature side pipe, and the high temperature side pipe And heat balance means for balancing the heat balance with the low temperature side pipe.
上記の空調熱源装置において、前記熱バランス手段は、前記高温側配管の熱源水を冷却して前記低温側配管に供給する高温熱源水冷却手段と、前記低温側配管の熱源水を加熱して前記高温側配管に供給する低温熱源水加熱手段と、前記高温側配管及び前記低温側配管の熱源水の温度に応じて前記高温熱源水冷却手段及び低温熱源水加熱手段を制御する制御手段とを有するものであってもよい。 In the above air conditioning heat source device, the heat balance means cools the heat source water of the high temperature side pipe and supplies it to the low temperature side pipe, and heats the heat source water of the low temperature side pipe to heat the heat source water. Low temperature heat source water heating means for supplying to the high temperature side pipe, and control means for controlling the high temperature heat source water cooling means and the low temperature heat source water heating means in accordance with the temperature of the heat source water of the high temperature side pipe and the low temperature side pipe. It may be a thing.
また、前記高温側配管及び前記低温側配管を流れる熱源水の温度を検出する温度検出手段を備え、前記制御手段は、前記低温熱源水加熱手段が作動している場合には、前記温度検出手段により測定される高温側配管を流れる熱源水の温度が、所定の温度Tmin以上に保たれるように前記低温熱源水加熱手段による熱源水の加熱量を制御し、前記高温熱源水冷却手段が作動している場合には、前記温度検出手段により測定される低温側配管を流れる熱源水の温度が、所定の温度Tmax以下に保たれるように前記高温熱源水冷却手段による熱源水の冷却量を制御してもよい。 And a temperature detecting means for detecting a temperature of the heat source water flowing through the high temperature side pipe and the low temperature side pipe, and the control means, when the low temperature heat source water heating means is operating, the temperature detecting means. The amount of heat source water heated by the low temperature heat source water heating means is controlled so that the temperature of the heat source water flowing through the high temperature side pipe measured by the above is maintained at a predetermined temperature T min or more, and the high temperature heat source water cooling means When operating, the heat source water is cooled by the high temperature heat source water cooling means so that the temperature of the heat source water flowing through the low temperature side pipe measured by the temperature detecting means is kept below a predetermined temperature Tmax. The amount may be controlled.
また、前記低温熱源水加熱手段は、熱源水を加熱する温熱源機器と、前記低温側配管を流れる熱源水を前記温熱源機器を介して、前記高温側配管に送る温熱ポンプと、からなり、前記高温熱源水冷却手段は、熱源水を冷却する冷熱源機器と、前記高温側配管を流れる熱源水を前記冷熱源機器を介して、低温側配管に送る冷熱ポンプと、からなり、前記制御手段は、前記温度検出手段で測定される熱源水の温度が低下してTminに達すると、前記温熱ポンプ及び前記温熱源機器を運転させるとともに、前記温度検出手段で測定される温度がTminを下回らないように、前記温熱源機器の運転状態を制御し、前記温度検出手段で測定された熱源水の温度が上昇してTmaxに達すると、前記冷熱ポンプ及び前記冷熱源機器を運転させるとともに、前記温度検出手段により測定される温度がTmaxを上回らないように、前記冷熱源機器の運転状態を制御してもよい。 The low temperature heat source water heating means comprises a heat source device for heating the heat source water, and a heat pump for sending the heat source water flowing through the low temperature side pipe to the high temperature side pipe through the heat source device, The high-temperature heat source water cooling means comprises a cooling heat source device that cools the heat source water, and a cooling heat pump that sends the heat source water flowing through the high-temperature side piping to the low-temperature side piping via the cold heat source device, and the control means When the temperature of the heat source water measured by the temperature detecting means decreases and reaches T min , the heat pump and the heat source device are operated, and the temperature measured by the temperature detecting means is less than T min . When the temperature of the heat source water measured by the temperature detecting means rises and reaches T max when the operating state of the heat source device is controlled so as not to fall below, the cooling pump and the cooling source device are operated. When , The temperature measured by said temperature detecting means so as not to exceed the T max, may control the operating state of the cold heat source equipment.
また、前記高温熱源水冷却手段及び低温熱源水加熱手段に対して、最も下流側にて前記低温側配管と前記高温側配管とを結ぶように設けられたバイパス配管と、前記バイパス配管に設けられた流量計とを備え、前記温度検出手段は、前記バイパス配管に流れる熱源水の温度を測定する温度計からなり、前記制御手段は、前記流量計により測定された流量が、前記温度計で熱源水の温度を測定することができる所定の流量以上になるように前記バイパス配管を流れる流量を、例えば、温熱ポンプ又は冷熱ポンプの流量を調整することにより制御してもよい。 Further, a bypass pipe provided to connect the low temperature side pipe and the high temperature side pipe on the most downstream side with respect to the high temperature heat source water cooling means and the low temperature heat source water heating means, and provided in the bypass pipe And the temperature detecting means comprises a thermometer for measuring the temperature of the heat source water flowing through the bypass pipe, and the control means is configured such that the flow rate measured by the flow meter is a heat source at the thermometer. You may control the flow volume which flows through the said bypass piping so that it may become more than the predetermined flow volume which can measure the temperature of water, for example by adjusting the flow volume of a heat pump or a cold pump.
本発明によれば、冷房運転する水冷ヒートポンプと、暖房運転する水冷ヒートポンプとが混在する場合に、冷房運転する水冷ヒートポンプにおいて熱を与えられた高温の熱源水を、暖房運転する水冷ヒートポンプにおいて採熱源として利用することができる。また、暖房運転することで熱を汲み上げられた低温の熱源水を、冷房運転する水冷ヒートポンプにおいて冷却水として利用することができるため、省エネルギー効果の高い冷暖房を行うことができる。 According to the present invention, when a water-cooled heat pump for cooling operation and a water-cooled heat pump for heating operation coexist, a high-temperature heat source water given heat in the water-cooled heat pump for cooling operation is used as a heat collection source in the water-cooled heat pump for heating operation. Can be used as Moreover, since the low-temperature heat source water pumped up by the heating operation can be used as the cooling water in the water-cooled heat pump that performs the cooling operation, air-conditioning with high energy saving effect can be performed.
以下、本発明の空調熱源装置10の一実施形態を図面を参照しながら詳細に説明する。図1は本実施形態の空調熱源装置10の構成を示す図である。同図に示すように、本実施形態の空調熱源装置10は、複数の水冷ヒートポンプ13と、各水冷ヒートポンプ13に対応して設けられた四方弁17と、高温側配管32と、低温側配管31と、高温側配管32と低温側配管31との間に設けられた温熱源機器12及び冷熱源機器11と、制御装置16とを備える。 Hereinafter, one embodiment of an air-conditioning heat source device 10 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration of an air conditioning heat source device 10 of the present embodiment. As shown in the figure, the air conditioning heat source device 10 of this embodiment includes a plurality of water-cooled heat pumps 13, a four-way valve 17 provided corresponding to each water-cooled heat pump 13, a high-temperature side pipe 32, and a low-temperature side pipe 31. And a heat source device 12 and a cold source device 11 provided between the high temperature side pipe 32 and the low temperature side pipe 31, and a control device 16.
水冷ヒートポンプ13は、供給側配管33より供給された熱源水を使用して室の冷暖房を行い、使用後の熱源水を排出側配管34へ排出する。水冷ヒートポンプ13は、各々独立に運転状態を切り替えることができ、暖房運転時は熱源水から熱を汲み上げ、冷房運転時は熱源水に熱を与える。
高温側配管32及び低温側配管31には熱源水が流れており、高温側配管32を流れる熱源水は低温側配管31を流れる熱源水に比べて高温である。
The water cooling heat pump 13 uses the heat source water supplied from the supply side pipe 33 to cool and heat the room, and discharges the used heat source water to the discharge side pipe 34. The water-cooled heat pumps 13 can switch their operating states independently, pumping heat from the heat source water during the heating operation, and applying heat to the heat source water during the cooling operation.
Heat source water flows through the high temperature side pipe 32 and the low temperature side pipe 31, and the heat source water flowing through the high temperature side pipe 32 is hotter than the heat source water flowing through the low temperature side pipe 31.
図1に示すように、四方弁17には、水冷ヒートポンプ13の供給側配管33及び排出側配管34と、低温側配管31と、高温側配管32とが接続されている。四方弁17は、水冷ヒートポンプ13の運転状態に応じて、供給側配管33と低温側配管31が接続されるとともに、排出側配管34と高温側配管32が接続されている状態と、供給側配管33と高温側配管32が接続されるとともに、排出側配管34と低温側配管31が接続されている状態とを切り替えることができる。 As shown in FIG. 1, a supply side pipe 33 and a discharge side pipe 34, a low temperature side pipe 31, and a high temperature side pipe 32 of the water cooling heat pump 13 are connected to the four-way valve 17. The four-way valve 17 is configured such that the supply side pipe 33 and the low temperature side pipe 31 are connected, the discharge side pipe 34 and the high temperature side pipe 32 are connected, and the supply side pipe according to the operation state of the water cooling heat pump 13. 33 and the high temperature side pipe 32 are connected, and the state where the discharge side pipe 34 and the low temperature side pipe 31 are connected can be switched.
冷熱源機器11は、熱源水の熱を配管回路外に放出することにより熱源水を冷却することができる装置であり、例えば、冷却塔などを用いることができる。冷熱源機器11に接続する高温側配管32には冷熱ポンプ21が取り付けられており、高温側配管32の熱源水は、この冷熱ポンプ21が作動することにより冷熱源機器11に供給され、冷熱源機器11により冷却された後、低温側配管31に供給される。 The cold heat source device 11 is a device that can cool the heat source water by releasing the heat of the heat source water to the outside of the piping circuit. For example, a cooling tower or the like can be used. A cold pump 21 is attached to the high temperature side pipe 32 connected to the cold heat source device 11, and the heat source water of the high temperature side pipe 32 is supplied to the cold heat source device 11 by operating the cold heat pump 21, and the cold heat source After being cooled by the device 11, it is supplied to the low temperature side pipe 31.
また、温熱源機器12は、配管回路外から熱源水に熱を供給することにより熱源水を加熱することができる装置であり、例えばボイラなどを用いることができる。温熱源機器12に接続する低温側配管31には、温熱ポンプ22が取り付けられており、低温側配管31の熱源水は、この温熱ポンプ22が作動することにより温熱源機器12に供給され、温熱源機器12により加熱された後、高温側配管32に供給される。 The heat source device 12 is a device that can heat the heat source water by supplying heat to the heat source water from outside the piping circuit. For example, a boiler or the like can be used. A heat pump 22 is attached to the low temperature side pipe 31 connected to the heat source device 12, and the heat source water of the low temperature side pipe 31 is supplied to the heat source device 12 when the heat pump 22 is operated, After being heated by the source device 12, it is supplied to the high temperature side pipe 32.
また、空調熱源装置10は、冷熱源機器11及び温熱源機器12に対して最下流側の水冷ヒートポンプよりさらに下流において、低温側配管31と高温側配管32とを接続するように設けられたバイパス配管35を備えている。バイパス配管35には流量計14及び温度計15が設けられている。後述するように、空調熱源装置10の運転状態が冷房優勢又は冷房のみの場合は、冷熱ポンプ21が作動して、バイパス配管35を低温側配管31から高温側配管32へと熱源水が流れる。これにより、温度計15で測定される温度は低温側配管31の熱源水の温度と略等しくなる。また、逆に、空調熱源装置10の運転状態が暖房優勢又は暖房のみの場合は、温熱ポンプ22が作動するため、バイパス配管35を高温側配管32から低温側配管31へと熱源水が流れる。これにより、温度計15で測定される温度は高温側配管32の熱源水の温度と略等しくなる。流量計14及び温度計15は、測定したバイパス配管35を流れる熱源水の流量及び温度を示す信号を制御装置16に送信する。 Further, the air conditioning heat source device 10 is a bypass provided to connect the low temperature side pipe 31 and the high temperature side pipe 32 further downstream of the water cooling heat pump on the most downstream side with respect to the cold heat source equipment 11 and the hot heat source equipment 12. A pipe 35 is provided. The bypass pipe 35 is provided with a flow meter 14 and a thermometer 15. As will be described later, when the operation state of the air conditioning heat source device 10 is cooling dominant or only cooling, the cooling pump 21 is operated, and the heat source water flows from the low temperature side pipe 31 to the high temperature side pipe 32 through the bypass pipe 35. Thereby, the temperature measured by the thermometer 15 becomes substantially equal to the temperature of the heat source water in the low temperature side pipe 31. Conversely, when the operation state of the air conditioning heat source device 10 is heating dominant or only heating, the heat pump 22 operates, and thus the heat source water flows from the high temperature side pipe 32 to the low temperature side pipe 31 through the bypass pipe 35. Thereby, the temperature measured by the thermometer 15 becomes substantially equal to the temperature of the heat source water of the high temperature side pipe 32. The flow meter 14 and the thermometer 15 transmit a signal indicating the flow rate and temperature of the heat source water flowing through the measured bypass pipe 35 to the control device 16.
制御装置16は、冷熱ポンプ21及び温熱ポンプ22と電気的に接続されており、冷熱ポンプ21及び温熱ポンプ22の運転を制御することができる。制御装置16には、予め、バイパス配管35を流れる熱源水の温度を温度計15により測定するために必要なバイパス配管35の最低流量Fminが設定されており、流量計14により測定される熱源水の流量がFminとなるように、冷熱ポンプ21又は温熱ポンプ22の吐出流量を制御する。これにより、温度計15により低温側配管31又は高温側配管32を流れる熱源水の温度を測ることができるとともに、冷熱源機器11及び温熱源機器12より最も離れた水冷ヒートポンプ13まで確実に所要の温度の熱源水を供給することができる。 The control device 16 is electrically connected to the cooling pump 21 and the heat pump 22 and can control the operation of the cooling pump 21 and the heating pump 22. In the control device 16, a minimum flow rate F min of the bypass pipe 35 necessary for measuring the temperature of the heat source water flowing through the bypass pipe 35 with the thermometer 15 is set in advance, and the heat source measured by the flow meter 14 is set. The discharge flow rate of the cold heat pump 21 or the heat pump 22 is controlled so that the water flow rate becomes F min . As a result, the temperature of the heat source water flowing through the low temperature side pipe 31 or the high temperature side pipe 32 can be measured by the thermometer 15 and the water cooling heat pump 13 that is farthest from the cold heat source device 11 and the hot heat source device 12 is surely required. Temperature heat source water can be supplied.
また、制御装置16は、冷熱源機器11及び温熱源機器12と電気的に接続されており、冷熱源機器11及び温熱源機器12の運転のオンオフ及び冷却・加熱量を制御することができる。制御装置16には、予め、水冷ヒートポンプの性能曲線などに基づき定められた熱源水の上限温度Tmaxと、下限温度Tminとが設定されている。 The control device 16 is electrically connected to the cold heat source device 11 and the heat source device 12, and can control on / off of the operation of the cold heat source device 11 and the heat source device 12, and the amount of cooling and heating. In the control device 16, an upper limit temperature T max and a lower limit temperature T min that are determined in advance based on the performance curve of the water-cooled heat pump and the like are set.
後述するように、制御装置16は、温度計15により測定された熱源水の水温(以下、測定水温Tという)が低下してTminに達すると、冷熱ポンプ21及び冷熱源機器11の運転を停止させ、温熱ポンプ22及び温熱源機器12を作動させるとともに、測定水温TがTmin以下にならないように、温熱源機器12による熱源水の加熱量を調整する。また、制御装置16は、測定水温Tが上昇してTmaxに達すると、温熱ポンプ22及び温熱源機器12を停止させ、冷熱ポンプ21及び冷熱源機器11を作動させるとともに、測定水温TがTmax以上にならないように、冷熱源機器11による熱源水の冷却量を調整する。 As will be described later, when the temperature of the heat source water measured by the thermometer 15 (hereinafter referred to as the measured water temperature T) decreases and reaches T min , the control device 16 operates the cooling pump 21 and the cooling source device 11. The heat pump 22 and the heat source device 12 are operated, and the heating amount of the heat source water by the heat source device 12 is adjusted so that the measured water temperature T does not become T min or less. In addition, when the measured water temperature T rises and reaches Tmax , the control device 16 stops the thermal pump 22 and the thermal source device 12, operates the cold pump 21 and the thermal source device 11, and the measured water temperature T is T The amount of cooling of the heat source water by the cold heat source device 11 is adjusted so as not to exceed max .
以下、本実施形態の空調熱源装置10の運転状態について、全ての水冷ヒートポンプが冷房運転している場合(以下、全冷房時という)、冷房運転及び暖房運転する水冷ヒートポンプが混在し、全体として冷房が優勢な場合(以下、冷房優勢時という)、冷房運転及び暖房運転する水冷ヒートポンプが混在し、全体として暖房が優勢な場合(以下、暖房優勢時という)、及び、全ての水冷ヒートポンプが暖房運転している場合(以下、全暖房時という)に分けて説明する。 Hereinafter, in the operation state of the air conditioning heat source device 10 of the present embodiment, when all the water-cooled heat pumps are in the cooling operation (hereinafter referred to as “all cooling”), the cooling operation and the water-cooling heat pump that performs the heating operation are mixed, and the cooling operation is performed as a whole. Is dominant (hereinafter referred to as cooling superiority), water cooling heat pumps for cooling operation and heating operation are mixed, and heating as a whole is dominant (hereinafter referred to as heating superiority), and all water cooling heat pumps are operated as heating. The case will be described separately (hereinafter referred to as “all heating”).
===全冷房時===
図2は、水冷ヒートポンプ13の運転状態が全て冷房である全冷房時の空調熱源装置10の運転状態を示す図である。同図に示すように、全ての水冷ヒートポンプ13の四方弁17が、低温側配管31と供給側配管33とを接続するとともに、高温側配管32と排出側配管34とを接続する状態となっている。これにより、全ての水冷ヒートポンプ13には、低温側配管31を流れる熱源水が供給され、供給された熱源水は熱を与えられ、高温となって高温側配管32に排出される。
=== During full cooling ===
FIG. 2 is a diagram illustrating an operation state of the air-conditioning heat source apparatus 10 at the time of full cooling in which the operation state of the water cooling heat pump 13 is all cooling. As shown in the figure, the four-way valves 17 of all the water-cooled heat pumps 13 connect the low temperature side pipe 31 and the supply side pipe 33 and connect the high temperature side pipe 32 and the discharge side pipe 34. Yes. As a result, all the water-cooled heat pumps 13 are supplied with heat source water flowing through the low temperature side pipe 31, and the supplied heat source water is given heat and discharged to the high temperature side pipe 32 at a high temperature.
したがって、全冷房の状態では、熱源水の温度が全体的に上昇する。そこで、制御装置16は、冷熱源機器11及び冷熱ポンプ21を作動させ、バイパス配管35を低温側配管31から高温側配管32へ向けて流れる流量がFminとなるように冷熱ポンプ21を制御するとともに、測定水温T(つまり、低温側配管31における熱源水の温度)が、Tmaxになるように、冷熱源機器11による冷却量を制御する。 Therefore, the temperature of the heat source water rises as a whole in the fully cooled state. Therefore, the control device 16 operates the heat source device 11 and the heat pump 21 to control the heat pump 21 so that the flow rate of the bypass pipe 35 flowing from the low temperature side pipe 31 toward the high temperature side pipe 32 becomes F min. At the same time, the amount of cooling by the cold heat source device 11 is controlled so that the measured water temperature T (that is, the temperature of the heat source water in the low temperature side pipe 31) becomes Tmax .
上記した全冷房の状態において、一部の水冷ヒートポンプ13が冷房運転から暖房運転に変わると、空調熱源装置10は、冷房優勢の状態となる。
===冷房優勢時===
図3は、冷房運転する水冷ヒートポンプ13A及び暖房運転する水冷ヒートポンプ13Bが混在し、冷房が優勢である場合の空調熱源装置10の運転状態を示す図である。同図に示すように、全冷房時には、暖房運転している水冷ヒートポンプ13Bの四方弁17Bは、高温側配管32Bと水冷ヒートポンプ13Bの供給側配管33Bとを接続するとともに、低温側配管31Bと水冷ヒートポンプ13Bの排出側配管34Bとを接続する状態となっており、冷房運転している水冷ヒートポンプ13Aの四方弁17Aは、低温側配管31Aと水冷ヒートポンプ13Aの供給側配管33Aとが接続されるとともに、高温側配管32Aと水冷ヒートポンプ13Aの排出側配管34Aとが接続された状態となっている。
When a part of the water-cooled heat pump 13 is changed from the cooling operation to the heating operation in the above-described fully-cooled state, the air-conditioning heat source device 10 is in a cooling dominant state.
=== When cooling is dominant ===
FIG. 3 is a diagram illustrating an operating state of the air-conditioning heat source apparatus 10 when a water-cooling heat pump 13A for cooling operation and a water-cooling heat pump 13B for heating operation are mixed and cooling is dominant. As shown in the figure, at the time of full cooling, the four-way valve 17B of the water-cooled heat pump 13B that is heating is connected to the high-temperature side pipe 32B and the supply-side pipe 33B of the water-cooled heat pump 13B, and the low-temperature side pipe 31B and water-cooled The four-way valve 17A of the water-cooled heat pump 13A that is in cooling operation is connected to the low-temperature side pipe 31A and the supply-side pipe 33A of the water-cooled heat pump 13A. The high temperature side pipe 32A and the discharge side pipe 34A of the water-cooled heat pump 13A are connected.
冷房運転している水冷ヒートポンプ13Aには、低温側配管31を流れる熱源水が供給され、供給された熱源水は熱を与えられ、高温となって高温側配管32に排出される。
また、暖房運転している水冷ヒートポンプ13Bには、高温側配管32を流れる熱源水が供給され、供給された熱源水は熱を汲み上げられ、低温となって低温側配管31に排出される。
The heat-source water flowing through the low-temperature side pipe 31 is supplied to the water-cooled heat pump 13A that is performing the cooling operation. The supplied heat-source water is given heat and discharged to the high-temperature side pipe 32 at a high temperature.
In addition, the heat source water flowing through the high temperature side pipe 32 is supplied to the water-cooled heat pump 13B that is performing the heating operation, and the supplied heat source water is pumped up and discharged to the low temperature side pipe 31 at a low temperature.
冷房優勢時にも全冷房時と同様に、流量計14で測定される流量がFminとなるように冷熱ポンプ21を制御するとともに、測定水温TがTmaxとなるように冷熱源機器11の冷却量を制御する。ただし、冷房優勢時は、暖房運転する水冷ヒートポンプ13Bが熱源水から熱を汲み上げる分だけ、全冷房時に比べて、冷熱源機器11の冷却量は小さくなり、低温側配管31の熱源水温度がTmaxより低下すると冷熱源機器11による冷却は不要となる。そこで、制御装置16は、測定水温TがTmaxより低下すると冷熱源機器11を停止させる。 Similarly to the case of all cooling, the cooling pump 21 is controlled so that the flow rate measured by the flow meter 14 becomes Fmin, and the cooling source device 11 is cooled so that the measured water temperature T becomes Tmax. Control the amount. However, when cooling is dominant, the amount of cooling of the cooling heat source device 11 is smaller than the amount of cooling, and the temperature of the heat source water in the low-temperature side pipe 31 is T by the amount that the water cooling heat pump 13B that performs heating pumps heat from the heat source water. When the temperature is lower than max, cooling by the cold heat source device 11 becomes unnecessary. Therefore, the control device 16 stops the cold heat source device 11 when the measured water temperature T falls below Tmax .
このように、本実施形態の空調熱源装置10によれば、冷房運転する水冷ヒートポンプ13Aにおいて熱を与えられた熱源水を、暖房運転する水冷ヒートポンプ13Bにおいて利用することができ、また、暖房運転する水冷ヒートポンプ13Bにおいて熱を汲み上げられた熱源水を、冷房運転する水冷ヒートポンプ13Aにおいて利用することができるため、省エネルギー効率の高い冷暖房を行うことができる。 Thus, according to the air-conditioning heat source device 10 of the present embodiment, the heat source water given heat in the water-cooled heat pump 13A that performs the cooling operation can be used in the water-cooled heat pump 13B that performs the heating operation, and the heating operation is performed. Since the heat source water pumped up by the water-cooled heat pump 13B can be used in the water-cooled heat pump 13A that performs cooling operation, air-conditioning with high energy saving efficiency can be performed.
冷熱源機器11の停止後、さらに暖房運転する水冷ヒートポンプ13の数が増えると、熱源水の温度が低下する。このように冷熱源機器11の停止後、測定水温TがTminまで達した場合には、制御装置16は、空調熱源装置10の運転状態が暖房優勢へと変化したと判断し、後述する暖房優勢時の制御状態へと移行する。 When the number of water-cooled heat pumps 13 that perform heating operation further increases after the cold-heat source device 11 stops, the temperature of the heat-source water decreases. As described above, when the measured water temperature T reaches T min after the cold heat source device 11 is stopped, the control device 16 determines that the operation state of the air conditioning heat source device 10 has changed to heating predominance, and will be described later. Transition to the control state at the time of dominance.
===暖房優勢時===
図4は、冷房運転する水冷ヒートポンプ13Aと暖房運転する水冷ヒートポンプ13Bとが混在し、暖房が優勢である場合の空調熱源装置10を示す図である。同図に示すように、暖房運転している水冷ヒートポンプ13Bの四方弁17Bは、高温側配管32Bと水冷ヒートポンプ13Bの供給側配管33Bとが接続されるとともに、低温側配管31Bと水冷ヒートポンプ13Bの排出側配管34Bとが接続された状態となっており、冷房運転している水冷ヒートポンプ13Aの四方弁17Aは、低温側配管31Aと供給側配管33Aとが接続されるとともに、高温側配管32Aと排出側配管34Aとが接続された状態となっている。
=== When heating is dominant ===
FIG. 4 is a diagram showing the air-conditioning heat source apparatus 10 when a water-cooled heat pump 13A for cooling operation and a water-cooled heat pump 13B for heating operation are mixed and heating is dominant. As shown in the figure, the four-way valve 17B of the water-cooled heat pump 13B that is heating is connected to the high-temperature side pipe 32B and the supply-side pipe 33B of the water-cooled heat pump 13B, and the low-temperature side pipe 31B and the water-cooled heat pump 13B. The four-way valve 17A of the water-cooled heat pump 13A that is in the cooling operation is connected to the discharge-side pipe 34B, and the low-temperature side pipe 31A and the supply-side pipe 33A are connected to the high-temperature side pipe 32A. The discharge side pipe 34A is connected.
空調熱源装置10の運転状態が暖房優勢の場合、暖房運転する水冷ヒートポンプ13Bにおいて熱源水より汲み上げられる熱量の合計が、冷房運転する水冷ヒートポンプ13Aにおいて熱源水に与えられる熱量の合計を超えるため、熱源水の温度が全体的に低下する。熱源水の温度が低下して、測定水温TがTminとなると、制御装置16は、冷熱源機器11及び冷熱ポンプ21を停止させるとともに、温熱源機器12及び温熱ポンプ22を起動させる。この時、温熱ポンプ22の運転は、バイパス配管35を高温側配管32から低温側配管31へ流れる熱源水の流量がFminとなるように制御されることで、バイパス配管35には高温側配管32側より熱源水が流れ込むため、測定水温Tは、高温側配管32における熱源水の温度と略等しくなる。制御装置16は、測定水温TがTminを保持するように、温熱源機器12の加熱量を制御する。 When the operation state of the air conditioning heat source device 10 is heating dominant, the total amount of heat pumped up from the heat source water in the water-cooled heat pump 13B performing heating operation exceeds the total amount of heat given to the heat source water in the water-cooled heat pump 13A performing cooling operation. The temperature of the water decreases overall. When the temperature of the heat source water decreases and the measured water temperature T reaches T min , the control device 16 stops the heat source device 11 and the heat pump 21 and activates the heat source device 12 and the heat pump 22. At this time, the operation of the heat pump 22 is controlled so that the flow rate of the heat source water flowing through the bypass pipe 35 from the high temperature side pipe 32 to the low temperature side pipe 31 becomes F min , so that the bypass pipe 35 has a high temperature side pipe. Since the heat source water flows from the 32 side, the measured water temperature T is substantially equal to the temperature of the heat source water in the high temperature side pipe 32. The control device 16 controls the heating amount of the heat source device 12 so that the measured water temperature T maintains T min .
以上のように、本実施形態の空調熱源装置10によれば、暖房運転する水冷ヒートポンプ13Bにおいて熱を汲み上げられた熱源水を、冷房運転する水冷ヒートポンプ13Aにおいて利用することができ、また、冷房運転する水冷ヒートポンプ13Aにおいて熱を与えられた熱源水を、暖房運転する水冷ヒートポンプ13Bにおいて利用することができるため、より省エネルギー効率の高い冷暖房を行うことができる。 As described above, according to the air-conditioning heat source device 10 of the present embodiment, the heat source water pumped up by the water-cooled heat pump 13B that performs heating operation can be used in the water-cooled heat pump 13A that performs cooling operation. Since the heat source water given heat in the water-cooling heat pump 13A can be used in the water-cooling heat pump 13B that performs heating operation, air-conditioning with higher energy saving efficiency can be performed.
なお、暖房優勢時に、測定水温Tが上昇してTminを超えた場合には、温熱源器12による熱源水の加熱は不要であるので、その場合には、制御装置16は温熱源器12を停止させる。 Incidentally, during the heating dominant, if the measured temperature T exceeds the rise to T min, since the heat of the heat source water by hot heat source 12 is not necessary, in which case the control unit 16 hot heat source 12 Stop.
温熱源機器12の停止後、さらに冷房運転する水冷ヒートポンプ13の数が増えると、熱源水の温度が上昇する。このように温熱源機器12の停止後、測定水温TがTmaxに達した場合には、制御装置16は、空調熱源装置10の運転状態が上述した冷房優勢の状態へと変化したと判断し、冷房優勢時の制御状態へと移行する。また、全ての水冷ヒートポンプ13が暖房運転になった場合には、後述する全暖房時の制御状態へと移行する。 If the number of water-cooled heat pumps 13 that perform cooling operation further increases after the heat source device 12 stops, the temperature of the heat source water increases. As described above, when the measured water temperature T reaches Tmax after the heat source device 12 is stopped, the control device 16 determines that the operation state of the air conditioning heat source device 10 has changed to the above-described cooling dominant state. Then, the control state shifts to the cooling dominant state. Further, when all the water-cooled heat pumps 13 are in the heating operation, the control state shifts to a control state at the time of all heating described later.
===全暖房時===
図5は、水冷ヒートポンプ13の運転状態が全暖房である場合の空調熱源装置10の運転状態を示す図である。同図に示すように、全暖房時には全ての水冷ヒートポンプ13の四方弁17が、高温側配管32と供給側配管33とを接続するとともに、低温側配管31と排出側配管34とを接続する状態となっている。これにより、全ての水冷ヒートポンプ13には、高温側配管32を流れる熱源水が供給され、供給された熱源水は熱を汲み上げられ、低温となって低温側配管31に排出される。
=== Fully heating ===
FIG. 5 is a diagram illustrating an operation state of the air-conditioning heat source device 10 when the operation state of the water-cooled heat pump 13 is all heating. As shown in the figure, during all heating, the four-way valves 17 of all the water-cooled heat pumps 13 connect the high temperature side pipe 32 and the supply side pipe 33 and connect the low temperature side pipe 31 and the discharge side pipe 34. It has become. Thereby, the heat source water flowing through the high temperature side pipe 32 is supplied to all the water cooling heat pumps 13, and the supplied heat source water is pumped up and discharged to the low temperature side pipe 31 at a low temperature.
したがって、全暖房の状態では、熱源水の温度が全体的に低下する。そこで、制御装置16は、温熱源機器12及び温熱ポンプ22を作動させ、バイパス配管35を高温側配管32から低温側配管31へ向けて流れる熱源水の流量がFminとなるように温熱ポンプ22の流量を制御するとともに、測定温度T(つまり、高温側配管32における熱源水の温度)が、下限温度Tminを保持するように、温熱源機器12の加熱量を制御する。 Therefore, in the state of all heating, the temperature of the heat source water decreases as a whole. Therefore, the control device 16 operates the heat source device 12 and the heat pump 22, and the heat pump 22 so that the flow rate of the heat source water flowing through the bypass pipe 35 from the high temperature side pipe 32 to the low temperature side pipe 31 becomes Fmin. controls the flow rate, the measured temperature T (i.e., temperature of the heat source water in the high temperature-side pipe 32) so as to maintain the minimum temperature T min, to control the heating amount of the heat source equipment 12.
以上説明したように、本実施形態の空調熱源装置10によれば、暖房運転する水冷ヒートポンプ13Bと、冷房運転する水冷ヒートポンプ13Aとが混在する場合において、冷房運転する水冷ヒートポンプ13Aにおいて熱を与えられた熱源水を、暖房運転する水冷ヒートポンプ13Bにおいて利用することができ、また、暖房運転する水冷ヒートポンプ13Bで熱を汲み上げられた熱源水を、冷房運転する水冷ヒートポンプ13Aにおいて利用することができるため、省エネルギー効率の高い空調を行うことができる。 As described above, according to the air-conditioning heat source device 10 of the present embodiment, when the water-cooled heat pump 13B that performs heating operation and the water-cooled heat pump 13A that performs cooling operation coexist, heat is given to the water-cooled heat pump 13A that performs cooling operation. The heat source water can be used in the water-cooled heat pump 13B for heating operation, and the heat source water pumped up by the water-cooled heat pump 13B for heating operation can be used in the water-cooled heat pump 13A for cooling operation. Air conditioning with high energy saving efficiency can be performed.
また、バイパス配管35を冷熱源機器11及び温熱源機器12に対して最下流位置に配置し、このバイパス配管35に流量計14及び温度計15を設けて、バイパス配管35の流量がFminとなるように冷熱ポンプ21又は温熱ポンプ22を制御することで、温度計15により低温側配管31又は高温側配管32の熱源水の水温を確実に測定することができる。すなわち、温度計を低温側配管31及び高温側配管32に設けた場合には、その温度計よりも下流側に運転状態の水冷ヒートポンプが存在しないと、温度計を通過する熱源水の流れが生じず、熱源水の水温を適切に測定することができない。これに対して、本実施形態では、冷熱ポンプ21又は温熱ポンプ22によりバイパス配管35を通る熱源水の流れを強制的に生成することにより、低温側配管31又は高温側配管32の熱源水の水温を確実に測定でき、しかも、バイパス配管35が最下流側位置に配置されることで、温度条件が最も厳しい(つまり、低温側配管31では温度が最も高く、高温側配管32では温度が最も低い)状態での熱源水の水温を測定できるのである。 Further, the bypass pipe 35 is arranged at the most downstream position with respect to the cold heat source device 11 and the heat source device 12, and the bypass pipe 35 is provided with a flow meter 14 and a thermometer 15, and the flow rate of the bypass pipe 35 is F min . By controlling the heat pump 21 or the heat pump 22 so as to be, the temperature of the heat source water of the low temperature side pipe 31 or the high temperature side pipe 32 can be reliably measured by the thermometer 15. That is, when the thermometer is provided in the low temperature side pipe 31 and the high temperature side pipe 32, the flow of heat source water that passes through the thermometer is generated if there is no water-cooled heat pump in the operation state downstream of the thermometer. Therefore, the water temperature of the heat source water cannot be measured appropriately. On the other hand, in this embodiment, the water temperature of the heat source water of the low temperature side pipe 31 or the high temperature side pipe 32 is generated by forcibly generating the flow of the heat source water passing through the bypass pipe 35 by the cold heat pump 21 or the heat pump 22. Since the bypass pipe 35 is arranged at the most downstream position, the temperature condition is the most severe (that is, the temperature is highest in the low temperature side pipe 31 and lowest in the high temperature side pipe 32). ) Temperature of the heat source water in the state can be measured.
なお、上記の説明では、四方弁17を用いて、低温側配管31と供給側配管33とが接続されるとともに、高温側配管32と排出側配管34とが接続された状態と、高温側配管32と供給側配管33とが接続されるとともに、低温側配管31と排出側配管34とが接続された状態とを切り替える構成としたが、これに限らず、三方弁や二方弁を用いることもできる。 In the above description, the four-way valve 17 is used to connect the low temperature side pipe 31 and the supply side pipe 33, and also connect the high temperature side pipe 32 and the discharge side pipe 34, and the high temperature side pipe. 32 and the supply side pipe 33 are connected, and the low temperature side pipe 31 and the discharge side pipe 34 are connected to each other. However, the present invention is not limited to this, and a three-way valve or a two-way valve is used. You can also.
10 空調熱源装置 11 冷熱源機器
12 温熱源機器 13 水冷ヒートポンプ
13A、13B 水冷ヒートポンプ 14 流量計
15 温度計 16 制御装置
17A、17B 四方弁 21 冷熱ポンプ
22 温熱ポンプ 23A、23B ポンプ
31、31A、31B 低温側配管 32、32A、32B 高温側配管
33A、33B 供給側配管 34A、34B 排出側配管
35 バイパス配管
DESCRIPTION OF SYMBOLS 10 Air-conditioning heat source apparatus 11 Cold heat source apparatus 12 Heat source apparatus 13 Water-cooled heat pump 13A, 13B Water-cooled heat pump 14 Flowmeter 15 Thermometer 16 Controller 17A, 17B Four-way valve 21 Cold-heat pump 22 Heat pump 23A, 23B Pump 31, 31A, 31B Low temperature Side piping 32, 32A, 32B High temperature side piping 33A, 33B Supply side piping 34A, 34B Discharge side piping 35 Bypass piping
Claims (5)
低温の熱源水が流れる低温側配管と、
高温の熱源水が流れる高温側配管と、
各水冷ヒートポンプについて、前記高温側配管から前記低温側配管へ向けて熱源水が流れる状態と、前記低温側配管から前記高温側配管へ向けて熱源水が流れる状態とを切り替える方向切替手段と、
前記高温側配管と、前記低温側配管との熱収支のバランスをとる熱バランス手段と、を備えることを特徴とする水冷ヒートポンプ式空調熱源装置。 An air conditioning heat source device including a plurality of water-cooled heat pumps,
Low temperature side piping through which low temperature heat source water flows,
High temperature side piping through which high temperature heat source water flows,
For each water-cooled heat pump, direction switching means for switching between a state where heat source water flows from the high temperature side pipe toward the low temperature side pipe and a state where heat source water flows from the low temperature side pipe toward the high temperature side pipe;
A water-cooled heat pump type air conditioning heat source device, comprising: heat balance means for balancing the heat balance between the high temperature side pipe and the low temperature side pipe.
前記高温側配管の熱源水を冷却して前記低温側配管に供給する高温熱源水冷却手段と、
前記低温側配管の熱源水を加熱して前記高温側配管に供給する低温熱源水加熱手段と、
前記高温側配管及び前記低温側配管の熱源水の温度に応じて前記高温熱源水冷却手段及び低温熱源水加熱手段を制御する制御手段とを有することを特徴とする請求項1記載の水冷ヒートポンプ式空調熱源装置。 The heat balance means includes
High temperature heat source water cooling means for cooling the heat source water of the high temperature side pipe and supplying it to the low temperature side pipe;
Low temperature heat source water heating means for heating the heat source water of the low temperature side pipe and supplying the heat source water to the high temperature side pipe;
The water-cooled heat pump system according to claim 1, further comprising a control means for controlling the high-temperature heat source water cooling means and the low-temperature heat source water heating means in accordance with the temperature of the heat source water in the high temperature side pipe and the low temperature side pipe. Air conditioning heat source device.
前記高温側配管及び前記低温側配管を流れる熱源水の温度を検出する温度検出手段を備え、
前記制御手段は、
前記低温熱源水加熱手段が作動している場合には、前記温度検出手段により測定される高温側配管を流れる熱源水の温度が、所定の温度Tmin以上に保たれるように前記低温熱源水加熱手段による熱源水の加熱量を制御し、
前記高温熱源水冷却手段が作動している場合には、前記温度検出手段により測定される低温側配管を流れる熱源水の温度が、所定の温度Tmax以下に保たれるように前記高温熱源水冷却手段による熱源水の冷却量を制御することを特徴とする水冷ヒートポンプ式空調熱源装置。 The air conditioning heat source device according to claim 2,
Temperature detecting means for detecting the temperature of the heat source water flowing through the high temperature side pipe and the low temperature side pipe;
The control means includes
When the low temperature heat source water heating means is operating, the temperature of the heat source water flowing through the high temperature side pipe measured by the temperature detection means is maintained at a predetermined temperature Tmin or higher. Control the heating amount of the heat source water by the heating means,
When the high temperature heat source water cooling means is operating, the temperature of the heat source water flowing through the low temperature side pipe measured by the temperature detection means is maintained at a predetermined temperature T max or less. A water-cooled heat pump type air-conditioning heat source apparatus, wherein the cooling amount of the heat source water by the cooling means is controlled.
前記低温熱源水加熱手段は、
熱源水を加熱する温熱源機器と、前記低温側配管を流れる熱源水を前記温熱源機器を介して、前記高温側配管に送る温熱ポンプと、からなり、
前記高温熱源水冷却手段は、
熱源水を冷却する冷熱源機器と、前記高温側配管を流れる熱源水を前記冷熱源機器を介して、低温側配管に送る冷熱ポンプと、からなり、
前記制御手段は、
前記温度検出手段で測定される熱源水の温度が低下してTminに達すると、前記温熱ポンプ及び前記温熱源機器を運転させるとともに、前記温度検出手段で測定される温度がTminを下回らないように、前記温熱源機器の運転状態を制御し、
前記温度検出手段で測定された熱源水の温度が上昇してTmaxに達すると、前記冷熱ポンプ及び前記冷熱源機器を運転させるとともに、前記温度検出手段により測定される温度がTmaxを上回らないように、前記冷熱源機器の運転状態を制御することを特徴とする水冷ヒートポンプ式空調熱源装置。 An air conditioning heat source device according to claim 3,
The low temperature heat source water heating means includes:
A heat source device that heats the heat source water, and a heat pump that sends the heat source water flowing through the low temperature side pipe to the high temperature side pipe through the heat source device, and
The high-temperature heat source water cooling means is
A cooling heat source device that cools the heat source water, and a cooling heat pump that sends the heat source water flowing through the high temperature side piping to the low temperature side piping through the cooling heat source device,
The control means includes
When the temperature of the heat source water measured by the temperature detection means decreases and reaches T min , the heat pump and the heat source device are operated, and the temperature measured by the temperature detection means does not fall below T min . So as to control the operating state of the heat source device,
When the temperature of the heat source water measured by the temperature detection means rises and reaches T max , the cooling pump and the cooling heat source device are operated, and the temperature measured by the temperature detection means does not exceed T max . As described above, a water-cooled heat pump type air-conditioning heat source device that controls the operating state of the cold-heat source device.
前記高温熱源水冷却手段及び低温熱源水加熱手段に対して、最も下流側にて前記低温側配管と前記高温側配管とを結ぶように設けられたバイパス配管と、
前記バイパス配管に設けられた流量計とを備え、
前記温度検出手段は、前記バイパス配管に流れる熱源水の温度を測定する温度計からなり、
前記制御手段は、前記流量計により測定された流量が、前記温度計で熱源水の温度を測定することができる所定の流量以上になるように前記バイパス配管を流れる流量を制御することを特徴とする水冷ヒートポンプ式空調熱源装置。
The air conditioning heat source device according to claim 3 or 4,
A bypass pipe provided to connect the low temperature side pipe and the high temperature side pipe on the most downstream side with respect to the high temperature heat source water cooling means and the low temperature heat source water heating means,
A flow meter provided in the bypass pipe,
The temperature detection means comprises a thermometer that measures the temperature of the heat source water flowing through the bypass pipe,
The control means controls the flow rate flowing through the bypass pipe so that the flow rate measured by the flow meter is equal to or higher than a predetermined flow rate at which the temperature of the heat source water can be measured by the thermometer. A water-cooled heat pump air conditioning heat source device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006142686A JP2007315621A (en) | 2006-05-23 | 2006-05-23 | Water cooled heat pump type air conditioning heat source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006142686A JP2007315621A (en) | 2006-05-23 | 2006-05-23 | Water cooled heat pump type air conditioning heat source device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007315621A true JP2007315621A (en) | 2007-12-06 |
Family
ID=38849641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006142686A Pending JP2007315621A (en) | 2006-05-23 | 2006-05-23 | Water cooled heat pump type air conditioning heat source device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007315621A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011047595A (en) * | 2009-08-27 | 2011-03-10 | Toyo Netsu Kogyo Kk | Heat recycle system |
CN102418971A (en) * | 2011-04-04 | 2012-04-18 | 刘雄 | Dual heat source heat pump air conditioning equipment |
CN102721127A (en) * | 2012-05-28 | 2012-10-10 | 孙朝明 | Air source hot water air conditioner |
CN105444316A (en) * | 2016-01-18 | 2016-03-30 | 深圳市海吉源科技有限公司 | Huge-temperature-difference single tube long distance conveying chilled water storage and cooling system |
CN104048390B (en) * | 2014-07-04 | 2017-01-11 | 国家电网公司 | Method for diagnosing energy efficiency of air-cooled heat-pump central air-conditioning unit |
JP2017116174A (en) * | 2015-12-24 | 2017-06-29 | 株式会社竹中工務店 | Heat utilization system |
CN113531708A (en) * | 2021-07-21 | 2021-10-22 | 江苏天纳节能科技股份有限公司 | A decoupled high-efficiency central air-conditioning cooling water control system and method |
-
2006
- 2006-05-23 JP JP2006142686A patent/JP2007315621A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011047595A (en) * | 2009-08-27 | 2011-03-10 | Toyo Netsu Kogyo Kk | Heat recycle system |
CN102418971A (en) * | 2011-04-04 | 2012-04-18 | 刘雄 | Dual heat source heat pump air conditioning equipment |
CN102418971B (en) * | 2011-04-04 | 2015-09-09 | 刘雄 | Dual heat source heat pump air conditioning equipment |
CN102721127A (en) * | 2012-05-28 | 2012-10-10 | 孙朝明 | Air source hot water air conditioner |
CN104048390B (en) * | 2014-07-04 | 2017-01-11 | 国家电网公司 | Method for diagnosing energy efficiency of air-cooled heat-pump central air-conditioning unit |
JP2017116174A (en) * | 2015-12-24 | 2017-06-29 | 株式会社竹中工務店 | Heat utilization system |
CN105444316A (en) * | 2016-01-18 | 2016-03-30 | 深圳市海吉源科技有限公司 | Huge-temperature-difference single tube long distance conveying chilled water storage and cooling system |
CN105444316B (en) * | 2016-01-18 | 2022-05-10 | 深圳市海吉源科技有限公司 | Ultra-large temperature difference single tube long-distance water cold accumulation and supply system |
CN113531708A (en) * | 2021-07-21 | 2021-10-22 | 江苏天纳节能科技股份有限公司 | A decoupled high-efficiency central air-conditioning cooling water control system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5657110B2 (en) | Temperature control system and air conditioning system | |
JP2007315621A (en) | Water cooled heat pump type air conditioning heat source device | |
US20110054701A1 (en) | Energy saving method and system for climate control system | |
EP2981767A1 (en) | Air conditioning system and method for controlling air conditioning system | |
JP2008145096A (en) | Hot water supply system and hot water supply method | |
JP2014163594A (en) | Flow control device and fluid circuit system | |
JP2010084951A (en) | Air conditioning device | |
JP6471672B2 (en) | Hot water heating system | |
CN1173142C (en) | air conditioner | |
JP6153328B2 (en) | Cogeneration system and heating equipment | |
JP2008014585A (en) | Brine heat radiation type heating apparatus | |
JP2008025945A (en) | Brine radiation type heater | |
JP5486425B2 (en) | Water heat source heat pump unit piping system | |
JP2008032291A (en) | Heat pump type hot water supply heating device | |
CN110134152B (en) | Flow control module and method for controlling flow in a liquid circulation system | |
JP2017053626A (en) | Cogeneration system and heating equipment | |
JP6685602B2 (en) | Air conditioning system | |
JP2014139496A (en) | Heat source machine and freezing prevention control method | |
JP6832732B2 (en) | Refrigeration system | |
JP6530299B2 (en) | Heating system | |
JP2001221482A (en) | Air conditioning system | |
JP2009109059A (en) | Air conditioner | |
JP5557017B2 (en) | Hot water system | |
JP5786645B2 (en) | Refrigeration air conditioner | |
KR20220135674A (en) | Apparatus for controlling cooling water temprerature of cooling tower |