[go: up one dir, main page]

JP2007311417A - Thin film manufacturing apparatus and thin film manufacturing method - Google Patents

Thin film manufacturing apparatus and thin film manufacturing method Download PDF

Info

Publication number
JP2007311417A
JP2007311417A JP2006136742A JP2006136742A JP2007311417A JP 2007311417 A JP2007311417 A JP 2007311417A JP 2006136742 A JP2006136742 A JP 2006136742A JP 2006136742 A JP2006136742 A JP 2006136742A JP 2007311417 A JP2007311417 A JP 2007311417A
Authority
JP
Japan
Prior art keywords
film
vacuum chamber
flexible substrate
film forming
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006136742A
Other languages
Japanese (ja)
Other versions
JP5124982B2 (en
Inventor
Hitoshi Shimizu
均 清水
Yasuhito Tanaka
泰仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006136742A priority Critical patent/JP5124982B2/en
Publication of JP2007311417A publication Critical patent/JP2007311417A/en
Application granted granted Critical
Publication of JP5124982B2 publication Critical patent/JP5124982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the inclination of a contact surface of a ground electrode without increasing the plate thickness of a wall, even if distortion occurs on the wall due to a difference in pressure between the outside and a film-forming vacuum chamber. <P>SOLUTION: The communication hole of a fixed body 31 that is formed at the distorted center of a wall 15 due to a difference in pressure between a film-forming vacuum chamber 13 and the outside is concentrically positioned at the through-hole of the wall 15, and a supporting body 33 is driven along a rail 34 engaged with a guide 32 that includes two pairs of opposing reference surfaces vertical to the flat face of the fixed body 31. Thus, a flexible substrate 1 is stuck to the end face of a frame 54 while expanding and contracting an elastic body 35, forming a film forming chamber 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は薄膜製造装置および薄膜製造方法に関し、特に、薄膜光電変換素子の製造方法に適用して好適なものである。   The present invention relates to a thin film manufacturing apparatus and a thin film manufacturing method, and is particularly suitable when applied to a method for manufacturing a thin film photoelectric conversion element.

薄膜光電変換素子を生産性よく製造する方法として、長尺の高分子材料あるいはステンレス鋼などの金属からなる可撓性基板上に、a−Siを主材料とした光電変換層を含む各層を形成する方法がある。ここで、長尺の可撓性基板上に複数の層を成膜する方式として、各成膜室内を移動する可撓性基板上に成膜するロールツーロール方式と、成膜室内で停止させた可撓性基板上に成膜した後、成膜の終わった可撓性基板部分を成膜室外へ送り出すステッピングロール方式とがある。   As a method for producing a thin film photoelectric conversion element with high productivity, each layer including a photoelectric conversion layer mainly composed of a-Si is formed on a flexible substrate made of a long polymer material or a metal such as stainless steel. There is a way to do it. Here, as a method of forming a plurality of layers on a long flexible substrate, a roll-to-roll method of forming a film on a flexible substrate moving in each film formation chamber, and a stop in the film formation chamber are used. There is a stepping roll method in which after forming a film on a flexible substrate, the flexible substrate portion after film formation is sent out of the film formation chamber.

従来のこの種の成膜装置では、可撓性基板面を水平にして搬送が行われるが、装置の設置スペースを節減するために、可撓性基板面を鉛直にして搬送する方法が提案されている。さらに、一つの薄膜光電変換素子製造装置での成膜効率を上げるために、複数の可撓性基板を並行して搬送し、それぞれの可撓性基板面上に成膜することも知られている。   In this type of conventional film forming apparatus, the transfer is performed with the flexible substrate surface horizontal, but in order to save the installation space of the apparatus, a method of transferring the substrate with the flexible substrate surface vertical has been proposed. ing. Furthermore, in order to increase the film formation efficiency in one thin film photoelectric conversion element manufacturing apparatus, it is also known that a plurality of flexible substrates are transported in parallel and formed on each flexible substrate surface. Yes.

図3は、従来の薄膜製造装置の概略構成を示す平面断面図、図4は、図3の薄膜製造装置の成膜時の成膜室部分の概略構成を拡大して示す断面図、図3の薄膜製造装置の基板搬送時の成膜室部分の概略構成を拡大して示す断面図である。
図3および図4において、薄膜製造装置には、送り室11、予備真空室12、成膜用真空室13および巻き取り室14が設けられている。そして、送り室11内には二つの搬入ロール2が収容されるとともに、巻き取り室14には、二つの搬出ロール3が収容されている。ここで、成膜用真空室13は、内部を外気と隔離する壁体15にて覆われ、成膜用真空室13内には、高電圧電極21および接地電極22が設けられている。ここで、高電圧電極21は、各可撓性基板11に対して一つずつ備えられ、高電圧電極21に対して接地電極22がそれぞれ対向配置されている。また、接地電極22には、可撓性基板11を加熱するヒータ23が内蔵されている。
3 is a plan sectional view showing a schematic configuration of a conventional thin film manufacturing apparatus, FIG. 4 is an enlarged sectional view showing a schematic configuration of a film forming chamber portion during film formation of the thin film manufacturing apparatus of FIG. It is sectional drawing which expands and shows schematic structure of the film-forming chamber part at the time of board | substrate conveyance of this thin film manufacturing apparatus.
3 and 4, the thin film manufacturing apparatus is provided with a feeding chamber 11, a preliminary vacuum chamber 12, a film forming vacuum chamber 13, and a winding chamber. In the feed chamber 11, two carry-in rolls 2 are accommodated, and in the take-up chamber 14, two carry-out rolls 3 are accommodated. Here, the film forming vacuum chamber 13 is covered with a wall 15 that isolates the inside from the outside air, and a high voltage electrode 21 and a ground electrode 22 are provided in the film forming vacuum chamber 13. Here, one high voltage electrode 21 is provided for each flexible substrate 11, and a ground electrode 22 is disposed opposite to the high voltage electrode 21. The ground electrode 22 has a built-in heater 23 for heating the flexible substrate 11.

また、成膜用真空室13の壁体15の外側には、接地電極22を駆動するアクチュエータ24が設けられている。ここで、高電圧電極21は蓋状で、高電圧電極21の端面にシールブロック8が設けられている。そして、アクチュエータ24は、接地電極22を駆動し、高電圧電極21の端面にシールブロック8を介して可撓性基板1を密着させることにより、気密に保つことのできる成膜室5を形成することができる。   An actuator 24 for driving the ground electrode 22 is provided outside the wall 15 of the film forming vacuum chamber 13. Here, the high voltage electrode 21 has a lid shape, and the seal block 8 is provided on the end face of the high voltage electrode 21. Then, the actuator 24 drives the ground electrode 22 to bring the flexible substrate 1 into close contact with the end face of the high voltage electrode 21 through the seal block 8, thereby forming the film forming chamber 5 that can be kept airtight. be able to.

また、高電圧電極21の背面側は、絶縁材料よりなる排気ブロック9を介して連結され、二つの成膜室5に対して共通に一つの真空排気口72が備えられている。そして、排気ブロック9は、シール材91を介して高電圧電極21と密着し、排気ブロック9に開けられた排気口72および高電圧電極21の背面の開口25を介して排気系に接続されることで、各成膜室5を一括して成膜圧力に保つことができる。   The back side of the high voltage electrode 21 is connected via an exhaust block 9 made of an insulating material, and a single vacuum exhaust port 72 is provided for the two film forming chambers 5. The exhaust block 9 is in close contact with the high voltage electrode 21 through the sealing material 91 and is connected to the exhaust system through the exhaust port 72 opened in the exhaust block 9 and the opening 25 on the back surface of the high voltage electrode 21. As a result, the respective film forming chambers 5 can be collectively maintained at the film forming pressure.

そして、搬入ロール2から引き出された可撓性基板1は予備真空室12を経て成膜用真空室13に搬送され、高電圧電極21と接地電極22との間に保持された状態で一旦停止される。そして、高電圧電極21と接地電極22との間に可撓性基板1が保持されると、アクチュエータ24は、接地電極22を駆動することにより、高電圧電極21の端面にシールブロック8を介して可撓性基板1を密着させ、成膜室5を形成する。そして、排気口72を介して成膜室5内を排気しながら、a−Si系の薄膜を形成するための反応ガスを成膜室5内に導入し、高電圧電極21と接地電極22との間に電圧を印加することにより、成膜室5内にプラズマ6を発生させ、プラズマCVDにて成膜室5内の可撓性基板1の面上にa−Si系の薄膜を形成する。なお、二つの成膜室5の間は、排気ブロック9により電気絶縁されているため、成膜室5毎にプラズマ6の制御を行うことができる。   Then, the flexible substrate 1 drawn out from the carry-in roll 2 is transferred to the film forming vacuum chamber 13 through the preliminary vacuum chamber 12 and temporarily stopped while being held between the high voltage electrode 21 and the ground electrode 22. Is done. When the flexible substrate 1 is held between the high voltage electrode 21 and the ground electrode 22, the actuator 24 drives the ground electrode 22, so that the end face of the high voltage electrode 21 is interposed via the seal block 8. Then, the flexible substrate 1 is brought into close contact with each other to form the film formation chamber 5. Then, while evacuating the film forming chamber 5 through the exhaust port 72, a reaction gas for forming an a-Si-based thin film is introduced into the film forming chamber 5, and the high voltage electrode 21, the ground electrode 22, By applying a voltage between them, plasma 6 is generated in the film forming chamber 5 and an a-Si thin film is formed on the surface of the flexible substrate 1 in the film forming chamber 5 by plasma CVD. . Since the two film forming chambers 5 are electrically insulated by the exhaust block 9, the plasma 6 can be controlled for each film forming chamber 5.

そして、可撓性基板1の面上の成膜が終了した後、アクチュエータ24にて接地電極22を矢印41のように上下に数十mmだけ移動させることにより、接地電極22に抑えられていた可撓性基板1を解放する。そして、シールブロック8およびシール材91に接触させないようにして可撓性基板1を矢印42の方向に搬送し、巻き取り室14内の搬出ロール3にて巻き取ることができる。   Then, after the film formation on the surface of the flexible substrate 1 is completed, the ground electrode 22 is restrained by the ground electrode 22 by moving the ground electrode 22 up and down by several tens of millimeters as indicated by the arrow 41 by the actuator 24. The flexible substrate 1 is released. Then, the flexible substrate 1 can be transported in the direction of the arrow 42 without being brought into contact with the seal block 8 and the seal material 91, and taken up by the carry-out roll 3 in the take-up chamber 14.

ここで、可撓性基板1の面上にa−Si系の薄膜を安定して形成するためには、高電圧電極21の端面にシールブロック8を介して可撓性基板1を密着させることにより、成膜室5の気密性を保ち、成膜室5に導入された反応ガスが漏れ出さないようにすることが必要である。このため、成膜に必要な成膜室5の気密性能を得るために、成膜用真空室13の大気開放時に接地電極22の面合わせが行われる。   Here, in order to stably form an a-Si-based thin film on the surface of the flexible substrate 1, the flexible substrate 1 is brought into close contact with the end surface of the high voltage electrode 21 via the seal block 8. Therefore, it is necessary to maintain the airtightness of the film forming chamber 5 and prevent the reaction gas introduced into the film forming chamber 5 from leaking out. For this reason, in order to obtain the airtight performance of the film formation chamber 5 necessary for film formation, the surface alignment of the ground electrode 22 is performed when the film formation vacuum chamber 13 is opened to the atmosphere.

また、例えば、特許文献1には、グロー放電により発生するプラズマを高密度にするための磁界の基板面に対する状態変化により膜質が不均一になるのを防ぎ、大面積のスパッタ成膜を可能にするために、陰極としてのターゲットの一部分と対向する陽極と磁石を一緒に往復して成膜面上を移動可能にする方法が開示されている。
特開平9−3645号公報
Further, for example, in Patent Document 1, it is possible to prevent the film quality from becoming non-uniform due to a change in the state of the magnetic field with respect to the substrate surface for increasing the density of plasma generated by glow discharge, and to enable large-area sputtering film formation. In order to achieve this, a method is disclosed in which an anode and a magnet facing a part of a target serving as a cathode are reciprocated together so as to be movable on a film formation surface.
Japanese Patent Laid-Open No. 9-3645

しかしながら、可撓性基板1の幅が1mmを超えるような大面積化に対応できるようにするためには、それに伴って成膜用真空室13を覆う壁体15も相対的に大型化する必要があり、外界と成膜用真空室13との圧力差に起因する壁体15の歪も増大する。
図5は、外界と成膜用真空室との圧力差に起因する壁体15の歪の様相を示す斜視図である。
図5において、外界と成膜用真空室13との圧力差が発生すると、壁体15の中心を最大値として同心円状に歪が発生する。
However, in order to cope with an increase in area such that the width of the flexible substrate 1 exceeds 1 mm, the wall body 15 that covers the film-forming vacuum chamber 13 needs to be relatively enlarged accordingly. And the distortion of the wall 15 due to the pressure difference between the outside and the film forming vacuum chamber 13 also increases.
FIG. 5 is a perspective view showing an aspect of distortion of the wall body 15 due to a pressure difference between the outside and the film forming vacuum chamber.
In FIG. 5, when a pressure difference between the outside and the film forming vacuum chamber 13 occurs, distortion occurs concentrically with the center of the wall 15 as the maximum value.

ここで、成膜室5の気密性能を得るために、大気開放時に接地電極22の面合わせを行う方法では、接地電極22を壁体15に固定する固定点が壁体15の歪の最大点と離れていることから、壁体15の歪が増大すると、接地電極22の調整面が傾くようになり、成膜室5の気密が保てなくなる。このため、成膜室5の気密性能を得るためには、成膜用真空室13を真空状態にして調整する必要があり、外界と真空を隔てた作業が必要になることから、接地電極22の面合わせが困難となるという問題があった。   Here, in order to obtain the airtight performance of the film forming chamber 5, in the method of performing the surface matching of the ground electrode 22 when the atmosphere is opened to the atmosphere, the fixing point for fixing the ground electrode 22 to the wall body 15 is the maximum distortion point of the wall body 15. Therefore, when the distortion of the wall 15 increases, the adjustment surface of the ground electrode 22 is inclined, and the film forming chamber 5 cannot be kept airtight. For this reason, in order to obtain the airtight performance of the film forming chamber 5, it is necessary to adjust the film forming vacuum chamber 13 in a vacuum state, and it is necessary to separate the outside from the vacuum. There was a problem that it was difficult to meet each other.

一方、外界と成膜用真空室13との圧力差に起因する壁体15の歪を減らすために、壁体15の板厚を増加させたり、リブ構造による補強を行ったりする方法もある。
しかしながら、このような方法では、薄膜製造装置の大型化および大重量化を招き、薄膜製造装置のコストアップを招くだけでなく、建屋床廻りの補強等などを施す必要があり、建設費も大きくなるという問題があった。
そこで、本発明の目的は、外界と成膜用真空室との圧力差に起因して壁体に歪が発生した場合においても、壁体の板厚を増加させることなく、接地電極の接触面の傾きを抑制することが可能な薄膜製造装置および薄膜製造方法を提供することである。
On the other hand, in order to reduce the distortion of the wall body 15 due to the pressure difference between the external environment and the film forming vacuum chamber 13, there is a method of increasing the plate thickness of the wall body 15 or performing reinforcement by a rib structure.
However, this method not only increases the size and weight of the thin film manufacturing apparatus, but also increases the cost of the thin film manufacturing apparatus, and it is necessary to reinforce around the building floor and the construction cost is high. There was a problem of becoming.
Therefore, an object of the present invention is to provide a contact surface of the ground electrode without increasing the thickness of the wall body even when the wall body is distorted due to a pressure difference between the outside world and the film forming vacuum chamber. It is providing the thin film manufacturing apparatus and thin film manufacturing method which can suppress inclination of this.

上述した課題を解決するために、請求項1記載の薄膜製造装置によれば、壁体にて外界と隔離された成膜用真空室と、前記成膜用真空室に可撓性基板を搬送する搬送手段と、前記可撓性基板の成膜面を蓋状に挟み込むことにより前記成膜用真空室内に成膜室を形成する挟持部材と、前記可撓性基板の成膜面が挟み込まれるように前記挟持部材を駆動するアクチュエータと、前記成膜用真空室と外界との圧力差に起因する壁体の歪中心に対して実質的に点対称になる位置で前記挟持部材を前記壁体上で支持する支持手段とを備えることを特徴とする。   In order to solve the above-described problem, according to the thin film manufacturing apparatus according to claim 1, a film forming vacuum chamber isolated from the outside by a wall body, and a flexible substrate is transferred to the film forming vacuum chamber. A transporting means, a sandwiching member that forms a film forming chamber in the film forming vacuum chamber by sandwiching a film forming surface of the flexible substrate in a lid shape, and a film forming surface of the flexible substrate The actuator for driving the clamping member and the wall member at a position substantially symmetric with respect to the strain center of the wall body caused by a pressure difference between the film forming vacuum chamber and the outside. And supporting means for supporting the above.

また、請求項2記載の薄膜製造装置によれば、壁体にて外界と隔離された成膜用真空室と、前記成膜用真空室に可撓性基板を搬送する搬送手段と、前記可撓性基板の成膜面を蓋状に挟み込むことにより前記成膜用真空室内に成膜室を形成する挟持部材と、前記可撓性基板の成膜面が挟み込まれるように前記挟持部材を駆動するアクチュエータと、前記成膜用真空室と外界との圧力差に起因する壁体の歪中心を通して前記成膜用真空室に連通する穴が形成された固定体と、前記壁体の歪中心に対して実質的に点対称になる位置に前記固定体の平面に垂直な2対の対向する基準面を構成するガイド体と、前記挟持部材の対向面間の平行を保ちながら、前記挟持部材を把持する支持体と、前記ガイド体の基準面に勘合され、前記可撓性基板の成膜面が前記挟持部材にて挟み込まれるように前記支持体を案内するレールと、前記レールによる案内方向に前記支持体を可動させる伸縮可能な伸縮体とを備えることを特徴とする。   According to the thin film manufacturing apparatus of claim 2, a film forming vacuum chamber isolated from the outside by a wall, a transfer means for transferring a flexible substrate to the film forming vacuum chamber, A sandwiching member for forming a deposition chamber in the deposition vacuum chamber by sandwiching the deposition surface of the flexible substrate in a lid shape, and driving the sandwiching member so that the deposition surface of the flexible substrate is sandwiched A fixed body in which a hole communicating with the film forming vacuum chamber through a strain center of the wall body caused by a pressure difference between the film forming vacuum chamber and the outside is formed, and a strain center of the wall body The guide member constituting two pairs of opposing reference planes perpendicular to the plane of the fixed body at a position that is substantially point-symmetric with respect to the fixed body, and the holding member while maintaining parallelism between the opposing surfaces of the holding member A support surface to be gripped and a film formation surface of the flexible substrate that is fitted into a reference surface of the guide body A rail for guiding the support so as to be sandwiched by the clamping members, characterized by comprising a stretchable elastic member to the movable said support guiding direction by the rail.

また、請求項3記載の薄膜製造方法によれば、壁体にて外界と隔離された成膜用真空室に可撓性基板を搬送する工程と、前記成膜用真空室と外界との圧力差に起因する壁体の歪中心に対して実質的に点対称になる位置で支持しながら、前記可撓性基板の成膜面が蓋状に挟み込まれるように挟持部材を駆動することにより、前記成膜用真空室内に成膜室を形成する工程と、前記成膜室内に反応ガスを導入しながら、前記成膜室内にプラズマを発生させることにより、前記可撓性基板の成膜面に成膜を行う工程とを備えることを特徴とする。   According to the thin film manufacturing method of claim 3, the step of transporting the flexible substrate to the film forming vacuum chamber isolated from the outside by the wall, and the pressure between the film forming vacuum chamber and the outside By driving the clamping member so that the film formation surface of the flexible substrate is sandwiched in a lid shape while supporting at a position that is substantially point-symmetric with respect to the strain center of the wall body due to the difference, Forming a film formation chamber in the film formation vacuum chamber, and generating plasma in the film formation chamber while introducing a reactive gas into the film formation chamber, thereby forming a film on the film formation surface of the flexible substrate; And a step of forming a film.

以上説明したように、本発明によれば、成膜用真空室と外界との圧力差に起因する壁体の歪中心に対して点対称になる位置で挟持部材を支持しながら、成膜用真空室内に成膜室を形成することができる。このため、外界と成膜用真空室との圧力差に起因して壁体に歪が発生した場合においても、挟持部材の接触面の傾きが打ち消されるように、挟持部材を支持することができ、可撓性基板の幅が1mmを超えるような大面積化が図られた場合においても、壁体の板厚を増加させることなく、成膜室の気密性を維持することが可能となることから、コストアップを抑制しつつ、可撓性基板に形成される光電変換層を膜質の劣化を抑制することが可能となる。   As described above, according to the present invention, while supporting the clamping member at a position that is point-symmetric with respect to the strain center of the wall due to the pressure difference between the vacuum chamber for film formation and the outside, A film formation chamber can be formed in the vacuum chamber. Therefore, even when the wall body is distorted due to the pressure difference between the outside and the film forming vacuum chamber, the clamping member can be supported so that the inclination of the contact surface of the clamping member is canceled out. Even when the flexible substrate has a large area exceeding 1 mm, it is possible to maintain the airtightness of the film formation chamber without increasing the wall thickness. Therefore, deterioration of the film quality of the photoelectric conversion layer formed on the flexible substrate can be suppressed while suppressing an increase in cost.

以下、本発明の実施形態に係る薄膜製造装置について図面を参照しながら説明する。
図1は、本発明の一実施形態に係る薄膜製造装置の概略構成を示す平面断面図、図2は、図1のA−A´線で切断した横断面図である。
図1および図2において、薄膜製造装置100には、送り室11、成膜用真空室13および巻き取り室14が設けられている。そして、送り室11内には二つの搬入ロール2が収容されるとともに、巻き取り室14には、二つの搬出ロール3が収容されている。ここで、成膜用真空室13は、内部を外気と隔離する壁体15にて覆われ、成膜用真空室13内には、高電圧電極21および接地電極22が設けられている。ここで、高電圧電極21は、各可撓性基板11に対して一つずつ備えられ、高電圧電極21に対して接地電極22がそれぞれ対向配置されている。
Hereinafter, a thin film manufacturing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a plan sectional view showing a schematic configuration of a thin film manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a transverse sectional view taken along the line AA ′ of FIG.
1 and 2, the thin film manufacturing apparatus 100 is provided with a feeding chamber 11, a film forming vacuum chamber 13, and a winding chamber 14. In the feed chamber 11, two carry-in rolls 2 are accommodated, and in the take-up chamber 14, two carry-out rolls 3 are accommodated. Here, the film forming vacuum chamber 13 is covered with a wall 15 that isolates the inside from the outside air, and a high voltage electrode 21 and a ground electrode 22 are provided in the film forming vacuum chamber 13. Here, one high voltage electrode 21 is provided for each flexible substrate 11, and a ground electrode 22 is disposed opposite to the high voltage electrode 21.

また、高電圧電極21の背面側は、絶縁材料よりなる排気ブロック9を介して連結され、各排気ブロック9には真空排気口72が備えられている。また、高電圧電極21には、電気絶縁性およびシール性を兼ね備えた間隔材53を介して導電性の枠体54がねじ止めにて固定され、排気ブロック9と高電圧電極21の周囲には、断面T字上の導電性のシールドブロック57が配置され、ねじ止めにて枠体54に固定されている。   The back side of the high voltage electrode 21 is connected via an exhaust block 9 made of an insulating material, and each exhaust block 9 is provided with a vacuum exhaust port 72. In addition, a conductive frame 54 is fixed to the high voltage electrode 21 with a spacing member 53 having both electrical insulation and sealing properties by screwing, and the exhaust block 9 and the high voltage electrode 21 are surrounded by a screw. A conductive shield block 57 having a T-shaped cross section is disposed and fixed to the frame body 54 with screws.

そして、接地電位に固定された壁体15にシールドブロック57を接続することにより、枠体54を接地することができ、これら接地電位に固定されたシールドブロック57および枠体54にて高電圧電極21を囲むことで、他の成膜室5の高電圧電極21の印加電圧に起因するノイズを遮蔽することができる。また、シールドブロック57には給電体60が貫挿されるとともに、高電圧電極21の中央部には突出部21aが形成され、高電圧電極21は、突出部21aを介して給電体60の一端に接続されている。   Then, by connecting the shield block 57 to the wall body 15 fixed to the ground potential, the frame body 54 can be grounded, and the high voltage electrode is formed by the shield block 57 and the frame body 54 fixed to the ground potential. By surrounding 21, noise caused by the applied voltage of the high voltage electrode 21 in the other film forming chamber 5 can be shielded. In addition, a power feeding body 60 is inserted into the shield block 57, and a protruding portion 21a is formed at the center of the high voltage electrode 21, and the high voltage electrode 21 is connected to one end of the power feeding body 60 through the protruding portion 21a. It is connected.

また、接地電極22には、可撓性基板1を加熱するヒータ23および可撓性基板1の温度を計測する熱電対25が内蔵され、接地電極22は、枠体54の接触面と平行が保たれるようにして、支持体33にて把持されている。ここで、支持体33は、例えば、アルミニウムなどの導電性の部材から構成することができ、接地電極22を内部にねじ止め可能な器状とすることができる。そして、支持体33は、成膜用真空室13に挿入されるとともに、可撓性基板1と接触する端面には、シール材331が配置されている。   The ground electrode 22 includes a heater 23 that heats the flexible substrate 1 and a thermocouple 25 that measures the temperature of the flexible substrate 1. The ground electrode 22 is parallel to the contact surface of the frame 54. It is held by the support 33 so as to be maintained. Here, the support body 33 can be comprised from electroconductive members, such as aluminum, for example, and can be made into the container shape which can screw the ground electrode 22 inside. The support 33 is inserted into the film-forming vacuum chamber 13, and a sealing material 331 is disposed on the end surface in contact with the flexible substrate 1.

また、壁体15の外面には固定体31が設置され、固定体31には、壁体15の貫通穴を介して成膜用真空室13に連通する連通穴が形成されている。ここで、壁体15の貫通穴および固定体31の連通穴は、成膜用真空室13と外界との圧力差に起因する壁体15の歪中心を通るように形成することができる。そして、固定体31の連通穴を壁体15の貫通穴に同心に位置合わせを行い、シール材311を介して成膜用真空室13と気密が保たれるようにして壁体15にねじ止めすることができる。   Further, a fixed body 31 is installed on the outer surface of the wall body 15, and a communication hole communicating with the film forming vacuum chamber 13 through the through hole of the wall body 15 is formed in the fixed body 31. Here, the through hole of the wall body 15 and the communication hole of the fixing body 31 can be formed so as to pass through the strain center of the wall body 15 caused by the pressure difference between the film forming vacuum chamber 13 and the outside. Then, the communication hole of the fixing body 31 is concentrically aligned with the through hole of the wall body 15, and is screwed to the wall body 15 so as to be kept airtight with the film forming vacuum chamber 13 through the sealing material 311. can do.

また、固定体31上には、固定体31の平面に垂直な2対の対向する基準面を構成するガイド体32が設けられ、ねじ止めにて固定体31に固定することができる。ここで、ガイド体32の基準面は、壁体15の歪中心に対して実質的に点対称になる位置に配置することができる。例えば、ガイド体32の基準面は、壁体15の歪中心を基準に等分振り分けし、壁体15の歪中心に対して同心円上に配置することができる。   Further, on the fixed body 31, guide bodies 32 constituting two pairs of opposing reference surfaces perpendicular to the plane of the fixed body 31 are provided, and can be fixed to the fixed body 31 by screwing. Here, the reference surface of the guide body 32 can be disposed at a position that is substantially point-symmetric with respect to the strain center of the wall body 15. For example, the reference surface of the guide body 32 can be equally divided with respect to the strain center of the wall body 15 and arranged concentrically with respect to the strain center of the wall body 15.

さらに、固定体31上には、ガイド体32の基準面に勘合され、可撓性基板1の成膜面が接地電極22にて挟み込まれるように支持体33を案内するレール34が設けられるとともに、レール34による案内方向に支持体33を可動させる伸縮可能な伸縮体35が設けられている。
ここで、レール34は、可動部材および固定部材から構成され、可動部材が直進性よく平行移動できるようにするために、可動部材と固定部材との間には溝案内機構を設けることができる。そして、可動部材は支持体33にねじ止めにて固定するとともに、固定部材はガイド体32の基準面に勘合することができる。
Further, a rail 34 is provided on the fixed body 31 to guide the support body 33 so that the film formation surface of the flexible substrate 1 is sandwiched by the ground electrode 22 so as to be fitted to the reference surface of the guide body 32. An extendable / contractible body 35 that moves the support 33 in the direction of guide by the rail 34 is provided.
Here, the rail 34 includes a movable member and a fixed member, and a groove guide mechanism can be provided between the movable member and the fixed member so that the movable member can be translated in a straight line. The movable member is fixed to the support 33 by screwing, and the fixed member can be fitted to the reference surface of the guide body 32.

また、伸縮体35は、例えば、ステンレスなどで構成されたばね性の部材を用いることができ、支持体33を内部に貫挿可能な伸縮性の筒状とすることができる。そして、伸縮体35の端部は、シール材351、352をそれぞれ介して固定体31および支持体33に固定することができる。
さらに、成膜用真空室13の壁体15の外側には、支持体33を駆動するアクチュエータ24が設けられている。そして、アクチュエータ24は、支持体33を駆動し、枠体54の端面に可撓性基板1を密着させることにより、気密に保つことのできる成膜室5を形成することができる。
In addition, for example, a spring member made of stainless steel or the like can be used as the stretchable body 35, and the stretchable body 35 can be formed into a stretchable cylindrical shape that can be inserted through the support 33. And the edge part of the expansion-contraction body 35 can be fixed to the fixing body 31 and the support body 33 through the sealing materials 351 and 352, respectively.
Further, an actuator 24 for driving the support 33 is provided outside the wall 15 of the film forming vacuum chamber 13. Then, the actuator 24 can form the film forming chamber 5 that can be kept airtight by driving the support 33 and bringing the flexible substrate 1 into close contact with the end face of the frame body 54.

そして、排気ブロック9は高電圧電極21と密着し、排気ブロック9に開けられた排気口72を介して排気系に接続されることで、各成膜室5を一括して成膜圧力に保つことができる。
そして、薄膜製造装置100では、送り室11から引き出された2列の可撓性基板1を成膜用真空室13に並行して搬送し、可撓性基板1を一旦停止させて成膜室5を形成してから、可撓性基板1の成膜面上にプラズマCVDにて成膜を行い、可撓性基板1を解放して巻き取り室14に搬送することで、スッテピングロール方式にて成膜を行うことができる。
The exhaust block 9 is in close contact with the high voltage electrode 21 and is connected to the exhaust system through an exhaust port 72 opened in the exhaust block 9 so that the film forming chambers 5 are collectively maintained at the film forming pressure. be able to.
In the thin film manufacturing apparatus 100, the two rows of flexible substrates 1 drawn from the feed chamber 11 are transported in parallel to the film forming vacuum chamber 13, and the flexible substrate 1 is temporarily stopped to form the film forming chamber. 5 is formed, and then a film is formed on the film formation surface of the flexible substrate 1 by plasma CVD. The flexible substrate 1 is released and transported to the take-up chamber 14, so that a stepping roll method is used. The film can be formed by

すなわち、搬入ロール2から引き出された可撓性基板1は成膜用真空室13に搬送され、高電圧電極21と接地電極22との間に保持された状態で一旦停止される。そして、高電圧電極21と接地電極22との間に可撓性基板1が保持されると、アクチュエータ24は、レール34に沿って支持体33を駆動することにより、伸縮体35を伸縮させながら枠体54の端面に可撓性基板1を密着させ、成膜室5を形成する。これにより、外界との気密性を保ちながら、支持体33にて把持された接地電極22を倒れおよび傾きなく、しかも直進性よく移動させて可撓性基板1を挟み込ませることができる。   That is, the flexible substrate 1 drawn out from the carry-in roll 2 is transported to the film forming vacuum chamber 13 and is temporarily stopped while being held between the high voltage electrode 21 and the ground electrode 22. When the flexible substrate 1 is held between the high-voltage electrode 21 and the ground electrode 22, the actuator 24 drives the support body 33 along the rail 34 to expand and contract the expansion / contraction body 35. The flexible substrate 1 is brought into close contact with the end face of the frame body 54 to form the film forming chamber 5. Accordingly, the flexible substrate 1 can be sandwiched by moving the ground electrode 22 gripped by the support body 33 without falling down or tilting with good rectilinearity while maintaining airtightness with the outside world.

ここで、壁体15の貫通穴および固定体31の連通穴は、成膜用真空室13と外界との圧力差に起因する壁体15の歪中心を通るように形成することで、外界と成膜用真空室13との圧力差に起因して壁体15に歪が発生した場合においても、壁体15の湾曲状の歪と同方向に固定体31、支持体33および伸縮体35を動かすことができ、大気開放時に調整された支持体33の接触面との面合わせ精度を維持することが可能となることから、成膜室5の気密性を良好に保つことができる。   Here, the through hole of the wall body 15 and the communication hole of the fixed body 31 are formed so as to pass through the strain center of the wall body 15 due to the pressure difference between the film forming vacuum chamber 13 and the outside world. Even when the wall 15 is distorted due to a pressure difference with the film forming vacuum chamber 13, the fixed body 31, the support 33, and the telescopic body 35 are moved in the same direction as the curved distortion of the wall 15. It can be moved, and it is possible to maintain the surface alignment accuracy with the contact surface of the support 33 adjusted when the atmosphere is released, so that the airtightness of the film forming chamber 5 can be kept good.

そして、成膜用真空室13内に成膜室5が形成されると、排気口72を介して成膜室5内を排気しながら、a−Si系の薄膜を形成するための反応ガスを成膜室5内に導入し、高電圧電極21と接地電極22との間に電圧を印加することにより、成膜室5内にプラズマを発生させ、プラズマCVDにて成膜室5内の可撓性基板1の面上にa−Si系の薄膜を形成する。   When the film forming chamber 5 is formed in the film forming vacuum chamber 13, a reaction gas for forming an a-Si-based thin film is generated while exhausting the film forming chamber 5 through the exhaust port 72. By introducing the film into the film forming chamber 5 and applying a voltage between the high voltage electrode 21 and the ground electrode 22, plasma is generated in the film forming chamber 5, and the inside of the film forming chamber 5 can be formed by plasma CVD. An a-Si thin film is formed on the surface of the flexible substrate 1.

そして、可撓性基板1の面上の成膜が終了した後、アクチュエータ24にて支持体33を上下に数十mmだけ移動させることにより、支持体33に抑えられていた可撓性基板1を解放し、可撓性基板1を搬送しながら、巻き取り室14内の搬出ロール3にて巻き取ることができる。
これにより、成膜用真空室13と外界との圧力差に起因する壁体15の歪中心に対して点対称になる位置で接地電極22を支持しながら、成膜用真空室13内に成膜室5を形成することができる。
After the film formation on the surface of the flexible substrate 1 is completed, the flexible substrate 1 held by the support 33 is moved by moving the support 33 up and down by the actuator 24 by the actuator 24. And the flexible substrate 1 can be conveyed and taken up by the carry-out roll 3 in the take-up chamber 14.
As a result, the ground electrode 22 is supported in a position symmetric with respect to the strain center of the wall 15 caused by the pressure difference between the film forming vacuum chamber 13 and the outside, and the film forming vacuum chamber 13 is formed. The film chamber 5 can be formed.

このため、外界と成膜用真空室13との圧力差に起因して壁体15に歪が発生した場合においても、接地電極22の接触面の傾きが打ち消されるように、接地電極22を支持することができ、可撓性基板1の幅が1mmを超えるような大面積化が図られた場合においても、壁体15の板厚を増加させることなく、成膜室5の気密性を維持することが可能となることから、コストアップを抑制しつつ、可撓性基板1に形成される光電変換層を膜質の劣化を抑制することが可能となる。   Therefore, the ground electrode 22 is supported so that the inclination of the contact surface of the ground electrode 22 is canceled even when the wall 15 is distorted due to the pressure difference between the outside and the film forming vacuum chamber 13. Even when the area of the flexible substrate 1 is increased so that the width of the flexible substrate 1 exceeds 1 mm, the airtightness of the film forming chamber 5 is maintained without increasing the thickness of the wall 15. Therefore, it is possible to suppress deterioration in film quality of the photoelectric conversion layer formed on the flexible substrate 1 while suppressing an increase in cost.

本発明の薄膜製造装置は、a−Siなどの薄膜光電変換素子の製造方法に好適に利用することができ、特に、長尺の可撓性基板上に複数の層が形成される薄膜素子の製造方法に広く用いることができる。   The thin film manufacturing apparatus of the present invention can be suitably used for a manufacturing method of a thin film photoelectric conversion element such as a-Si, and in particular, a thin film element in which a plurality of layers are formed on a long flexible substrate. It can be widely used in manufacturing methods.

本発明の一実施形態に係る薄膜製造装置の概略構成を示す平面断面図である。It is a plane sectional view showing a schematic structure of a thin film manufacturing device concerning one embodiment of the present invention. 図1のA−A´線で切断した横断面図である。It is the cross-sectional view cut | disconnected by the AA 'line of FIG. 従来の薄膜製造装置の概略構成を示す平面断面図である。It is a plane sectional view showing a schematic structure of a conventional thin film manufacturing apparatus. 図3の薄膜製造装置の成膜時の成膜室部分の概略構成を拡大して示す断面図、図3の薄膜製造装置の基板搬送時の成膜室部分の概略構成を拡大して示す断面図である。3 is an enlarged cross-sectional view showing a schematic configuration of a film forming chamber portion during film formation of the thin film manufacturing apparatus in FIG. 3, and a cross-sectional view showing an enlarged schematic configuration of a film forming chamber portion during substrate transfer in the thin film manufacturing apparatus of FIG. FIG. 外界と成膜用真空室との圧力差に起因する壁体歪の様相を示す斜視図である。It is a perspective view which shows the aspect of the wall body distortion resulting from the pressure difference of the external field and the vacuum chamber for film-forming.

符号の説明Explanation of symbols

1 可搬性基板
2 搬入ロール
3 搬出ロール
5 成膜室
9 排気部材
11 送り室
13 成膜用真空室
14 巻き取り室
15 壁体
31 固定体
52、311、331、351、352 シール材
32 ガイド体
33 支持体
34 レール
35 伸縮体
21 高電圧電極
21a 突出部
22 接地電極
23 ヒータ
24 アクチュエータ
53 間隔材
54 枠体
57 シールドブロック
60 給電体
70 排気口
100 薄膜製造装置
25 熱電対
DESCRIPTION OF SYMBOLS 1 Portable board | substrate 2 Carry-in roll 3 Carry-out roll 5 Film-forming chamber 9 Exhaust member 11 Feed chamber 13 Film-forming vacuum chamber 14 Wind-up chamber 15 Wall body 31 Fixed body 52, 311, 331, 351, 352 Sealing material 32 Guide body 33 Support body 34 Rail 35 Stretchable body 21 High voltage electrode 21a Protruding portion 22 Ground electrode 23 Heater 24 Actuator 53 Spacing material 54 Frame body 57 Shield block 60 Power supply body 70 Exhaust port 100 Thin film manufacturing apparatus 25 Thermocouple

Claims (3)

壁体にて外界と隔離された成膜用真空室と、
前記成膜用真空室に可撓性基板を搬送する搬送手段と、
前記可撓性基板の成膜面を蓋状に挟み込むことにより前記成膜用真空室内に成膜室を形成する挟持部材と、
前記可撓性基板の成膜面が挟み込まれるように前記挟持部材を駆動するアクチュエータと、
前記成膜用真空室と外界との圧力差に起因する壁体の歪中心に対して実質的に点対称になる位置で前記挟持部材を前記壁体上で支持する支持手段とを備えることを特徴とする薄膜製造装置。
A vacuum chamber for film formation separated from the outside by a wall,
Transport means for transporting the flexible substrate to the vacuum chamber for film formation;
A sandwiching member that forms a film forming chamber in the film forming vacuum chamber by sandwiching the film forming surface of the flexible substrate in a lid shape;
An actuator for driving the clamping member so that the film-forming surface of the flexible substrate is sandwiched;
Support means for supporting the clamping member on the wall body at a position that is substantially point-symmetric with respect to the strain center of the wall body caused by a pressure difference between the film forming vacuum chamber and the outside. A thin film manufacturing apparatus.
壁体にて外界と隔離された成膜用真空室と、
前記成膜用真空室に可撓性基板を搬送する搬送手段と、
前記可撓性基板の成膜面を蓋状に挟み込むことにより前記成膜用真空室内に成膜室を形成する挟持部材と、
前記可撓性基板の成膜面が挟み込まれるように前記挟持部材を駆動するアクチュエータと、
前記成膜用真空室と外界との圧力差に起因する壁体の歪中心を通して前記成膜用真空室に連通する穴が形成された固定体と、
前記壁体の歪中心に対して実質的に点対称になる位置に前記固定体の平面に垂直な2対の対向する基準面を構成するガイド体と、
前記挟持部材の対向面間の平行を保ちながら、前記挟持部材を把持する支持体と、
前記ガイド体の基準面に勘合され、前記可撓性基板の成膜面が前記挟持部材にて挟み込まれるように前記支持体を案内するレールと、
前記レールによる案内方向に前記支持体を可動させる伸縮可能な伸縮体とを備えることを特徴とする薄膜製造装置。
A vacuum chamber for film formation separated from the outside by a wall,
Transport means for transporting the flexible substrate to the vacuum chamber for film formation;
A sandwiching member that forms a film forming chamber in the film forming vacuum chamber by sandwiching the film forming surface of the flexible substrate in a lid shape;
An actuator for driving the clamping member so that the film-forming surface of the flexible substrate is sandwiched;
A fixed body in which a hole communicating with the film forming vacuum chamber is formed through the strain center of the wall body caused by a pressure difference between the film forming vacuum chamber and the outside;
A guide body constituting two pairs of opposing reference planes perpendicular to the plane of the fixed body at a position substantially point-symmetric with respect to the strain center of the wall body;
A support for gripping the clamping member while maintaining parallelism between the opposing surfaces of the clamping member;
A rail that is fitted to the reference surface of the guide body and guides the support body so that the film-forming surface of the flexible substrate is sandwiched between the sandwiching members;
A thin film manufacturing apparatus comprising: an extendable / contractible body that moves the support body in a guide direction by the rail.
壁体にて外界と隔離された成膜用真空室に可撓性基板を搬送する工程と、
前記成膜用真空室と外界との圧力差に起因する壁体の歪中心に対して実質的に点対称になる位置で支持しながら、前記可撓性基板の成膜面が蓋状に挟み込まれるように挟持部材を駆動することにより、前記成膜用真空室内に成膜室を形成する工程と、
前記成膜室内に反応ガスを導入しながら、前記成膜室内にプラズマを発生させることにより、前記可撓性基板の成膜面に成膜を行う工程とを備えることを特徴とする薄膜製造方法。
Transporting a flexible substrate to a vacuum chamber for film formation separated from the outside by a wall;
The film forming surface of the flexible substrate is sandwiched in a lid shape while supporting at a position that is substantially point-symmetric with respect to the strain center of the wall due to the pressure difference between the film forming vacuum chamber and the outside. Forming a film forming chamber in the film forming vacuum chamber by driving the sandwiching member to be
A method of forming a film on the film formation surface of the flexible substrate by generating plasma in the film formation chamber while introducing a reactive gas into the film formation chamber. .
JP2006136742A 2006-05-16 2006-05-16 Thin film manufacturing apparatus and thin film manufacturing method Expired - Fee Related JP5124982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136742A JP5124982B2 (en) 2006-05-16 2006-05-16 Thin film manufacturing apparatus and thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136742A JP5124982B2 (en) 2006-05-16 2006-05-16 Thin film manufacturing apparatus and thin film manufacturing method

Publications (2)

Publication Number Publication Date
JP2007311417A true JP2007311417A (en) 2007-11-29
JP5124982B2 JP5124982B2 (en) 2013-01-23

Family

ID=38844034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136742A Expired - Fee Related JP5124982B2 (en) 2006-05-16 2006-05-16 Thin film manufacturing apparatus and thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP5124982B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196144A (en) * 2009-02-27 2010-09-09 Fuji Electric Holdings Co Ltd Apparatus for manufacturing thin film
JP2011149050A (en) * 2010-01-21 2011-08-04 Fuji Electric Co Ltd Thin film production device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147242A (en) * 1993-11-24 1995-06-06 Fuji Electric Co Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH07321349A (en) * 1994-05-27 1995-12-08 Fuji Electric Corp Res & Dev Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH07326781A (en) * 1994-06-02 1995-12-12 Fuji Electric Corp Res & Dev Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH08293491A (en) * 1995-04-25 1996-11-05 Fuji Electric Corp Res & Dev Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH11145060A (en) * 1997-11-06 1999-05-28 Fuji Electric Co Ltd Thin film manufacturing apparatus and photoelectric conversion element
JP2000261015A (en) * 1999-03-10 2000-09-22 Toppan Printing Co Ltd Solar cell deposition system
JP2005256100A (en) * 2004-03-12 2005-09-22 Fuji Electric Holdings Co Ltd Thin film production equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147242A (en) * 1993-11-24 1995-06-06 Fuji Electric Co Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH07321349A (en) * 1994-05-27 1995-12-08 Fuji Electric Corp Res & Dev Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH07326781A (en) * 1994-06-02 1995-12-12 Fuji Electric Corp Res & Dev Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH08293491A (en) * 1995-04-25 1996-11-05 Fuji Electric Corp Res & Dev Ltd Manufacturing equipment for thin film photoelectric conversion element
JPH11145060A (en) * 1997-11-06 1999-05-28 Fuji Electric Co Ltd Thin film manufacturing apparatus and photoelectric conversion element
JP2000261015A (en) * 1999-03-10 2000-09-22 Toppan Printing Co Ltd Solar cell deposition system
JP2005256100A (en) * 2004-03-12 2005-09-22 Fuji Electric Holdings Co Ltd Thin film production equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196144A (en) * 2009-02-27 2010-09-09 Fuji Electric Holdings Co Ltd Apparatus for manufacturing thin film
JP2011149050A (en) * 2010-01-21 2011-08-04 Fuji Electric Co Ltd Thin film production device

Also Published As

Publication number Publication date
JP5124982B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN108603291B (en) Vacuum processing systems and methods
KR101593460B1 (en) Ground return for plasma processes
KR102032542B1 (en) Deposition platform for flexible substrates and method of operation thereof
US20100151680A1 (en) Substrate carrier with enhanced temperature uniformity
US20110300694A1 (en) Electrode circuit, film formation device, electrode unit, and film formation method
WO2017221829A1 (en) Plasma treatment apparatus
JP5542488B2 (en) Deposition equipment
JP5199962B2 (en) Vacuum processing equipment
JP4158726B2 (en) Thin film manufacturing equipment
JP6416261B2 (en) Substrate processing apparatus and substrate processing method
WO2011042949A1 (en) Surface wave plasma cvd device and film-forming method
US8776720B2 (en) Linear-type microwave-excited plasma source using a slotted rectangular waveguide as the plasma exciter
JP5124982B2 (en) Thin film manufacturing apparatus and thin film manufacturing method
WO2009148165A1 (en) Film formation apparatus
JPH11288890A (en) Thin film manufacturing equipment
JP4844881B2 (en) Thin film manufacturing equipment
JP4893235B2 (en) Film forming apparatus and film forming method
JP3089336B2 (en) Manufacturing equipment for thin-film photoelectric conversion elements
JP2010196144A (en) Apparatus for manufacturing thin film
JPH11145060A (en) Thin film manufacturing apparatus and photoelectric conversion element
WO2015142131A1 (en) Multi-type deposition apparatus and thin-film forming method using same
JP7286477B2 (en) Thin film forming equipment
JP5535906B2 (en) Thin film solar cell manufacturing equipment
JP5217341B2 (en) Thin film manufacturing equipment
JP2010070816A (en) Substrate treatment device and substrate treatment method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees