JP2007297371A - Dialkoxymagnesium granular material and synthesis and use thereof - Google Patents
Dialkoxymagnesium granular material and synthesis and use thereof Download PDFInfo
- Publication number
- JP2007297371A JP2007297371A JP2007047861A JP2007047861A JP2007297371A JP 2007297371 A JP2007297371 A JP 2007297371A JP 2007047861 A JP2007047861 A JP 2007047861A JP 2007047861 A JP2007047861 A JP 2007047861A JP 2007297371 A JP2007297371 A JP 2007297371A
- Authority
- JP
- Japan
- Prior art keywords
- dialkoxymagnesium
- particle size
- alcohol
- granular material
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008187 granular material Substances 0.000 title claims abstract description 74
- 238000003786 synthesis reaction Methods 0.000 title claims description 4
- 230000015572 biosynthetic process Effects 0.000 title claims description 3
- 239000002245 particle Substances 0.000 claims abstract description 114
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 87
- 239000011148 porous material Substances 0.000 claims abstract description 75
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 45
- 239000011777 magnesium Substances 0.000 claims abstract description 45
- 238000009826 distribution Methods 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 238000010992 reflux Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000005484 gravity Effects 0.000 claims abstract description 14
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 5
- 238000001179 sorption measurement Methods 0.000 claims description 13
- 239000011164 primary particle Substances 0.000 claims description 10
- 238000001308 synthesis method Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 abstract description 18
- 235000019441 ethanol Nutrition 0.000 description 60
- 238000007792 addition Methods 0.000 description 31
- 239000003054 catalyst Substances 0.000 description 25
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 22
- 239000002994 raw material Substances 0.000 description 15
- 150000001336 alkenes Chemical class 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000002685 polymerization catalyst Substances 0.000 description 8
- 229920000098 polyolefin Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 7
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 238000005453 pelletization Methods 0.000 description 5
- -1 propylene Chemical class 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- ZFAGXQVYYWOLNK-UHFFFAOYSA-N CCO[Mg] Chemical compound CCO[Mg] ZFAGXQVYYWOLNK-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- CKHJYUSOUQDYEN-UHFFFAOYSA-N gallium(3+) Chemical compound [Ga+3] CKHJYUSOUQDYEN-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、オレフィン重合用固体触媒成分の調製に用いられるジアルコキシマグネシウム粒状物、その合成及び利用に関する。 The present invention relates to a dialkoxymagnesium granule used for the preparation of a solid catalyst component for olefin polymerization, its synthesis and use.
プロピレンなどのオレフィン類の重合用固体触媒成分として、ジアルコキシマグネシウム、特にジエトキシマグネシウムが用いられている。ここで用いられるジエトキシマグネシウムは球状もしくは楕円体状であり、文献上はD50で示される平均粒径が10〜100μmのものが知られているが、実用に供されているものは50μm以下のものが多い。これは平均粒径を大きくすると触媒強度が低下し、使用時に微粉化する等の問題が生じるためである。 As a solid catalyst component for polymerization of olefins such as propylene, dialkoxymagnesium, particularly diethoxymagnesium is used. Here diethoxy magnesium used in a spherical or ellipsoidal, but will in the literature are known having an average particle diameter represented by D 50 is 10 to 100 [mu] m, which have been put to practical use is 50μm or less There are many things. This is because when the average particle size is increased, the strength of the catalyst is reduced, and problems such as pulverization occur during use.
ジエトキシマグネシウムの粒状物を用いて得られたオレフィン重合用触媒を使用した場合、得られるオレフィン重合体の形状は触媒形状が相似形に拡大複製された形状となることが知られている。従って、触媒形状が球状の場合には得られる重合体の形状も球状である。得られる重合体の形状が球状であることは、流動性が優れているという理由で好ましいけれども、この場合は重合用触媒の形状も球状であることが必要となり、そのためには触媒成分となるジエトキシマグネシウムの形状も球状であることが重要である。 When an olefin polymerization catalyst obtained using diethoxymagnesium granules is used, it is known that the resulting olefin polymer has a shape obtained by expanding and replicating the catalyst shape to a similar shape. Therefore, when the catalyst shape is spherical, the resulting polymer is also spherical. Although it is preferable that the resulting polymer has a spherical shape because of excellent fluidity, in this case, the polymerization catalyst must also have a spherical shape. It is important that the shape of ethoxymagnesium is also spherical.
また、粒径が50μm程度のジエトキシマグネシウム粒状物を使用した重合用触媒を用いて得られるオレフィン重合体の粒子形状は触媒の形状と相似形に拡大複製されるが、この重合体は射出成形機等の成形機で直接成形加工するには未だ小さすぎる微粉末形状を有する。そのため、この重合で得られた重合体微粉末はペレット化してから成形加工されて製品になる。重合で得られたオレフィン重合体が、ペレット化の段階(工程)を経ることなしに直接成形加工され、製品化され得ることになると、コスト的に大きな価値が生じることになる。そのためには、ジエトキシマグネシウムは、粒径が80μm以上、好ましくは100μm以上の球形もしくは楕円体状で、粒度分布の範囲の狭いものであることが必要になってくる。 In addition, the particle shape of the olefin polymer obtained using a polymerization catalyst using diethoxymagnesium particles having a particle size of about 50 μm is enlarged and replicated in a shape similar to the shape of the catalyst. This polymer is injection molded. It has a fine powder shape that is still too small to be directly molded by a molding machine such as a machine. Therefore, the polymer fine powder obtained by this polymerization is pelletized and then processed into a product. If the olefin polymer obtained by the polymerization can be directly molded and commercialized without going through the pelletization stage (process), a great value is generated in terms of cost. For this purpose, diethoxymagnesium is required to have a spherical or ellipsoidal shape with a particle size of 80 μm or more, preferably 100 μm or more, and a narrow particle size distribution range.
金属マグネシウムとアルコールとの直接反応によって球状のジアルコキシマグネシウムを得る方法は、例えば、特許文献1に記載されているように古くから知られている。また、近年においては、上記のようにして得られる球形状のジアルコキシマグネシウムをアルコキシチタン化合物と不活性有機溶媒中で接触させて懸濁液を形成してから溶媒を除去する改良法も提案されている(特許文献2)。 A method of obtaining spherical dialkoxymagnesium by direct reaction of metal magnesium and alcohol has been known for a long time as described in Patent Document 1, for example. In recent years, an improved method has also been proposed in which the spherical dialkoxymagnesium obtained as described above is contacted with an alkoxytitanium compound in an inert organic solvent to form a suspension, and then the solvent is removed. (Patent Document 2).
しかしながら、オレフィン重合体のペレット化が不要になる程に大きいサイズの球状ジアルコキシマグネシウムを得ることは困難であり、大きいサイズのものが得られても極めて強度が小さいという欠点がある。このように強度が十分でないジアルコキシマグネシウムを出発材料としてオレフィン重合用触媒を調製すると、その調製過程において出発材料の崩壊が起こり、大きなサイズで揃った形状の触媒を得ることはできない。このような不揃いの形状の触媒を用いて得られる重合体もまた粒径が不揃いで、微粉状のものが多くなリ、形状も球状ではない重合体が多くなり、流動性などに欠けるものとなってしまう。 However, it is difficult to obtain spherical dialkoxymagnesium having a size large enough to eliminate the need for pelletizing the olefin polymer, and there is a drawback that the strength is extremely small even if a large size is obtained. Thus, when a catalyst for olefin polymerization is prepared using dialkoxymagnesium having insufficient strength as a starting material, the starting material collapses in the preparation process, and a catalyst having a uniform shape in a large size cannot be obtained. Polymers obtained using such irregularly shaped catalysts also have irregular particle sizes, many fine powders, many non-spherical polymers, and lack of fluidity. turn into.
また、従来提案されているジエトキシマグネシウムの製法では、1〜10μm以下の微細粒子の含有割合が製造された製品全体のおよそ5〜8質量%以上に達する。かかる粒子は触媒調製された後も微細な触媒を形成するため、これを用いて得られた重合体中にも微細な重合体粉体が多く存在し、流動性を妨げる原因となっている。従って、現状では10μm以下の微細粒径の粒子を含む50μm以下の平均粒径のジエトキシマグネシウムが使われているのであるが、これを大粒径化し、また微細粒子を極力少なくすることが望まれている。 Moreover, in the conventionally proposed process for producing diethoxymagnesium, the content ratio of fine particles of 1 to 10 μm or less reaches approximately 5 to 8% by mass or more of the entire manufactured product. Since such particles form a fine catalyst even after the catalyst is prepared, a large amount of fine polymer powder is present in the polymer obtained by using this, which is a cause of hindering fluidity. Therefore, at present, diethoxymagnesium having an average particle size of 50 μm or less including particles having a fine particle size of 10 μm or less is used, but it is hoped that this particle size will be increased and that the fine particles will be reduced as much as possible. It is rare.
本発明は、上記の如き問題点を解消し、微粉を含まず、粒度分布が均一な、大粒径のジアルコキシマグネシウム粒状物及びその合成方法を提供することを目的とする。 An object of the present invention is to solve the above problems, and to provide a dialkoxymagnesium granule having a large particle size that does not contain fine powder and has a uniform particle size distribution and a synthesis method thereof.
即ち、本発明は、上記課題を解決するものであって、例えば、次の構成からなる。
(1)D50で示される平均粒径が60〜200μmの範囲の球状又は楕円体状の粒子形状を有し、0.2〜0.7g/mlの嵩比重を有し、内部にTEM観察による孔径が0.1〜5μmの細孔を多数有し、(D90−D10)/D50で示される粒度分布が1以下である、狭い粒度分布のジアルコキシマグネシウム粒状物。
(2)BJH吸着側細孔分布より求めた比表面積と細孔容積から算出した平均孔径が0.1〜50nmの微細孔を多数有し、前記微細孔の容積が0.01〜0.5cm3/gである、上記(1)に記載のジアルコキシマグネシウム粒状物。
That is, this invention solves the said subject, Comprising: For example, it consists of the following structures.
(1) Average particle diameter represented by D 50 has a spherical or ellipsoidal particle shapes ranging 60~200Myuemu, has a bulk density of 0.2 to 0.7 g / ml, TEM observation inside A dialkoxymagnesium granular material having a narrow particle size distribution, which has a large number of pores having a pore diameter of 0.1 to 5 μm and a particle size distribution represented by (D 90 -D 10 ) / D 50 is 1 or less.
(2) There are many fine pores having an average pore diameter of 0.1 to 50 nm calculated from the specific surface area and pore volume determined from the BJH adsorption side pore distribution, and the volume of the fine pores is 0.01 to 0.5 cm. The dialkoxymagnesium granular material according to (1) above, which is 3 / g.
(3)粒径が10μm以下の粒子を実質的に含まない、上記(1)または(2)に記載のジアルコキシマグネシウム粒状物。
(4)粒子径が1〜10μmの球状、楕円体状、鱗片状又は針状であるジアルコキシマグネシウムの一次粒子が凝集した多孔質のものからなる、上記(1)〜(3)のいずれかに記載のジアルコキシマグネシウム粒状物。
(5)N2吸着BET比表面積が50〜500m2/gである、上記(1)〜(4)のいずれかに記載のジアルコキシマグネシウム粒状物。
(6)凝集した粒状物の破壊強度が0.5〜10MPaである、上記(1)〜(5)のいずれかに記載のジアルコキシマグネシウム粒状物。
(3) Dialkoxymagnesium granular material as described in said (1) or (2) which does not contain a particle | grain with a particle size of 10 micrometers or less substantially.
(4) Any one of the above (1) to (3), which is composed of a porous aggregate of primary particles of dialkoxymagnesium having a spherical, ellipsoidal, scaly or needle shape with a particle diameter of 1 to 10 μm. Dialkoxymagnesium granular material described in 1.
(5) N 2 adsorption BET specific surface area of 50 to 500 m 2 / g, the (1) dialkoxy magnesium granules according to any one of the - (4).
(6) The dialkoxymagnesium granule according to any one of (1) to (5), wherein the fracture strength of the aggregated granule is 0.5 to 10 MPa.
(7)金属マグネシウムとアルコールとの反応によってジアルコキシマグネシウムを合成するに際し、反応系への金属マグネシウムとアルコールとの最終使用割合を質量比で1/4〜1/25とし、アルコール還流下の反応系に径が500μm以下の粒状の金属マグネシウムとアルコールとを連続的または断続的に分割添加し、100〜1200分間反応させることを含む、D50で示される平均粒径が60〜200μmの範囲の球状又は楕円体状の粒子形状を有し、0.2〜0.7g/mlの嵩比重を有し、内部にTEM観察による孔径が0.1〜5μmの細孔を多数有し、(D90−D10)/D50で示される粒度分布が1以下であるジアルコキシマグネシウム粒状物の合成方法。
(8)ジアルコキシマグネシウム粒状物が、BJH吸着側細孔分布より求めた比表面積と細孔容積から算出した平均孔径が0.1〜50nmの微細孔を多数有し、前記微細孔の容積が0.01〜0.5cm3/gである、上記(7)に記載の合成方法。
(9)金属マグネシウムとアルコールの添加を、それぞれを10分割以上とし、かつ添加間隔を10〜120分の範囲から任意に選んだ間隔の組み合わせで、添加時間の合計が1200分以下となる範囲で行う、上記(7)又は(8)に記載の合成方法。
(7) When synthesizing dialkoxymagnesium by the reaction of metal magnesium and alcohol, the final use ratio of metal magnesium and alcohol to the reaction system is set to 1/4 to 1/25 by mass ratio, and the reaction is performed under reflux of alcohol. system size is added continuously or intermittently divide the following granular metal magnesium with an alcohol 500μm to, which comprises reacting 100 to 1200 minutes, an average particle size in the range of 60~200μm represented by D 50 It has a spherical or ellipsoidal particle shape, has a bulk specific gravity of 0.2 to 0.7 g / ml, and has a large number of pores having a pore diameter of 0.1 to 5 μm by TEM observation inside (D 90 -D 10 ) / D 50 Synthesis method of dialkoxymagnesium granular material having a particle size distribution of 1 or less.
(8) The dialkoxymagnesium granular material has many fine pores having an average pore diameter of 0.1 to 50 nm calculated from the specific surface area and pore volume determined from the BJH adsorption side pore distribution, and the volume of the fine pores is The synthesis method according to the above (7), which is 0.01 to 0.5 cm 3 / g.
(9) Addition of metallic magnesium and alcohol is divided into 10 or more, and the addition interval is arbitrarily selected from the range of 10 to 120 minutes, and the total addition time is 1200 minutes or less. The synthesis method according to (7) or (8) above.
本発明によれば、微粉を含まず、粒度分布が均一な、大粒径のジアルコキシマグネシウム粒状物が得られ、この粒状物を触媒成分とするオレフィン重合用触媒を用いてオレフィン重合を行うと、その成形に際してペレット化工程を不要とするのに十分な程度に大粒径のオレフィン重合体を得ることができる。
より具体的には、本発明ジアルコキシマグネシウム粒状物は、粒度分布の狭い球状もしくは楕円体状であり、平均の粒径が従来品に比して大きくかつ微粉がなく、内部に多数存在している細孔の平均孔径が0.1〜5μmという比較的に大きな径を有している。さらに、好ましくは、この細孔とは別に0.1〜50nmの微細孔を多数有し、この微細孔容積は0.01〜0.5cm3/gである。この粒状物を触媒成分として用いたオレフィン重合用触媒においても、微粉、粗粉が少なく、成形に際してペレット化工程を不要とするのに十分な程度に大粒径のオレフィン重合体を与えることが可能な、80〜100μmの粒径を有することができる。
According to the present invention, a dialkoxymagnesium granular material having a large particle size, which does not contain fine powder and has a uniform particle size distribution, is obtained, and olefin polymerization is carried out using an olefin polymerization catalyst having the granular material as a catalyst component. Thus, it is possible to obtain an olefin polymer having a large particle size sufficient to eliminate the need for a pelletizing step during the molding.
More specifically, the dialkoxymagnesium granular material of the present invention has a spherical or ellipsoidal shape with a narrow particle size distribution, has an average particle size larger than that of conventional products, has no fine powder, and is present in large numbers inside. The pores having a relatively large average pore diameter of 0.1 to 5 μm. Further, preferably, there are many fine pores of 0.1 to 50 nm apart from the fine pores, and the fine pore volume is 0.01 to 0.5 cm 3 / g. Olefin polymerization catalysts using this granular material as a catalyst component can also provide an olefin polymer having a large particle size sufficient to eliminate the need for a pelletizing step during molding, with few fine and coarse powders. It can have a particle size of 80-100 μm.
以下に本発明の好ましい実施の形態について説明するが、本発明はこれらの形態のみに限定されるものではなく、その精神と実施の範囲内において様々な変形が可能であることを理解されたい。
本発明で用いるD10、D50、D90は、当業者によく知られたものであり、それぞれ、積算粒度で10%、50%、90%における粒径を示している。即ち、例えば、D10は、粒状物の粒径分布を測定して粒状物の質量の積算値が10質量%となったときの粒径を指すものである。従って、D50は、粒状物全体の粒径の中間値を示し、これが平均粒径を示すことになる。
Hereinafter, preferred embodiments of the present invention will be described. However, it should be understood that the present invention is not limited to these embodiments, and various modifications can be made within the spirit and scope of the present invention.
D 10 , D 50 , and D 90 used in the present invention are well known to those skilled in the art, and indicate the particle sizes at 10%, 50%, and 90%, respectively, in terms of cumulative particle size. That is, for example, D 10 is intended to refer to the particle diameter when the cumulative value of the mass of particulate matter by measuring the particle size distribution of the granules became 10 mass%. Thus, D 50 represents the intermediate value of the particle total particle size becomes to indicate the average particle size.
本発明の大粒径ジアルコキシマグネシウム粒状物は、粒子径が1〜10μmの球状、楕円体状、鱗片状又は針状であるジアルコキシマグネシウムの一次粒子が凝集した多孔質のものからなっていてよく、粒径が10μm以下の粒子を実質的に含まないのが好ましい。粒状物の内部に存在する、TEM(透過型電子顕微鏡)観察による孔径が0.1〜5μmの細孔は、前記したような一次粒子が凝集したときに生じた粒子間の隙間からなるものであると思われる。この粒子間の隙間が10μm以上になると一次粒子間の結合が弱く、粒状物の強度が不十分となることがある。 The large-diameter dialkoxymagnesium granular material of the present invention is made of a porous material in which primary particles of dialkoxymagnesium having a particle diameter of 1 to 10 μm in the form of a sphere, ellipsoid, scale or needle are aggregated. It is preferable that the particles having a particle size of 10 μm or less are substantially not contained. The pores having a pore diameter of 0.1 to 5 μm observed in a TEM (transmission electron microscope) are formed by gaps between particles formed when the primary particles are aggregated as described above. It appears to be. When the gap between the particles is 10 μm or more, the bond between the primary particles is weak, and the strength of the granular material may be insufficient.
本発明の大粒径ジアルコキシマグネシウム粒状物は、好ましくは、前記の一次粒子間の隙間と推定される細孔の他に、BJH吸着側細孔分布より求めた比表面積と細孔容積から算出した平均孔径が0.1〜50nmの微細孔を多数有しており、この微細孔の容積は0.01〜0.5cm3/gである。この微細孔は、本発明の粒状物を形成している各々の一次粒子中に多数分布しているものであってよい。ここで用いたBJH法はBarrett−Joyner−Halenda法の省略表現であり、この方法の詳細はE.P.Barrett、L.G.Joyner、P.P.Halender;J.Am.Chem.Soc.73,373(1951)に記載されている。 The large-diameter dialkoxymagnesium granule of the present invention is preferably calculated from the specific surface area and pore volume obtained from the BJH adsorption side pore distribution in addition to the pores estimated as the gaps between the primary particles. The fine pores have a number of fine pores with an average pore diameter of 0.1 to 50 nm, and the volume of the fine pores is 0.01 to 0.5 cm 3 / g. A large number of the fine pores may be distributed in each primary particle forming the granular material of the present invention. The BJH method used here is an abbreviation for the Barrett-Joyner-Halenda method. P. Barrett, L.M. G. Joyner, P.M. P. Halender; Am. Chem. Soc. 73, 373 (1951).
本発明のジアルコキシマグネシウム粒状物の粒度分布は、(D90−D10)/D50の式で算出したものであり、1以下の極めて狭い分布を有している。このような粒度分布の狭い粒状物によれば、オレフィン重合用触媒を形成した時の触媒粒子の粒度分布も狭くなり、この触媒を用いて得られるオレフィン重合体の粒状体も粒度分布が狭く、良好な流動性を有することとなる。そして、触媒粒子の粒径が揃っているとオレフィン重合の反応速度が大きく、重合体の生産性が高苦なる。また、触媒中に微粉がないため、重合時の反応欠陥がなくなり、微粉状重合体も少なくなるので重合体の取り扱いの際に爆発の危険性が回避される。さらに、粗粒子も少ないため、重合体の流動性の低下が生じにくい利点がある。 The particle size distribution of the dialkoxymagnesium granule of the present invention is calculated by the formula of (D 90 -D 10 ) / D 50 and has a very narrow distribution of 1 or less. According to such a granular material having a narrow particle size distribution, the particle size distribution of the catalyst particles when the olefin polymerization catalyst is formed is narrow, and the particle size distribution of the olefin polymer granules obtained using this catalyst is also narrow, It will have good fluidity. And when the particle size of the catalyst particles is uniform, the reaction rate of olefin polymerization is high, and the productivity of the polymer becomes high. In addition, since there is no fine powder in the catalyst, there are no reaction defects during polymerization, and the amount of fine powder polymer is reduced, thereby avoiding the danger of explosion when handling the polymer. Furthermore, since there are few coarse particles, there exists an advantage which a fluid fall of a polymer does not produce easily.
本発明のジアルコキシマグネシウム粒状物においては、N2吸着BET法による比表面面積が50〜500m2/gの範囲にあるのが好ましく、また粒状物の破壊強度が0.5〜10MPaの範囲にあるのが好ましい。さらに、嵩比重は0.2〜0.7g/mlの範囲にあり、好ましくは0.3〜0.5g/mlの範囲にある。 In the dialkoxymagnesium granular material of the present invention, the specific surface area by the N 2 adsorption BET method is preferably in the range of 50 to 500 m 2 / g, and the fracture strength of the granular material is in the range of 0.5 to 10 MPa. Preferably there is. Furthermore, the bulk specific gravity is in the range of 0.2 to 0.7 g / ml, and preferably in the range of 0.3 to 0.5 g / ml.
このような球状又は楕円体状のジアルコキシマグネシウム粒状物は、金属マグネシウムとアルコールとの反応に際し、反応系への金属マグネシウム/アルコールの最終使用割合を質量比で1/4〜1/25とし、アルコール還流下の反応系に粒状の金属マグネシウムとアルコールを連続的または断続的に分割添加し、100〜1200分間反応させ、好ましくは次いで熟成反応を行うことにより合成することができる。また、このようにして得られるジアルコキシマグネシウム粒状物を触媒成分として用いて、オレフィン重合用の触媒を調製することができる。 In such a spherical or ellipsoidal dialkoxymagnesium granule, in the reaction of metal magnesium and alcohol, the final use ratio of metal magnesium / alcohol to the reaction system is set to 1/4 to 1/25 by mass ratio, It can synthesize | combine by adding granular metal magnesium and alcohol to the reaction system under alcohol recirculation continuously or intermittently dividing, making it react for 100 to 1200 minutes, and preferably then performing an aging reaction. Moreover, the catalyst for olefin polymerization can be prepared using the dialkoxymagnesium granular material thus obtained as a catalyst component.
本発明においては、原料として粒径が500μm以下の金属マグネシウムの粒状物が用いられる。この粒状物は、D50で示される平均粒径が50〜500μmであり、(D90−D10)/D50で示す粒度分布が2以下の微粒子であるのが好ましい。この場合の粒状物の形状は粉末状であってよい。また、マグネシウム金属のインゴットから削り取られた形状のままのものなどであってもよい。マグネシウム金属とアルコールの反応は、水素を離脱させながら行われるが、その際のマグネシウム金属粒子の表面の酸化程度はできる限り少ない方が好ましい。従って、例えば、窒素などの不活性ガスの雰囲気下に保存してあるものや、金属表面を反応に影響を与えない溶剤などで処理して表面酸化を防いだものなどが好ましい。 In the present invention, a metal magnesium granule having a particle size of 500 μm or less is used as a raw material. The granules had an average particle size represented by D 50 is 50 to 500 [mu] m, preferably a (D 90 -D 10) / D particle size distribution of 2 or less indicated by 50. The shape of the granular material in this case may be a powder. Moreover, the thing etc. with the shape scraped off from the magnesium metal ingot may be sufficient. The reaction between the magnesium metal and the alcohol is carried out while releasing hydrogen, and the degree of oxidation of the surface of the magnesium metal particles at that time is preferably as small as possible. Therefore, for example, those stored in an atmosphere of an inert gas such as nitrogen and those obtained by treating the metal surface with a solvent that does not affect the reaction to prevent surface oxidation are preferable.
本発明で用いるアルコールは、炭素数1〜5のアルキル基を有するものであるのが好ましく、エチルアルコールが特に好ましい。アルコール中の水分はできるだけ少ないことが好ましい。金属マグネシウムとアルコールの反応の最終時点における使用割合は、質量比で1/4〜1/25とする必要がある。この反応は金属マグネシウムをアルコキシル化する反応である。これをアルコール還流下に行う場合には、そこで用いるアルコールも本発明にいうアルコールに含まれる。金属マグネシウム量に対するアルコール量が4を下回ると、十分な反応が進行せず、未反応マグネシウムが残存したり、目的とする粒径の制御ができないこととなり、好ましくない。また、25を超えると、反応で形成される生成物粒子に多くのアルコールが包含することになり、乾燥でこのアルコールが留去されたときに多くの空隙が発生し、目的とする嵩比重が達成されないことになり、好ましくない。 The alcohol used in the present invention preferably has an alkyl group having 1 to 5 carbon atoms, and ethyl alcohol is particularly preferable. It is preferable that the moisture in the alcohol is as low as possible. The use ratio at the final point of the reaction between the magnesium metal and the alcohol needs to be 1/4 to 1/25 in mass ratio. This reaction is a reaction for alkoxylating metal magnesium. When this is performed under reflux of alcohol, the alcohol used therein is also included in the alcohol referred to in the present invention. When the amount of alcohol with respect to the amount of metal magnesium is less than 4, it is not preferable because sufficient reaction does not proceed and unreacted magnesium remains or the target particle size cannot be controlled. On the other hand, if it exceeds 25, many alcohols are included in the product particles formed by the reaction, and many voids are generated when the alcohol is distilled off by drying, and the target bulk specific gravity is reduced. It will not be achieved, which is not preferable.
本発明の合成方法においては触媒を用いることが好ましく、有用な触媒としてはハロゲン化アルキル、金属ハロゲン化物、ジアルコキシマグネシウム、沃素などが挙げられ、その使用量は金属マグネシウムに対して0.5〜15質量%であるのが好ましい。この触媒は、反応系に最初に一括して添加されてもよいし、原料の分割添加に併せて量を調節しながら添加されてもよい。 In the synthesis method of the present invention, it is preferable to use a catalyst, and useful catalysts include alkyl halides, metal halides, dialkoxymagnesium, iodine and the like. It is preferably 15% by mass. The catalyst may be added to the reaction system all at once, or may be added while adjusting the amount in accordance with the divided addition of raw materials.
反応系への金属マグネシウムとアルコールの添加は、100〜1200分間かけて連続的に又は少なくとも10回以上に分割して行うことが好ましい。この添加を一括で又は4〜5回程度に分割して行うだけでは本発明の目的物が得られないことがある。即ち、本発明では、反応系で生成したジアルコキシマグネシウムの一次粒子が系内に既に存在しているジアルコキシマグネシウムに付着するのを待って次の合成反応が進むように、原料を添加することが好ましい。分割添加の間隔は、反応装置の大きさと温度などの他の条件によって変るが、10〜120分間隔とすることが好ましい。即ち、前の段階の分割添加後ジアルコキシマグネシウムが反応生成し、H2の発生がほぼ終了した段階(未反応の金属マグネシウムがほぼ残存しなくなった段階)で次の原料を添加することが好ましい。 The addition of metallic magnesium and alcohol to the reaction system is preferably carried out continuously over 100 to 1200 minutes or divided into at least 10 times. The object of the present invention may not be obtained only by performing this addition all at once or by dividing it into about 4 to 5 times. That is, in the present invention, the raw material is added so that the next synthesis reaction proceeds after the dialkoxymagnesium primary particles produced in the reaction system adhere to the dialkoxymagnesium already present in the system. Is preferred. The interval between the divided additions varies depending on other conditions such as the size and temperature of the reactor, but is preferably 10 to 120 minutes. That is, it is preferable to add the next raw material at the stage where the dialkoxymagnesium is produced after the partial addition in the previous stage and the generation of H 2 is almost completed (the stage where almost no unreacted metallic magnesium remains). .
反応系への原料の分割添加は、アルコール溶媒、好ましくは原料と同じアルコールの還流下に行うが、その態様は任意のものであってよい。例えば、最終使用割合と同じ割合の金属マグネシウムとアルコールを所定間隔毎に順次添加していってもよいし、添加量を順次増加させながら添加してもよい。あるいは、最終添加割合と異なる割合の原料比で分割添加してもよい。例えば、反応の初期に最終添加割合よりも金属マグネシウムの割合を多くし、後半において金属マグネシウムの割合を少なくして添加してもよい。通常は、分割添加する際の金属マグネシウムの量を添加するアルコールの量に対して2〜50質量%の範囲とするのが好ましい。いずれにしても、添加したマグネシウムの反応がほぼ完了した時点で次のマグネシウムを添加するのが好ましく、最終的には両原料の比が重量で1/4〜1/25の範囲となるように添加する。反応時間は合計で100〜1200分であり、反応の終了時点は水素の発生が終了したことにより判断する。 The divided addition of the raw material to the reaction system is performed under reflux of an alcohol solvent, preferably the same alcohol as the raw material, but the mode may be arbitrary. For example, metallic magnesium and alcohol at the same ratio as the final use ratio may be added sequentially at predetermined intervals, or may be added while increasing the addition amount sequentially. Or you may divide | segment and add by the raw material ratio of the ratio different from a final addition ratio. For example, the proportion of metal magnesium may be increased from the final addition ratio at the beginning of the reaction, and the ratio of metal magnesium may be decreased in the latter half. Usually, it is preferable that the amount of metallic magnesium in the divided addition is in the range of 2 to 50% by mass with respect to the amount of alcohol to be added. In any case, it is preferable to add the next magnesium when the reaction of the added magnesium is almost completed, and finally the ratio of both raw materials is in the range of 1/4 to 1/25 by weight. Added. The reaction time is 100 to 1200 minutes in total, and the end point of the reaction is judged by the end of the generation of hydrogen.
最後の原料添加の後、水素の発生が終了してからさらに70℃〜溶媒還流温度下に熟成を行い、生成粒子の安定化を図ることが好ましい。この時間は、目的とする粒径、粒度分布や嵩比重によって適宜に変更することができる。熟成時の反応温度は70℃〜溶媒還流温度であってよく、撹拌速度は50〜500rpmであり、これらの反応温度、撹拌速度は目的とする粒径、粒度分布や嵩比重によって選択することができる。 After the last addition of raw materials, it is preferable that after generation of hydrogen is completed, aging is further performed at 70 ° C. to a solvent reflux temperature to stabilize the generated particles. This time can be appropriately changed according to the target particle size, particle size distribution, and bulk specific gravity. The reaction temperature at the time of aging may be from 70 ° C. to the solvent reflux temperature, and the stirring speed is from 50 to 500 rpm. These reaction temperature and stirring speed may be selected according to the intended particle size, particle size distribution and bulk specific gravity. it can.
上記のようにして得られたジアルコキシマグネシウム粒状物、特にジエトキシマグネシウム粒状物のD50粒径は60〜200μmの範囲にあり、特に重合触媒に利用した際に生成するオレフィン重合体の成形の際のペレット化工程を省略できるような、80〜200μmの大粒径の粒状物にすることができる。また、(D90−D10)/D50で示される粒度分布が1以下となるような均一な粒径の分布となっている。さらに、この生成物中には10μm以下の微細粒子は極めて少なく、実質的に無いといってもよい程度の1質量%未満となっている。 The dialkoxymagnesium granules obtained as described above, particularly the diethoxymagnesium granules, have a D 50 particle size in the range of 60 to 200 μm, and in particular the molding of the olefin polymer produced when used as a polymerization catalyst. It is possible to obtain a granular material having a large particle size of 80 to 200 μm so that the pelletizing step can be omitted. In addition, the particle size distribution indicated by (D 90 -D 10 ) / D 50 is a uniform particle size distribution such that the particle size distribution is 1 or less. Furthermore, the amount of fine particles of 10 μm or less is extremely small in this product, and it is less than 1% by mass, which can be said to be substantially absent.
さらに、上記で得られるジアルコキシマグネシウム粒状物は、好ましくは、径が1〜10μmの球状、楕円体状、鱗片状又は針状の制御された一次粒子が凝集してなる多孔質構造を有しており、多孔質を構成している細孔の径がTEM観察で0.1〜5μmである。この粒状物は、好ましくは、これを構成している一次粒子に存在していると考えられる微細孔を多数有しており、この微細孔の平均孔径は0.1〜50nmであり、微細孔容積は0.01〜0.5cm3/gである。また、嵩比重は0.2〜0.7g/mlの範囲にある。図1は、本発明で得られるジエトキシマグネシウム粒状物粒子の断面1をTEM観察した時に分布している細孔断面2を示す模式図であり、各細孔の孔径は0.1〜5μmの範囲にある。 Furthermore, the dialkoxymagnesium granular material obtained above preferably has a porous structure in which spherical, ellipsoidal, scale-like or needle-like primary particles having a diameter of 1 to 10 μm are aggregated. The diameter of the pores constituting the porous material is 0.1 to 5 μm by TEM observation. This granular material preferably has a large number of fine pores that are considered to be present in the primary particles constituting the granular material, and the average pore diameter of the fine pores is 0.1 to 50 nm. The volume is 0.01 to 0.5 cm 3 / g. The bulk specific gravity is in the range of 0.2 to 0.7 g / ml. FIG. 1 is a schematic diagram showing a pore cross section 2 distributed when a cross section 1 of the diethoxymagnesium granular particles obtained in the present invention is observed with a TEM, and the pore diameter of each pore is 0.1 to 5 μm. Is in range.
本発明のジアルコキシマグネシウム粒状物を出発原料としてオレフィン重合用の触媒を調製するには、ジアルコキシマグネシウム粒状物に公知の方法で4価のチタンのハロゲン化物及び電子供与性化合物を接触させて触媒成分を作り、これに有機アルミニウム化合物を作用させる。4価のチタンのハロゲン化物としてはチタンテトラクロライド、アルコキシチタンハライドなどが挙げられ、電子供与性化合物としてはアルコール類、エーテル類、エステル類や、アルコキシシランなどの有機ケイ素化合物が挙げられる。アルミニウム化合物としては、トリエチルアルミニウム、ジエチルアルミニウムクロライドなどが挙げられる。 In order to prepare a catalyst for olefin polymerization using the dialkoxymagnesium granule of the present invention as a starting material, the dialkoxymagnesium granule is contacted with a tetravalent titanium halide and an electron donating compound by a known method. An ingredient is made and an organoaluminum compound is made to act on this. Examples of tetravalent titanium halides include titanium tetrachloride and alkoxy titanium halides. Examples of electron donating compounds include alcohols, ethers, esters, and organosilicon compounds such as alkoxysilanes. Examples of the aluminum compound include triethylaluminum and diethylaluminum chloride.
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらの例により何らの限定もされるものではない。なお、以下の例中において、「部」は質量部を示す。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further, this invention is not limited at all by these examples. In the following examples, “part” means part by mass.
実施例1
H2流量測定用ガスメーター、還流用冷却器、温度計及び攪拌翼を備えた反応器内をN2置換した後に、エチルアルコール168.3部を添加し、室温において、250rpmで攪拌した。これに触媒として沃素2.1部と、原料金属マグネシウム粒状物(D50粒径が128μmのもの)1部及びエチルアルコール8.5部を攪拌下に添加し、室温でさらに30分間攪拌した。次いで、油浴を用いて昇温し、アルコールの還流状態で15分間反応させた。その後、同じ条件下に、金属マグネシウム粒状物2.0部とエチルアルコール8.5部を30分間隔で12回添加し、最後の原料添加後に20分間反応させ、さらにエチルアルコール32.8部を添加し、アルコール還流下に80分間反応させ、H2発生が無いことを確認して反応終了とした。この時の金属マグネシウムの総添加量は25部、エチルアルコールの総使用量は311.6部で、その重量比は1/12.5であり、総反応時間は490分であった。
Example 1
After replacing the inside of the reactor equipped with a gas meter for measuring H 2 flow rate, a reflux condenser, a thermometer, and a stirring blade with N 2 , 168.3 parts of ethyl alcohol was added and stirred at 250 rpm at room temperature. And iodine 2.1 parts as a catalyst thereto, raw metallic magnesium granules were added with stirring (D 50 particle size is that of 128 .mu.m) 8.5 parts 1 part of ethyl alcohol was stirred at room temperature for a further 30 minutes. Next, the temperature was raised using an oil bath, and the reaction was allowed to proceed for 15 minutes with the alcohol refluxed. Thereafter, under the same conditions, 2.0 parts of metal magnesium particulates and 8.5 parts of ethyl alcohol were added 12 times at 30 minute intervals, reacted for 20 minutes after the final addition of the raw materials, and 32.8 parts of ethyl alcohol was added. The mixture was added and allowed to react for 80 minutes under reflux of alcohol. After confirming that no H 2 was generated, the reaction was terminated. The total amount of metal magnesium added at this time was 25 parts, the total amount of ethyl alcohol used was 311.6 parts, the weight ratio was 1 / 12.5, and the total reaction time was 490 minutes.
得られた反応液をロータリーエバポレーターに移し、60℃、100mmHgの条件下にエチルアルコールを留去し、乾燥したジエトキシマグネシウム粒状物118部を得た。得られた生成物(粒状物)のD50粒径は85.5μm、D10粒径は56.3μm、D90粒径は130.9μmであり、(D90−D10)/D50で示される粒度分布は0.87であった。生成物は、粒径が10μm以下の微粉を殆ど含まず、極めてシャープな粒度分布を示した。また、走査型電子顕微鏡(SEM)による観察結果では、ほぼ球状を示し、嵩比重(JIS K−51011−12−1(2004)に準拠して測定)は0.32g/mlであった。なお、粒径及び粒度分布の測定にはマイクロトラックMT−3200(日機装株式会社製)によった。 The obtained reaction liquid was transferred to a rotary evaporator, and ethyl alcohol was distilled off under conditions of 60 ° C. and 100 mmHg to obtain 118 parts of dried diethoxymagnesium granules. The product (granular material) obtained had a D 50 particle size of 85.5 μm, a D 10 particle size of 56.3 μm, a D 90 particle size of 130.9 μm, and (D 90 -D 10 ) / D 50 The particle size distribution shown was 0.87. The product contained almost no fine powder having a particle size of 10 μm or less, and showed a very sharp particle size distribution. Moreover, in the observation result by a scanning electron microscope (SEM), it showed a substantially spherical shape and the bulk specific gravity (measured in accordance with JIS K-5111-11-1 (2004)) was 0.32 g / ml. The particle size and particle size distribution were measured by Microtrac MT-3200 (manufactured by Nikkiso Co., Ltd.).
図2は、上記で得られたジエトキシマグネシウム粒状物をFB−2000A(株式会社日立ハイテクサイエンスシステムズ製日立集束イオンビーム加工観察装置)を用いてFIB加工処理したものを株式会社日立製作所製透過型電子顕微鏡HF−2200TUにより撮影したTEM写真である。FIB加工はFocused Ion Beamの略記であり、ガリウムイオンビームを試料に照射して試料を切断し、TEM写真が撮り易いように切断面を加工する方法であって、ここでは30kVの加速電圧で照射し、加工した。この写真から細孔の断面は種々の形状をしているが、それらの孔径は0.5〜3μmの範囲内にあり、揃ったものであることが判る。 FIG. 2 is a transmission type manufactured by Hitachi, Ltd., obtained by subjecting the obtained diethoxymagnesium granular material to FIB processing using FB-2000A (Hitachi High-Tech Science Systems Hitachi Focused Ion Beam Processing and Observation Device). It is the TEM photograph image | photographed with the electron microscope HF-2200TU. FIB processing is an abbreviation for Focused Ion Beam, which is a method of cutting a sample by irradiating the sample with a gallium ion beam, and processing the cut surface so that a TEM photograph can be easily taken. Here, irradiation is performed with an acceleration voltage of 30 kV. And processed. It can be seen from this photograph that the cross-sections of the pores have various shapes, but the pore diameters are in the range of 0.5 to 3 μm and are uniform.
実施例2
実施例1とほぼ同様に操作した。ただし、初期仕込み用の金属マグネシウム及びエチルアルコールを加えて還流下に15分間反応させた後に、添加する金属マグネシウム量を各1部とし、エチルアルコールの量を各8.5部のままとして20分間隔で24回添加した。最後の原料を添加した後に、アルコールの還流下に80分間反応させ、H2の発生が無いことを確認して反応終了とした。金属マグネシウム及びエチルアルコールの総使用量は各々同じであり、それらの使用割合(質量比)は1/12.5、総反応時間は570分であった。反応液をロータリーエバポレーターに移し、60℃、100mmHgの条件下にエチルアルコールを留去し、乾燥したジエトキシマグネシウム粒状物118部を得た。この粒状物のD50粒径は105.8μm、D10粒径は74.8μm、D90粒径は157.3μmであり、(D90−D10)/D50で示される粒度分布は0.78であった。生成物は、粒径が10μm以下の微粉を全く含まず、極めて狭い粒度分布を示した。
Example 2
The operation was almost the same as in Example 1. However, after adding metal magnesium and ethyl alcohol for initial charge and reacting under reflux for 15 minutes, the amount of metal magnesium to be added is 1 part each, and the amount of ethyl alcohol remains 8.5 parts each, and 20 minutes. Added 24 times at intervals. After the last raw material was added, the reaction was continued for 80 minutes under reflux of alcohol, and it was confirmed that there was no generation of H 2 and the reaction was completed. The total amount of metal magnesium and ethyl alcohol used was the same, the ratio of use (mass ratio) was 1 / 12.5, and the total reaction time was 570 minutes. The reaction solution was transferred to a rotary evaporator, and ethyl alcohol was distilled off under conditions of 60 ° C. and 100 mmHg to obtain 118 parts of dried diethoxymagnesium granules. This granular material has a D 50 particle size of 105.8 μm, a D 10 particle size of 74.8 μm, a D 90 particle size of 157.3 μm, and a particle size distribution represented by (D 90 -D 10 ) / D 50 is 0. .78. The product did not contain any fine powder having a particle size of 10 μm or less and showed a very narrow particle size distribution.
また、TEM観察の結果ではほぼ球状の形状を示し、嵩比重は0.28g/mlであった。実施例1と同様にして、ここで得られたジエトキシマグネシウム粒状物をTEM撮影で観察した結果、細孔の断面は種々の形状をしているが、孔径は0.3〜2.5μmの範囲内にあり、揃ったものであった。
また、この粒状物には前記細孔とは別に多数の微細孔が存在し、その平均孔径は2.6nm、微細孔容積は0.23cm3/g、であった。さらに、N2吸着BET多点法による比表面積は264m2/gであった。なお、この比表面積はBETプロット(相対圧と積算吸着量のデータ)より求めたものである。粒状物の粒子破壊強度は1.0MPaであった。
Moreover, the result of TEM observation showed a substantially spherical shape, and the bulk specific gravity was 0.28 g / ml. As in Example 1, the diethoxymagnesium particles obtained here were observed by TEM imaging. As a result, the cross section of the pores had various shapes, but the pore diameter was 0.3 to 2.5 μm. It was in range and was complete.
In addition to the pores, the granular material had a large number of micropores, the average pore diameter was 2.6 nm, and the micropore volume was 0.23 cm 3 / g. Further, the specific surface area according to the N 2 adsorption BET multipoint method was 264 m 2 / g. This specific surface area is obtained from a BET plot (data on relative pressure and integrated adsorption amount). The particle breaking strength of the granular material was 1.0 MPa.
この実施例2において、微細孔の平均孔径は、BJH吸着側細孔分布より求めた比表面積と微細孔容積を用いた値である(株式会社島津製作所製TriStar3000自動比表面積/細孔分布測定装置を用いて測定した)。微細孔容積はBJH吸着側細孔分布(解析範囲1〜100nm)より求めた値である。破壊強度は株式会社島津製作所製MCT−Wシリーズ微小圧縮試験機を用い、試験力100mN、負荷速度12.9mN/secの条件下で測定したものである。
実施例2において、分割の添加間隔を変えることにより、図4に示すような、総分割添加時間と生成するジエトキシマグネシウムのD50粒径との間に比例関係が観察される。これは、目的とするD50粒径を得ることが総分割添加時間を制御することにより可能になることを示している。
In this Example 2, the average pore diameter of the micropores is a value using the specific surface area and the micropore volume determined from the BJH adsorption side pore distribution (TriStar 3000 automatic specific surface area / pore distribution measuring device manufactured by Shimadzu Corporation). ). The micropore volume is a value determined from the BJH adsorption side pore distribution (analysis range 1 to 100 nm). The breaking strength was measured using a MCT-W series micro compression tester manufactured by Shimadzu Corporation under the conditions of a test force of 100 mN and a load speed of 12.9 mN / sec.
In Example 2, a proportional relationship is observed between the total divided addition time and the D 50 particle size of diethoxymagnesium produced as shown in FIG. 4 by changing the addition interval of the division. This indicates that possible by be obtained D 50 particle size for the purpose to control the total divided addition time.
実施例3
実施例1と同じ装置を用い、仕込み溶媒としてのエチルアルコールを261.8部として、回転速度が安定してから、初期仕込み用の金属マグネシウム粒状物0.1部、エチルアルコール10.8部及び触媒としての沃素2.1部を加え、室温で30分間攪拌した。その後、油浴を用いてアルコール還流温度に昇温し、15分間反応させた。次に、1回につき金属マグネシウムを0.1〜3.0部に変化させて(1回目の添加量を0.1部とし、段階的に0.1部乃至は0.2部ずつ添加量を増やしてゆき、最後の11回目の添加量を3部とする)添加し、初期仕込み用の金属マグネシウムを含めて総計で25部を使用した。アルコールは、添加量を5.4部として10分間隔で合計11回添加し、最後の原料添加後に20分間反応させ、さらにエチルアルコール32.8部を添加して、アルコール還流下に80分間反応させ、H2発生の無いことを確認して反応終了とした。このときの金属マグネシウム/アルコールの最終使用割合(質量比)は1/14.6であり、総反応時間は230分であった。その後は実施例1と同じ操作を行って、乾燥したジエトキシマグネシウム粒状物117部を得た。
Example 3
Using the same apparatus as in Example 1, with 261.8 parts of ethyl alcohol as the charging solvent, after the rotational speed was stabilized, 0.1 parts of metal magnesium particulates for initial charging, 10.8 parts of ethyl alcohol and 2.1 parts of iodine as a catalyst was added and stirred at room temperature for 30 minutes. Then, it heated up to alcohol reflux temperature using the oil bath, and was made to react for 15 minutes. Next, the metallic magnesium is changed to 0.1 to 3.0 parts at a time (the first addition amount is 0.1 parts, and the addition amount is 0.1 parts or 0.2 parts step by step) The final 11th addition amount was 3 parts), and a total of 25 parts including the initial preparation of magnesium metal was used. Alcohol was added 11 times at 10 minute intervals with an addition amount of 5.4 parts, reacted for 20 minutes after the last addition of raw materials, and further 32.8 parts of ethyl alcohol was added and reacted for 80 minutes under reflux of alcohol. The reaction was terminated after confirming that no H 2 was generated. The final use ratio (mass ratio) of metal magnesium / alcohol at this time was 1 / 14.6, and the total reaction time was 230 minutes. Thereafter, the same operation as in Example 1 was performed to obtain 117 parts of dried diethoxymagnesium granules.
ここで得られた粒状物は、SEMによる観察でほぼ球状の粒子からなるものであり、D50粒径は84.7μm、(D90−D10)/D50で示される粒度分布は0.94であり、10μm以下の微粉を殆ど含まず、極めてシャープな分布を示した。嵩比重は0.33g/mlであった。ここで得られたジエトキシマグネシウム粒状物のTEM写真を図3に示す。この例では、0.2〜1μm程度の揃った孔径の細孔が存在していることが判る。また、実施例2に記載した分析法により測定すると、この粒状物には多数の微細孔が存在し、その平均孔径は2.5nm、微細孔容積は0.25cm3/g、であった。さらに、N2吸着BET多点法による比表面積は120m2/gであった。粒状物の粒子破壊強度は3.0MPaであった。 The granular material obtained here consists of substantially spherical particles as observed by SEM, the D 50 particle size is 84.7 μm, and the particle size distribution indicated by (D 90 -D 10 ) / D 50 is 0.00. 94, which contained very fine powder of 10 μm or less and showed a very sharp distribution. The bulk specific gravity was 0.33 g / ml. A TEM photograph of the obtained diethoxymagnesium granular material is shown in FIG. In this example, it can be seen that there are pores having a uniform pore diameter of about 0.2 to 1 μm. Further, when measured by the analysis method described in Example 2, the granular material had a large number of micropores, the average pore diameter was 2.5 nm, and the micropore volume was 0.25 cm 3 / g. Furthermore, the specific surface area by N 2 adsorption BET multipoint method was 120 m 2 / g. The particle breaking strength of the granular material was 3.0 MPa.
実施例4
実施例3と同様にし、最初の還流下に15分間反応後、添加の間隔を30分とし、合計11回の添加を行った。最後に添加した後は、還流下に100分間反応を継続させた。この場合の総反応時間は430分であり、原料金属マグネシウム/原料エチルアルコールの最終使用割合(質量比)は1/14.6であった。得られたジエトキシマグネシウム粒状物のD50粒径は140.7μm、(D90−D10)/D50で示される粒度分布は0.99であり、10μm以下の微粉は殆ど存在せず、極めてシャープな分布を示した。嵩比重は0.27g/mlであった。
実施例1と同様にしてここで得られたジエトキシマグネシウム粒状物をTEM観察したところ、細孔の断面は種々の形状をしているが、孔径は0.3〜3.5μmの範囲内にあり、揃ったものであった。
Example 4
In the same manner as in Example 3, after reacting for 15 minutes under the first reflux, the addition interval was 30 minutes, and a total of 11 additions were performed. After the last addition, the reaction was continued for 100 minutes under reflux. In this case, the total reaction time was 430 minutes, and the final use ratio (mass ratio) of raw material magnesium / raw material ethyl alcohol was 1 / 14.6. The obtained diethoxymagnesium granules have a D 50 particle size of 140.7 μm, a particle size distribution represented by (D 90 -D 10 ) / D 50 of 0.99, and there is almost no fine powder of 10 μm or less. It showed a very sharp distribution. The bulk specific gravity was 0.27 g / ml.
When the diethoxymagnesium granular material obtained here was observed by TEM in the same manner as in Example 1, the cross-section of the pores had various shapes, but the pore diameter was in the range of 0.3 to 3.5 μm. Yes, it was complete.
実施例5
実施例1と同じ装置を用い、仕込み溶媒としてのエチルアルコールを261.8部として、回転速度が安定してから、初期仕込み用の金属マグネシウム粒状物0.1部、エチルアルコール11.0部及び触媒としての沃素2.1部を加え、室温で30分間攪拌した。その後、油浴を用いてアルコール還流温度に昇温し、15分間反応させた。次に、1回につき金属マグネシウムの添加量を0.1〜2.2部に変化させて(1回目の添加量を0.1部とし、段階的に0.1部ずつ添加量を増やしてゆき、最後の22回目の添加量を2.2部とする)添加し、初期仕込み用の金属マグネシウムを含めて総計で25.4部を使用した。アルコールは、添加量を5.5部として10分間隔で合計22回添加し、最後の原料添加後20分間反応させ、さらにエチルアルコール32.8部を添加して、アルコール還流下に80分間反応させ、H2発生の無いことを確認して反応終了とした。このときの金属マグネシウム/アルコールの最終使用割合(質量比)は1/17.9であり、総反応時間は374分であった。この後は実施例1と同じ操作をして、乾燥したジエトキシマグネシウム粒状物120.4部を得た。得られた粒状物は、TEMによる観察でほぼ球状であり、D50粒径は97.4μm、(D90−D10)/D50で示される粒度分布は0.86であり、粒径が10μm以下の微粉を殆ど含まず、極めてシャープな分布を示した。嵩比重は0.33g/mlであった。
実施例1と同様にここで得られたジエトキシマグネシウム粒状物をTEM写真撮影し、観察した結果、細孔の断面は種々の形状をしているが、孔径は1.0〜3.5μmの範囲内にあり、揃ったものであることが判った。また、この粒状物中には前記の細孔より小さな微細孔が多数存在しており、実施例2に記載した分析法により測定すると、その平均孔径は4.8nm、BET多点法比表面積は67m2/g、微細孔容積は0.08cm3/gであった。また、粒子の破壊強度は2.2MPaであった。
Example 5
Using the same apparatus as in Example 1, with 261.8 parts of ethyl alcohol as the charge solvent, after the rotational speed was stabilized, 0.1 parts of metal magnesium particulates for initial charge, 11.0 parts of ethyl alcohol and 2.1 parts of iodine as a catalyst was added and stirred at room temperature for 30 minutes. Then, it heated up to alcohol reflux temperature using the oil bath, and was made to react for 15 minutes. Next, the amount of metallic magnesium added is changed to 0.1 to 2.2 parts at a time (the first amount added is 0.1 parts, and the amount added is increased by 0.1 parts step by step). The final 22nd addition amount is 2.2 parts), and 25.4 parts in total including the initial preparation of magnesium metal are used. Alcohol was added 22 times in total at an interval of 10 minutes with an addition amount of 5.5 parts, reacted for 20 minutes after the last addition of the raw material, and further 32.8 parts of ethyl alcohol was added and reacted for 80 minutes under reflux of alcohol. The reaction was terminated after confirming that no H 2 was generated. The final use ratio (mass ratio) of metal magnesium / alcohol at this time was 1 / 17.9, and the total reaction time was 374 minutes. Thereafter, the same operation as in Example 1 was performed to obtain 120.4 parts of dried diethoxymagnesium granules. The obtained granular material was substantially spherical as observed by TEM, the D 50 particle size was 97.4 μm, the particle size distribution represented by (D 90 -D 10 ) / D 50 was 0.86, and the particle size was Almost no fine powder of 10 μm or less was contained, and an extremely sharp distribution was shown. The bulk specific gravity was 0.33 g / ml.
The diethoxymagnesium granular material obtained here was photographed and observed in the same manner as in Example 1. As a result, the cross section of the pores had various shapes, but the pore diameter was 1.0 to 3.5 μm. It was found to be in range and complete. In addition, there are many fine pores smaller than the above-mentioned pores in the granular material, and when measured by the analysis method described in Example 2, the average pore diameter is 4.8 nm, and the BET multipoint method specific surface area is 67 m 2 / g and the fine pore volume were 0.08 cm 3 / g. Moreover, the fracture strength of the particles was 2.2 MPa.
比較例
実施例1と同じ装置を用い、仕込み溶媒としてのエチルアルコールを136.1部として、回転速度が安定してから、初期仕込み用の金属マグネシウム粒状物5.0部、エチルアルコール34.0部及び触媒としての沃素2.1部を加え、室温で30分間攪拌した。その後、油浴を用いてアルコール還流温度に昇温し、15分間反応させた。次に、1回につき金属マグネシウム4.0部、エチルアルコール17.0部を、6分間隔で合計5回添加し、最後のマグネシウム添加後に20分間反応させ、水素発生の終了を待って反応終了とした。この時の反応時間は合計で59分だり、添加したマグネシウム/アルコールの質量比は1/11.5であった。反応液を80分間熟成させてから、実施例1と同様にして生成物を得た。得られたジエトキシマグネシウム粒子の形状はほぼ球状であったが、D50粒径は38.5μm、(D90−D10)/D50で示される粒度分布は1.69であり、10μm以下の微粉が全体の10質量%以上存在した。嵩比重は0.25g/mlであった。
Comparative Example Using the same apparatus as in Example 1, 136.1 parts of ethyl alcohol as a charging solvent was used, and after the rotational speed was stabilized, 5.0 parts of metal magnesium particulates for initial charging and 34.0 of ethyl alcohol were used. And 2.1 parts of iodine as a catalyst were added and stirred at room temperature for 30 minutes. Then, it heated up to alcohol reflux temperature using the oil bath, and was made to react for 15 minutes. Next, 4.0 parts of metal magnesium and 17.0 parts of ethyl alcohol are added 5 times at a 6 minute interval, and the reaction is performed for 20 minutes after the final addition of magnesium. It was. The total reaction time at this time was 59 minutes, and the added magnesium / alcohol mass ratio was 1 / 11.5. After aging the reaction solution for 80 minutes, a product was obtained in the same manner as in Example 1. The shape of the obtained diethoxymagnesium particles was almost spherical, but the D 50 particle size was 38.5 μm, and the particle size distribution represented by (D 90 -D 10 ) / D 50 was 1.69, which was 10 μm or less. 10% or more of the fine powder was present. The bulk specific gravity was 0.25 g / ml.
本発明で得られるジアルコキシマグネシウムは、オレフィン重合用触媒の一成分として有用なものである。 The dialkoxymagnesium obtained in the present invention is useful as one component of an olefin polymerization catalyst.
1 ジアルコキシマグネシウム粒子の断面
2 ジアルコキシマグネシウム粒子内部の細孔断面
1 Cross section of dialkoxymagnesium particle 2 Cross section of pore inside dialkoxymagnesium particle
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007047861A JP2007297371A (en) | 2006-04-07 | 2007-02-27 | Dialkoxymagnesium granular material and synthesis and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006105781 | 2006-04-07 | ||
JP2007047861A JP2007297371A (en) | 2006-04-07 | 2007-02-27 | Dialkoxymagnesium granular material and synthesis and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007297371A true JP2007297371A (en) | 2007-11-15 |
Family
ID=38767176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007047861A Pending JP2007297371A (en) | 2006-04-07 | 2007-02-27 | Dialkoxymagnesium granular material and synthesis and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007297371A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102478A (en) * | 2007-10-22 | 2009-05-14 | Toho Titanium Co Ltd | Method for synthesizing alkoxy magnesium, method for manufacturing solid catalyst component for polymerizing olefins and catalyst therefor |
JP2010030924A (en) * | 2008-07-28 | 2010-02-12 | Toho Titanium Co Ltd | Method of synthesizing alkoxymagnesium, solid catalyst component for polymerizing olefins, and catalyst |
JP2010030925A (en) * | 2008-07-28 | 2010-02-12 | Toho Titanium Co Ltd | Method of synthesizing alkoxymagnesium, solid catalyst component for polymerizing olefins, and catalyst |
JP2012171957A (en) * | 2011-02-18 | 2012-09-10 | Colcoat Kk | Mixed magnesium dialkoxide granule, method for synthesizing the same, and method for utilizing the same |
WO2013058193A1 (en) | 2011-10-19 | 2013-04-25 | 日本曹達株式会社 | Method for producing magnesium alcoholate |
JP2014070109A (en) * | 2012-09-28 | 2014-04-21 | Toho Titanium Co Ltd | Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and method of producing polymers of olefins |
JP5854986B2 (en) * | 2010-02-25 | 2016-02-09 | コルコート株式会社 | Method for synthesizing mixed magnesium dialkoxide granules and method for using the same |
WO2017170077A1 (en) | 2016-03-28 | 2017-10-05 | 東邦チタニウム株式会社 | Alkoxy magnesium, method for producing alkoxy magnesium, solid catalyst component for olefin polymerization use, catalyst for olefin polymerization use, and method for producing olefin polymer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374341A (en) * | 1989-08-16 | 1991-03-28 | Korukooto Eng Kk | Synthesis of spherical magnesium alcoholate having narrow particle size distribution |
JPH0873388A (en) * | 1994-09-07 | 1996-03-19 | Nippon Soda Co Ltd | Production of spherical fine particulate magnesium ethylate |
JPH09110916A (en) * | 1995-08-09 | 1997-04-28 | Basf Ag | Ziegler-natta catalyst composition |
JP2002356507A (en) * | 2001-03-30 | 2002-12-13 | Toho Catalyst Co Ltd | Solid catalyst component and catalyst for olefin polymerization |
JP2003342217A (en) * | 2002-05-24 | 2003-12-03 | Idemitsu Petrochem Co Ltd | Magnesium compound, solid catalyst component for polymerizing olefin, catalyst for polymerizing olefin and method for producing polyolefin |
WO2006013876A1 (en) * | 2004-08-03 | 2006-02-09 | Idemitsu Kosan Co., Ltd. | Magnesium compound, solid catalyst component, olefin polymerization catalyst, and method for producing olefin polymer |
WO2006033512A1 (en) * | 2004-09-23 | 2006-03-30 | Samsung Total Petrochemicals Co., Ltd. | Method of preparation of spherical support for olefin polymerization catalyst |
-
2007
- 2007-02-27 JP JP2007047861A patent/JP2007297371A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374341A (en) * | 1989-08-16 | 1991-03-28 | Korukooto Eng Kk | Synthesis of spherical magnesium alcoholate having narrow particle size distribution |
JPH0873388A (en) * | 1994-09-07 | 1996-03-19 | Nippon Soda Co Ltd | Production of spherical fine particulate magnesium ethylate |
JPH09110916A (en) * | 1995-08-09 | 1997-04-28 | Basf Ag | Ziegler-natta catalyst composition |
JP2002356507A (en) * | 2001-03-30 | 2002-12-13 | Toho Catalyst Co Ltd | Solid catalyst component and catalyst for olefin polymerization |
JP2003342217A (en) * | 2002-05-24 | 2003-12-03 | Idemitsu Petrochem Co Ltd | Magnesium compound, solid catalyst component for polymerizing olefin, catalyst for polymerizing olefin and method for producing polyolefin |
WO2006013876A1 (en) * | 2004-08-03 | 2006-02-09 | Idemitsu Kosan Co., Ltd. | Magnesium compound, solid catalyst component, olefin polymerization catalyst, and method for producing olefin polymer |
WO2006033512A1 (en) * | 2004-09-23 | 2006-03-30 | Samsung Total Petrochemicals Co., Ltd. | Method of preparation of spherical support for olefin polymerization catalyst |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102478A (en) * | 2007-10-22 | 2009-05-14 | Toho Titanium Co Ltd | Method for synthesizing alkoxy magnesium, method for manufacturing solid catalyst component for polymerizing olefins and catalyst therefor |
JP2010030924A (en) * | 2008-07-28 | 2010-02-12 | Toho Titanium Co Ltd | Method of synthesizing alkoxymagnesium, solid catalyst component for polymerizing olefins, and catalyst |
JP2010030925A (en) * | 2008-07-28 | 2010-02-12 | Toho Titanium Co Ltd | Method of synthesizing alkoxymagnesium, solid catalyst component for polymerizing olefins, and catalyst |
JP5854986B2 (en) * | 2010-02-25 | 2016-02-09 | コルコート株式会社 | Method for synthesizing mixed magnesium dialkoxide granules and method for using the same |
JP2012171957A (en) * | 2011-02-18 | 2012-09-10 | Colcoat Kk | Mixed magnesium dialkoxide granule, method for synthesizing the same, and method for utilizing the same |
JPWO2013058193A1 (en) * | 2011-10-19 | 2015-04-02 | 日本曹達株式会社 | Method for producing magnesium alcoholate |
WO2013058193A1 (en) | 2011-10-19 | 2013-04-25 | 日本曹達株式会社 | Method for producing magnesium alcoholate |
US9493586B2 (en) | 2011-10-19 | 2016-11-15 | Nippon Soda Co., Ltd. | Method for producing magnesium alcoholate |
KR101786406B1 (en) * | 2011-10-19 | 2017-10-17 | 닛뽕소다 가부시키가이샤 | Method for producing magnesium alcoholate |
JP2014070109A (en) * | 2012-09-28 | 2014-04-21 | Toho Titanium Co Ltd | Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and method of producing polymers of olefins |
WO2017170077A1 (en) | 2016-03-28 | 2017-10-05 | 東邦チタニウム株式会社 | Alkoxy magnesium, method for producing alkoxy magnesium, solid catalyst component for olefin polymerization use, catalyst for olefin polymerization use, and method for producing olefin polymer |
KR20180128394A (en) | 2016-03-28 | 2018-12-03 | 도호 티타늄 가부시키가이샤 | A method for producing alkoxymagnesium and alkoxymagnesium, a solid catalyst component for olefin polymerization, a catalyst for olefin polymerization and a process for producing olefin polymers |
US11008408B2 (en) | 2016-03-28 | 2021-05-18 | Toho Titanium Co., Ltd. | Alkoxymagnesium, method for producing alkoxymagnesium, solid catalyst component for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8632882B2 (en) | Dialkoxymagnesium granules and method for their synthesis | |
JP2007297371A (en) | Dialkoxymagnesium granular material and synthesis and use thereof | |
JP5753587B2 (en) | Method for producing magnesium alcoholate | |
KR20100135828A (en) | Spherical Particles for Olefin Polymerization Catalyst | |
CN107207400B (en) | Metal soap and preparation method thereof | |
JP2017514784A (en) | Spherical porous hydroxyapatite adsorbent and method thereof | |
JP6200426B2 (en) | Calcium carbonate filler for resin and resin composition containing the filler | |
CN111100218B (en) | Spherical alkoxy magnesium particles and preparation method thereof | |
Nishihara et al. | Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template | |
JPWO2020158332A1 (en) | Titanium phosphate powder, white pigment for cosmetics | |
JPH1025112A (en) | Production of slaked lime | |
TWI673261B (en) | Iron soap, method for producing the same and thermoplastic resin composition containing the same | |
US12065356B2 (en) | Carbon film | |
Gao et al. | Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers | |
JP4378160B2 (en) | Porous granular basic magnesium carbonate and method for producing the same | |
Li et al. | One-pot synthesis of monodisperse latex particles with single-cavity structure | |
JP2008169269A (en) | Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres | |
Bladé et al. | Synthesis of nanoscaled poly (styrene-co-n-butyl acrylate)/silica particles with dumbbell-and snowman-like morphologies by emulsion polymerization | |
JP2020164341A (en) | Magnesium oxide and its manufacturing method | |
JP6936950B2 (en) | Method for Producing Hypereutectic Al-Si Alloy Particles and Hypereutectic Al-Si Alloy Particles | |
CN108219039B (en) | Components and preparation method of spherical alkoxy magnesium particles | |
JP2018069116A (en) | Α-alumina granulated product for catalyst carrier and method for producing the same | |
JP7357181B1 (en) | Boron nitride particles and heat dissipation sheet | |
EP3067316B1 (en) | Powdered gyrolite-type calcium silicate having high oil absorbency and large particle diameter, and production method therefor | |
JPH02271919A (en) | Production of fine powder of titanium carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20091125 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121002 |