[go: up one dir, main page]

JP2007292985A - Image forming method - Google Patents

Image forming method Download PDF

Info

Publication number
JP2007292985A
JP2007292985A JP2006120224A JP2006120224A JP2007292985A JP 2007292985 A JP2007292985 A JP 2007292985A JP 2006120224 A JP2006120224 A JP 2006120224A JP 2006120224 A JP2006120224 A JP 2006120224A JP 2007292985 A JP2007292985 A JP 2007292985A
Authority
JP
Japan
Prior art keywords
image forming
fine particles
photoreceptor
inorganic fine
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006120224A
Other languages
Japanese (ja)
Inventor
Masaya Kawada
将也 河田
Hiroaki Kawakami
宏明 川上
Masayuki Hama
雅之 浜
Masahiro Ito
政宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006120224A priority Critical patent/JP2007292985A/en
Publication of JP2007292985A publication Critical patent/JP2007292985A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sharp image without image deletion under high temperature and high humidity conditions even when no drum heater is used in a copy machine or a printer mounting an a-Si drum, and particularly, to prevent image deletion as well as to obtain cleaning property and durability of a cleaning member, and to maintain long-term high picture quality. <P>SOLUTION: A method for forming a digital image including a cleaning means 106 and using an a-Si photoreceptor 101 is characterized in that: in at least the cleaning step, the surface of a photoreceptor is rubbed and polished with an abrasive comprising a perovskite crystal having an average particle size of 50 to 500 nm; a normal developing system is used; and destaticizing light is distributed prior to the cleaning step CLN. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ドット状の潜像露光を感光体に露光して潜像形成を行う電子写真に係り、特に、クリーニング工程を有し、長寿命な感光体を使用した画像形成方法に関するものである。   The present invention relates to electrophotography in which dot-like latent image exposure is performed on a photosensitive member to form a latent image, and more particularly to an image forming method using a photosensitive member having a cleaning process and having a long life. .

近年、レーザプリンタ等のデジタル電子写真装置は、その画質の良さおよび高速プリントアウトなどの特徴で注目を浴びている。   In recent years, digital electrophotographic apparatuses such as laser printers have attracted attention because of their good image quality and high-speed printout.

特にアモルファスシリコン感光体(以下、a−Si感光体と称する)を使用した電子写真装置は、高感度、高安定性、高耐久性で、メンテナンス間隔が長かったり、ランニングコストの低減といった観点で好ましい。   In particular, an electrophotographic apparatus using an amorphous silicon photoreceptor (hereinafter referred to as an a-Si photoreceptor) is preferable from the viewpoints of high sensitivity, high stability, and high durability, a long maintenance interval, and a reduction in running cost. .

図18、図19はデジタル電子写真装置の画像形成プロセスを示す概略図で、感光体1801の周辺には該感光体に近接して主帯電手段1802、潜像露光1803、現像手段1804、転写手段1808、クリーニング手段1806、除電手段1807、搬送手段1809などが配設してある。感光体1801は、特にa−Si感光体など耐磨耗性に優れた高耐久な感光体を使用する場合、高湿環境下での画像ボケ抑止のため、不図示の温度制御手段(ドラムヒーターと称する)を有している。   18 and 19 are schematic views showing an image forming process of the digital electrophotographic apparatus. In the vicinity of the photosensitive member 1801, a main charging unit 1802, a latent image exposure 1803, a developing unit 1804, and a transfer unit are provided in the vicinity of the photosensitive member. 1808, a cleaning unit 1806, a charge eliminating unit 1807, a transport unit 1809, and the like are provided. The photoreceptor 1801 is a temperature control means (drum heater) (not shown) for suppressing image blur in a high humidity environment, particularly when a highly durable photoreceptor excellent in wear resistance such as an a-Si photoreceptor is used. Called).

感光体1801はX方向に回転駆動し、主帯電手段1802で帯電され、潜像露光1803が照射されて静電潜像が形成される。該潜像は現像手段1804からトナーが供給されて現像される。その後、転写手段1808で紙などの転写材Pに転写、定着手段(図示せず)にて定着され、装置外に排出される。一方、転写工程後の感光体1801表面は、クリーニング手段1806であるクリーニングブレードによってクリーニングされ、更に除電手段1807で除電された後に、再び次の画像形成プロセスに供せられる。クリーニングされた転写残現像剤等は廃トナー容器1805に回収される。あるいは、不図示の搬送手段を介して、別の廃トナー容器(不図示)に回収されてもよい。なお、クリーニング手段1806の上流側には摺擦部材1810あるいは廃トナー送り羽1811を設ける場合もある。   The photosensitive member 1801 is rotationally driven in the X direction, charged by the main charging unit 1802, and irradiated with a latent image exposure 1803 to form an electrostatic latent image. The latent image is developed by supplying toner from the developing means 1804. Thereafter, the image is transferred to a transfer material P such as paper by a transfer means 1808, fixed by a fixing means (not shown), and discharged outside the apparatus. On the other hand, the surface of the photoconductor 1801 after the transfer process is cleaned by a cleaning blade as the cleaning unit 1806, and after being further neutralized by the neutralizing unit 1807, it is again used for the next image forming process. The cleaned transfer residual developer and the like are collected in a waste toner container 1805. Alternatively, it may be collected in another waste toner container (not shown) via a conveying means (not shown). A rubbing member 1810 or waste toner feed blade 1811 may be provided on the upstream side of the cleaning unit 1806.

一方、電子写真装置自体については、市場のニーズとして小型化、高生産性化、省エネルギー化が進み、高耐久な感光体を使用した電子写真装置においても、該感光体の小径化或いはより高速化、また環境ヒーターなどの加熱手段を除去すること(ドラムヒーターレスと称する)などが望まれている。   On the other hand, with regard to the electrophotographic apparatus itself, as market needs have been reduced in size, increased in productivity, and saved in energy, even in an electrophotographic apparatus using a highly durable photoreceptor, the diameter of the photoreceptor is reduced or the speed is increased. In addition, it is desired to remove heating means such as an environmental heater (referred to as “drum heater-less”).

a−Si感光体に代表される高耐久な感光体を使用したデジタル電子写真装置においては、従来の有機感光体(OPC)等のように表面層ごと帯電生成物を削り取る手法が使用できないため、特にドラムヒーターレスでは高湿環境下で画像がボケる、いわゆる画像流れという画像欠陥が生じる場合があった。   In a digital electrophotographic apparatus using a highly durable photoreceptor typified by an a-Si photoreceptor, a method of scraping the charged product together with the surface layer like a conventional organic photoreceptor (OPC) cannot be used. In particular, when there is no drum heater, there is a case where an image defect such as so-called image flow occurs in which an image is blurred in a high humidity environment.

更に、a−Si感光体を小径化、或いは該a−Si感光体を使用した電子写真装置の高速化においては、各プロセス間、特に除電工程から主帯電工程までの時間が短くなり、帯電に際して過剰な電流を必要とする為、放電生成物の増量に伴い画像流れが悪化する。また、特に小型化においては従来設けられていた磁気ブラシローラー等の摺擦部材、特に磁気ブラシも小型化、乃至は除去する必要があり、磁気ブラシによる摺擦研磨力の低下に伴う画像流れの悪化が生じる場合がある。   Further, in reducing the diameter of the a-Si photosensitive member or increasing the speed of the electrophotographic apparatus using the a-Si photosensitive member, the time from the neutralization step to the main charging step is shortened between processes, Since an excessive current is required, the image flow deteriorates as the discharge product increases. Further, particularly in the downsizing, it is necessary to downsize or remove a rubbing member such as a magnetic brush roller provided in the past, in particular, the magnetic brush, and the image flow caused by the reduction in the rubbing polishing force by the magnetic brush is required. Deterioration may occur.

これらの問題を解決する方法として、一次粒子の平均粒径と比抵抗を規定した2種の酸化チタン微粒子で表面処理されたトナーと、ポリウレタン発泡体からなるクリーニングローラーを用いてa−Si感光体表面を研磨する方法が提案されている(特許文献1)。しかしながら、この方法ではスポンジローラーを使用しているため、罫線などの局在化した出力パターンを繰り返した時に、画像比率の差による研磨力の偏りが生じる場合があった。   As a method for solving these problems, an a-Si photoreceptor using a toner surface-treated with two kinds of titanium oxide fine particles defining the average particle size and specific resistance of primary particles and a cleaning roller made of polyurethane foam is used. A method of polishing the surface has been proposed (Patent Document 1). However, since this method uses a sponge roller, when the localized output pattern such as a ruled line is repeated, the polishing force may be biased due to the difference in the image ratio.

局在化した出力への対応としては、磁気ブラシ部材とクリーニングブレードからなるクリーニング手段の上流側に除電光源を設け、転写残トナーの静電力を弱め、該磁気ブラシから感光体表面への廃トナー再供給を均一化する方法が提案されている(特許文献2)。 しかしながら、この方法では画像流れへの対策としては不十分である。   As a response to the localized output, a neutralization light source is provided upstream of the cleaning means comprising a magnetic brush member and a cleaning blade to weaken the electrostatic force of the transfer residual toner, and waste toner from the magnetic brush to the photoreceptor surface A method for making the resupply uniform has been proposed (Patent Document 2). However, this method is not sufficient as a countermeasure against image flow.

また、感光体表面の摺擦と帯電安定性を加味した方法として、クリーニング手段よりも上流側に除電手段を設け、さらに該クリーニング手段と該除電手段の間に摺擦手段を兼ねた補助帯電手段をもうける方法として、該補助帯電に注入帯電を使用する方法(特許文献3)、また平均粒径および電気抵抗値を規定した研磨剤を含有する現像剤を使用し、さらに弾性ローラーからなる補助帯電部材を使用する方法(特許文献4及び5)が提案されている。しかしながら、特許文献3の方法では補助帯電として注入帯電を使用しているため、高圧電源などの付帯装置が必要であり、コスト高を免れない。一方、特許文献4及び5の構成では、特許文献1同様に研磨力の偏りが生じる場合があった。   Further, as a method taking into account the rubbing of the surface of the photosensitive member and the charging stability, an auxiliary charging unit provided with a charge eliminating unit upstream of the cleaning unit and further serving as a rubbing unit between the cleaning unit and the charge eliminating unit As a method of using an injection charge for the auxiliary charge (Patent Document 3), a developer containing an abrasive having an average particle diameter and an electric resistance value, and an auxiliary charge comprising an elastic roller. Methods (Patent Documents 4 and 5) using members have been proposed. However, since the method of Patent Document 3 uses injection charging as auxiliary charging, an auxiliary device such as a high-voltage power supply is necessary, and the cost is unavoidable. On the other hand, in the configurations of Patent Documents 4 and 5, as in Patent Document 1, uneven polishing force may occur.

特開2005−17524号公報Japanese Patent Laid-Open No. 2005-17524 特開平10 −49017号公報JP-A-10-49017 特開2003−91142号公報JP 2003-91142 A 特開2001−42734号公報JP 2001-42734 A 特開2001−05256号公報JP 2001-05256 A

本発明は、上述のごとき問題点を解決した画像形成方法を提供することを課題とする。具体的には、長期に渡って感光体から帯電生成物を良好に除去できるクリーニング性を維持し、画像流れ等の画像欠陥を防止し、安定した画像特性を高水準で維持できる画像形成方法を提供することを課題とする。   An object of the present invention is to provide an image forming method that solves the above-described problems. Specifically, an image forming method capable of maintaining a cleaning property capable of satisfactorily removing a charged product from a photoconductor for a long period of time, preventing image defects such as image flow, and maintaining stable image characteristics at a high level. The issue is to provide.

上記目的を達成する為の、本発明の画像形成方法は、
(1)a−Si感光体を使用し、潜像形成工程は背面露光(以下、BAEと称する。 BAE;Back Area Exposure)方式を用いて、クリーニング工程において平均粒径Dが30〜500nmのペロブスカイト型結晶を有する無機微粒子からなる研磨粒子を介して該感光体表面を摺擦する工程を有し、更に、除電工程を、該転写工程と該クリーニング工程の間に有することを特徴とする。
(2)感光体表面の10点平均粗さRzが、前記研磨剤の平均粒径Dの0.5〜2倍であることを特徴とする。
(3)感光体表面の最大粗さRmaxが、前記研磨剤の平均粒径Dの3倍以下であることを特徴とする。
(4)現像剤が磁性一成分現像剤であることを特徴とする。
(5)現像剤中のトナー粒子の平均粒径、及び平均円形度が規定された範囲のものを使用することを特徴とする。
(6)画像形成時におけるクリーニング工程から帯電工程までの時間が100msec以下であることを特徴とする。
(7)主帯電工程が近接帯電方式であることを特著とする。
(8)研磨粒子回収工程を有することを特徴とする。
(9)研磨粒子回収工程で所定の極性のバイアスを印加することを特著とする。
In order to achieve the above object, the image forming method of the present invention comprises:
(1) Using an a-Si photoreceptor, the latent image forming step is a back exposure (hereinafter referred to as BAE; BAE; Back Area Exposure) method, and a perovskite having an average particle diameter D of 30 to 500 nm in the cleaning step. It has a step of rubbing the surface of the photoreceptor through abrasive particles made of inorganic fine particles having a type crystal, and further has a charge eliminating step between the transfer step and the cleaning step.
(2) The 10-point average roughness Rz of the photoreceptor surface is 0.5 to 2 times the average particle diameter D of the abrasive.
(3) The maximum roughness Rmax on the surface of the photoreceptor is not more than 3 times the average particle diameter D of the abrasive.
(4) The developer is a magnetic one-component developer.
(5) A toner having an average particle diameter and an average circularity within a specified range is used.
(6) The time from the cleaning process to the charging process during image formation is 100 msec or less.
(7) Special feature is that the main charging process is a proximity charging system.
(8) It has an abrasive particle recovery step.
(9) Specially applying a bias having a predetermined polarity in the abrasive particle recovery step.

本発明により、耐磨耗性が優れたa−Si感光体を使用した場合でも、感光体ドラム表面に付着した帯電生成物を良好に掻き取ることができ、画像流れを防止できる。   According to the present invention, even when an a-Si photoconductor having excellent wear resistance is used, the charged product adhering to the surface of the photoconductor drum can be scraped off satisfactorily, and image flow can be prevented.

また、局在化した画像や、濃度が極端に低い画像等の出力で繰り返し使用(いわゆる耐刷)した場合の研磨力やクリーニングブレードへの負荷を均一化することができ、画像流れを防止するとともに、良好なクリーニング性を維持し、またクリーニングブレードや感光体の損耗を抑制することができる。   In addition, it is possible to equalize the polishing force and load on the cleaning blade when repeatedly used (so-called printing durability) with the output of localized images, images with extremely low density, etc., and prevent image flow. In addition, good cleaning properties can be maintained, and wear of the cleaning blade and the photoreceptor can be suppressed.

感光体表面形状と研磨剤の粒径の相関を規定したことで、帯電生成物を高効率に研磨除去すると主にクリーニング工程での特に長手方向への流動性を高めることができる。   By defining the correlation between the surface shape of the photoreceptor and the particle size of the abrasive, it is possible to improve the fluidity, particularly in the longitudinal direction, mainly in the cleaning process when the charged product is polished and removed with high efficiency.

非接触現像方式である磁性一成分現像方式の採用で現像工程での研磨剤回収やそれに伴う現像特性の低下を抑止することができる。また、研磨剤のみならず高硬度な磁性トナーに依る感光体表面の摺擦効果も重畳される。   By adopting a magnetic one-component development system which is a non-contact development system, it is possible to suppress the recovery of abrasives in the development process and the accompanying deterioration in development characteristics. In addition, the rubbing effect on the surface of the photoreceptor not only by the abrasive but also by the hard magnetic toner is also superimposed.

近接帯電方式、研磨剤回収工程の付与等により感光体、クリーニング手段、帯電手段性を含めたシステムの寿命を延ばすことができ、メンテナンスの負荷を低減することができる。   By providing a proximity charging method, an abrasive recovery process, etc., it is possible to extend the life of the system including the photosensitive member, the cleaning unit, and the charging unit, and to reduce the maintenance load.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

・画像形成装置構成
図1に、本発明に掛る画像形成装置の一例を示す。X方向に回転駆動される感光体101の周囲に、主帯電手段102、潜像露光103、現像手段104、転写手段108、クリーニング手段106、搬送手段109などが設けられる。なお、潜像露光はBAE(詳細は後述する)を採用し、また除電手段107は転写手段108からクリーニング手段106の間に配される。
FIG. 1 shows an example of an image forming apparatus according to the present invention. A main charging unit 102, a latent image exposure 103, a developing unit 104, a transfer unit 108, a cleaning unit 106, a conveying unit 109, and the like are provided around the photoconductor 101 that is rotationally driven in the X direction. The latent image exposure employs BAE (details will be described later), and the charge eliminating means 107 is disposed between the transfer means 108 and the cleaning means 106.

デジタル画像形成方法では、画像情報と露光部との関係で、大きく分けて2つの方式がある。1つは画像部を露光するイメージ露光法(以下、IAEという)、もう1つは非画像部(背景部)を露光する背面露光法(BAE)である。   There are roughly two types of digital image forming methods depending on the relationship between the image information and the exposure unit. One is an image exposure method (hereinafter referred to as IAE) for exposing an image portion, and the other is a back exposure method (BAE) for exposing a non-image portion (background portion).

BAEはアナログ画像形成方式と同じでいわゆる正規現像方式、IAEは感光体と現像剤が逆極性の反転現像方式が採用される。   BAE is the same as the analog image forming method, and a so-called regular developing method, and IAE is a reversal developing method in which the photosensitive member and the developer have opposite polarities.

図10は、左側部にIAEの1ラインの状態、即ち1ラインのみ光ビームONの状態を、右側部にBAEの1ラインの状態、即ち1ラインのみ光ビームOFFの潜像状態と、現像バイアスのDC成分を示している。実線は現像工程時の感光体表面電位、破線は図18乃至図19の如き画像形成装置を使用した場合の、クリーニング工程時の感光体表面電位である。また、現像バイアスはIAEにおいてVdi、BAEにおいてVdbである。   FIG. 10 shows the state of one line of IAE on the left side, that is, the state of light beam ON only for one line, the state of one line of BAE on the right side, that is, the latent image state of light beam OFF only for one line, and the development bias. The DC component of is shown. The solid line represents the photoreceptor surface potential during the development process, and the broken line represents the photoreceptor surface potential during the cleaning process when the image forming apparatus as shown in FIGS. 18 to 19 is used. The developing bias is Vdi for IAE and Vdb for BAE.

現像剤は静電付着力により感光体表面に現像されるが、該静電付着力は、各々ΔVl1=Vdi−Vi、ΔVh1=Vb−Vdbのコントラストに起因する。   The developer is developed on the surface of the photoreceptor by electrostatic adhesion, and the electrostatic adhesion is caused by contrasts of ΔVl1 = Vdi−Vi and ΔVh1 = Vb−Vdb, respectively.

クリーニング工程突入時には、感光体の表面電位が減衰し、破線のような状態になっている。上記の静電付着力にかかるコントラストは、IAEでは各々ΔVl1がΔVl2へ増加し、BAEではΔVh1がΔVh2へと低減する。BAEでは現像剤の付着力が低減することにより、クリーニング工程において、現像剤が感光体の長手方向へ移動しやすくなり、転写残現像剤や研磨粒子等がクリーニングブレードで均一に均される。また、感光体電位の減衰に伴い、画像部と非画像部の電位差が減少することも有効に働く。   At the time of entering the cleaning process, the surface potential of the photosensitive member is attenuated and is in a state as indicated by a broken line. As for the contrast applied to the electrostatic adhesion force, ΔVl1 increases to ΔVl2 in IAE, and ΔVh1 decreases to ΔVh2 in BAE. In BAE, the adhesive force of the developer is reduced, so that the developer can easily move in the longitudinal direction of the photoreceptor in the cleaning process, and the residual transfer developer, abrasive particles, and the like are uniformly leveled by the cleaning blade. It is also effective that the potential difference between the image area and the non-image area is reduced as the photoreceptor potential is attenuated.

本発明の系では、クリーニング工程に突入する前に除電工程を通過するため、クリーニング工程時には、図10の一点鎖線の様に、更に低電位でまた画像部と非画像部の電位差が低減され、BAEでより有効に作用する。特に、a−Si感光体はOPC等と比較して電位の減衰が大きいため、より効果的である。   In the system of the present invention, since it passes through the static elimination process before entering the cleaning process, at the time of the cleaning process, the potential difference between the image area and the non-image area is further reduced at a lower potential, as shown by the dashed line in FIG. It works more effectively with BAE. In particular, the a-Si photosensitive member is more effective because the potential attenuation is larger than that of OPC or the like.

IAEでは非画像部(背景部)の電位が画像部より高い為、転写分離性能に関してはIAEよりもBAEの方がラチチュードは広く、この点でもBAEが有利である。
・無機微粒子
感光体表面に付着する帯電生成物を除去する為の研磨剤である無機微粒子としては、平均粒径Dが30〜500nmのペロブスカイト型結晶を有する無機微粒子が好ましい。
In IAE, the potential of the non-image area (background area) is higher than that of the image area. Therefore, regarding the transfer separation performance, BAE has a wider latitude than IAE, and BAE is advantageous also in this respect.
Inorganic fine particles As the inorganic fine particles, which are abrasives for removing the charged product adhering to the surface of the photoreceptor, inorganic fine particles having perovskite crystals having an average particle diameter D of 30 to 500 nm are preferable.

ペロブスカイト型の結晶構造を有する材料としては、チタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。該研磨粒子は、平均粒径が30nm〜500nmであることが好ましい。より好ましくは100nm〜300nmである。この範囲のとき、充分な研磨作用と、更にはクリーニングブレードニップ部での潤滑剤としての作用により、画像流れを効果的に防止しつつ良好なクリーニング性を維持し、該クリーニングブレードや感光体の損耗を抑止して、長期に良好な画像を得ることができる。   Examples of the material having a perovskite crystal structure include strontium titanate and calcium titanate. The abrasive particles preferably have an average particle size of 30 nm to 500 nm. More preferably, it is 100 nm-300 nm. Within this range, sufficient polishing action and further action as a lubricant at the cleaning blade nip portion maintain good cleaning performance while effectively preventing image flow, and the cleaning blade and the photoreceptor. It is possible to suppress wear and obtain a good image for a long time.

30nm以下の小粒径では研磨作用が低減するほか、クリーニングブレードをすり抜ける量が多く、除電光や潜像露光などの、感光体への照射を妨げる場合がる。また、凝集性が高くなり、流動性即ちクリーニングブレードへの均一供給性が低下したり、大粒径の2次粒子となって、クリーニングブレード乃至は感光体の損耗が生じる場合があった。一方、500nmを超えるような大粒径の場合には、クリーニングブレードと感光体のニップ近傍、特に楔形の部位に侵入しにくく、充分な研磨作用が得られない場合がる。また、該領域に進入しにくくクリーニングブレードニップ部での充分な潤滑作用を得難くなり、クリーニングブレード乃至は感光体の損耗が生じる場合があった。   When the particle size is 30 nm or less, the polishing action is reduced and the amount of slipping through the cleaning blade is large, which may hinder irradiation of the photosensitive member such as static elimination light or latent image exposure. In addition, the cohesiveness is increased, the fluidity, that is, the uniform supply to the cleaning blade is lowered, or the secondary particle has a large particle size, and the cleaning blade or the photoconductor may be worn. On the other hand, in the case of a large particle diameter exceeding 500 nm, it is difficult to enter the vicinity of the nip between the cleaning blade and the photosensitive member, particularly a wedge-shaped portion, and a sufficient polishing action may not be obtained. Further, it is difficult to enter the region, and it is difficult to obtain a sufficient lubricating action at the cleaning blade nip portion, and the cleaning blade or the photoreceptor may be worn.

600nm以上の粒径を有する凝集体の含有率が1個数%以下であれば、良好な結果が得られる。600nm以上の粒子及び凝集体を、1個数%を超えて含有している場合には、一次粒径が500nm未満であっても、静電荷潜像担持体にキズが発生する場合があったが、BAE,a−Siとの組合せで、クリーニング工程において、該凝集体がほぐされ易くなるので、1個数%以下に抑制することが容易となり好適である。   If the content of aggregates having a particle size of 600 nm or more is 1% by number or less, good results can be obtained. When the particles and aggregates of 600 nm or more are contained in excess of 1% by number, the electrostatic latent image bearing member may be scratched even if the primary particle size is less than 500 nm. In combination with BAE and a-Si, the agglomerates are easily loosened in the cleaning step.

無機微粒子の平均粒径については、電子顕微鏡にて5万倍の倍率で撮影した写真から100個の粒径を測定して、その平均を求めた。粒径は、一次粒子の最長辺をa、最短辺をbとしたとき、(a+b)/2として求めた。また、本発明で用いるペロブスカイト型結晶無機微粒子中の、粒子形状が稜線乃至は角を有する、具体的には直方体状である粒子の含有率を50個数%以上にすることで、更に効率的に帯電生成物の除去が行えるので好ましい。   About the average particle diameter of inorganic fine particles, 100 particle diameters were measured from the photograph image | photographed with the magnification of 50,000 with the electron microscope, and the average was calculated | required. The particle size was determined as (a + b) / 2, where a is the longest side of the primary particles and b is the shortest side. In addition, the perovskite-type crystalline inorganic fine particles used in the present invention can be made more efficient by increasing the content of particles having a ridge or corner, specifically, a rectangular parallelepiped, to 50% by number or more. It is preferable because the charged product can be removed.

更に本発明において、研磨粒子を現像剤に添加する場合は、トナー粒子に対する遊離率は20体積%以下であることが好ましく、15体積%以下が更に好ましい。ここで遊離率とは、トナー粒子から遊離したペロブスカイト型結晶無機微粒子の割合を体積%で求めたものであり、パーティクルアナライザー(PT1000:横河電機(株)製)により公知の原理(非特許文献1)で測定されたものである。   Furthermore, in the present invention, when abrasive particles are added to the developer, the liberation ratio with respect to the toner particles is preferably 20% by volume or less, and more preferably 15% by volume or less. Here, the liberation ratio is a ratio of perovskite-type crystalline inorganic fine particles liberated from the toner particles in volume%, and is known by a particle analyzer (PT1000: manufactured by Yokogawa Electric Corporation) (non-patent document). It was measured in 1).

該研磨粒子の形状は、不定形でも構わないが、稜線或いは角を有する形状が好ましい。例えば図13乃至図14の如き、直方体状であることが好ましい。   The shape of the abrasive particles may be indefinite, but a shape having ridge lines or corners is preferable. For example, a rectangular parallelepiped shape as shown in FIGS. 13 to 14 is preferable.

本発明で用いるペロブスカイト型結晶の無機微粒子は、周知の焼結・粉砕法で製造できる。   The inorganic fine particles of perovskite crystals used in the present invention can be produced by a known sintering and pulverization method.

また、直方体状の微粉体は、例えば、硫酸チタニル水溶液を加水分解して得た含水酸化チタンスラリーのpHを調整して得たチタニアゾルの分散液に、ストロンチウムの水酸化物を添加して、反応温度まで加温することで合成することができる。該含水酸化チタンスラリーのpHは0.5〜1.0とすることで、良好な結晶化度及び粒径のチタニアゾルが得られる。   The rectangular parallelepiped fine powder is prepared by adding a strontium hydroxide to a titania sol dispersion obtained by adjusting the pH of a hydrous titanium oxide slurry obtained by hydrolyzing a titanyl sulfate aqueous solution. It can be synthesized by heating to temperature. By setting the pH of the hydrous titanium oxide slurry to 0.5 to 1.0, a titania sol having good crystallinity and particle size can be obtained.

また、チタニアゾル粒子に吸着しているイオンを除去する目的で、該チタニアゾルの分散液に、水酸化ナトリウムの如きアルカリ性物質を添加することが好ましい。このときナトリウムイオン等を含水酸化チタン表面に吸着させないために、該スラリーのpHを7以上にしないことが好ましい。また、反応温度は60℃〜100℃が好ましく、所望の粒度分布を得るためには昇温速度を30℃/時間以下にすることが好ましく、反応時間は3〜7時間であることが好ましい。   For the purpose of removing ions adsorbed on the titania sol particles, an alkaline substance such as sodium hydroxide is preferably added to the dispersion of the titania sol. At this time, it is preferable that the pH of the slurry is not 7 or higher so that sodium ions and the like are not adsorbed on the surface of the hydrous titanium oxide. The reaction temperature is preferably 60 ° C. to 100 ° C., and in order to obtain a desired particle size distribution, the temperature rising rate is preferably 30 ° C./hour or less, and the reaction time is preferably 3 to 7 hours.

上記の如き方法により製造された無機微粒子を脂肪酸又はその金属塩で表面処理を行う方法としては以下の方法がある。たとえば、Arガス又はN2ガス雰囲気下、無機微粒子スラリーを脂肪酸ナトリウム水溶液中に入れ、ペロブスカイト型結晶表面に脂肪酸を析出させることができる。また、たとえばArガス又はN2ガス雰囲気下、無機微粒子スラリーを脂肪酸ナトリウム水溶液中に入れ、撹拌しながら、所望の金属塩水溶液を滴下することで、ペロブスカイト型結晶表面に脂肪酸金属塩を析出,吸着させることができる。例えばステアリン酸ナトリウム水溶液と硫酸アルミニウムを用いればステアリン酸アルミニウムを吸着させることができる。 Examples of the method for subjecting the inorganic fine particles produced by the above method to surface treatment with a fatty acid or a metal salt thereof include the following methods. For example, in an Ar gas or N 2 gas atmosphere, the inorganic fine particle slurry can be placed in a fatty acid sodium aqueous solution to precipitate the fatty acid on the perovskite crystal surface. Also, for example, in an Ar gas or N 2 gas atmosphere, the inorganic fine particle slurry is placed in a fatty acid sodium aqueous solution, and the desired metal salt aqueous solution is dropped while stirring to precipitate and adsorb the fatty acid metal salt on the perovskite crystal surface. Can be made. For example, if a sodium stearate aqueous solution and aluminum sulfate are used, aluminum stearate can be adsorbed.

「Japan Hardcopy 97論文集」65〜68頁(発行者:電子写真学会、発行日:1997年7月9日)Japan Hardcopy 97 Proceedings, pages 65-68 (Publisher: The Electrophotographic Society, Publication Date: July 9, 1997)

・感光体(a−Si)
画像形成システムのメンテナンス負荷低減の為に、感光体は長寿命な感光体が好ましい。a−Si感光体は、耐磨耗性、耐久に伴う電位安定性などに優れた長寿命感光体である。
・ Photoconductor (a-Si)
In order to reduce the maintenance load of the image forming system, the photoconductor is preferably a long-life photoconductor. The a-Si photoreceptor is a long-life photoreceptor excellent in wear resistance and potential stability accompanying durability.

図11は、a−Si感光体の層構成の例を説明するための模式的構成図である。感光体1100は、支持体1101の上に、感光層1102が設けられている。該感光層1102は光導電層1103と、表面層1104と、必要に応じて設けられる電荷注入阻止層1105、同1106とから構成され、各層は周知のa−Si感光体用材料、及びプラズマCVDなど周知の製造方法で作製できる。   FIG. 11 is a schematic configuration diagram for explaining an example of a layer configuration of an a-Si photosensitive member. The photoreceptor 1100 is provided with a photosensitive layer 1102 on a support 1101. The photosensitive layer 1102 includes a photoconductive layer 1103, a surface layer 1104, and charge injection blocking layers 1105 and 1106 provided as necessary. Each layer is a well-known a-Si photosensitive material and plasma CVD. It can be produced by a known manufacturing method.

なお、本発明に掛る感光体は、その表面形状が規定された感光体であることが好ましい。   The photoreceptor according to the present invention is preferably a photoreceptor whose surface shape is defined.

感光体表面の10点平均粗さRzとしては、前記無機微粒子が効果的に流動したり、或いは該無機微粒子等の凝集体をほぐすために、該無機微粒子の平均粒径Dの0.5〜2倍(0.5≦Rz/D≦2.0)であることが好ましい。   As the 10-point average roughness Rz on the surface of the photoreceptor, the average particle diameter D of the inorganic fine particles is 0.5 to 0.5 in order to effectively flow the inorganic fine particles or loosen aggregates such as the inorganic fine particles. It is preferable that it is 2 times (0.5 ≦ Rz / D ≦ 2.0).

該Rz/Dは、大きすぎると、前記無機微粒子が効果的に流動することができない。一方、小さすぎても前記無機微粒子の転がりが生じ難くなる。   If the Rz / D is too large, the inorganic fine particles cannot effectively flow. On the other hand, if the particle size is too small, the inorganic fine particles are hardly rolled.

同様の理由から、感光体表面の最大粗さRmaxは、前記研磨剤の平均粒径Dの3倍以下であることが好ましい。   For the same reason, the maximum roughness Rmax on the surface of the photoreceptor is preferably 3 times or less than the average particle diameter D of the abrasive.

該a−Si感光体の表面形状は、例えば支持体の切削や、回転ボールミル等による処理を行い、該支持体の表面形状を調整した上で感光層を形成することでの制御することができる。   The surface shape of the a-Si photosensitive member can be controlled by forming a photosensitive layer after adjusting the surface shape of the support by, for example, cutting the support or processing with a rotating ball mill or the like. .

具体的には、アルミシリンダー等の支持体を切削する際のバイトの種類、角度、或いは切削ピッチの調整により、該支持体の表面形状を制御することができる。また、一般にCVDで製造されるa−Si感光体は、図12の如く、該支持体の表面形状に応じた表面形状を有する。   Specifically, the surface shape of the support can be controlled by adjusting the type, angle or cutting pitch of the cutting tool when cutting the support such as an aluminum cylinder. In addition, an a-Si photoreceptor generally manufactured by CVD has a surface shape corresponding to the surface shape of the support as shown in FIG.

また、a−Si感光層成膜時の原料ガスの流量やプラズマ放電電力、基板温度等の成膜条件を調整することで該感光層の表面粗さを調整することができる。例えば、プラズマCVDで製造する場合、原料ガス流量を増やすとともに、放電電力/原料ガス流量比を増加させるとRz、Rmaxが増加傾向になるなどである。   Further, the surface roughness of the photosensitive layer can be adjusted by adjusting film forming conditions such as the flow rate of the source gas, plasma discharge power, and substrate temperature during the formation of the a-Si photosensitive layer. For example, when manufacturing by plasma CVD, increasing the source gas flow rate and increasing the discharge power / source gas flow rate ratio tend to increase Rz and Rmax.

さらに、作製された感光体の表面を、研磨テープなどを用いて研磨し、表面形状を制御することも可能である。   Furthermore, it is possible to control the surface shape by polishing the surface of the produced photoreceptor using a polishing tape or the like.

これら表面形状を制御する手法は、単独で制御しても、また複合的に制御しても良い。   These methods for controlling the surface shape may be controlled independently or in combination.

本発明における表面形状とは、クリーニングブレードの長手方向に相当する方向の表面形状Rz、Rmaxを指し、JISB0601:1982で定義されるものであり、該JISB0601:1982に対応した表面粗さ測定装置で測定することができる。   The surface shape in the present invention refers to the surface shapes Rz and Rmax in the direction corresponding to the longitudinal direction of the cleaning blade, and is defined by JISB0601: 1982, and is a surface roughness measuring device corresponding to JISB0601: 1982. Can be measured.

・現像剤
現像剤としては周知の現像剤を使用できるが、特に高速・超寿命のシステムにおいては、現像手段もメンテナンスフリーであることが好ましく、非接触磁性一成分現像方式であるジャンピング現像方式が、a−Si感光体の画像形成装置などで実用化されている。
・ Developers Well-known developers can be used as developers, but in high-speed and long-lived systems, it is preferable that the developing means is also maintenance-free, and the jumping development method which is a non-contact magnetic one-component development method is used. It has been put to practical use in an image forming apparatus for an a-Si photosensitive member.

ジャンピング現像はまた、非接触現像であるが故に、上述の研磨剤がクリーニング工程等からのすり抜けを生じても、現像手段への回収をし難く、該研磨剤の現像手段中での濃縮等に起因する画像特性の変動を防止できる。また、トナーが磁性トナーであり、磁性体による研磨作用付加や摺擦回収部材として磁性体を利用できるなどの付加的な作用も期待できる。   Jumping development is also non-contact development, so even if the above-mentioned abrasive slips out of the cleaning process or the like, it is difficult to recover to the developing means, and the abrasive is concentrated in the developing means. It is possible to prevent fluctuations in image characteristics caused by it. Further, since the toner is a magnetic toner, additional actions such as addition of a polishing action by the magnetic substance and use of the magnetic substance as a rubbing recovery member can be expected.

磁性一成分現像剤は磁性トナー粒子と、外添剤からなる現像剤であるが、該磁性トナー粒子の粒子径は高画質、高精細から小さい方が好ましい。一方、小さすぎるとトナークリーニングが困難になる場合がある。また、一般にトナー粒径が小さくなると、付着力に対する静電的付着力の寄与率が小さくなり、本発明におけるBAEの作用効果の観点からも小さすぎない方が好ましい。該トナー粒子の重量平均粒子径X(μm)は、4μm乃至12μmが好ましい範囲である。   The magnetic one-component developer is a developer composed of magnetic toner particles and an external additive. The particle diameter of the magnetic toner particles is preferably smaller from high image quality and high definition. On the other hand, if it is too small, toner cleaning may be difficult. In general, as the toner particle size becomes smaller, the contribution ratio of the electrostatic adhesion force to the adhesion force becomes smaller, and it is preferable that it is not too small from the viewpoint of the effect of the BAE in the present invention. The toner particles preferably have a weight average particle diameter X (μm) of 4 μm to 12 μm.

更に、フロー式粒子像測定装置で計測される円相当径3μm以上400μm以下のトナー粒子における平均円形度が0.930以上0.970未満(好ましくは0.935以上0.970未満)であることが好ましい。平均円形度aは高い方が離形性に優れる、即ち付着力を低減できクリーニング性に有利であるほか、転写効率も向上する。一方、球形など、円形度が高すぎる場合にはクリーニングブレード部での流動性が低下し上記研磨剤等を該クリーニングブレードの長手方向に均一に均すさよう蛾低下してしまう。結果として、上記研磨粒子の作用や、クリーニング性の低下を招く場合がある。   Further, the average circularity of toner particles having an equivalent circle diameter of 3 μm or more and 400 μm or less measured by a flow type particle image measuring apparatus is 0.930 or more and less than 0.970 (preferably 0.935 or more and less than 0.970). Is preferred. The higher the average circularity a, the better the releasability, that is, the adhesive force can be reduced and the cleaning performance is advantageous, and the transfer efficiency is also improved. On the other hand, when the circularity is too high, such as a spherical shape, the fluidity at the cleaning blade portion is lowered, and the above-mentioned abrasive or the like is lowered evenly in the longitudinal direction of the cleaning blade. As a result, the action of the abrasive particles and a decrease in cleaning properties may be caused.

円形度はトナー粒子の、凹凸の度合いの指標であり、トナーが完全な球形の場合1.00を示し、表面形状が複雑になるほど円形度は小さな値となる。   The circularity is an index of the degree of unevenness of the toner particles, and indicates 1.00 when the toner is a perfect sphere, and the circularity becomes smaller as the surface shape becomes more complicated.

平均円形度は、粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではシスメックス社製フロー式粒子像分析装置FPIA−2100を用いて23℃、60%RHの環境下で測定を行い、円相当径0.60μm〜400μmの範囲内の粒子を測定し、そこで測定された粒子の円形度a’を下式(1)により求め、更に円相当径3μm以上400μm以下の粒子において、該円形度a’の総和を全粒子数で除した値を平均円形度aと定義する。
円形度a’=L0/L (1)
〔式中、L0は粒子像と同じ投影面積を持つ円の周囲長を示し、Lは512×512の画像処理解像度(0.3μm×0.3μmの画素)で画像処理した時の粒子投影像の周囲長を示す。〕
The average circularity is used as a simple method for quantitatively expressing the particle shape. In the present invention, the flow type particle image analyzer FPIA-2100 manufactured by Sysmex Corporation is used and the environment is 23 ° C. and 60% RH. Measured below, particles within a circle equivalent diameter of 0.60 μm to 400 μm were measured, and the circularity a ′ of the measured particles was determined by the following formula (1). Further, the circle equivalent diameter was 3 μm or more and 400 μm or less. The value obtained by dividing the sum of the circularity a ′ by the total number of particles is defined as the average circularity a.
Circularity a ′ = L0 / L (1)
[In the formula, L0 represents the perimeter of a circle having the same projection area as the particle image, and L represents the particle projection image when image processing is performed with an image processing resolution of 512 × 512 (pixels of 0.3 μm × 0.3 μm). The perimeter of is shown. ]

具体的な測定方法としては、容器中に予め不純固形物などを除去したイオン交換水10mlを用意し、その中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を加えた後、更に測定試料を0.02g加え、均一に分散させる。分散させる手段としては、超音波分散機「Tetora150型」(日科機バイオス社製)を用い、2分間分散処理を行い、測定用の分散液とする。その際、該分散液の温度が40℃以上とならない様に適宜冷却する。また、円形度のバラツキを抑えるため、フロー式粒子像分析装置FPIA−2100の機内温度が26〜27℃になるよう装置の設置環境を23℃±0.5℃にコントロールし、一定時間おきに、好ましくは2時間おきに2μmラテックス粒子を用いて自動焦点調整を行う。   As a specific measuring method, 10 ml of ion-exchanged water from which impure solids have been removed in advance is prepared in a container, and a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant therein, followed by further measurement. Add 0.02 g of sample and disperse uniformly. As a means for dispersion, an ultrasonic disperser “Tetora 150 type” (manufactured by Nikka Ki Bios Co., Ltd.) is used, and dispersion treatment is performed for 2 minutes to obtain a dispersion for measurement. In that case, it cools suitably so that the temperature of this dispersion may not be 40 degreeC or more. In order to suppress variation in circularity, the installation environment of the apparatus is controlled at 23 ° C. ± 0.5 ° C. so that the temperature inside the flow type particle image analyzer FPIA-2100 is 26 to 27 ° C. Preferably, autofocus is performed using 2 μm latex particles every 2 hours.

トナー粒子の円形度測定には、前記フロー式粒子像測定装置を用い、測定時のトナー粒子濃度が3000〜1万個/μlとなる様に該分散液濃度を再調整し、トナー粒子を1000個以上計測する。計測後、このデータを用いて、円相当径3μm未満のデータをカットして、トナー粒子の平均円形度を求める。   To measure the circularity of the toner particles, the flow type particle image measuring device is used, and the concentration of the dispersion is readjusted so that the toner particle concentration at the time of measurement is 3000 to 10,000 particles / μl. Measure more than one. After the measurement, data having an equivalent circle diameter of less than 3 μm is cut using this data, and the average circularity of the toner particles is obtained.

円形度a’の個数基準の円形度分布において、0.900以上の円形度a’を有する粒子が90個数%以上存在することが好ましい。平均円形度を制御した作用が有効に働き、上記クリーニング性や、クリーニングブレード長手方向の均一性を好適に維持できる。   In the circularity distribution based on the number of circularity a ′, it is preferable that 90% by number or more of particles having a circularity a ′ of 0.900 or more are present. The effect of controlling the average circularity works effectively, and the above cleaning property and uniformity in the longitudinal direction of the cleaning blade can be suitably maintained.

本発明の磁性トナー粒子の製造には、周知の粉砕法、重合法など、周知の方法を使用することができる。また、製造手段も混合機、混練機、粉砕機、分級機、篩い装置、何れも公知の装置を使用することができる。また、円形度の制御も公知の機械式や熱による表面改質手段を使用したり、重合条件を調整して制御することができる。また、トナー粒子に使用する結着樹脂、磁性体、ワックス等の添加剤、またトナー粒子に外添する添加剤は周知の物を使用することができる。   For the production of the magnetic toner particles of the present invention, a known method such as a known pulverization method or polymerization method can be used. As the production means, a known device can be used for any of a mixer, a kneader, a pulverizer, a classifier, and a sieving device. The degree of circularity can also be controlled by using a known mechanical type or surface modification means by heat, or by adjusting the polymerization conditions. Also, well-known materials can be used as additives such as binder resin, magnetic material, and wax used for toner particles, and additives added externally to toner particles.

・帯電方式
帯電方式はコロナ帯電方式、接触帯電方式、またこれらの中間に位置する、いわゆる近接帯電方式など、周知の帯電方式が使用できる。
-Charging method As the charging method, a well-known charging method such as a corona charging method, a contact charging method, or a so-called proximity charging method located between them can be used.

また、印加するバイアスも、DCバイアスのみでも、DCバイアスにACバイアスを重畳(AC/DCと称する)してもよい。   Further, the bias to be applied may be a DC bias alone, or an AC bias may be superimposed on the DC bias (referred to as AC / DC).

一般にコロナ帯電方式よりも接触帯電方式、近接帯電方式の方が、発生するオゾンやNOx等の生成物の量が少ない。また、該接触、および近接帯電方式は、小型での帯電性能に優れ、画像形性装置を小型化する場合に有効である。   In general, the contact charging method and the proximity charging method generate less products such as ozone and NOx than the corona charging method. The contact and proximity charging method is excellent in charging performance in a small size, and is effective in downsizing the image forming apparatus.

近接帯電方式は、接触帯電とほぼ同等のバイアスで、また感光体に接触していないため帯電部材表面が汚染され難い、更に該感光体と該帯電手段の空隙部で気流が生じるため、帯電生成物が帯電領域に蓄積され難い。   In the proximity charging method, the surface of the charging member is hardly contaminated with a bias almost equal to that of contact charging and is not in contact with the photosensitive member, and further, an air flow is generated between the photosensitive member and the charging unit, thereby generating charge. Objects are difficult to accumulate in the charged area.

近接帯電方式において、感光体と帯電手段の空隙間隔は、最近接部で500μm以下、好ましくは20〜300μm、より好ましくは100μm以下であり、感光体との距離が大きい(数mm)コロナ帯電とは区別されるものである。   In the proximity charging method, the gap between the photosensitive member and the charging unit is 500 μm or less, preferably 20 to 300 μm, more preferably 100 μm or less at the closest part, and the distance from the photosensitive member is large (several mm). Are distinct.

この空隙は、大きすぎた場合には帯電が不安定になりやすく、また、小さすぎた場合には、感光体に残留した研磨粒子等が存在する場合に、帯電部材表面が汚染されてしまう可能性がある。   If this gap is too large, the charging tends to become unstable, and if it is too small, the surface of the charging member may be contaminated when there are abrasive particles remaining on the photoreceptor. There is sex.

帯電手段の形状は、例えば図3、図4−1〜4−2のように電極を感光体に近接させた状態で固定した方式であっても、或いは図5のようにローラー乃至はベルト状の可動の物であっても良い。感光体との空隙が維持できるように、帯電手段端部にスペーサーなどの部材を設けることもできる。近接帯電部材の材料は周知の物が使用できるが、接触帯電手段と比較して高硬度に設定されるのが一般的である。空隙を維持できる硬度であれば良い。   The shape of the charging means may be, for example, a method in which the electrode is fixed in the state of being close to the photoreceptor as shown in FIGS. 3 and 4-1 to 4-2, or a roller or a belt shape as shown in FIG. It may be a movable object. A member such as a spacer can be provided at the end of the charging means so that a gap with the photoreceptor can be maintained. Although a well-known thing can be used for the material of the proximity charging member, it is generally set to a higher hardness than the contact charging means. Any hardness that can maintain the voids is acceptable.

特に可動式の場合、実質的に表面積を稼ぐことができ、部材を長寿命化できるとともに、感光体の表面移動に同期させて稼動することで、上記気流を、より好適に形成できる。   In particular, in the case of the movable type, the surface area can be substantially increased, the life of the member can be extended, and the airflow can be more suitably formed by operating in synchronization with the surface movement of the photoreceptor.

・摺擦、回収機構
上記研磨剤を介して該感光体表面を摺擦、及び/又は該研磨剤を回収する機構を有しても良い。
-Sliding and collecting mechanism A mechanism for rubbing the surface of the photoreceptor and / or collecting the abrasive through the abrasive may be provided.

摺擦・回収機構としては、ファーブラシ、弾性部材、磁気ブラシ等、周知の部材を使用することができる、クリーニングブレードとは別に摺擦・回収工程を設けることで、該クリーニングブレードにおける感光体摺擦研磨の負荷を低減でき、該クリーニングブレードの損耗を抑止するのに効果的である。   As the rubbing / recovering mechanism, a well-known member such as a fur brush, an elastic member, a magnetic brush, or the like can be used. By providing a rubbing / collecting step separately from the cleaning blade, the photosensitive member slide in the cleaning blade is provided. The load of rubbing and polishing can be reduced, which is effective in suppressing the wear of the cleaning blade.

その形態も周知の物を使用することができる。   Known forms can also be used.

弾性部材はAskerC硬度で5〜40°の範囲が好ましい。40°を超える硬い弾性部材では、感光体の損耗が生じる場合がある。また、5°未満の低硬度の弾性部材では、弾性部材の当接圧が低くなり、摺擦効果が低下したり、弾性部材が破損したり、外径が変化するなど、上記の耐久に耐えない場合があった。   The elastic member preferably has an Asker C hardness of 5 to 40 °. With a hard elastic member exceeding 40 °, the photoreceptor may be worn out. In addition, with an elastic member having a low hardness of less than 5 °, the contact pressure of the elastic member is lowered, the sliding effect is reduced, the elastic member is damaged, the outer diameter is changed, etc. There was no case.

ファーブラシは、材質にもよるが、0.56〜3.33tex(5D〜30D)のファーブラシである時に良好な結果が得られた。0.56tex未満の場合にはファーが損耗や変形したり、摺擦効果が不充分であった。また0.33texを超える場合には感光体の損耗が生じる場合があった。   Although the fur brush depends on the material, good results were obtained when it was a fur brush of 0.56 to 3.33 tex (5D to 30D). When it was less than 0.56 tex, the fur was worn or deformed, and the rubbing effect was insufficient. Further, when it exceeds 0.33 tex, the photoconductor may be worn.

これらの部材は、感光体表面に対して相対速度差を持って駆動されることも摺擦・回収作用が向上するので好ましい。また、特に長期放置後は、該放置により帯電生成物が蓄積している場合がある。該放置後の画像形成前等では上記摺擦・回収機構の駆動速度を、相対速度差を大きくなる様にして、摺擦性を向上させるなど、通常の画像形成時とは異なる速度で駆動することも好ましい。   It is preferable that these members are driven with a relative speed difference with respect to the surface of the photosensitive member because the rubbing / recovering action is improved. Further, especially after being left for a long period of time, the charged product may accumulate due to the standing. Before the image formation after the standing, the driving speed of the rubbing / recovery mechanism is driven at a speed different from that at the time of normal image formation, such as improving the rubbing property by increasing the relative speed difference. It is also preferable.

該摺擦部材の駆動条件として、感光体の面速度に対する相対速度[%]は、部材の材料の物性、感光体の面速度や侵入圧等にもよるが、概ね−100〜+200%が良好な範囲である。−10〜+10%、および略連れ回りの+90〜+110%以外が、より好ましい。   As a driving condition for the rubbing member, the relative speed [%] with respect to the surface speed of the photosensitive member is generally -100 to + 200%, although it depends on the physical properties of the material of the member, the surface speed of the photosensitive member, the penetration pressure, and the like. It is a range. Except for -10 to + 10% and +90 to + 110% of the approximate rotation, it is more preferable.

なお、該相対速度[%]は、+は感光体に対し順方向、−はカウンター方向であり、例えば+100%は感光体と連れ回る状態、0%は停止状態、−100%は、感光体面速度と同速度でカウンター方向に回転している状態を指す。   As for the relative speed [%], + is the forward direction with respect to the photoconductor, − is the counter direction, for example, + 100% is the state where the photoconductor is rotated, 0% is the stop state, and −100% is the photoconductor surface. It refers to the state of rotating in the counter direction at the same speed as the speed.

該相対速度の差は大きい方が良いが、大きすぎると部材の損耗が発生したりする場合がある。また、クリーニング手段外に摺擦・回収部材を設置する場合など、遠心力等により無機微粒子の飛散が発生する場合がある。   The difference in relative speed is preferably large, but if it is too large, the member may be worn out. In addition, scattering of inorganic fine particles may occur due to centrifugal force or the like when a rubbing / collecting member is installed outside the cleaning means.

一方、摺擦・回収機構がブレード状の場合は、該機構の簡略化の観点で好ましい。該摺擦・回収用部材としては、クリーニングブレードと同様の材料を使用することができ、特に摺擦・回収性のため、感光体との当接ニップ巾を広げたり、当接圧を上げることが好ましい。該ブレードはトナークリーニングを主目的としているわけではないので、感光体に対して設定角を鈍角に設定する等、設置条件を選択することにより摺擦・研磨性と該部材の長寿命を両立することができる。   On the other hand, when the rubbing / recovering mechanism is a blade, it is preferable from the viewpoint of simplifying the mechanism. As the rubbing / recovering member, the same material as the cleaning blade can be used. In particular, for the rubbing / recovering property, the contact nip width with the photosensitive member is increased or the contact pressure is increased. Is preferred. Since the blade is not mainly intended for toner cleaning, by selecting an installation condition such as setting an obtuse angle with respect to the photosensitive member, both friction / polishing properties and a long life of the member are achieved. be able to.

また、これらの摺擦・回収部材において、該研磨剤を回収する為、該研磨剤とは逆極性のバイアスを印加することも好ましい。   In order to recover the abrasive in these rubbing / recovery members, it is also preferable to apply a bias having a polarity opposite to that of the abrasive.

以下、図に基づいて本発明の一実施形態を説明するが、本発明は本実験例に何ら制限されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the present experimental example.

{無機微粒子製造例}
下記製造例にて、チタン酸ストロンチウムからなる研磨粒子を作製した。
{Examples of inorganic fine particle production}
In the following production example, abrasive particles made of strontium titanate were produced.

<ペロブスカイト型結晶無機微粒子の製造例 1>
四塩化チタン水溶液にアンモニア水を添加することにより加水分解して得られた含水酸化チタンを純水で洗浄し、該含水酸化チタンのスラリーに含水酸化チタンに対するSO3として0.3%の硫酸を添加した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを0.6に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを5.0に調整し、上澄み液の電気伝導度が50μS/cmになるまで洗浄をくり返しした。
<Production Example 1 of Perovskite Crystalline Inorganic Fine Particle>
The hydrous titanium oxide obtained by hydrolysis by adding ammonia water to the aqueous titanium tetrachloride solution was washed with pure water, and 0.3% sulfuric acid was added to the hydrous titanium oxide slurry as SO 3 with respect to the hydrous titanium oxide. Added. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 0.6 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 5.0, and washing was repeated until the electrical conductivity of the supernatant liquid reached 50 μS / cm.

該含水酸化チタンに対し、0.97倍モル量のSr(OH)2・8H2Oを加えてSUS製の反応容器に入れ、窒素ガス置換した。更に、SrTiO3換算で0.6mol/リットルになるように蒸留水を加えた。窒素雰囲気中で該スラリーを60℃まで10℃/時間で昇温し、60℃に到達してから7時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後、純水で洗浄をくり返し、その後、ヌッチェで濾過を行った。得られたケーキを乾燥し、焼結工程を経由していないチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を無機微粒子Aとした。該無機微粒子Aの物性を表1に示す。 0.97-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Furthermore, distilled water was added so as to be 0.6 mol / liter in terms of SrTiO 3 . The slurry was heated to 60 ° C. at a rate of 10 ° C./hour in a nitrogen atmosphere, and reacted for 7 hours after reaching 60 ° C. After the reaction, the reaction solution was cooled to room temperature, and the supernatant was removed. Then, the washing was repeated with pure water, and then filtered with Nutsche. The obtained cake was dried to obtain strontium titanate fine particles not passing through the sintering step. The strontium titanate fine particles were designated as inorganic fine particles A. Table 1 shows the physical properties of the inorganic fine particles A.

<ペロブスカイト型結晶無機微粒子の製造例 2>
四塩化チタン水溶液にアンモニア水を添加することにより加水分解して得られた含水酸化チタンを純水で洗浄し、該含水酸化チタンのスラリーに含水酸化チタンに対するSO3として0.25%の硫酸を添加した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを0.65に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを4.7に調整し上澄み液の電気伝導度が50μS/cmになるまで洗浄をくり返しした。
<Production Example 2 of Perovskite Crystalline Inorganic Fine Particle>
Hydrous titanium oxide obtained by hydrolysis by adding aqueous ammonia to titanium tetrachloride aqueous solution is washed with pure water, and 0.25% sulfuric acid is added to the hydrous titanium oxide slurry as SO3 with respect to hydrous titanium oxide. did. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 0.65 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 4.7, and washing was repeated until the electrical conductivity of the supernatant reached 50 μS / cm.

該含水酸化チタンに対し、0.95倍モル量のSr(OH)2・8H2Oを加えてSUS製反応容器に入れ、窒素ガス置換した。さらにSrTiO3換算で0.6mol/リットルになるように蒸留水を加えた。 A 0.95-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Further, distilled water was added so as to be 0.6 mol / liter in terms of SrTiO 3 .

窒素雰囲気中で該スラリーを65℃まで10℃/時間で昇温し、65℃に到達してから8時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後純水で洗浄をくり返した。   The slurry was heated to 65 ° C. at a rate of 10 ° C./hour in a nitrogen atmosphere, and reacted for 8 hours after reaching 65 ° C. After the reaction, the mixture was cooled to room temperature, the supernatant was removed, and washing was repeated with pure water.

さらに窒素雰囲気下、上記スラリーをスラリーの固形分に対して2質量%のステアリン酸ナトリウムを溶解した水溶液中に入れ、撹拌しながら、硫酸マグネシウム水溶液を滴下して、ペロブスカイト型結晶表面にステアリン酸マグネシウムを析出させた。   Further, in a nitrogen atmosphere, the slurry is placed in an aqueous solution in which 2% by mass of sodium stearate is dissolved with respect to the solid content of the slurry, and while stirring, an aqueous magnesium sulfate solution is dropped, and magnesium stearate is deposited on the perovskite crystal surface. Was precipitated.

該スラリーを純水でくり返し洗浄した後ヌッチェで濾過し、得られたケーキを乾燥してステアリン酸マグネシウムで表面処理したチタン酸ストロンチウム微粒子を得た。この焼結工程を経由していない表面処理されたチタン酸ストロンチウム微粒子を無機微粒子Bとする。該無機微粒子Bの物性を表1に示す。   The slurry was washed repeatedly with pure water and then filtered with Nutsche, and the resulting cake was dried to obtain strontium titanate fine particles whose surface was treated with magnesium stearate. The surface-treated strontium titanate fine particles that have not passed through the sintering step are referred to as inorganic fine particles B. Table 1 shows the physical properties of the inorganic fine particles B.

<ペロブスカイト型結晶無機微粒子の製造例 3>
上記製造例2に対し、添加する硫酸の量やpH、スラリー昇温温度や反応時間を調整してチタン酸ストロンチウム微粒子からなる無機微粒子Cを得た。該無機微粒子Cの物性を表1に示す。
<Production Example 3 of Perovskite Crystalline Inorganic Fine Particles>
The inorganic fine particle C which consists of a strontium titanate fine particle was adjusted with respect to the said manufacture example 2 by adjusting the quantity and pH of the sulfuric acid to add, slurry temperature rising temperature, and reaction time. Table 1 shows the physical properties of the inorganic fine particles C.

<ペロブスカイト型結晶無機微粒子の製造例 4>
硫酸チタニル水溶液を加水分解して得られた含水酸化チタンスラリーをアルカリ水溶液で洗浄した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを0.7に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを5.0に調整し、上澄み液の電気伝導度が70μS/cmになるまで洗浄をくり返しした。
<Production Example 4 of Perovskite Crystalline Inorganic Fine Particles>
The hydrous titanium oxide slurry obtained by hydrolyzing the aqueous titanyl sulfate solution was washed with an alkaline aqueous solution. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 0.7 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 5.0, and washing was repeated until the electrical conductivity of the supernatant reached 70 μS / cm.

該含水酸化チタンに対し、0.98倍モル量のSr(OH)2・8H2Oを加えてSUS製の反応容器に入れ、窒素ガス置換した。更に、SrTiO3換算で0.5mol/リットルになるように蒸留水を加えた。窒素雰囲気中で該スラリーを80℃まで7℃/時間で昇温し、80℃に到達してから6時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後、純水で洗浄をくり返し、その後、ヌッチェで濾過を行った。得られたケーキを乾燥し、焼結工程を経由していないチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を無機微粒子Dとした。該無機微粒子Dの物性を表1に示す。 0.98-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Further, distilled water was added so as to be 0.5 mol / liter in terms of SrTiO 3 . The slurry was heated to 80 ° C. at a rate of 7 ° C./hour in a nitrogen atmosphere, and reacted for 6 hours after reaching 80 ° C. After the reaction, the reaction solution was cooled to room temperature, and the supernatant was removed. Then, the washing was repeated with pure water, and then filtered with Nutsche. The obtained cake was dried to obtain strontium titanate fine particles not passing through the sintering step. The strontium titanate fine particles were designated as inorganic fine particles D. Table 1 shows the physical properties of the inorganic fine particles D.

また無機微粒子Dの電子顕微鏡にて5万倍の倍率で撮影した写真を図13に示す。図13において、平均1次粒径Dが100nmの直方体状のチタン酸ストロンチウム微粒子が見える。   Moreover, the photograph image | photographed with the magnification of 50,000 times with the electron microscope of the inorganic fine particle D is shown in FIG. In FIG. 13, rectangular parallelepiped strontium titanate fine particles having an average primary particle diameter D of 100 nm can be seen.

<ペロブスカイト型結晶無機微粒子の製造例 5>
硫酸チタニル水溶液を加水分解して得られた含水酸化チタンスラリーをアルカリ水溶液で洗浄した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを0.8に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを5.0に調整し、上澄み液の電気伝導度が70μS/cmになるまで洗浄をくり返しした。
<Production Example 5 of Perovskite Crystalline Inorganic Fine Particles>
The hydrous titanium oxide slurry obtained by hydrolyzing the aqueous titanyl sulfate solution was washed with an alkaline aqueous solution. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 0.8 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 5.0, and washing was repeated until the electrical conductivity of the supernatant reached 70 μS / cm.

該含水酸化チタンに対し、0.95倍モル量のSr(OH)2・8H2Oを加えてSUS製の反応容器に入れ、窒素ガス置換した。更に、SrTiO3換算で0.7mol/リットルになるように蒸留水を加えた。窒素雰囲気中で該スラリーを65℃まで8℃/時間で昇温し、65℃に到達してから5時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後、純水で洗浄をくり返し、その後、ヌッチェで濾過を行った。得られたケーキを乾燥し、焼結工程を経由していないチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を無機微粒子Eとした。該無機微粒子Eの物性を表1に示す。 A 0.95-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Further, distilled water was added so as to be 0.7 mol / liter in terms of SrTiO 3 . The slurry was heated to 65 ° C. at 8 ° C./hour in a nitrogen atmosphere, and reacted for 5 hours after reaching 65 ° C. After the reaction, the reaction solution was cooled to room temperature, and the supernatant was removed. Then, the washing was repeated with pure water, and then filtered with Nutsche. The obtained cake was dried to obtain strontium titanate fine particles not passing through the sintering step. The strontium titanate fine particles were designated as inorganic fine particles E. Table 1 shows the physical properties of the inorganic fine particles E.

<ペロブスカイト型結晶無機微粒子の製造例 6>
上記製造例5に対して、pH、加えるSr(OH)2・8H2Oの、含水酸化チタンに対するモル量、スラリー昇温温度や反応時間を調整してチタン酸ストロンチウム微粒子Fを得た。該無機微粒子Fの物性を表1に示す。
<Production Example 6 of Perovskite Crystalline Inorganic Fine Particles>
Strontium titanate fine particles F were obtained by adjusting the pH, the molar amount of Sr (OH) 2 · 8H 2 O to be added to the hydrous titanium oxide, the slurry temperature rise temperature and the reaction time. Table 1 shows the physical properties of the inorganic fine particles F.

<ペロブスカイト型結晶無機微粒子の製造例 7>
硫酸チタニル水溶液を加水分解して得られた含水酸化チタンスラリーをアルカリ水溶液で洗浄した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを1.5に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを5.3に調整し上澄み液の電気伝導度が100μS/cmになるまで洗浄をくり返しした。
<Production Example 7 of Perovskite Crystalline Inorganic Fine Particles>
The hydrous titanium oxide slurry obtained by hydrolyzing the aqueous titanyl sulfate solution was washed with an alkaline aqueous solution. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 1.5 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 5.3, and washing was repeated until the electrical conductivity of the supernatant reached 100 μS / cm.

該含水酸化チタンに対し、1.07倍モル量のSr(OH)2・8H2Oを加えてSUS製反応容器に入れ、窒素ガス置換した。さらにSrTiO3換算で0.3mol/リットルになるように蒸留水を加えた。 A 1.07-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, placed in a SUS reaction vessel, and purged with nitrogen gas. Further, distilled water was added so as to be 0.3 mol / liter in terms of SrTiO 3 .

窒素雰囲気中で該スラリーを87℃まで70℃/時間で昇温し、87℃に到達してから5時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後純水で洗浄をくり返した。   The slurry was heated to 87 ° C. at 70 ° C./hour in a nitrogen atmosphere, and reacted for 5 hours after reaching 87 ° C. After the reaction, the mixture was cooled to room temperature, the supernatant was removed, and washing was repeated with pure water.

さらに窒素雰囲気下、上記スラリーをスラリーの固形分に対して1質量%のステアリン酸ナトリウムを溶解した水溶液中に入れ、撹拌しながら、硫酸亜鉛水溶液を滴下して、ペロブスカイト型結晶表面にステアリン酸亜鉛を析出させた。   Furthermore, in a nitrogen atmosphere, the slurry is placed in an aqueous solution in which 1% by mass of sodium stearate is dissolved with respect to the solid content of the slurry, and while stirring, an aqueous zinc sulfate solution is added dropwise to the surface of the perovskite crystal. Was precipitated.

該スラリーを純水でくり返し洗浄した後ヌッチェで濾過し、得られたケーキを乾燥してステアリン酸亜鉛で表面処理したチタン酸ストロンチウム微粒子を得た。この一次粒子の平均粒径が320nmのチタン酸ストロンチウム微粒子をGとした。無機微粒子Gの物性を表1に示す。   The slurry was washed repeatedly with pure water and then filtered with Nutsche, and the resulting cake was dried to obtain strontium titanate fine particles whose surface was treated with zinc stearate. The strontium titanate fine particles having an average primary particle size of 320 nm were designated as G. Table 1 shows the physical properties of the inorganic fine particles G.

<ペロブスカイト型結晶無機微粒子の製造例 8>
四塩化チタン水溶液にアンモニア水を添加することにより加水分解して得られた含水酸化チタンを上澄み液の電気伝導度が90μS/cmになるまで純水で洗浄した。
<Production Example 8 of Perovskite Crystalline Inorganic Fine Particle>
The hydrous titanium oxide obtained by hydrolysis by adding ammonia water to the aqueous titanium tetrachloride solution was washed with pure water until the electrical conductivity of the supernatant reached 90 μS / cm.

該含水酸化チタンに対し、1.5倍モル量のSr(OH)2・8H2Oを加えてSUS製反応容器に入れ、窒素ガス置換した。さらにSrTiO3換算で0.2mol/リットルになるように蒸留水を加えた。 A 1.5-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Further, distilled water was added so as to be 0.2 mol / liter in terms of SrTiO 3 .

窒素雰囲気中で該スラリーを80℃まで15℃/時間で昇温し、80℃に到達してから5時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後純水で洗浄をくり返した」。   The slurry was heated to 80 ° C. at 15 ° C./hour in a nitrogen atmosphere, and reacted for 5 hours after reaching 80 ° C. After the reaction, it was cooled to room temperature, and after removing the supernatant, washing was repeated with pure water.

さらに窒素雰囲気下、上記スラリーをスラリーの固形分に対して18質量%のステアリン酸ナトリウムを溶解した水溶液中に入れ、撹拌しながら、硫酸亜鉛水溶液を滴下して、ペロブスカイト型結晶表面にステアリン酸亜鉛を析出させた。   Further, in a nitrogen atmosphere, the slurry is placed in an aqueous solution in which 18% by mass of sodium stearate is dissolved with respect to the solid content of the slurry, and while stirring, an aqueous zinc sulfate solution is dropped, and zinc stearate is deposited on the perovskite crystal surface. Was precipitated.

該スラリーを純水でくり返し洗浄した後ヌッチェで濾過し、得られたケーキを乾燥してステアリン酸亜鉛で表面処理したチタン酸ストロンチウム微粒子を得た。この一次粒子の平均粒径が350nmのチタン酸ストロンチウム微粒子Hとした。該無機微粒子Hの物性を表1に示す。   The slurry was washed repeatedly with pure water and then filtered with Nutsche, and the resulting cake was dried to obtain strontium titanate fine particles whose surface was treated with zinc stearate. The primary particles were strontium titanate fine particles H having an average particle size of 350 nm. Table 1 shows the physical properties of the inorganic fine particles H.

<ペロブスカイト型結晶無機微粒子の製造例 9>
製造例8に対して、上澄み液の電気伝導度、加えるSr(OH)2・8H2Oの量、昇温温度や反応時間を調整して、一次粒子の平均粒径が420nmのチタン酸ストロンチウム微粉体Iとした。該無機微粒子Iの物性を表1に示す。
<Production Example 9 of Perovskite Crystalline Inorganic Fine Particle>
For Production Example 8, the electrical conductivity of the supernatant, the amount of Sr (OH) 2 .8H 2 O to be added, the temperature rise and the reaction time were adjusted, and strontium titanate having an average primary particle size of 420 nm. Fine powder I was obtained. Table 1 shows the physical properties of the inorganic fine particles I.

<ペロブスカイト型結晶無機微粒子の製造例10>
製造例8に対して、上澄み液の電気伝導度、加えるSr(OH)2・8H2Oの量、昇温温度や反応時間を調整して、一次粒子の平均粒径が500nmのチタン酸ストロンチウム微粒子Jとした。該無機微粒子Jの物性を表1に示す。
<Production Example 10 of Perovskite Crystalline Inorganic Fine Particle>
For Production Example 8, the electrical conductivity of the supernatant, the amount of Sr (OH) 2 .8H 2 O to be added, the temperature rise temperature and the reaction time were adjusted, and strontium titanate having an average primary particle size of 500 nm. Fine particle J was designated. Table 1 shows the physical properties of the inorganic fine particles J.

<ペロブスカイト型結晶無機微粒子の製造例11>
一次粒子の平均粒径が130nmの、結晶形状が不定形のチタン酸ストロンチウム微粒子Kとした。該無機微粒子Kの物性を表1に示す。
<Production Example 11 of Perovskite Crystalline Inorganic Fine Particle>
Strontium titanate fine particles K having an average primary particle size of 130 nm and an amorphous crystal shape were used. Table 1 shows the physical properties of the inorganic fine particles K.

<ペロブスカイト型結晶無機微粒子の製造例12>
一次粒子の平均粒径が280nmの、結晶形状が不定形のチタン酸ストロンチウム微粒子Lとした。該無機微粒子Lの物性を表1に示す。
<Production Example 12 of Perovskite Crystalline Inorganic Fine Particle>
Strontium titanate fine particles L having an average primary particle size of 280 nm and an amorphous crystal shape were used. Table 1 shows the physical properties of the inorganic fine particles L.

<ペロブスカイト型結晶無機微粒子の製造例13>
無機微粉体Eを1000℃で焼結した後に解砕して焼結工程を経由したチタン酸ストロンチウム微粒子を得た。一次粒子の平均粒径が50nmであり、不定形な粒子形状を有するチタン酸ストロンチウム微粒子を無機微粒子Mとした。該無機微粒子Mの物性を表1に示す。
<Production Example 13 of Perovskite Crystalline Inorganic Fine Particle>
The inorganic fine powder E was sintered at 1000 ° C. and then crushed to obtain strontium titanate fine particles via a sintering process. Inorganic fine particles M were strontium titanate fine particles having an average primary particle size of 50 nm and an irregular particle shape. Table 1 shows the physical properties of the inorganic fine particles M.

<ペロブスカイト型結晶無機微粒子の比較製造例1>
硫酸チタニル水溶液を加水分解して得られた含水酸化チタンスラリーをアルカリ水溶液で洗浄した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを4.0に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを8.0に調整し、上澄み液の電気伝導度が100μS/cmになるまで洗浄をくり返しした。
<Comparative Production Example 1 of Perovskite Crystalline Inorganic Fine Particle>
The hydrous titanium oxide slurry obtained by hydrolyzing the aqueous titanyl sulfate solution was washed with an alkaline aqueous solution. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 4.0 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 8.0, and washing was repeated until the electrical conductivity of the supernatant reached 100 μS / cm.

該含水酸化チタンに対し、1.02倍モル量のSr(OH)2・8H2Oを加えてSUS製の反応容器に入れ、窒素ガス置換した。更に、SrTiO3換算で0.3mol/リットルになるように蒸留水を加えた。窒素雰囲気中で該スラリーを90℃まで30℃/時間で昇温し、90℃に到達してから5時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後、純水で洗浄をくり返し、その後、ヌッチェで濾過を行った。得られたケーキを乾燥し、一次粒子の平均粒径が25nmのチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を比較粉体Aとした。該比較粉体Aの物性を表1に示す。 1.02 times the molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Further, distilled water was added so as to be 0.3 mol / liter in terms of SrTiO 3 . The slurry was heated to 90 ° C. at 30 ° C./hour in a nitrogen atmosphere, and reacted for 5 hours after reaching 90 ° C. After the reaction, the reaction solution was cooled to room temperature, and the supernatant was removed. Then, the washing was repeated with pure water, and then filtered with Nutsche. The obtained cake was dried to obtain strontium titanate fine particles having an average primary particle size of 25 nm. The strontium titanate fine particles were used as comparative powder A. Table 1 shows the physical properties of the comparative powder A.

<ペロブスカイト型結晶無機微粒子の比較製造例2>
一次粒子の平均粒径が620nmのチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を比較微粒子Bとした。該比較微粒子Bの物性を表1に示す。
<Comparative Production Example 2 of Perovskite Crystalline Inorganic Fine Particles>
Strontium titanate fine particles having an average primary particle size of 620 nm were obtained. The strontium titanate fine particles were used as comparative fine particles B. Table 1 shows the physical properties of the comparative fine particles B.

<ペロブスカイト型結晶無機微粉体の比較製造例3>
一次粒子の平均粒径が24nmの、結晶形状が不定形なチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を比較微粒子Cとした。該比較微粒子Cの物性を表1に示す。
<Comparative Production Example 3 of Perovskite Crystalline Inorganic Fine Powder>
Strontium titanate fine particles having an average primary particle size of 24 nm and an amorphous crystal shape were obtained. The strontium titanate fine particles were used as comparative fine particles C. The physical properties of the comparative fine particles C are shown in Table 1.

<ペロブスカイト型結晶無機微粒子の比較製造例4>
一次粒子の平均粒径が530nmの、結晶形状が不定形なチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を比較微粒子Dとした。該比較微粒子Dの物性を表1に示す。
<Comparative Production Example 4 of Perovskite Crystalline Inorganic Fine Particles>
Strontium titanate fine particles having an average primary particle size of 530 nm and an amorphous crystal shape were obtained. The strontium titanate fine particles were used as comparative fine particles D. Table 1 shows the physical properties of the comparative fine particles D.

<ペロブスカイト型結晶無機微粒子の比較製造例5>
炭酸ストロンチウム600gと酸化チタン350gをボールミルにて、8時間湿式混合した後、ろ過乾燥し、この混合物を10kg/cm2の圧力で成形して1200℃で7時間焼結した。これを、機械粉砕して、焼結工程を経由した一次粒子の平均粒径が700nmチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を比較微粒子Eとした。該比較微粒子Eの物性を表1に示す。
<Comparative Production Example 5 of Perovskite Crystalline Inorganic Fine Particle>
600 g of strontium carbonate and 350 g of titanium oxide were wet mixed in a ball mill for 8 hours and then filtered and dried. The mixture was molded at a pressure of 10 kg / cm 2 and sintered at 1200 ° C. for 7 hours. This was mechanically pulverized to obtain strontium titanate fine particles having an average primary particle diameter of 700 nm through a sintering process. The strontium titanate fine particles were used as comparative fine particles E. Table 1 shows the physical properties of the comparative fine particles E.

Figure 2007292985
Figure 2007292985

{感光体製造例}
下記製造例にて、a−Si感光体を作製した。
{Photoconductor production example}
In the following production example, an a-Si photosensitive member was produced.

外径30mm(φ30と記載する)の支持体1101の表面を、市販の切削旋盤を使用して切削した。R形状のバイトの種類を振った支持体、平バイトの設置角度及び侵入量を制御した支持体を作製した。また、回転ボールミルを用い、粒径の異なる金属球をシリンダーに衝突させ、不規則な形状の支持体を作製した。なお、該a−Si感光体の分光感度ピークは大略660〜700nm、また表面層の抵抗率は2×1016Ω・cmであった。 The surface of the support 1101 having an outer diameter of 30 mm (described as φ30) was cut using a commercially available cutting lathe. A support body in which the type of the R-shaped tool was shaken and a support body in which the installation angle and penetration amount of the flat tool were controlled were prepared. In addition, a rotating ball mill was used to collide metal spheres having different particle diameters with the cylinders to produce irregularly shaped supports. The spectral sensitivity peak of the a-Si photosensitive member was approximately 660 to 700 nm, and the resistivity of the surface layer was 2 × 10 16 Ω · cm.

感光層の成膜状件は下表2の条件に固定し、RF−CVDで成膜して、正帯電のa−Si感光体P01〜P05を作製した。また、P01等同一の方法で作製した感光体をバフ研磨し、P06〜P07を得た。   The film formation conditions of the photosensitive layer were fixed to the conditions shown in Table 2 below, and film formation was performed by RF-CVD to prepare positively charged a-Si photoconductors P01 to P05. Further, the photoconductor produced by the same method as P01 was buffed to obtain P06 to P07.

Figure 2007292985
Figure 2007292985

作製した感光体P01〜P07の表面形状を、表面粗さ測定器(サーフコーダSE−3400:コサカ研究所製)を用い、測定長8mm、速度0.05mm/sec、カットオフλc0.8mm、JIS1982モードにて、該感光体の長手方向で測定した。結果を表3に示す。   Using the surface roughness measuring device (Surfcoder SE-3400: manufactured by Kosaka Laboratories), the surface shape of the produced photoreceptors P01 to P07 was measured with a measurement length of 8 mm, a speed of 0.05 mm / sec, a cutoff λc of 0.8 mm, and JIS 1982. The mode was measured in the longitudinal direction of the photoreceptor. The results are shown in Table 3.

Figure 2007292985
Figure 2007292985

なお、本例では詳細は割愛するが、プラズマCVDの条件を振ることでも表面形状を制御できる。例えば、ガス流量を増加させるとともに、放電電力/ガス流量を増加させるとRzやRmaxが増加する、などである。   Although details are omitted in this example, the surface shape can also be controlled by changing the conditions of plasma CVD. For example, when the gas flow rate is increased and the discharge power / gas flow rate is increased, Rz and Rmax are increased.

上記で作製した無機微粒子A〜比較微粒子Eの平均1次粒径D(表1参照)を、感光体P01〜P07の表面形状Rz、Rmax(表3参照)で除した結果を下表4、同5に各々示す。   The results obtained by dividing the average primary particle size D (see Table 1) of the inorganic fine particles A to the comparative fine particles E (see Table 1) by the surface shapes Rz and Rmax (see Table 3) of the photoreceptors P01 to P07 are shown in Table 4 below. They are shown in 5 respectively.

Figure 2007292985
Figure 2007292985

Figure 2007292985
Figure 2007292985

{現像剤製造例}
下記製造例にて、トナー粒子、及び各種添加剤からなる現像剤を作製した。
{Developer production example}
In the following production example, a developer composed of toner particles and various additives was prepared.

周知のポリエステル系結着樹脂100質量部、磁性酸化鉄100質量部、モノアゾ鉄化合物2質量部、サリチル酸Al化合物1質量部、フィッシャートロプシュワックス(DSCピークトップ温度=104℃、Mw/Mn=1.8)4質量部の混合物をヘンシェルミキサーで前混合した後、130℃に加熱された2軸エクストルーダで溶融混練し、冷却した混練物をハンマーミルで粗粉砕してトナー粗粉砕物を得た。   Well-known polyester binder resin 100 parts by mass, magnetic iron oxide 100 parts by mass, monoazo iron compound 2 parts by mass, salicylic acid Al compound 1 part by mass, Fischer-Tropsch wax (DSC peak top temperature = 104 ° C., Mw / Mn = 1. 8) After premixing 4 parts by mass of the mixture with a Henschel mixer, the mixture was melt kneaded with a biaxial extruder heated to 130 ° C., and the cooled kneaded product was coarsely pulverized with a hammer mill to obtain a coarsely pulverized toner product.

得られた粗粉砕物を、機械式粉砕機ターボミルを用いて、粉砕機入り口エアー温度を−15℃、出口エアー温度を48℃、粉砕ローター及びライナーを冷却する冷媒の温度を−5℃に調整して機械式粉砕させて微粉砕し、得られた微粉砕物をコアンダ効果を利用した多分割分級装置(日鉄鉱業社製エルボジェット分級機)で微粉及び粗粉を同時に厳密に分級除去した。その後、機械式表面改質装置を用いて種々の円形度のトナー粒子を作製した。   The obtained coarsely pulverized product is adjusted to -15 ° C at the inlet air temperature, 48 ° C at the outlet air temperature, and -5 ° C to cool the cooling rotor and liner, using a mechanical pulverizer turbo mill. And finely pulverized finely and coarsely at the same time using a multi-division classifier (Nihon Iron Mining Co., Ltd. elbow jet classifier) using the Coanda effect. . Thereafter, toner particles having various circularities were prepared using a mechanical surface reformer.

該トナー粒子に100質量部に、BET200m2/gの乾式シリカに疎水化処理を施した、疎水化シリカ粒子1.5質量部を、ヘンシェルミキサーで混合して、重量平均粒子径Xが6.4μmで、下表6に示すような平均円形度の負帯電性トナーT1〜T11を得た。 The toner particles are mixed with 100 parts by mass, 1.5 parts by mass of hydrophobized silica particles obtained by subjecting BET 200 m 2 / g dry silica to a hydrophobization treatment, and mixed with a Henschel mixer so that the weight average particle diameter X is 6. Negatively chargeable toners T1 to T11 having an average circularity as shown in Table 6 below at 4 μm were obtained.

Figure 2007292985
Figure 2007292985

{摺擦・回収部材製造例}
下記製造例にて、各種摺擦・回収部材を作製した。
{Rubbing / recovery member production example}
In the following production examples, various rubbing / collecting members were produced.

<摺擦・回収部材の製造例 1> 弾性ローラー
周知の方法で、φ8の芯金上にカーボンを分散した発泡ウレタンからなる弾性ローラーDR1を作製した。該弾性ローラーDR1は、平均孔径がφ100μmの単泡セルを多数有する。Asker−C硬度は20度で、感光体に0.5mm侵入するように設置した。また、クリーニング装置内には、該弾性ローラーに0.2mm侵入するようにスクレーパーを作製、設置した。
<Manufacture example 1 of a rubbing and collection | recovery member> Elastic roller Elastic roller DR1 which consists of foaming urethane which disperse | distributed carbon on the core metal of (phi) 8 was produced by the well-known method. The elastic roller DR1 has a large number of single bubble cells having an average pore diameter of φ100 μm. Asker-C hardness was 20 degrees, and it was installed so as to penetrate 0.5 mm into the photoreceptor. In addition, a scraper was prepared and installed in the cleaning device so as to enter 0.2 mm into the elastic roller.

<摺擦・回収部材の製造例 2> ファーブラシローラー
カーボンを分散させた、2tex(18D)のレーヨンを、9.3×103f/cm2(60kf/inch2)で、感光体に1.5mm侵入するようにブラシローラーBR1を作製した。また、クリーニング装置内には、該ブラシローラーに0.5mm侵入するようにスクレーパーを作製し、感光体に並行に当接するように設置した。
<Manufacture example 2 of rubbing / recovering member> Fur brush roller 2 tex (18D) rayon in which carbon is dispersed is 9.3 × 10 3 f / cm 2 (60 kf / inch 2 ) on the photoconductor. Brush roller BR1 was prepared so as to penetrate 5 mm. Further, a scraper was prepared in the cleaning device so as to penetrate 0.5 mm into the brush roller, and installed so as to abut on the photoconductor in parallel.

<摺擦・回収部材の製造例 3> 磁気ブラシ
周知の方法で、φ8の芯金上にプラスチックマグネットからなるマグネットローラーを作製した。該マグネットローラー上に磁性現像剤が1.5mm厚でコートされる様に厚規制部材を設け、磁気ブラシMR1を作製した。該磁気ブラシは、感光体表面に0.2mmの侵入量で当接する様に設置した。
<Manufacture example 3 of a rubbing and collection | recovery member> Magnetic brush The magnet roller which consists of a plastic magnet on the core metal of (phi) 8 was produced by the well-known method. A thickness regulating member was provided on the magnet roller so that the magnetic developer was coated with a thickness of 1.5 mm, thereby producing a magnetic brush MR1. The magnetic brush was placed in contact with the surface of the photoreceptor with an intrusion amount of 0.2 mm.

なお、上記弾性ローラーDR1、ファーブラシローラーFR1、磁気ブラシMR1は感光体の回転に同期し、該感光体の面速度に対して任意の速度で回転駆動する駆動手段を有する。   The elastic roller DR1, the fur brush roller FR1, and the magnetic brush MR1 have driving means that is driven to rotate at an arbitrary speed with respect to the surface speed of the photosensitive member in synchronization with the rotation of the photosensitive member.

<摺擦・回収部材の製造例 4> ブレード
クリーニングブレードと同一材料からなる。厚さ2mmのブレード材BLD1を作成した。該部材は自由長5mm、当接角140°(順方向で40°)、及び当接圧は総圧800gで、クリーニングブレードの下流側に、設置出来る様にした。
<Manufacture example 4 of a rubbing and collection | recovery member> Blade It consists of the same material as a cleaning blade. A blade material BLD1 having a thickness of 2 mm was prepared. The member has a free length of 5 mm, a contact angle of 140 ° (40 ° in the forward direction), and a contact pressure of 800 g in total, so that it can be installed downstream of the cleaning blade.

尚、上記摺擦・研磨部座は、チャージアップ抑止等のため、接地した。また、必要に応じて、接地する変わりに、後述する実施例のようにバイアス印加手段を付加しても良い。   The rubbing / polishing portion was grounded to prevent charge-up. If necessary, a bias applying means may be added instead of grounding as in the embodiments described later.

〔実施例 1〕
評価装置として、図19の如きキヤノン製複写機iR400を改造して、図1の如き評価機とした。具体的には、除電手段107としてピーク波長680nmのLEDを使用し、図1に示すように、転写工程とクリーニング工程の間に配した。
[Example 1]
As an evaluation apparatus, a Canon copier iR400 as shown in FIG. 19 was modified to obtain an evaluation machine as shown in FIG. Specifically, an LED having a peak wavelength of 680 nm was used as the charge eliminating means 107, and was disposed between the transfer process and the cleaning process as shown in FIG.

感光体面速度を240mm/secで50ppm(ppm;Print Per minute)とし、正帯電a−Si感光体と、負帯電現像剤の正規現像用に、高圧電源を改造して極性及びバイアスを調整できる様にした。   The surface speed of the photoconductor is set to 50 ppm (ppm; Print Per minute) at 240 mm / sec, and the polarity and bias can be adjusted by modifying the high-voltage power supply for regular development of the positively charged a-Si photoconductor and the negatively charged developer. I made it.

さらに、潜像露光手段を改造し、中心波長660nmのレーザーを使用し、スポット径40μmで600dpiのBAE、256階調のPWMとした。   Further, the latent image exposure means was modified, a laser having a center wavelength of 660 nm was used, and a BAE of 256 dpi with a spot diameter of 40 μm was set to PWM of 256 gradations.

また、クリーニング手段に回収された転写残トナーや紙粉等は、廃トナー搬送手段107c等の搬送手段により不図示の廃トナーボックスに回収されるようにした。さらに電位評価を行えるように露光量や帯電条件の調整や、電位計の設置が可能にする等の改造を施した。なお、電位計は本体TRek杜製344、及び同社製プローブ555P−1を用い、専用治具にて現像手段位置に設置して電位を測定するようにした。   Further, the transfer residual toner, paper dust, and the like collected by the cleaning unit are collected in a waste toner box (not shown) by a conveyance unit such as a waste toner conveyance unit 107c. Furthermore, modifications such as adjustment of exposure amount and charging conditions and installation of an electrometer were made so that potential evaluation could be performed. The electrometer used was 344 made by TRek 杜 and probe 555P-1 made by the same company, and was installed at the developing means position with a dedicated jig to measure the potential.

更に、iR400のカートリッヂの廃トナー送り羽を除去し、該カートリッヂ内に、無機微粒子をセットし、該無機微粒子を供給する部材110としてファーブラシを設置した。図1中、斜線部が無機微粒子設置領域である。なお、供給部材110は+130%(感光体表面と同方向で、感光体の面速度の130%)の速度で回転駆動する様にした。   Further, the waste toner feeding blade of the iR400 cartridge was removed, inorganic fine particles were set in the cartridge, and a fur brush was installed as a member 110 for supplying the inorganic fine particles. In FIG. 1, the hatched portion is the inorganic fine particle installation region. The supply member 110 was driven to rotate at a speed of + 130% (in the same direction as the surface of the photoconductor and 130% of the surface speed of the photoconductor).

無機微粒子はA〜Mを使用し、現像剤はT10(平均円形度a=0.918)を使用した。   A to M were used as the inorganic fine particles, and T10 (average circularity a = 0.918) was used as the developer.

なお、評価用感光体は上述のP01を用いた。   The above-described P01 was used as the evaluation photoreceptor.

該評価装置を用いて、温度30℃/湿度80%の(H/H)環境下で図15の如く、通紙方向に等間隔の罫線(500μm線を10mm間隔で配した。画像比率5%)を、連続で20k枚/日で通紙した後、各種評価用画像形成を行い、メインスイッチをオフして夜間放置した。翌朝、評価用画像形成後、同様に20k枚/日の耐刷試験を継続し、300kまでの耐刷試験を行った。   Using this evaluation apparatus, ruled lines (500 μm lines at equal intervals in the sheet passing direction were arranged at 10 mm intervals in an environment of 30 ° C./80% humidity (H / H) as shown in FIG. ) Was continuously fed at 20 k sheets / day, and various image formations for evaluation were performed, and the main switch was turned off and left at night. The next morning, after the evaluation image was formed, the 20 k sheet / day printing durability test was continued in the same manner, and the printing durability test up to 300 k was performed.

次に、温度10℃/湿度15%の(L/L)環境下で、同様に、100k枚、合計400k枚の通紙耐久を行った。   Next, in a (L / L) environment at a temperature of 10 ° C./humidity of 15%, similarly, 100 k sheets, a total of 400 k sheets, was passed.

尚、評価用画像としては、300μm線を5mm間隔で交差させた格子画像、1ドット1スペース、1ドット2スペースのハーフトーン画像、ベタ黒、及び17階調画像を形成した。   In addition, as an image for evaluation, a grid image in which 300 μm lines were crossed at intervals of 5 mm, a halftone image of 1 dot 1 space, 1 dot 2 space, solid black, and a 17 gradation image were formed.

画像流れは、H/H環境下で上記評価画像を目視で評価した。   For the image flow, the evaluation image was visually evaluated in an H / H environment.

クリーニング性は、クリーニング不良による、フィルミングや擦り抜け、クリーニング部材の振動音(ビビリ)、共鳴音を評価した。   The cleaning performance was evaluated by filming and rubbing due to poor cleaning, vibration noise (chatter) of the cleaning member, and resonance noise.

クリーニング耐久性は、耐久前後でクリーニング部材のエッヂ部を顕微鏡観察し、損耗レベルを評価した。   The cleaning durability was evaluated by observing the edge portion of the cleaning member with a microscope before and after the durability and evaluating the wear level.

感光体耐久性は、感光体表面の磨耗量、及びキズで評価した。摩耗量は、反射分光式干渉計(商品名:MCPD−2000、大塚電子(株)社製)により測定し、1回転あたりの摩耗Rate[nm/回転]として算出した。また、感光体表面のキズは、感光体表面の任意の12点、及び目視でキズ又はスジが現認された箇所について、表面粗さ測定機(小坂研究所製、サーフコーダーSE−3400)を用い、JIS1982モード、測定速度0.1mm/sec、測定長5mm、カットオフλc=0.8mmで測定した。   The photoconductor durability was evaluated by the amount of abrasion on the surface of the photoconductor and scratches. The amount of wear was measured with a reflection spectroscopic interferometer (trade name: MCPD-2000, manufactured by Otsuka Electronics Co., Ltd.), and was calculated as wear rate [nm / rotation] per rotation. Further, the scratches on the surface of the photosensitive member were measured with a surface roughness measuring machine (manufactured by Kosaka Laboratory, Surfcoder SE-3400) at any 12 points on the surface of the photosensitive member, and where the scratches or streaks were visually confirmed. It was measured by using JIS 1982 mode, measuring speed 0.1 mm / sec, measuring length 5 mm, and cut-off λc = 0.8 mm.

評価基準は下記の通りである。   The evaluation criteria are as follows.

・画像流れ(H/H環境)
耐刷翌朝のサンプル画像から判定した。判定基準は下記の通りである。
◎;非常に良好 上記評価画像において 線、及びドットのボケ無し
○;良好 格子画像は流れ認識できず、ハーフトーン又は階調画像の一部領域でド ットのボケ又は濃度低下あり。但しA4通紙50枚以内で回復
●;実用可能 格子画像は流れ認識できず、ハーフトーン又は階調画像でドットのボケ 又は濃度低下あり。回復まで50〜100枚
△;実用可能 格子画像は流れ認識できず、ハーフトーン又は階調画像でドットのボケ 又は濃度低下あり。回復まで100枚超過。
または、格子画像で若干の流れ認識できるが、格子画象の流れ回復まで 50枚以内
×;上記以外 格子画像で流れ認識される
・ Image flow (H / H environment)
Judgment was made from the sample image of the morning after printing. The judgment criteria are as follows.
◎: Very good No blurring of lines and dots in the above evaluation image ○: Good The grid image cannot be recognized, and dot blurring or density decrease in some areas of the halftone or gradation image. However, recovery is possible within 50 sheets of A4 paper. ●: Practical use The grid image cannot be recognized as a flow, and dot blurring or density reduction occurs in halftone or gradation images. 50 to 100 sheets until recovery Δ: Practical use The grid image cannot be recognized as a flow, and dot blurring or density reduction occurs in a halftone or gradation image. Over 100 sheets until recovery.
Or, a little flow can be recognized with the grid image, but within 50 images until the flow recovery of the grid image x;

・CLN耐久性
耐刷試験後にクリーニングブレードのカット面と当接面を顕微鏡観察し、クリーニングブレードの欠けや抉れ、トナーすり抜けや、ビビリ、捲れといったクリーニング不良を評価した。判定基準は下記の通りである。
◎;非常に良好 ブレード欠け無し。トナー粒径以下の抉れ又は欠けが3箇所以内。擦り 抜けなし。めくれ、ビビリ、共鳴音、何れも無し
○;良好 トナー粒径以下の抉れ又は欠けが4〜5箇所。トナー粒径以上の抉れ又 は欠け無し。擦り抜け無し。めくれ無し、共鳴音は感光体停止時に発生 する場合がある、又はビビリが発生する場合がある(頻度少)
●;実用可能 トナー粒径以下の抉れ又は欠けが6〜10箇所。トナー粒径以上の抉れ 又は欠けが有るが、トナー粒径の2倍以上のものは無し。擦り抜け無し 。共鳴音またはビビリが発生する場合がある(頻度少)
△;実用可能 トナー粒径以下の抉れ又は欠けが10箇所以上。トナー粒径の2倍以上 の抉れ又は欠けが有るが、擦り抜け無し。共鳴音とビビリの双方が発生 する場合がある(頻度少)
×;上記以外 欠け/抉れ等のブレード損耗に起因する擦り抜け有り、又はメクレが発 生す場合がある。ビビリと共鳴音が発生する乃至は頻度が高い
CLN durability After the printing test, the cut surface and the contact surface of the cleaning blade were observed with a microscope, and cleaning defects such as chipping and scuffing of the cleaning blade, toner slipping, chattering and scoring were evaluated. The judgment criteria are as follows.
A: Very good No blade chipping. No more than 3 spots or chippings below the toner particle size. No scraping. No turning, chattering or resonance sound ○: Good 4-5 spots of wrinkles or chippings below the toner particle size. No dripping or chipping exceeding the toner particle size. No scraping. No turning, resonance sound may occur when the photoconductor is stopped, or chatter may occur (frequently)
●: Practical use 6 to 10 spots of wrinkles or chips below the toner particle size. There are wrinkles or chipping larger than the toner particle size, but none more than twice the toner particle size. No scraping. Resonance or chatter may occur (rare)
Δ: Practical use Ten or more wrinkles or chippings less than the toner particle size. There are wrinkles or chips more than twice the particle size of the toner, but there is no abrasion. Both resonance and chatter may occur (rare)
×: Other than the above There may be scraping due to blade wear such as chipping / scratching or mekre. There is chatter and resonance sound or frequency

・感光体耐久性
耐刷試験前後の各感光体の膜厚摩耗を測定した。
-Photoconductor durability The film thickness wear of each photoconductor before and after the printing test was measured.

感光体の膜厚測定は、感光体の表面層厚については周方向に6箇所、長軸方向で6箇所の、計36箇所を測定し、その平均値を、平均表面層厚とした。磨耗量の算出は、耐久前後の平均表面層厚の差分、感光体の回転数で除し、10,000回転あたりの摩耗Rate[nm/10k回転(rot)]として算出した。画像濃度は絶対濃度で測定し、各画像評価時における上記画像を濃度計「RD−918」(マクベス社製)を使用して測定した。   In the measurement of the thickness of the photoreceptor, the surface layer thickness of the photoreceptor was measured at a total of 36 locations, 6 locations in the circumferential direction and 6 locations in the major axis direction, and the average value was taken as the average surface layer thickness. The amount of wear was calculated as wear rate [nm / 10k rotation (rot)] per 10,000 rotations by dividing by the difference in average surface layer thickness before and after endurance and the number of rotations of the photoreceptor. The image density was measured as an absolute density, and the above image at the time of each image evaluation was measured using a densitometer “RD-918” (manufactured by Macbeth).

判定基準は下記の通りである。
◎;非常に良好 摩耗Rateが1.5[nm/10krot]以下、且つ偏摩耗無し
○;良好 摩耗Rateが1.5[nm/10krot]以下、偏摩耗あるが、2 .0[nm/10krot]を超える測定点無し。且つ、偏磨耗部とそ の近傍の画像濃度差は0.2以下
×;上記以外 摩耗Rateが1.5[nm/10krot]超過、または2.0[n m/10krot]を超える測定点あり。又は偏磨耗部とその近傍の画 像濃度差は0.2超過
The judgment criteria are as follows.
◎: Very good Wear rate is 1.5 [nm / 10 krot] or less and no uneven wear. ○: Good wear rate is 1.5 [nm / 10 krot] or less, but there is uneven wear. No measurement point exceeding 0 [nm / 10 krot]. In addition, the difference in image density between the unevenly worn portion and the vicinity thereof is 0.2 or less x; other than the above. There are measurement points where the wear rate exceeds 1.5 [nm / 10 krot] or exceeds 2.0 [nm / 10 krot]. . Or, the difference in image density between the unevenly worn part and its vicinity exceeds 0.2.

評価結果を表7〜表9に示す。   The evaluation results are shown in Tables 7-9.

〔実施例2〜7〕
評価用感光体として、P02〜P07を用いたい該は実施例1と同様に評価を行った。結果を表7〜表9に示す。
[Examples 2 to 7]
As for the photoconductor for evaluation, P02 to P07 were evaluated in the same manner as in Example 1. The results are shown in Tables 7-9.

Figure 2007292985
Figure 2007292985

Figure 2007292985
Figure 2007292985

Figure 2007292985
Figure 2007292985

特に、流れとCLN耐久性の結果を、無機微粒子の平均1次粒径Dとの相関として図16に示す。表7〜同9、及び図16より、平均粒径Dが30〜500nmの時、良好な結果が得られた。該粒径Dが100〜300nmの時、更に良好な結果が得られた。   In particular, the flow and CLN durability results are shown in FIG. 16 as a correlation with the average primary particle size D of the inorganic fine particles. From Tables 7 to 9 and FIG. 16, good results were obtained when the average particle diameter D was 30 to 500 nm. Even better results were obtained when the particle size D was 100-300 nm.

また、流れの評価結果が●以上、すなわち平均粒径Dが30〜500nmの無機微粒子について、感光体P01〜P07のRzとの比(Rz/D)との相関を取ったものを図17に示す。図17より、Rz/Dが0.5〜2.0の時、更に良好な結果が得られていることが分る。   FIG. 17 shows the correlation between the flow evaluation result of ● or more, that is, the inorganic fine particles having an average particle diameter D of 30 to 500 nm and the ratio (Rz / D) to Rz of the photoreceptors P01 to P07. Show. FIG. 17 shows that even better results are obtained when Rz / D is 0.5 to 2.0.

なお、クリーニング工程から帯電中心までの時間が100mm/secより大(大略20ppm未満)の低速機では、市場で求められる寿命レベルは数k〜数10Kである。本発明の如き長寿妙な感光体、さらに摺擦部材は、技術的には良好な結果が得られるが、コストアップが生じるため、費用対効果の観点から、必ずしも実用的ではない。   In a low-speed machine having a time from the cleaning process to the charging center of greater than 100 mm / sec (approximately less than 20 ppm), the life level required in the market is several k to several tens of k. A long-life photosensitive member such as the present invention and a rubbing member can provide good technical results, but are not practical from the viewpoint of cost effectiveness because of increased costs.

〔比較例1〜7〕
無機微粒子として比較微粒子A〜同Eを用いた以外は、実施例1〜7と同様の評価を行った。比較例1〜7の耐刷評価結果を、表7〜表9に示す。特に流れ、CLN耐久性で実施例との差異が見られた。
[Comparative Examples 1-7]
Evaluations similar to those in Examples 1 to 7 were performed except that Comparative Fine Particles A to E were used as the inorganic fine particles. Tables 7 to 9 show the printing durability evaluation results of Comparative Examples 1 to 7. In particular, the flow and CLN durability were different from those of the examples.

〔実施例8〕スコロトロン
図2の如く、帯電手段102として、スコロトロン帯電器を使用し、該スコロトロンのグリッドには800Vまでの電圧が印加される吸込み電源を用いた。この状態で該ワイヤヘの電流を調整して暗部電位を調整できる様に、高圧電源を変更した。また、転写手段108もコロトロンのコロナ帯電方式とした。その他は、実施例1〜7、比較例1〜5と同様の評価を行った。
[Example 8] Scorotron As shown in Fig. 2, a scorotron charger was used as the charging means 102, and a suction power source to which a voltage of up to 800V was applied was used for the grid of the scorotron. In this state, the high-voltage power supply was changed so that the dark portion potential could be adjusted by adjusting the current to the wire. The transfer means 108 is also a corotron corona charging system. The other evaluations were the same as in Examples 1 to 7 and Comparative Examples 1 to 5.

結果、実施例1〜7同様に、無機微粒子の平均一時粒径が30〜500nmで良好な結果が、100〜300nmでは更に良好な結果が得られた。   As a result, similar to Examples 1 to 7, good results were obtained when the average temporary particle size of the inorganic fine particles was 30 to 500 nm, and even better results were obtained at 100 to 300 nm.

〔実施例9〕研磨剤外添
使用する現像剤として、実施例1で使用したトナー粒子100質量部に対して、実施例1で使用した無機微粒子を1.5質量部追加して外添した物を現像剤として使用した。これに伴い、実施例1で設けた無機微粒子溜り(図1の斜線部)と、該無機微粒子供給部材106は除去し、元の廃トナー送り羽根(図19の1811)とした。これ以外は、実施例1〜7と同様にして評価を行った。
[Example 9] External addition of abrasive agent As a developer to be used, 1.5 parts by mass of inorganic fine particles used in Example 1 were added externally to 100 parts by mass of toner particles used in Example 1. The product was used as a developer. Along with this, the inorganic fine particle reservoir (shaded portion in FIG. 1) and the inorganic fine particle supply member 106 provided in Example 1 were removed to obtain the original waste toner feed blade (1811 in FIG. 19). Except this, it evaluated similarly to Examples 1-7.

結果、実施例1〜7同様に、無機微粒子の平均一時粒径が30〜500nmで良好な結果が、100〜300nmでは更に良好な結果が得られた。無機微粒子の供給は、実施例1〜8の如く供給部材を使用しても、本例の如く現像剤への添加でもよい。   As a result, similar to Examples 1 to 7, good results were obtained when the average temporary particle size of the inorganic fine particles was 30 to 500 nm, and even better results were obtained at 100 to 300 nm. The inorganic fine particles may be supplied by using a supply member as in Examples 1 to 8, or by adding to the developer as in this example.

〔実施例10〕無機微粒子形状・・・直方体
実施例9で用いた現像剤のうち、何れも平均1次粒径Dが500nmである無機微粒子J、Mを外添したものを使用した。また、感光体はP01を使用し、感光体面速度を270mm/secで65ppmとし、また耐刷試験で形成する画像として、500μm線を20mm間隔で配した。画像比率2.5%とした。給紙、排紙手段等の各手段の速度や、帯電手段に印加するバイアス条件、露光手段等は、該感光体面速度に付随して調整した。
[Example 10] Shape of inorganic fine particles: cuboid Among the developers used in Example 9, those having externally added inorganic fine particles J and M having an average primary particle diameter D of 500 nm were used. Further, P01 was used as the photosensitive member, the photosensitive member surface speed was set to 65 ppm at 270 mm / sec, and 500 μm lines were arranged at 20 mm intervals as images formed in the printing durability test. The image ratio was 2.5%. The speed of each means such as paper feeding and paper discharging means, the bias condition applied to the charging means, the exposure means, etc. were adjusted in association with the photoreceptor surface speed.

この条件で、実施例9と同様に、耐刷試験及び評価を行った。結果を表10に示す。   Under these conditions, the printing durability test and the evaluation were performed in the same manner as in Example 9. The results are shown in Table 10.

Figure 2007292985
Figure 2007292985

表10より、直方体状の無機微粒子Jの方が不定形の無機微粒子Mよりも流れやCLN耐久性に対するラチチュードが広がっていることが分る。   From Table 10, it can be seen that the rectangular solid-shaped inorganic fine particles J have a greater latitude for flow and CLN durability than the amorphous inorganic fine particles M.

〔実施例11〕円形度a=0.930〜0.970
感光体はP01を使用した。また、現像剤は平均1次粒径Dが320nmの微粒子Gを、T1〜T11に対して、実施例9の如く外添したものを使用した。
[Example 11] Circularity a = 0.930-0.970
P01 was used as the photoreceptor. In addition, a developer obtained by externally adding fine particles G having an average primary particle diameter D of 320 nm to T1 to T11 as in Example 9 was used.

これらの感光体、無機微粒子、現像剤を用い、実施例9と同様に耐刷、評価を行った。J結果を表11に示す。   Using these photoreceptors, inorganic fine particles, and developers, printing durability and evaluation were performed in the same manner as in Example 9. J results are shown in Table 11.

Figure 2007292985
Figure 2007292985

表11より、トナー平均円形度aが、0.930〜0.970、特に0.935以上の時、良好な結果が得られた。トナーの円形度を制御することで、クリーニング手段の当接部近傍での均一性や、クリーニング性自体が良好に維持されると考えられる。   From Table 11, good results were obtained when the toner average circularity a was 0.930 to 0.970, particularly 0.935 or more. By controlling the circularity of the toner, it is considered that the uniformity in the vicinity of the contact portion of the cleaning means and the cleaning performance itself are maintained well.

〔実施例12〕近接帯電 CCC
帯電手段102として、感光体101の表面とほぼ同曲率の金属電極を作製し、感光体への対向面側には抵抗を調整した樹脂層を設けた。
[Example 12] Proximity charging CCC
As the charging means 102, a metal electrode having substantially the same curvature as that of the surface of the photoconductor 101 was prepared, and a resin layer with adjusted resistance was provided on the side facing the photoconductor.

図3の如く、帯電手段102として、感光体101に近接させた電極を設けた電極の長手で画像領域外の端部にスペーサーを設けて感光体101との最近接部の空隙間隔を50μmとした。空隙は上流側が狭広い図4−1のように設置した。帯電手段に印加するバイアス条件を調整し、実施例1と同様の評価を行った。結果を表12に示す。   As shown in FIG. 3, as the charging means 102, a spacer is provided at the end outside the image area at the length of the electrode provided with the electrode close to the photosensitive member 101, and the gap distance between the closest part to the photosensitive member 101 is 50 μm. did. The air gap was installed as shown in FIG. The bias conditions applied to the charging means were adjusted, and the same evaluation as in Example 1 was performed. The results are shown in Table 12.

Figure 2007292985
Figure 2007292985

表12より、実施例1よりも良好な結果が得られた。また、N/L環境下での耐刷試験において、実施例1ではクリーニング手段106をすり抜けた無機微粒子、或いは外添剤等の微小粒子の付着等による、帯電部材102の汚れが生じる場合があったが、非接触の本例では帯電手段の汚染は僅少であった。   From Table 12, a better result than Example 1 was obtained. Further, in the printing durability test under the N / L environment, in Example 1, the charging member 102 may be soiled due to adhesion of inorganic fine particles that have passed through the cleaning means 106 or fine particles such as external additives. However, in this non-contact example, contamination of the charging means was very small.

また、図4−2のように下流側が広い設定で帯電手段102をセットして同様の耐刷評価を行った結果でも、同様に良好な結果が得られた。   Also, as a result of setting the charging unit 102 with a wide setting on the downstream side as shown in FIG. 4B and performing the same printing durability evaluation, the same good results were obtained.

〔実施例13〕近接帯電 近接ローラー
図5の如く、実施例1で使用した帯電ローラーの端部にスペーサーを設けて、最近接部の空隙間隔を50μmとした、帯電手段102をセットした。実施例12と同様の耐刷評価試験を行った結果を表12に示す。表12より、実施例12同様に良好な結果が得られた。
Example 13 Proximity Charging Proximity Roller As shown in FIG. 5, a charging means 102 was set by providing a spacer at the end of the charging roller used in Example 1 and setting the gap distance of the closest part to 50 μm. Table 12 shows the results of a printing durability evaluation test similar to that of Example 12. From Table 12, good results were obtained as in Example 12.

また、帯電ローラーの硬度をアスカーC硬度で90度の高硬度なものに変更し、また該帯電手段102には不図示の駆動手段を設けて、感光体101の駆動に同期して、面速度が等速で回転駆動する様にした。実施例12と同様の耐刷評価試験を行った結果を表06に示す。表06より、実施例12同様に良好な結果が得られた。   Also, the hardness of the charging roller is changed to an Asker C hardness of 90 degrees, and the charging means 102 is provided with a driving means (not shown) so that the surface speed is synchronized with the driving of the photoconductor 101. Was driven to rotate at a constant speed. Table 06 shows the results of a printing durability evaluation test similar to that of Example 12. From Table 06, good results were obtained as in Example 12.

これらの帯電部材を使用し、実施例1同様の評価を行った。実施例1よりも良好な結果が得られた。特に、ローラー形状の帯電手段102を回転駆動した場合は、非常に良好な結果が得られた。   Using these charging members, the same evaluation as in Example 1 was performed. Better results than in Example 1 were obtained. In particular, when the roller-shaped charging unit 102 was driven to rotate, very good results were obtained.

近接帯電方式、更には駆動式の近接帯電で、感光体101の表面近傍に気流が生じ、エアフロー等の作用が良好に働いているのではないかと考えられる。   It is considered that the proximity charging method or the drive-type proximity charging generates an air flow in the vicinity of the surface of the photoconductor 101, and the airflow or the like works well.

〔実施例14〕摺擦・回収工程 回転駆動型
帯電手段は実施例13で使用した近接帯電手段を用い、摺擦・回収部材として、図6のように摺擦回収部材111を設置し、評価装置を作成した。該摺擦回収部材111として弾性ローラーDR1を使用し、感光体の面速度Sに対し、相対速度−50%の順方向で回転するようにした。また、ファーブラシローラーBR1を使用し、−60%で駆動する様にした評価装置、磁気ブラシMR1を使用し、−60%で駆動する様にした評価装置を同様に作成した。また、図7の如く弾性ブレードBLD1を設置した評価装置を用意した。
[Embodiment 14] Rubbing / Recovering Step Rotation drive type charging means uses the proximity charging means used in Example 13, and a rubbing / collecting member 111 is installed as a rubbing / recovering member as shown in FIG. Created a device. An elastic roller DR1 was used as the rubbing recovery member 111, and it rotated in the forward direction with a relative speed of -50% with respect to the surface speed S of the photoreceptor. Further, an evaluation apparatus using the fur brush roller BR1 and driving at −60% and an evaluation apparatus using the magnetic brush MR1 and driving at −60% were similarly prepared. Further, an evaluation apparatus provided with an elastic blade BLD1 as shown in FIG. 7 was prepared.

これらについて、感光体はP0、現像剤はT10に対して無機微粒子を外添したものを使用して、実施例9と同様の耐刷評価を行った。   These were evaluated for printing durability in the same manner as in Example 9 using P0 for the photoreceptor and externally added inorganic fine particles to T10 for the developer.

結果を、表13に示す。   The results are shown in Table 13.

Figure 2007292985
Figure 2007292985

表13より、摺擦回収部材により、流れ,CLN耐久性ともに良化している。   From Table 13, both the flow and CLN durability are improved by the rubbing recovery member.

また、帯電手段102を実施例1同様の接触帯電方式にして、上記と同じ耐刷評価を行った。耐刷試験後に帯電手段102を観察した所、摺擦・回収部材を有している方では、無い方と比して、該帯電手段102に付着する無機微粒子や外添剤等が殆ど無く、帯電電流の変動も抑制された。なお、摺擦・回収手段111の駆動は、常時所定の速度であってもよいし、部材の耐久性などの観点から画像形成時は速度差を小さくして、画像形成時以外の、例えば前回転や後回転時に速度差を大きくする等してもよい。   Further, the same printing durability evaluation as described above was performed by using the charging means 102 as a contact charging system similar to that in Example 1. When the charging unit 102 is observed after the printing durability test, the one having the rubbing / collecting member has almost no inorganic fine particles or external additives attached to the charging unit 102 as compared with the one without the rubbing / recovering member. The fluctuation of the charging current was also suppressed. The rubbing / recovery unit 111 may be driven at a predetermined speed at all times, or from the viewpoint of the durability of the member, the speed difference may be reduced during image formation, for example, before the image formation. The speed difference may be increased at the time of rotation or after rotation.

また、図8〜図9の如く、これらの摺擦・回収手段111を複数設けて、摺擦・回収の効率を上げることも好ましい。また、回収用のバイアス、あるいは帯電手段と同極性のバイアスを印加することも、帯電手段102のバイアス低減、ひいては帯電生成物質の量が減少して、流れやCLN耐久性、帯電手段の汚れに対して好ましい。   Also, as shown in FIGS. 8 to 9, it is preferable to provide a plurality of these rubbing / collecting means 111 to increase the efficiency of rubbing / collecting. In addition, applying a bias for recovery or a bias having the same polarity as the charging means can also reduce the bias of the charging means 102 and, in turn, reduce the amount of charge generating material, resulting in flow, CLN durability, and contamination of the charging means. It is preferable for this.

本発明にかかる画像形成装置の、実施態様例Embodiment of image forming apparatus according to the present invention 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention 近接帯電方式の設置部概略拡大図Approximate enlarged view of the proximity charging system installation section 近接帯電方式の設置部概略拡大図Approximate enlarged view of the proximity charging system installation section 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention 本発明にかかる画像形成装置の、実施態様の別の例Another example of the embodiment of the image forming apparatus according to the present invention BAEとIAEの潜像を比較したモデル図Model diagram comparing latent images of BAE and IAE a−Si感光体の層構成の例を示すモデル図Model diagram showing an example of layer structure of a-Si photoconductor a−Si感光体の支持体形状と表面形状の関係を示す概略モデル図Schematic model showing the relationship between the support shape and surface shape of the a-Si photosensitive member 本発明に掛る好適な無機微粒子の一例のSEM写真SEM photograph of an example of suitable inorganic fine particles according to the present invention 直方体形状の概念図Conceptual figure of rectangular parallelepiped shape 実施例、比較例の耐刷試験で形成する画像の概略図Schematic of images formed in printing durability test of Examples and Comparative Examples 無機微粒子の平均1次粒径Dと評価結果を示すグラフGraph showing average primary particle diameter D of inorganic fine particles and evaluation results Rz/Dと評価結果を示すグラフGraph showing Rz / D and evaluation results 従来の画像形成装置の例Example of conventional image forming apparatus 従来の画像形成装置の例Example of conventional image forming apparatus

符号の説明Explanation of symbols

101、1801、1100;感光体
102、1802;帯電手段
103、1803;潜像形成露光
104、1804;現像手段
105、1805;廃トナー容器
106、1806;クリーニング手段
107、1807;除電手段
108、1808;転写手段
109、1809;搬送手段
110;無機微粒子供給手段
111(111−i、111−ii);摺擦・回収手段
1101;支持体
1102;感光層
1103;光導電層
1104;表面層
1105、1106;電荷注入阻止層
1810;摺擦部材
1811;廃トナー送り羽
X;感光体進行方向
P;転写材
Vdi、Vdb;現像バイアスDC電位
ΔVl1、ΔVl1;現像コントラスト
101, 1801, 1100; photoreceptors 102, 1802; charging means 103, 1803; latent image forming exposure 104, 1804; developing means 105, 1805; waste toner containers 106, 1806; cleaning means 107, 1807; Transfer means 109, 1809; transport means 110; inorganic fine particle supply means 111 (111-i, 111-ii); rubbing / recovery means 1101; support 1102; photosensitive layer 1103; photoconductive layer 1104; surface layer 1105; 1106; charge injection blocking layer 1810; rubbing member 1811; waste toner feed blade X; photosensitive member traveling direction P; transfer material Vdi, Vdb; developing bias DC potentials ΔVl1, ΔVl1;

Claims (10)

感光体を帯電する帯電工程と、帯電された該感光体に潜像を形成する潜像形成工程と、前記潜像を現像剤により現像する現像工程と、現像された現像剤像を転写材に転写する転写工程と、前記感光体をクリーニングする弾性ブレードからなるクリーニング工程を有する画像形成方法において、
該感光体は、導電性支持体上に形成される、シリコン原子を母体として水素原子及び/またはハロゲン原子を含有する非単結晶材料からなり光導電性を示す光導電層有する感光体であり、
該潜像形成工程は背面露光方式であって、
クリーニング工程において平均粒径Dが30〜500nmのペロブスカイト型結晶を有する無機微粒子からなる研磨粒子を介して該感光体表面を摺擦する工程を有し、
更に、除電工程を、該転写工程と該クリーニング工程の間に有することを特徴とする画像形成方法。
A charging step for charging the photosensitive member; a latent image forming step for forming a latent image on the charged photosensitive member; a developing step for developing the latent image with a developer; and the developed developer image as a transfer material. In an image forming method having a transfer step of transferring, and a cleaning step of an elastic blade for cleaning the photoreceptor,
The photoconductor is a photoconductor having a photoconductive layer formed on a conductive support and made of a non-single crystal material containing a hydrogen atom and / or a halogen atom with a silicon atom as a base, and exhibiting photoconductivity.
The latent image forming step is a back exposure method,
A step of rubbing the surface of the photoreceptor through abrasive particles made of inorganic fine particles having perovskite crystals having an average particle diameter D of 30 to 500 nm in the cleaning step;
Further, the image forming method, further comprising a charge eliminating step between the transfer step and the cleaning step.
前記無機微粒子の平均粒径Dが100〜300nmであることを特徴とする請求項1に記載の画像形成方法。   The image forming method according to claim 1, wherein the inorganic fine particles have an average particle diameter D of 100 to 300 nm. 前記感光体表面の10点平均粗さRzが前記研磨粒子の平均粒径Dの0.5倍以上2倍以下であることを特徴とする請求項1又は2に記載の画像形成方法。   3. The image forming method according to claim 1, wherein a 10-point average roughness Rz of the surface of the photoreceptor is 0.5 to 2 times the average particle diameter D of the abrasive particles. 上記現像工程で使用される現像剤が、磁性トナー粒子及び外添剤からなる磁性一成分現像剤であることを特徴とする請求項1乃至3のいずれかに記載の画像形成方法。   4. The image forming method according to claim 1, wherein the developer used in the development step is a magnetic one-component developer composed of magnetic toner particles and an external additive. 該現像剤の、該磁性トナー粒子の重量平均粒子径X(μm)が4μm乃至12μmであり、フロー式粒子像測定方法で計測される円相当径3μm以上400μm以下で測定される円形度a’の平均値(平均円形度a)が0.930以上0.970未満であることを特徴とする請求項4に記載の画像形成方法。   The developer has a weight average particle diameter X (μm) of the magnetic toner particles of 4 μm to 12 μm, and a circularity a ′ measured by an equivalent circle diameter of 3 μm or more and 400 μm or less measured by a flow type particle image measurement method. The image forming method according to claim 4, wherein an average value (average circularity a) is 0.930 or more and less than 0.970. 前記無機微粒子が、直方体状の無機微粒子であることを特徴とする請求項1乃至5のいずれかに記載の画像形成方法。   The image forming method according to claim 1, wherein the inorganic fine particles are rectangular parallelepiped inorganic fine particles. 該感光体表面の、上記クリーニング工程から帯電工程の中心までの移動時間が100msec以下であることを特徴とする請求項1乃至6のいずれかに記載の画像形成方法。   The image forming method according to claim 1, wherein a moving time of the surface of the photoreceptor from the cleaning process to the center of the charging process is 100 msec or less. 上記帯電工程が近接帯電方式であることを特徴とする請求項1乃至7のいずれかに記載の画像形成方法。   8. The image forming method according to claim 1, wherein the charging step is a proximity charging method. 上記帯電工程が回転方式(ローラー状、ベルト状)であることを特徴とする請求項1乃至8のいずれかに記載の画像形成方法。   9. The image forming method according to claim 1, wherein the charging step is a rotation method (roller shape, belt shape). 前記研磨粒子を介して感光体表面を摺擦及び/又は該研磨粒子を回収する工程を有することを特徴とする請求項1乃至9のいずれかに記載の画像形成方法。   The image forming method according to claim 1, further comprising a step of rubbing the surface of the photoreceptor through the abrasive particles and / or collecting the abrasive particles.
JP2006120224A 2006-04-25 2006-04-25 Image forming method Withdrawn JP2007292985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120224A JP2007292985A (en) 2006-04-25 2006-04-25 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120224A JP2007292985A (en) 2006-04-25 2006-04-25 Image forming method

Publications (1)

Publication Number Publication Date
JP2007292985A true JP2007292985A (en) 2007-11-08

Family

ID=38763676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120224A Withdrawn JP2007292985A (en) 2006-04-25 2006-04-25 Image forming method

Country Status (1)

Country Link
JP (1) JP2007292985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153456A (en) * 2013-02-06 2014-08-25 Konica Minolta Inc Image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153456A (en) * 2013-02-06 2014-08-25 Konica Minolta Inc Image forming method

Similar Documents

Publication Publication Date Title
JP2008058463A (en) Image forming method
JP2005157178A (en) Image forming method and image forming apparatus
JP2015041084A (en) Developing device, process cartridge, and image forming apparatus
JP2008164662A (en) Image forming apparatus
JP2008268470A (en) Image forming apparatus
JP2010151921A (en) Image forming apparatus
JP4991374B2 (en) Image forming method
JP2008129401A (en) Image forming method
JP2009058732A (en) Image forming method and image forming apparatus
JP2009282217A (en) Image forming method
JP5661413B2 (en) Image forming method and image forming apparatus
JP4065508B2 (en) Image forming method
JP2006235524A (en) Image forming method
JP2007292985A (en) Image forming method
JP4773940B2 (en) Toner and image forming method
JP5300360B2 (en) Image forming method
JP2003207984A (en) Method and apparatus for forming image
JP4623651B2 (en) Electrophotographic equipment
JP2006235168A (en) Image forming method
JP2005140945A (en) Charging roller, method for manufacturing charging roller and image forming apparatus
JP3854796B2 (en) Image forming apparatus
JP2007183339A (en) Image forming apparatus
JP2002365828A (en) Image forming method
JP3315642B2 (en) Image forming device
JP2006184689A (en) Image forming method and image forming system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707