[go: up one dir, main page]

JP2007292423A - Refrigeration system and storage equipment - Google Patents

Refrigeration system and storage equipment Download PDF

Info

Publication number
JP2007292423A
JP2007292423A JP2006123254A JP2006123254A JP2007292423A JP 2007292423 A JP2007292423 A JP 2007292423A JP 2006123254 A JP2006123254 A JP 2006123254A JP 2006123254 A JP2006123254 A JP 2006123254A JP 2007292423 A JP2007292423 A JP 2007292423A
Authority
JP
Japan
Prior art keywords
temperature
compressor
suction pipe
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123254A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
寿和 境
Kenji Kaneshiro
賢治 金城
Tomoichiro Tamura
朋一郎 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006123254A priority Critical patent/JP2007292423A/en
Publication of JP2007292423A publication Critical patent/JP2007292423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

【課題】冷蔵あるいは冷凍に利用する比較的蒸発温度が低い冷凍システムにおいて、圧縮機の耐久性を損なうことなく、電源投入時の冷凍能力および安定時の冷凍システム性能を向上する。
【解決手段】蒸発器4の温度を検知する蒸発温度検知センサー23と、蒸発器4と圧縮機21を繋ぐ吸入配管の入口部の温度を検知する吸入配管入口温度検知センサー25とを備え、蒸発温度検知センサー23で検知された蒸発温度から決定される目標温度より、吸入配管入口温度検知センサー25で検知された実測値が高い場合は膨張弁の開度を大きくし、吸入配管入口温度検知センサー25で検知された実測値が低い場合は膨張弁の開度を小さくすることで蒸発温度を制御し、吸入配管内での油滞留を防止するとともに、電源投入時および安定時における圧縮機21の吐出冷媒の温度を略一定に保ち、圧縮機21の耐久性を損なうことなく冷凍能力を向上できる。
【選択図】図1
In a refrigeration system having a relatively low evaporation temperature used for refrigeration or refrigeration, the refrigeration capacity at power-on and the refrigeration system performance at stability are improved without impairing the durability of the compressor.
An evaporation temperature detection sensor for detecting the temperature of an evaporator and a suction pipe inlet temperature detection sensor for detecting a temperature of an inlet part of the suction pipe connecting the evaporator and the compressor are provided. If the measured value detected by the suction pipe inlet temperature detection sensor 25 is higher than the target temperature determined from the evaporation temperature detected by the temperature detection sensor 23, the opening of the expansion valve is increased, and the suction pipe inlet temperature detection sensor. If the measured value detected at 25 is low, the evaporation temperature is controlled by reducing the opening of the expansion valve to prevent oil retention in the suction pipe, and the compressor 21 at the time of power-on and when it is stable. The temperature of the discharged refrigerant can be kept substantially constant, and the refrigeration capacity can be improved without impairing the durability of the compressor 21.
[Selection] Figure 1

Description

本発明は、冷媒として二酸化炭素を使用した冷凍システムにおいて、冷蔵あるいは冷凍に利用する比較的蒸発温度が低い冷凍システムおよび、この冷凍システムを搭載する保冷庫等の貯蔵装置に関するものである。   The present invention relates to a refrigeration system having a relatively low evaporation temperature used for refrigeration or refrigeration in a refrigeration system using carbon dioxide as a refrigerant, and a storage device such as a cool box equipped with the refrigeration system.

近年、冷凍システムに使用される冷媒による地球温暖化に対する影響を削減するために、自然冷媒として二酸化炭素を使用した冷凍システムが提案されている。また、二酸化炭素を使用した冷凍システムは、主に遷臨界サイクルである点を利用して高い出湯温度を得る給湯機に適用され、また、不燃性である点を利用してカーエアコンに適用されている。   In recent years, in order to reduce the influence of the refrigerant used in the refrigeration system on global warming, a refrigeration system using carbon dioxide as a natural refrigerant has been proposed. In addition, the refrigeration system using carbon dioxide is mainly applied to hot water heaters that obtain a high hot water temperature using the transcritical cycle, and is applied to car air conditioners using the nonflammable point. ing.

ここで、前記二酸化炭素の遷臨界サイクルを使用した冷凍システムは、高い外気温度においては高い高圧圧力に制御する方が高効率な運転ができるため、蒸発器出口に設置されたアキュームレータ内に滞留する液冷媒の量を調整して高圧圧力を制御する構成が適用されている(例えば、特許文献1参照)。   Here, since the refrigeration system using the carbon dioxide transcritical cycle can be operated more efficiently by controlling to a high high pressure at a high outside air temperature, it stays in the accumulator installed at the outlet of the evaporator. A configuration in which the amount of liquid refrigerant is adjusted to control the high pressure is applied (see, for example, Patent Document 1).

一方、冷蔵あるいは冷凍に利用する比較的蒸発温度が低い冷凍システムにおいては、蒸発温度の低下に伴って吐出ガス温度が非常に高くなるという問題があり、適用が進んでいない。そこで、内部熱交換量を制御して吐出ガス温度の上昇を抑える冷凍システムが提案されている(例えば、特許文献2参照)。   On the other hand, in a refrigeration system having a relatively low evaporation temperature used for refrigeration or freezing, there is a problem that the discharge gas temperature becomes very high as the evaporation temperature decreases, and its application has not progressed. In view of this, a refrigeration system has been proposed in which the internal heat exchange amount is controlled to suppress an increase in the discharge gas temperature (see, for example, Patent Document 2).

また、一般に冷媒として二酸化炭素を用いた冷凍システムにおいては、圧縮機の冷凍機油として、40℃での動粘度が100mm2/s程度、100℃での動粘度が20mm2/s程度のポリアルキレングリコール冷凍機油が使用される(例えば、非特許文献1参照)。   In general, in a refrigeration system using carbon dioxide as a refrigerant, a polyalkylene glycol refrigeration having a kinematic viscosity at 40 ° C. of about 100 mm 2 / s and a kinematic viscosity at 100 ° C. of about 20 mm 2 / s as a refrigerating machine oil for a compressor. Machine oil is used (for example, refer nonpatent literature 1).

前記ポリアルキレングリコール冷凍機油を前記冷凍機油に用いる主な理由は、蒸発器内の低温低圧条件において分離した油相が二酸化炭素冷媒を良く溶解して低粘度となるとともに、圧縮機内の超臨界状態においては二酸化炭素冷媒をあまり溶解せず圧縮機の潤滑に必要な粘度を維持することができるためである。   The main reason for using the polyalkylene glycol refrigerating machine oil in the refrigerating machine oil is that the oil phase separated under low temperature and low pressure conditions in the evaporator dissolves the carbon dioxide refrigerant well and has a low viscosity, and the supercritical state in the compressor This is because the viscosity required for lubricating the compressor can be maintained without dissolving the carbon dioxide refrigerant so much.

以下、図面を参照しながら従来の冷凍システムを説明する。   Hereinafter, a conventional refrigeration system will be described with reference to the drawings.

図6は従来の冷凍システムの回路構成図、図7は従来の冷凍システムのモリエル線図である。   FIG. 6 is a circuit configuration diagram of a conventional refrigeration system, and FIG. 7 is a Mollier diagram of the conventional refrigeration system.

図6に示すように、従来の冷凍システムは、冷媒として二酸化炭素を使用するとともに、圧縮機1、放熱器2、膨張弁3、蒸発器4、アキュームレータ5からなる回路構成を有する。また、放熱器2から膨張弁3へ向かうガス冷媒と、アキュームレータ5から圧縮機1へ向かうガス冷媒との熱交換を行う内部熱交換器6、放熱器2と圧縮機1を外気で空冷する放熱器ファン7、蒸発器4で生成した冷気を保冷庫の庫内(図示せず)へ循環する蒸発器ファン8、放熱器2の出口の冷媒圧力と温度を検知するセンサー9をそれぞれ備えている。   As shown in FIG. 6, the conventional refrigeration system uses carbon dioxide as a refrigerant and has a circuit configuration including a compressor 1, a radiator 2, an expansion valve 3, an evaporator 4, and an accumulator 5. Moreover, the internal heat exchanger 6 which performs heat exchange with the gas refrigerant which goes to the expansion valve 3 from the heat radiator 2, and the gas refrigerant which goes to the compressor 1 from the accumulator 5, and the heat radiation which air-cools the heat radiator 2 and the compressor 1 with external air An evaporator fan 8 that circulates the cool air generated by the evaporator fan 7 and the evaporator 4 to the inside of the cool box (not shown), and a sensor 9 that detects the refrigerant pressure and temperature at the outlet of the radiator 2 are provided. .

ここで、膨張弁3は、センサー9で検知された放熱器2の出口の冷媒圧力と温度に基づいて、膨張弁制御装置(図示せず)によってその絞り量が最適制御されるものである。   Here, the expansion amount of the expansion valve 3 is optimally controlled by an expansion valve control device (not shown) based on the refrigerant pressure and temperature at the outlet of the radiator 2 detected by the sensor 9.

以上のように構成された従来の冷凍システムについて、以下その動作を説明する。   The operation of the conventional refrigeration system configured as described above will be described below.

圧縮機1で圧縮されて吐出された冷媒は、放熱器2で外気温度近傍まで冷却され、さらに内部熱交換器6で冷却された後、膨張弁3で減圧されて、蒸発器4で蒸発する。そして、蒸発器4で蒸発できなかった液冷媒をアキュームレータ5内部に貯留しながら、アキュームレータ5からガス冷媒のみが内部熱交換器6を介して圧縮機1へ還流する。   The refrigerant compressed and discharged by the compressor 1 is cooled to the vicinity of the outside temperature by the radiator 2, further cooled by the internal heat exchanger 6, decompressed by the expansion valve 3, and evaporated by the evaporator 4. . Then, while the liquid refrigerant that could not be evaporated by the evaporator 4 is stored in the accumulator 5, only the gas refrigerant returns from the accumulator 5 to the compressor 1 via the internal heat exchanger 6.

ここで、外気温度が高い場合、センサー9で検知される放熱器2の出口の冷媒温度が高くなり、膨張弁制御装置によって放熱器2の出口の冷媒圧力が最適な所定量まで高くなるように膨張弁3の開度が絞られる。膨張弁3の開度を絞ることで放熱器2の出口の冷媒圧力が増大するのは、膨張弁3の開度を絞ることによって蒸発温度が低下して、蒸発器4での熱交換量が大きくなるとともに冷媒循環量が低下する結果、蒸発器4における出口の冷媒の乾き度が増大してアキュームレータ5内部に貯留される冷媒量が減少するためである。   Here, when the outside air temperature is high, the refrigerant temperature at the outlet of the radiator 2 detected by the sensor 9 is increased, and the refrigerant pressure at the outlet of the radiator 2 is increased to an optimum predetermined amount by the expansion valve control device. The opening degree of the expansion valve 3 is reduced. The refrigerant pressure at the outlet of the radiator 2 is increased by reducing the opening degree of the expansion valve 3 because the evaporation temperature is lowered by reducing the opening degree of the expansion valve 3 and the heat exchange amount in the evaporator 4 is reduced. This is because the refrigerant circulation rate decreases as the flow rate increases, and as a result, the degree of dryness of the refrigerant at the outlet of the evaporator 4 increases and the amount of refrigerant stored in the accumulator 5 decreases.

また、外気温度が低い場合、センサー9で検知される放熱器2の出口の冷媒温度が低くなり、膨張弁制御装置(図示せず)によって放熱器2の出口の冷媒圧力が最適な所定量まで低くなるように膨張弁3の開度が開き方向に調整される。膨張弁3の開度を調整することで放熱器2の出口の冷媒圧力が低下するのは、膨張弁3の開度を開けることによって蒸発温度が上昇して、蒸発器4での熱交換量が小さくなるとともに冷媒循環量が増大する結果、蒸発器4における出口の冷媒の乾き度が減少してアキュームレータ5内部に貯留される冷媒量が増加するためである。   When the outside air temperature is low, the refrigerant temperature at the outlet of the radiator 2 detected by the sensor 9 is lowered, and the refrigerant pressure at the outlet of the radiator 2 is reduced to an optimum predetermined amount by an expansion valve control device (not shown). The opening degree of the expansion valve 3 is adjusted in the opening direction so as to be lowered. The refrigerant pressure at the outlet of the radiator 2 decreases by adjusting the opening of the expansion valve 3 because the evaporation temperature rises by opening the expansion valve 3 and the amount of heat exchange in the evaporator 4. This is because, as a result of the decrease in the refrigerant circulation amount, the refrigerant circulation amount increases, and as a result, the degree of dryness of the refrigerant at the outlet of the evaporator 4 decreases and the amount of refrigerant stored in the accumulator 5 increases.

次に、従来の冷凍システムの冷媒の状態変化について図7を用いて詳細に説明する。   Next, the state change of the refrigerant in the conventional refrigeration system will be described in detail with reference to FIG.

図7は、横軸を冷媒のエンタルピーh、縦軸を冷媒の圧力Pとするモリエル線図であり、a、b、c、d、eで示す各点は、保冷庫の庫内(図示せず)が所定温度まで低下した定常状態にある安定時の冷媒の状態変化を示し、a’、b’、c’、d’、e’で示す各点は、前記保冷庫の庫内(図示せず)が外気温度の近傍にある電源投入時の冷媒の状態変化を示す。   FIG. 7 is a Mollier diagram in which the horizontal axis represents the enthalpy h of the refrigerant and the vertical axis represents the pressure P of the refrigerant. Each point indicated by a, b, c, d, e represents the inside of the cool box (not shown). 1) shows a change in the state of the refrigerant in a steady state in which the temperature is lowered to a predetermined temperature, and each point indicated by a ′, b ′, c ′, d ′, e ′ indicates the inside of the cool box (see FIG. (Not shown) shows a change in the state of the refrigerant when the power is turned on in the vicinity of the outside air temperature.

安定時において、圧縮機1から吐出された冷媒は温度T2のa点であり、放熱器2で冷却されて温度T1のb点となる。このb点において、冷媒は超臨界状態にあり、液化しないことが遷臨界サイクルの特長である。   At the stable time, the refrigerant discharged from the compressor 1 is a point a at the temperature T2, and is cooled by the radiator 2 to a point b at the temperature T1. At this point b, the refrigerant is in a supercritical state, and the characteristic of the transcritical cycle is that it does not liquefy.

次に、膨張弁3で減圧されて気液混合状態のc点となり、蒸発器4に供給される。蒸発器4で蒸発した冷媒はd点となり、液冷媒が滞留するアキュームレータ5をそのまま通過した後、内部熱交換器6等で加熱されて温度T0のe点となって圧縮機1に還流する。   Next, the pressure is reduced by the expansion valve 3 to become a point c in a gas-liquid mixed state and supplied to the evaporator 4. The refrigerant evaporated in the evaporator 4 becomes a point d, passes through the accumulator 5 where the liquid refrigerant stays, and is then heated by the internal heat exchanger 6 or the like to return to the compressor 1 as a point e at a temperature T0.

ここで、温度T1は外気温度の近傍にあり、外気温度の変動によって変化する。この時、膨張弁制御装置によって、外気温度が高ければa点およびb点で示される高圧圧力がより高い所定値に調整され、外気温度が低ければa点およびb点で示される高圧圧力がより低い所定値に調整される。   Here, the temperature T1 is in the vicinity of the outside air temperature, and changes depending on the fluctuation of the outside air temperature. At this time, the expansion valve control device adjusts the high pressure indicated by points a and b to a higher predetermined value if the outside air temperature is high, and increases the high pressure indicated by points a and b if the outside air temperature is low. It is adjusted to a low predetermined value.

この結果、広範囲の外気温度においてその外気温度で得られる最適な冷凍効率が実現できる。また、この調整範囲内でアキュームレータ5内に液冷媒が貯留していれば、d点が冷媒の飽和気相線上にあり、e点の温度T0がT1より低く保たれることで、圧縮機1から吐出されるa点の冷媒温度T2が異常に上昇することが抑制できる。   As a result, the optimum refrigeration efficiency obtained at a wide range of outside air temperatures can be realized. Further, if the liquid refrigerant is stored in the accumulator 5 within this adjustment range, the point d is on the saturated gas phase line of the refrigerant, and the temperature T0 at the point e is kept lower than T1, so that the compressor 1 It is possible to suppress an abnormal rise in the refrigerant temperature T2 discharged from the point a.

一方、電源投入時においては、圧縮機1から吐出された冷媒は温度T3のa’点であり、放熱器2で冷却されて温度T1のb’点となる。b’点において冷媒は安定時と同様に超臨界状態にある。   On the other hand, when the power is turned on, the refrigerant discharged from the compressor 1 is at the point a 'at the temperature T3 and is cooled by the radiator 2 to become the point b' at the temperature T1. At the point b ', the refrigerant is in a supercritical state as in the stable state.

次に、膨張弁3で減圧されて気液混合状態のc’点となり、蒸発器4に供給される。蒸発器4では冷媒が完全に蒸発してd’点となり、アキュームレータ5をそのまま通過した後、内部熱交換器6等で加熱されて温度T1のe’点となって圧縮機1に還流する。   Next, the pressure is reduced by the expansion valve 3 to become a point c ′ in the gas-liquid mixed state, and the vapor is supplied to the evaporator 4. In the evaporator 4, the refrigerant completely evaporates and reaches the d ′ point, passes through the accumulator 5 as it is, is heated by the internal heat exchanger 6 or the like, becomes the e ′ point of the temperature T 1, and is returned to the compressor 1.

ここで、電源投入時に、蒸発器4およびアキュームレータ5において、冷媒が完全に蒸発して冷媒の飽和気相線よりも高い温度であるd’点になるのは、保冷庫の庫内(図示せず)が外気温度の近傍にあるために、安定時に比べて蒸発器4での蒸発能力が著しく大きくなるためである。そして、安定時にアキュームレータ5内に滞留するべき液冷媒が高圧側に供給されて、a’点およびb’点で示される高圧圧力をa点およびb点で示される安定時の高圧圧力よりも高く保つことになる。   Here, when the power is turned on, in the evaporator 4 and the accumulator 5, the refrigerant completely evaporates and reaches a point d ′ that is higher than the saturated vapor phase line of the refrigerant (not shown). This is because the evaporating ability of the evaporator 4 is remarkably increased as compared with when the temperature is stable. Then, the liquid refrigerant that should stay in the accumulator 5 at the stable time is supplied to the high pressure side, and the high pressure indicated by the points a ′ and b ′ is higher than the high pressure at the time indicated by the points a and b. Will keep.

なお、電源投入時においては、膨張弁制御装置によって膨張弁3の絞り量を変化させてもアキュームレータ5には液冷媒が滞留せず、高圧圧力が大きく変化しないので、保冷庫の庫内(図示せず)が所定温度まで低下した定常状態になるまで、安定時と同程度の蒸発温度となるように絞り量を固定値としている。   When the power is turned on, the liquid refrigerant does not stay in the accumulator 5 even if the expansion amount of the expansion valve 3 is changed by the expansion valve control device, and the high pressure does not change greatly. The throttle amount is set to a fixed value so that the evaporation temperature is about the same as that at the time of stabilization until the steady state where the temperature is lowered to a predetermined temperature is reached.

その結果、d’点とc’点のエンタルピーhの差で示される電源投入時の冷凍効果を、d点とc点のエンタルピーhの差で示される安定時の冷凍効果よりも増大することができ、冷蔵あるいは冷凍機器に要求される定常状態到達までの時間を短縮することができる。
特表平3−503206号公報 特開2000−346466号公報 出光トライボレビュー、No.25、P1552−1557(2002)
As a result, the refrigeration effect when the power is turned on, which is indicated by the difference between the enthalpies h at the d ′ point and the c ′ point, may be greater than the refrigeration effect at the time indicated by the difference between the enthalpies h at the d point and the c point. It is possible to shorten the time required to reach a steady state required for refrigeration or refrigeration equipment.
Japanese National Patent Publication No. 3-503206 JP 2000-346466 A Idemitsu Tribo Review, No. 25, P1552-1557 (2002)

しかしながら、上記従来の構成では、圧縮機内の超臨界状態において圧縮機1の潤滑に必要な粘度を維持するために、二酸化炭素冷媒をあまり溶解しない高粘度の冷凍機油を使用しなければならないが、比較的高い蒸発温度0℃〜20℃で運転されるカーエアコン等に比べて、比較的低い蒸発温度−50℃〜0℃で運転される冷蔵あるいは冷凍機器においては、圧縮機1に還流するe点あるいはe’点の冷媒温度が高く、かつ冷媒圧力が低いために配管内で分離した冷凍機油に冷媒があまり溶解せず、高粘度な冷凍機油が滞留することで配管が閉塞したり、起動時に滞留した油が一度に大量に還流して、圧縮機1の耐久性を損なう恐れがあった。   However, in the above conventional configuration, in order to maintain the viscosity necessary for the lubrication of the compressor 1 in the supercritical state in the compressor, a high-viscosity refrigerating machine oil that does not dissolve the carbon dioxide refrigerant must be used. Refrigerating or refrigeration equipment operated at a relatively low evaporation temperature of −50 ° C. to 0 ° C. compared to a car air conditioner operated at a relatively high evaporation temperature of 0 ° C. to 20 ° C. Because the refrigerant temperature at point or e 'point is high and the refrigerant pressure is low, the refrigerant does not dissolve very much in the refrigerating machine oil separated in the pipe, and the high-viscosity refrigerating machine oil accumulates and the pipe is blocked or started. Occasionally, the oil that stayed at a time returned to a large amount at a time, and the durability of the compressor 1 could be impaired.

特に、冷凍システムを上部に配置する冷蔵あるいは冷凍機器においては、蒸発器4から圧縮機1に還流する際の揚程が大きく、この問題が顕著に現れる。   In particular, in the refrigeration or refrigeration equipment in which the refrigeration system is arranged at the upper part, the head when returning from the evaporator 4 to the compressor 1 is large, and this problem appears notably.

一方、圧縮機1に還流するe点あるいはe’点の冷媒温度を蒸発温度と同一になるまで下げると、液冷媒が連続的に圧縮機1に還流するため、冷凍機油の滞留の問題は解消されるが液冷媒の圧縮に伴い圧縮機1の耐久性を損なう恐れがあった。   On the other hand, if the refrigerant temperature at the point e or e ′ returning to the compressor 1 is lowered until it becomes equal to the evaporation temperature, the liquid refrigerant continuously flows back to the compressor 1, thereby eliminating the problem of refrigerating machine oil retention. However, there is a risk that the durability of the compressor 1 may be impaired as the liquid refrigerant is compressed.

さらに、e点あるいはe’点の冷媒温度が高く、かつ冷媒圧力が低いために、電源投入時において圧縮機1から吐出されたa’点の冷媒温度T3が異常に上昇して圧縮機の耐久性を損なう恐れがあった。   Furthermore, since the refrigerant temperature at point e or e ′ is high and the refrigerant pressure is low, the refrigerant temperature T3 at point a ′ discharged from the compressor 1 when the power is turned on abnormally rises and the durability of the compressor is increased. There was a risk of damaging sex.

本発明は、従来の課題を解決するもので、冷蔵あるいは冷凍機器に要求される圧縮機の耐久性を損なうことなく、電源投入時の冷凍能力および安定時における冷凍効率等の冷凍システム性能の向上を図る冷凍システムを提供することを目的とする。   The present invention solves the conventional problems and improves the refrigeration system performance such as the refrigeration capacity at the time of power-on and the refrigeration efficiency at the stable time without impairing the durability of the compressor required for refrigeration or refrigeration equipment. An object of the present invention is to provide a refrigeration system that achieves the above.

上記従来の課題を解決するために、本発明の冷凍システムおよびこれを備えた貯蔵装置は、アキュームレータと内部熱交換器を搭載せず、蒸発器の蒸発温度と、蒸発器と圧縮機を繋ぐ吸入配管の温度の差を20℃以内に保つようにしたものである。   In order to solve the above-described conventional problems, the refrigeration system of the present invention and the storage device including the refrigeration system do not include an accumulator and an internal heat exchanger, and do not include an accumulator and an intake temperature that connects the evaporator and the compressor. The temperature difference of the piping is kept within 20 ° C.

これによって、吸入配管内で分離した冷凍機油中の冷媒溶解量を確保することで、動粘度を30mm2/s以下、望ましくは10mm2/s以下に抑制し、配管内での油滞留を防止することができる。さらに、電源投入時および安定時における圧縮機の吐出冷媒の温度を略一定に保つことで圧縮機の耐久性を損なうことなく、電源投入時に蒸発温度を高く保つことで冷媒循環量を増大させて冷凍能力の向上を図ることができる。   This ensures the amount of refrigerant dissolved in the refrigerating machine oil separated in the suction pipe, thereby suppressing the kinematic viscosity to 30 mm2 / s or less, desirably 10 mm2 / s or less, and preventing oil retention in the pipe. Can do. Furthermore, the refrigerant circulation rate can be increased by keeping the evaporation temperature high when the power is turned on without losing the durability of the compressor by keeping the temperature of the refrigerant discharged from the compressor substantially constant when the power is turned on and stable. The refrigeration capacity can be improved.

本発明の冷凍システムおよびこれを備えた貯蔵装置は、簡易な構成で膨張弁の開度と圧縮機の能力を制御することで、冷蔵あるいは冷凍機器に要求される圧縮機の耐久性を損なうことなく、電源投入時の冷凍能力および安定時における冷凍効率等の冷凍システム性能の向上を図ることができる。   The refrigeration system of the present invention and the storage device equipped with the same impair the durability of the compressor required for refrigeration or refrigeration equipment by controlling the opening of the expansion valve and the capacity of the compressor with a simple configuration. In addition, it is possible to improve the refrigeration system performance such as the refrigeration capacity when the power is turned on and the refrigeration efficiency when the power is stable.

本発明の請求項1に記載の発明は、圧縮機と、放熱器と、膨張弁と、蒸発器を具備した冷凍システムにおいて、冷媒として二酸化炭素を主成分とする自然冷媒を使用するとともに、前記蒸発器の蒸発温度を−50℃〜0℃の範囲として、前記蒸発器の蒸発温度と前記圧縮機の吸入配管温度との差を20℃以内に保つようにしたものである。   Invention of Claim 1 of this invention uses the natural refrigerant | coolant which has a carbon dioxide as a main component as a refrigerant | coolant in the refrigeration system which comprised the compressor, the heat radiator, the expansion valve, and the evaporator, The said The evaporation temperature of the evaporator is in the range of −50 ° C. to 0 ° C., and the difference between the evaporation temperature of the evaporator and the suction pipe temperature of the compressor is kept within 20 ° C.

これにより、前記圧縮機の吸入配管内で分離した冷凍機油中の冷媒溶解量を確保し、配管内での油滞留を防止することができる。   Thereby, the refrigerant | coolant dissolution amount in the refrigerating machine oil isolate | separated within the suction piping of the said compressor can be ensured, and the oil stagnation in piping can be prevented.

本発明の請求項2に記載の発明は、前記圧縮機の潤滑油として40℃での動粘度が30mm2/s〜300mm2/sであるポリアルキレングリコール冷凍機油を使用したものである。   The invention according to claim 2 of the present invention uses a polyalkylene glycol refrigerating machine oil having a kinematic viscosity at 40 ° C. of 30 mm 2 / s to 300 mm 2 / s as the lubricating oil of the compressor.

かかることにより、前記吸入配管内で分離した冷凍機油中の冷媒溶解量を確保でき、動粘度を30mm2/s以下、望ましくは10mm2/s以下に抑制し、配管内での油滞留を防止することができる。   As a result, the amount of refrigerant dissolved in the refrigerating machine oil separated in the suction pipe can be ensured, the kinematic viscosity is suppressed to 30 mm2 / s or less, preferably 10 mm2 / s or less, and oil retention in the pipe is prevented. Can do.

本発明の請求項3に記載の発明は、前記蒸発器の蒸発温度を検知する蒸発温度センサーと、前記圧縮機の吸入配管における圧縮機近傍の温度を検知する吸入配管出口温度センサーを備え、前記蒸発温度センサーで検知した蒸発温度から決定される目標温度より、前記吸入配管出口温度センサーで検知された吸入配管温度が高い場合に前記膨張弁の開度を大きくし、低い場合に前記は膨張弁の開度を小さくすることで蒸発温度を制御するようにしたものである。   The invention according to claim 3 of the present invention includes an evaporation temperature sensor that detects an evaporation temperature of the evaporator, and a suction pipe outlet temperature sensor that detects a temperature in the vicinity of the compressor in the suction pipe of the compressor, When the suction pipe temperature detected by the suction pipe outlet temperature sensor is higher than the target temperature determined from the evaporation temperature detected by the evaporation temperature sensor, the opening of the expansion valve is increased. The evaporating temperature is controlled by reducing the opening degree.

かかることにより、前記吸入配管内で分離した冷凍機油中の冷媒溶解量を確保し、動粘度を30mm2/s以下、望ましくは10mm2/s以下に抑制し、配管内での油滞留を防止することができるとともに、電源投入時および安定時における圧縮機の吐出冷媒の温度を略一定に保つことができる。その結果、圧縮機の耐久性を損なうことなく、電源投入時に蒸発温度を高く保つことで冷媒循環量を増大させて冷凍能力の向上を図ることができる。   This ensures the amount of refrigerant dissolved in the refrigerating machine oil separated in the suction pipe, suppresses the kinematic viscosity to 30 mm2 / s or less, preferably 10 mm2 / s or less, and prevents oil retention in the pipe. In addition, the temperature of the refrigerant discharged from the compressor when the power is turned on and when it is stable can be kept substantially constant. As a result, it is possible to improve the refrigerating capacity by increasing the refrigerant circulation amount by keeping the evaporation temperature high when the power is turned on without impairing the durability of the compressor.

本発明の請求項4に記載の発明は、前記蒸発器の蒸発温度を検知する蒸発温度センサーと、前記圧縮機の吸入配管における蒸発器近傍の温度を検知する吸入配管入口温度センサーを備え、前記蒸発温度センサーで検知した蒸発温度から決定される目標温度より、前記吸入配管入口温度センサーで検知された吸入配管温度が高い場合に前記膨張弁の開度を大きくし、低い場合に前記膨張弁の開度を小さくすることで蒸発温度を制御するものである。   The invention according to claim 4 of the present invention includes an evaporation temperature sensor that detects an evaporation temperature of the evaporator, and an inlet pipe inlet temperature sensor that detects a temperature in the vicinity of the evaporator in the inlet pipe of the compressor, When the suction pipe temperature detected by the suction pipe inlet temperature sensor is higher than the target temperature determined from the evaporation temperature detected by the evaporation temperature sensor, the opening of the expansion valve is increased. The evaporation temperature is controlled by reducing the opening.

かかることにより、比較的外気温度の影響を受けない圧縮機の吸入配管における蒸発器近傍の温度を基に制御することができ、液バックを防止しながら精度よく吸入配管の温度を調整することができる。また、前記吸入配管内で分離した冷凍機油中の冷媒溶解量を確保することで、動粘度を30mm2/s以下、望ましくは10mm2/s以下に抑制し、配管内での油滞留を防止することができ、電源投入時および安定時における圧縮機の吐出冷媒の温度を略一定に保ち、前記圧縮機の耐久性を損なうことなく、電源投入時に蒸発温度を高く保つことができ、冷媒循環量を増大させて冷凍能力の向上を図ることができる。   As a result, it is possible to control based on the temperature in the vicinity of the evaporator in the suction pipe of the compressor that is relatively unaffected by the outside air temperature, and to accurately adjust the temperature of the suction pipe while preventing liquid back. it can. In addition, by securing the amount of refrigerant dissolved in the refrigerating machine oil separated in the suction pipe, the kinematic viscosity is suppressed to 30 mm2 / s or less, preferably 10 mm2 / s or less, and oil retention in the pipe is prevented. The temperature of the refrigerant discharged from the compressor when the power is turned on and when it is stable can be kept substantially constant, and the evaporation temperature can be kept high when the power is turned on without impairing the durability of the compressor. It can be increased to improve the refrigerating capacity.

本発明の請求項5に記載の発明は、前記圧縮機を能力可変可能な圧縮機とし、被冷却室内の空気温度の高低で圧縮機の能力を制御するものである。   According to a fifth aspect of the present invention, the compressor is a compressor whose capacity can be varied, and the capacity of the compressor is controlled by the air temperature in the cooled room.

かかることにより、特に被冷却室内の空気温度が高い電源投入時において、前記圧縮機の能力を増大することで蒸発器出口温度および吸入配管の温度を速やかに低下させることができ、電源投入時の吸入配管内での油滞留を防止することができるとともに、被冷却室内の空気温度が低下した安定時には、圧縮機の能力を減少することで効率の高い運転が実現できる。   This makes it possible to quickly reduce the evaporator outlet temperature and the suction pipe temperature by increasing the capacity of the compressor, particularly when the air temperature in the cooled room is high. It is possible to prevent oil stagnation in the suction pipe, and at the stable time when the air temperature in the cooled room is lowered, it is possible to realize highly efficient operation by reducing the capacity of the compressor.

本発明の請求項6に記載の発明は、前記圧縮機のシェルの温度、あるいは吐出配管における圧縮機近傍の温度を検知する高温保護検知センサーを備え、前記高温保護検知センサーによって検出した温度が所定値を超えた場合に、前記圧縮機の能力を所定時間毎に低下させる制御を行うものである。   The invention according to claim 6 of the present invention includes a high temperature protection detection sensor for detecting the temperature of the shell of the compressor or the temperature in the vicinity of the compressor in the discharge pipe, and the temperature detected by the high temperature protection detection sensor is predetermined. When the value is exceeded, control is performed to reduce the capacity of the compressor every predetermined time.

かかることにより、前記放熱器が埃等によって目詰まりする等、放熱能力の低下に起因して前記圧縮機の能力を低下させ、これによって生じる異常高温により、圧縮機の耐久性を低下させるといった不具合を防止することができる。   As a result, the heat radiator is clogged with dust or the like, resulting in a decrease in heat dissipation capability, resulting in a decrease in the compressor performance, and an abnormally high temperature resulting in a decrease in the compressor durability. Can be prevented.

本発明の請求項7に記載の発明は、上記の冷凍システムを搭載して、食品を冷蔵あるいは冷凍温度で保存する貯蔵装置としたものである。   The invention according to claim 7 of the present invention is a storage device that is equipped with the above-described refrigeration system and stores food at refrigeration or freezing temperature.

かかる貯蔵装置は、特に蒸発温度が低い運転条件であっても簡易な構成で膨張弁の開度と圧縮機の能力を制御することで、圧縮機の耐久性を損なうことなく、電源投入時の冷凍能力および安定時における冷凍効率等の冷凍システム性能の向上を図ることができ、信頼性の高い貯蔵装置が得られる。   Such a storage device can control the opening of the expansion valve and the capacity of the compressor with a simple configuration even under operating conditions where the evaporation temperature is particularly low, so that the durability of the compressor is not impaired and the power is turned on. Refrigerating capacity and refrigeration system performance such as refrigeration efficiency when stable can be improved, and a highly reliable storage device can be obtained.

以下、本発明による冷凍システムの実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of a refrigeration system according to the present invention will be described with reference to the drawings.

なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。また、本実施の形態により本発明が限定されるものではない。   In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. Further, the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における冷凍システムの冷媒回路図、図2は、同実施の形態1における冷凍システムの制御基準線を示す図、図3は、同実施の形態1における冷凍システムの冷凍機油の動粘度特性を示す図、図4は、同実施の形態1における冷凍システムのモリエル線図である。
(Embodiment 1)
1 is a refrigerant circuit diagram of a refrigeration system according to Embodiment 1 of the present invention, FIG. 2 is a diagram showing a control reference line of the refrigeration system according to Embodiment 1, and FIG. 3 is a refrigeration according to Embodiment 1. FIG. 4 is a Mollier diagram of the refrigeration system according to the first embodiment.

図1に示すように、実施の形態1の冷凍システムは、冷媒として二酸化炭素を使用し、また、圧縮機21は、回転数に比例して能力が変化する能力可変型の圧縮機(以下、圧縮機と称す)を採用している。そして、本冷凍システムの冷凍サイクルは、圧縮機21、放熱器2、電動膨張弁22、蒸発器4を配管により環状に連結することによって構成されている。   As shown in FIG. 1, the refrigeration system of the first embodiment uses carbon dioxide as a refrigerant, and the compressor 21 is a variable capacity compressor (hereinafter referred to as a capacity changing type compressor) whose capacity changes in proportion to the rotational speed. It is called a compressor. And the refrigerating cycle of this refrigerating system is comprised by connecting the compressor 21, the heat radiator 2, the electric expansion valve 22, and the evaporator 4 cyclically | annularly by piping.

また、前記冷凍サイクルは、蒸発器4の蒸発温度を検知する蒸発温度検知センサー23と、蒸発器4と圧縮機21を接続する吸入管24の入口部の温度を検知する吸入配管入口温度検知センサー25と、被冷却室(図示せず)の室内空気温度を検知する室内温度センサー26を備えている。   The refrigeration cycle includes an evaporation temperature detection sensor 23 that detects the evaporation temperature of the evaporator 4, and a suction pipe inlet temperature detection sensor that detects the temperature of the inlet portion of the suction pipe 24 that connects the evaporator 4 and the compressor 21. 25 and an indoor temperature sensor 26 for detecting the indoor air temperature of the room to be cooled (not shown).

ここで、圧縮機21の潤滑油として、40℃の動粘度が約100mm2/sであるポリアルキレングリコール冷凍機油を使用している。また、図1中の実線矢印は冷媒の流れを示し、破線矢印は、蒸発器4および放熱器2を通過する風の流れを示している。   Here, a polyalkylene glycol refrigerating machine oil having a kinematic viscosity at 40 ° C. of about 100 mm 2 / s is used as the lubricating oil of the compressor 21. Moreover, the solid line arrow in FIG. 1 shows the flow of the refrigerant, and the broken line arrow shows the flow of the wind passing through the evaporator 4 and the radiator 2.

以上のように構成された実施の形態1の冷凍システムについて、以下その動作を説明する。   The operation of the refrigeration system according to Embodiment 1 configured as described above will be described below.

圧縮機21で圧縮され、吐出された冷媒は、放熱器2で外気温度近傍まで冷却された後、電動膨張弁22で減圧されて、蒸発器4で蒸発する。そして、蒸発器4で蒸発したガス冷媒が圧縮機21へ還流する。   The refrigerant compressed and discharged by the compressor 21 is cooled to the vicinity of the outside air temperature by the radiator 2, then decompressed by the electric expansion valve 22, and evaporated by the evaporator 4. Then, the gas refrigerant evaporated in the evaporator 4 is returned to the compressor 21.

ここで、圧縮機21は、室内温度センサー26で検知された被冷却室の室内空気温度Trと設定温度に基づいて、圧縮機制御装置27によりその回転数が最適制御されるものである。   Here, the rotation speed of the compressor 21 is optimally controlled by the compressor control device 27 based on the indoor air temperature Tr of the room to be cooled detected by the indoor temperature sensor 26 and the set temperature.

また、電動膨張弁22は、蒸発温度検知センサー23で検知された蒸発器4の蒸発温度と吸入配管入口温度検知センサー25で検知された吸入管24の入口部の温度に基づいて、膨張弁制御装置28によりその絞り量が最適制御されるものである。   The electric expansion valve 22 controls the expansion valve based on the evaporation temperature of the evaporator 4 detected by the evaporation temperature detection sensor 23 and the temperature of the inlet portion of the suction pipe 24 detected by the suction pipe inlet temperature detection sensor 25. The aperture amount is optimally controlled by the device 28.

かかる膨張弁22の制御は、具体的には図2に示すように、蒸発温度検知センサー23で検知された蒸発器4の蒸発温度Teに対応して予め規定された吸入管24の入口部の目標温度Tsと、吸入配管入口温度検知センサー25で検知された実際の温度とを比較して、実際の温度の方が高い場合(図2の領域A)は電動膨張弁22の開度を所定量開け、実際の温度の方が低い場合(図2の領域B)は電動膨張弁22の開度を所定量閉じるものである。   Specifically, as shown in FIG. 2, the expansion valve 22 is controlled at the inlet portion of the suction pipe 24 that is defined in advance corresponding to the evaporation temperature Te of the evaporator 4 detected by the evaporation temperature detection sensor 23. When the target temperature Ts is compared with the actual temperature detected by the suction pipe inlet temperature detection sensor 25 and the actual temperature is higher (region A in FIG. 2), the opening degree of the electric expansion valve 22 is determined. When the fixed temperature is opened and the actual temperature is lower (region B in FIG. 2), the opening of the electric expansion valve 22 is closed by a predetermined amount.

これによって、図2の領域Aでは蒸発器4の蒸発温度を高く、かつ吸入管24の入口部の温度を低く変化させ、また、図2の領域Bでは蒸発器4の蒸発温度を低く、かつ吸入管24の入口部の温度を高く変化させることができ、結果として図2で示した制御基準線上で冷凍システムの状態を安定させることができる。   Accordingly, the evaporation temperature of the evaporator 4 is increased in the region A of FIG. 2 and the temperature of the inlet portion of the suction pipe 24 is decreased, and the evaporation temperature of the evaporator 4 is decreased in the region B of FIG. The temperature of the inlet portion of the suction pipe 24 can be changed high, and as a result, the state of the refrigeration system can be stabilized on the control reference line shown in FIG.

また、蒸発器4の任意の蒸発温度Teに対応して予め規定された吸入管24の入口部の目標温度Tsを定める制御基準線を、圧縮機21で圧縮され、吐出された冷媒の温度が略同一となるように予め決めておけば、被冷却室(図示せず)の室内空気温度や圧縮機21の能力が変化しても圧縮機21で圧縮され、吐出された冷媒の温度を略同一に保つことができる。   Further, the control reference line that defines the target temperature Ts at the inlet of the suction pipe 24 corresponding to an arbitrary evaporation temperature Te of the evaporator 4 is compressed by the compressor 21 and the temperature of the discharged refrigerant is If it is determined in advance so as to be substantially the same, the temperature of the refrigerant compressed and discharged by the compressor 21 is substantially reduced even if the indoor air temperature of the chamber to be cooled (not shown) or the capacity of the compressor 21 changes. Can be kept the same.

例えば、高圧圧力の設計値を9MPaとし、下記の(式1)に基づいて制御基準線を設定すれば、蒸発器4の蒸発温度Teが−9℃においては目標温度Tsが−5℃となり、冷媒が吸入管24から圧縮機21に流入するまでに3℃程度昇温して−2℃程度になると推定され、さらに9MPaまで圧縮されると吐出された冷媒の温度は120℃程度になる。   For example, if the design value of the high pressure is 9 MPa and the control reference line is set based on the following (Equation 1), the target temperature Ts becomes −5 ° C. when the evaporation temperature Te of the evaporator 4 is −9 ° C., It is estimated that the temperature rises by about 3 ° C. until the refrigerant flows into the compressor 21 from the suction pipe 24 and reaches about −2 ° C. When the refrigerant is further compressed to 9 MPa, the temperature of the discharged refrigerant becomes about 120 ° C.

Ts=αTe・Te+βTe+γ …(式1)
α=0.0037,β=1.26,γ=6
同様に、式1によれば、蒸発器4の蒸発温度Teが−15℃においては目標温度Tsが−12℃となり、冷媒が吸入管24から圧縮機21に流入するまでに同様に3℃程度昇温して−9℃程度なると推定され、さらに9MPaまで圧縮されると吐出された冷媒の温度は120℃程度になる。
Ts = αTe · Te + βTe + γ (Formula 1)
α = 0.0037, β = 1.26, γ = 6
Similarly, according to Equation 1, when the evaporation temperature Te of the evaporator 4 is −15 ° C., the target temperature Ts becomes −12 ° C., and similarly, the refrigerant is about 3 ° C. before flowing into the compressor 21 from the suction pipe 24. It is estimated that the temperature is raised to about −9 ° C., and when the pressure is further compressed to 9 MPa, the temperature of the discharged refrigerant becomes about 120 ° C.

このように、蒸発器4の蒸発温度Teが低い場合には、目標温度Tsを低く制御することで、蒸発温度と吸入管24内の冷媒および冷凍機油の温度との差を10℃以内にすることができるとともに、吸入管24内の冷媒の温度を下げることにより圧縮機21から吐出される冷媒温度の上昇を120℃以内に抑えることができる。   Thus, when the evaporation temperature Te of the evaporator 4 is low, the target temperature Ts is controlled to be low so that the difference between the evaporation temperature and the temperature of the refrigerant and the refrigerating machine oil in the suction pipe 24 is within 10 ° C. In addition, the temperature of the refrigerant discharged from the compressor 21 can be suppressed to within 120 ° C. by lowering the temperature of the refrigerant in the suction pipe 24.

なお、安定時における目標温度Tsが、被冷却室の設定温度と同程度になるように、蒸発器4の蒸発能力を設計することが望ましい。すなわち、目標温度Tsが被冷却室の設定温度と同程度であれば、冷媒の冷凍効果が最大限利用できるので高い冷凍効率が期待できる。   It should be noted that it is desirable to design the evaporation capacity of the evaporator 4 so that the target temperature Ts at the time of stabilization is approximately the same as the set temperature of the chamber to be cooled. In other words, if the target temperature Ts is approximately the same as the set temperature of the room to be cooled, the refrigeration effect of the refrigerant can be utilized to the maximum, so that high refrigeration efficiency can be expected.

そして、蒸発器4の蒸発能力が不足すると、目標温度Tsが被冷却室の設定温度を下回るとともに、蒸発温度Teがより低いレベルで安定する。   If the evaporation capacity of the evaporator 4 is insufficient, the target temperature Ts falls below the set temperature of the chamber to be cooled, and the evaporation temperature Te is stabilized at a lower level.

また、吸入管24の断熱を強化して、冷媒が吸入管24から圧縮機21に流入するまでの昇温を抑制することが望ましい。これは、圧縮機21から吐出される冷媒温度の上昇を抑えるために、圧縮機21に流入する冷媒の温度をさらに下げる必要があるためである。   In addition, it is desirable to reinforce the heat insulation of the suction pipe 24 and suppress the temperature rise until the refrigerant flows into the compressor 21 from the suction pipe 24. This is because it is necessary to further lower the temperature of the refrigerant flowing into the compressor 21 in order to suppress an increase in the temperature of the refrigerant discharged from the compressor 21.

ここで、吸入管24内における冷凍機油の動粘度の変化について、図3を用いて説明する。   Here, the change of the kinematic viscosity of the refrigerating machine oil in the suction pipe 24 will be described with reference to FIG.

図3は横軸を温度、縦軸を動粘度とし、冷凍機油および冷凍機油と冷媒の混合物の温度と動粘度の関係を示している。例えば、冷媒重量比=0%で示した線は冷凍機油の温度と動粘度の関係を示しており、40℃での動粘度が約100mm2/s、100℃での動粘度が約16mm2/sである。また、冷凍機油と冷媒の混合物については、混合物中の冷媒の重量比10%、20%、30%、40%、50%における温度と動粘度の関係をそれぞれ異なる記号(○、□、◇、△、×)毎にそれを結ぶ線で示している。   FIG. 3 shows the relationship between the temperature of the refrigerating machine oil and the mixture of the refrigerating machine oil and the refrigerant and the kinematic viscosity, with the horizontal axis representing temperature and the vertical axis representing kinematic viscosity. For example, the line indicated by the refrigerant weight ratio = 0% indicates the relationship between the temperature of the refrigerating machine oil and the kinematic viscosity. The kinematic viscosity at 40 ° C. is about 100 mm 2 / s, and the kinematic viscosity at 100 ° C. is about 16 mm 2 / s. It is. In addition, for the mixture of refrigerating machine oil and refrigerant, the relationship between the temperature and the kinematic viscosity at a weight ratio of 10%, 20%, 30%, 40%, 50% of the refrigerant in the mixture is different from each other (○, □, ◇, Each line is indicated by a line connecting it.

また、図3において、線A、線B、線C、線Dは、それぞれ蒸発温度が−20℃、−10℃、0℃、10℃における吸入管24内の冷凍機油と、冷媒の混合物の温度と、動粘度の関係を示したものである。これらの線は、それぞれの蒸発温度に相当する冷媒圧力下における冷媒の溶解量を測定した結果から、冷凍機油と冷媒の混合物の動粘度を推定したものである。   In FIG. 3, line A, line B, line C, and line D represent the mixture of refrigerant oil and refrigerant in the suction pipe 24 at evaporation temperatures of −20 ° C., −10 ° C., 0 ° C., and 10 ° C., respectively. The relationship between temperature and kinematic viscosity is shown. These lines are obtained by estimating the kinematic viscosity of the mixture of refrigerating machine oil and refrigerant from the results of measuring the amount of refrigerant dissolved under the refrigerant pressure corresponding to each evaporation temperature.

これらの線A、線B、線C、線Dの形状から、吸入管24内の冷凍機油と冷媒の混合物の温度が常温近傍の20℃〜40℃の範囲において、その動粘度は10mm2/sを大きく越えた極大値を持ち、かつ蒸発温度が低いほど動粘度の極大値が大きくなることがわかる。   From the shape of these lines A, B, C and D, the kinematic viscosity is 10 mm 2 / s when the temperature of the mixture of the refrigerating machine oil and the refrigerant in the suction pipe 24 is in the range of 20 ° C. to 40 ° C. near normal temperature. It can be seen that the maximum value of the kinematic viscosity increases as the evaporation temperature decreases.

これは、蒸発温度が低いほど吸入管24内の冷媒圧力が低くなることで、冷凍機油に溶解する冷媒量が小さくなり、冷凍機油単独の動粘度に近づくためである。このことから、前記蒸発温度が−20℃よりさらに低くなると動粘度の極大値がさらに大きくなることが推定される。   This is because the lower the evaporation temperature, the lower the refrigerant pressure in the suction pipe 24, so that the amount of refrigerant dissolved in the refrigerating machine oil becomes smaller and approaches the kinematic viscosity of the refrigerating machine oil alone. From this, it is estimated that the maximum value of the kinematic viscosity is further increased when the evaporation temperature is further lower than −20 ° C.

この結果から、内部熱交換器を用いて吸入管24を常温程度まで加温する従来の構成に比べて、蒸発温度と吸入管24内の冷媒および冷凍機油の温度との差を10℃以内にする本実施の形態1では、吸入管24内の冷凍機油と冷媒の混合物の動粘度をほぼ10mm2/s以下に抑えることができ、吸入配管24内での油滞留を防止することができる。したがって、電源投入時および安定時における圧縮機21の吐出冷媒の温度を略一定に保つことができ、能力可変型の圧縮機21の耐久性を損なうことなく、電源投入時に蒸発温度を高く保ち、冷媒循環量を増大させて冷凍能力の向上を実現できることがわかる。   From this result, the difference between the evaporation temperature and the temperature of the refrigerant and the refrigerating machine oil in the suction pipe 24 is within 10 ° C. compared to the conventional configuration in which the suction pipe 24 is heated to about room temperature using an internal heat exchanger. In the first embodiment, the kinematic viscosity of the mixture of the refrigerating machine oil and the refrigerant in the suction pipe 24 can be suppressed to about 10 mm 2 / s or less, and oil retention in the suction pipe 24 can be prevented. Accordingly, the temperature of the refrigerant discharged from the compressor 21 when the power is turned on and when it is stable can be kept substantially constant, and the evaporation temperature is kept high when the power is turned on without impairing the durability of the variable capacity compressor 21. It can be seen that the refrigerating capacity can be improved by increasing the refrigerant circulation rate.

なお、比較的高い蒸発温度0℃〜20℃で運転されるカーエアコンと同等の油滞留特性を確保するには、吸入配管24内の冷凍機油と冷媒の混合物の動粘度を30mm2/s以下に保つ必要がある。さらに、冷凍システムを上部に設置した冷蔵庫等の保冷庫の場合は、蒸発器4が圧縮機21の下側にあり、吸入配管24の揚程が大きくなるのでさらに低い動粘度10mm2/s以下に抑えることが望ましい。   In addition, in order to ensure the oil retention characteristic equivalent to a car air conditioner operated at a relatively high evaporation temperature of 0 ° C. to 20 ° C., the kinematic viscosity of the mixture of the refrigerating machine oil and the refrigerant in the suction pipe 24 is 30 mm 2 / s or less Need to keep. Furthermore, in the case of a refrigerator such as a refrigerator with the refrigeration system installed on the upper side, the evaporator 4 is located below the compressor 21 and the head of the suction pipe 24 becomes large, so that the kinematic viscosity is further reduced to 10 mm2 / s or less. It is desirable.

次に、本実施の形態1における冷凍システムの冷媒の状態変化について図4を用いて詳細に説明する。   Next, the state change of the refrigerant in the refrigeration system in the first embodiment will be described in detail with reference to FIG.

図4は、横軸を冷媒のエンタルピーh、縦軸を冷媒の圧力Pとするモリエル線図であり、p、q、r、s、tで示す各点は、被冷却室(冷蔵庫の場合は冷蔵室あるいは冷凍室が相当)の室内空気温度Trが所定温度まで低下した定常状態にある安定時の冷媒の状態変化を示し、p’、q’、r’、s’、t’で示す各点は、室内空気温度Trが外気温度の近傍にある電源投入時の冷媒の状態変化を示す。   FIG. 4 is a Mollier diagram in which the horizontal axis represents the enthalpy h of the refrigerant and the vertical axis represents the pressure P of the refrigerant. The points indicated by p, q, r, s, and t are the chambers to be cooled (in the case of a refrigerator). This shows the state change of the refrigerant in the steady state in which the indoor air temperature Tr of the refrigerator compartment or the freezer compartment is lowered to a predetermined temperature, and is indicated by p ′, q ′, r ′, s ′, t ′. The point indicates the change in state of the refrigerant when the power is turned on, where the indoor air temperature Tr is in the vicinity of the outside air temperature.

図4において、安定時は、前記能力可変型の圧縮機21から吐出された冷媒は温度T6のp点であり、放熱器2で冷却されて温度T5のq点となる。q点において冷媒は超臨界状態にあり液化しないことが遷臨界サイクルの特長である。   In FIG. 4, when stable, the refrigerant discharged from the variable capacity compressor 21 is at the point p at the temperature T6 and is cooled by the radiator 2 to the point q at the temperature T5. The characteristic of the transcritical cycle is that the refrigerant is in a supercritical state at point q and does not liquefy.

次に、電動膨張弁22で減圧されて気液混合状態のr点となり、蒸発器4に供給される。蒸発器4で蒸発した冷媒はs点となり、吸入管24の入口部に流入した後、吸入管24から圧縮機21に流入するまでに加熱されて温度T4のt点となって圧縮機21に還流する。   Next, the pressure is reduced by the electric expansion valve 22 to reach the r point in the gas-liquid mixed state, which is supplied to the evaporator 4. The refrigerant evaporated in the evaporator 4 becomes the s point, and after it flows into the inlet portion of the suction pipe 24, it is heated until it flows into the compressor 21 from the suction pipe 24 and becomes the t point of the temperature T4. Reflux.

ここで、蒸発器4で蒸発した冷媒のs点の温度は、吸入配管入口温度検知センサー25で検知されるとともに、前記したように目標温度Tsに近づくように膨張弁制御装置28により電動膨張弁22の開度が調整されている。そして、s点からt点までの温度変化は、吸入管24の断熱構造等によって決まり、また、t点からp点までの温度変化は、蒸発温度Teと高圧圧力の設計値と圧縮機21の圧縮機効率でほぼ決まる。これらのことから、s点の温度を任意の蒸発温度Teに対して予め決められた目標温度Tsに近づけると、p点の温度T6をほぼ任意の値に保つことができる。   Here, the temperature at the point s of the refrigerant evaporated by the evaporator 4 is detected by the suction pipe inlet temperature detection sensor 25 and, as described above, the electric expansion valve is operated by the expansion valve controller 28 so as to approach the target temperature Ts. The opening degree of 22 is adjusted. The temperature change from the s point to the t point is determined by the heat insulating structure of the suction pipe 24, and the temperature change from the t point to the p point is determined by the evaporating temperature Te, the design value of the high pressure and the compressor 21. It is almost determined by the compressor efficiency. For these reasons, when the temperature at the point s is brought close to the target temperature Ts determined in advance with respect to the arbitrary evaporation temperature Te, the temperature T6 at the point p can be maintained at an almost arbitrary value.

なお、室内空気温度Trの変化に応じて圧縮機21の能力を変化させても、同様にs点の温度を任意の蒸発温度Teに対して予め決められた目標温度Tsに近づけると、p点の温度T6をほぼ任意の値(所定値)に保つことができる。ただし、圧縮機21を、低能力で運転される安定時に最高効率が得られるように設計した場合、低速運転時においてt点からp点までの温度上昇が小さくなるので、室内空気温度Trを越えない範囲で目標温度Tsを高速運転時よりも高く設定してもよい。   Even if the capacity of the compressor 21 is changed in accordance with the change in the indoor air temperature Tr, if the temperature at the point s is brought close to the target temperature Ts determined in advance for an arbitrary evaporation temperature Te, the point p The temperature T6 can be maintained at an almost arbitrary value (predetermined value). However, when the compressor 21 is designed so that the maximum efficiency is obtained at the time of stable operation, the temperature rise from the point t to the point p becomes small during low speed operation, so that the room air temperature Tr is exceeded. The target temperature Ts may be set higher than that during high speed operation within a range that does not exist.

さらに、室内空気温度Trを越えない範囲で目標温度Tsを高く設定する方が、r点からs点までのエンタルピー変化で示される冷凍効果を高めることができ、冷凍効率の向上を図ることができる。   Furthermore, setting the target temperature Ts higher within a range that does not exceed the indoor air temperature Tr can enhance the refrigeration effect indicated by the enthalpy change from the r point to the s point, thereby improving the refrigeration efficiency. .

また、温度T5は外気温度の近傍にあり、外気温度の変動によって変化する。この時、q点の圧力はほとんど変化せず、エンタルピーが変化する。これは、蒸発器4内に液冷媒が滞留するアキュームレータ等の構造を持たないためである。   Further, the temperature T5 is in the vicinity of the outside air temperature, and changes due to fluctuations in the outside air temperature. At this time, the pressure at the point q hardly changes and the enthalpy changes. This is because there is no structure such as an accumulator in which the liquid refrigerant stays in the evaporator 4.

この結果、高圧圧力を通常使用される9〜12MPa程度に設計すると、25℃以下の低外気温ではr点からs点までのエンタルピー変化で示される冷凍効果が大きくなり、高い冷凍効率が実現できるが、35℃以上の高外気温ではr点からs点までのエンタルピー変化で示される冷凍効果が小さくなり、冷凍効率は著しく低下する。   As a result, when the high pressure is designed to be about 9 to 12 MPa that is normally used, the refrigeration effect indicated by the enthalpy change from the r point to the s point becomes large at a low outside temperature of 25 ° C. or less, and high refrigeration efficiency can be realized. However, at a high outside air temperature of 35 ° C. or higher, the refrigeration effect indicated by the enthalpy change from the r point to the s point is reduced, and the refrigeration efficiency is significantly reduced.

したがって、常に高外気温度で使用される場合は、高圧圧力の設計値を15MPa程度のより高い値にすることが望ましい。   Therefore, when always used at a high outside air temperature, it is desirable to set the design value of the high pressure to a higher value of about 15 MPa.

一方、電源投入時においては、圧縮機21から吐出された冷媒は、温度T6のp’点であり、放熱器2で冷却されて温度T5のq’点となる。これらのp’点、q’点はそれぞれ安定時のp点、q点とほぼ同じ状態にある。   On the other hand, when the power is turned on, the refrigerant discharged from the compressor 21 is at the p ′ point of the temperature T6 and is cooled by the radiator 2 to become the q ′ point of the temperature T5. These p ′ point and q ′ point are substantially in the same state as the stable p point and q point, respectively.

次に、電動膨張弁22で減圧されて気液混合状態のr’点となり、蒸発器4に供給される。蒸発器4で蒸発した冷媒はs’点となり、吸入管24の入口部に流入した後、吸入管24から圧縮機21に流入するまでに加熱され、温度T5のt’点となって圧縮機21に還流する。   Next, the pressure is reduced by the electric expansion valve 22 to become the r ′ point in the gas-liquid mixed state, and is supplied to the evaporator 4. The refrigerant evaporated in the evaporator 4 becomes the s ′ point, and after it flows into the inlet portion of the suction pipe 24, it is heated until it flows into the compressor 21 from the suction pipe 24, and becomes the t ′ point of the temperature T5. Reflux to 21.

ここで、r’、s’、t’の各点で示される電源投入時の低圧圧力がr、s、tの各点で示される安定時の低圧圧力よりも高いのは、前述の如く膨張弁制御装置28により電動膨張弁22の開度が調整されているためであり、吸入配管入口温度検知センサー25で検知されるs’点の温度Tsが定常時よりも高くなると、蒸発温度Teが定常時よりも高くなる結果である。   Here, the low pressure pressure at the time of turning on the power indicated by the points r ′, s ′, and t ′ is higher than the stable low pressure pressure indicated by the points r, s, and t. This is because the opening degree of the electric expansion valve 22 is adjusted by the valve control device 28, and when the temperature Ts at the point s' detected by the suction pipe inlet temperature detection sensor 25 becomes higher than the normal time, the evaporation temperature Te is increased. The result is higher than normal.

また、吸入配管入口温度検知センサー25で検知されるs’点の温度Tsが定常時よりも高くなるのは、室内空気温度Trが高いことに起因して、蒸発器4での蒸発能力が過剰であるとともに、吸入管24入口部の周辺温度が高いためである。   Further, the reason why the temperature Ts at the point s ′ detected by the intake pipe inlet temperature detection sensor 25 is higher than in the normal state is that the evaporation capacity in the evaporator 4 is excessive due to the high indoor air temperature Tr. In addition, the ambient temperature around the inlet of the suction pipe 24 is high.

この結果、電源投入時における圧縮機21の吐出冷媒の温度を略一定に保ちながら、電源投入時に蒸発温度Teを高く保つことにより、冷媒循環量を増大させて冷凍能力を向上することができる。さらに、電源投入時は、室内温度Trが高いので、圧縮機制御装置27により圧縮機21を増速して冷凍能力を向上することが期待できる。   As a result, by keeping the temperature of the refrigerant discharged from the compressor 21 when the power is turned on substantially constant while keeping the evaporation temperature Te high when the power is turned on, the refrigerant circulation amount can be increased and the refrigeration capacity can be improved. Furthermore, since the room temperature Tr is high when the power is turned on, it can be expected that the compressor control device 27 speeds up the compressor 21 to improve the refrigeration capacity.

以上のように、本実施の形態1においては、冷凍システムにアキュームレータと内部熱交換器を搭載しない構成とし、また、蒸発器4の温度を検知する蒸発温度検知センサー23と、蒸発器4と能力可変型の圧縮機21を繋ぐ吸入配管24の入口部の温度を検知する吸入配管入口温度検知センサー25を備え、蒸発温度検知センサー23で検知された蒸発温度Teから決定される目標温度Tsと比較して吸入配管入口温度検知センサー25で検知された実測値が高い場合は、電動膨張弁22の開度を大きくし、逆に吸入配管入口温度検知センサー25で検知された実測値が低い場合は、電動膨張弁22の開度を小さくする制御を行うものである。   As described above, in the first embodiment, the refrigeration system does not include the accumulator and the internal heat exchanger, and the evaporation temperature detection sensor 23 that detects the temperature of the evaporator 4, the evaporator 4, and the capability A suction pipe inlet temperature detection sensor 25 for detecting the temperature of the inlet part of the suction pipe 24 connecting the variable compressor 21 is provided and compared with a target temperature Ts determined from the evaporation temperature Te detected by the evaporation temperature detection sensor 23. If the measured value detected by the suction pipe inlet temperature detection sensor 25 is high, the opening of the electric expansion valve 22 is increased, and conversely, if the measured value detected by the suction pipe inlet temperature detection sensor 25 is low. The control for reducing the opening of the electric expansion valve 22 is performed.

そして、かかる制御により、蒸発温度Teを制御することが可能となり、その結果、蒸発器4と圧縮機21を繋ぐ吸入配管の温度の差を10℃以内に保つことにより、吸入管24内の冷凍機油と冷媒の混合物の動粘度をほぼ10mm2/s以下に抑えることができ、吸入配管24内での油滞留を防止することができる。さらに、電源投入時および安定時における圧縮機21の吐出冷媒の温度を略一定に保つことにより、圧縮機21の耐久性を損なうことなく、電源投入時に蒸発温度Teを高く保つことができ、その結果、冷媒循環量を増大させて冷凍能力の向上を図ることができる。   Such control makes it possible to control the evaporation temperature Te. As a result, by keeping the temperature difference of the suction pipe connecting the evaporator 4 and the compressor 21 within 10 ° C., the refrigeration in the suction pipe 24 can be controlled. The kinematic viscosity of the mixture of machine oil and refrigerant can be suppressed to about 10 mm 2 / s or less, and oil stagnation in the suction pipe 24 can be prevented. Furthermore, by keeping the temperature of the refrigerant discharged from the compressor 21 when the power is turned on and stable, the evaporation temperature Te can be kept high when the power is turned on without impairing the durability of the compressor 21. As a result, the refrigerant circulation amount can be increased to improve the refrigeration capacity.

なお、本実施の形態1においては、自然冷媒として二酸化炭素の単独冷媒を使用したが、図4のT6で示した能力可変型の圧縮機21から吐出される冷媒温度等の熱物性を改善するために、二酸化炭素に炭化水素等の自然冷媒を混合した混合冷媒を使用しても、q点において液化せずに遷臨界サイクルを形成していれば同様の効果が期待できる。   In the first embodiment, the single refrigerant of carbon dioxide is used as the natural refrigerant, but the thermophysical properties such as the refrigerant temperature discharged from the variable capacity compressor 21 indicated by T6 in FIG. 4 are improved. Therefore, even if a mixed refrigerant in which a natural refrigerant such as hydrocarbon is mixed with carbon dioxide is used, the same effect can be expected if a transcritical cycle is formed without liquefaction at the q point.

また、本実施の形態1においては、外気温度の影響を受けにくくするために、蒸発器4に近い吸入管24の入口部に吸入配管入口温度検知センサー25を備えて、吸入管24の温度を制御したが、図1において符号25aで示す如く前記能力可変型の圧縮機21に近く、外気温あるいは圧縮機からの熱伝導を受けて最も温度が高くなる吸入管24の出口付近の温度を検知して吸入管24の温度を制御してもよい。この場合、外気温度の影響を受けないように、吸入管24の出口付近の温度を検知するセンサー25aを断熱材で被覆することが望ましい。   In the first embodiment, in order to make it less susceptible to the influence of the outside air temperature, the suction pipe inlet temperature detection sensor 25 is provided at the inlet of the suction pipe 24 close to the evaporator 4, and the temperature of the suction pipe 24 is adjusted. Although it is controlled, as shown by reference numeral 25a in FIG. 1, it detects the temperature near the outlet 21 of the suction pipe 24, which is close to the variable capacity compressor 21 and receives the highest ambient temperature or heat conduction from the compressor. Thus, the temperature of the suction pipe 24 may be controlled. In this case, it is desirable to cover the sensor 25a for detecting the temperature near the outlet of the suction pipe 24 with a heat insulating material so as not to be affected by the outside air temperature.

さらに、本実施の形態1においては、室内空気温度Trに基づいて圧縮機制御装置27により能力可変型の圧縮機21の能力を制御したが、室内温度検知センサー26を、図1において符号26aで示す如く圧縮機21から吐出される冷媒が通過する吐出配管の温度あるいは、符号26bで示す如く圧縮機21の外表面の温度を検出するセンサーに置き換え、もしくは付加し、その検出温度が基準値を越えた場合に、前述の制御(膨張弁制御)に優先して所定時間毎に圧縮機21の能力を低下するように制御することが望ましい。これによって、放熱器7が何らかの原因で放熱能力が低下した場合に、圧縮機21の能力を低下させ、これに起因して冷凍システムが異常高温となり、圧縮機21の耐久性が低下するといった弊害が防止できる。   Furthermore, in the first embodiment, the capacity of the variable capacity compressor 21 is controlled by the compressor control device 27 based on the indoor air temperature Tr. The indoor temperature detection sensor 26 is denoted by reference numeral 26a in FIG. As shown, the temperature of the discharge pipe through which the refrigerant discharged from the compressor 21 passes or a sensor that detects the temperature of the outer surface of the compressor 21 as shown by reference numeral 26b is replaced or added, and the detected temperature is used as a reference value. When exceeding the above, it is desirable to perform control so that the capacity of the compressor 21 is reduced every predetermined time in preference to the above-described control (expansion valve control). As a result, when the heat dissipating capacity of the radiator 7 is reduced for some reason, the capacity of the compressor 21 is reduced, resulting in an abnormally high temperature of the refrigeration system and a decrease in durability of the compressor 21. Can be prevented.

(実施の形態2)
図5は、本発明の実施の形態2における保冷庫の構成模式図である。なお、先の実施の形態1における冷凍システムと同一の構成については同一の符号を付して、詳細な説明は省略する。
(Embodiment 2)
FIG. 5 is a schematic diagram of the structure of the cool box in the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the structure same as the refrigerating system in previous Embodiment 1, and detailed description is abbreviate | omitted.

図5に示すように、本実施の形態2における保冷庫の冷凍システムは、先の実施の形態1と同様に、冷媒として二酸化炭素を使用するとともに、回転数を可変することで能力可変可能な能力可変型の圧縮機21、スパイラルフィン放熱器30、電動膨張弁22、蒸発器4を環状に連結し、冷媒循環回路を構成している。また、蒸発器4の蒸発温度を検知する蒸発温度検知センサー23と、蒸発器4と圧縮機21を接続する吸入管24の入口部の温度を検知する吸入配管入口温度検知センサー25と、被冷却室である貯蔵室32の室内空気温度を検知する室内温度センサー26を備えている。   As shown in FIG. 5, the refrigerating system of the cool box in the second embodiment uses carbon dioxide as a refrigerant and can vary the capacity by varying the number of revolutions, as in the first embodiment. The variable capacity compressor 21, the spiral fin radiator 30, the electric expansion valve 22, and the evaporator 4 are connected in an annular shape to constitute a refrigerant circulation circuit. Further, an evaporation temperature detection sensor 23 for detecting the evaporation temperature of the evaporator 4, a suction pipe inlet temperature detection sensor 25 for detecting the temperature of the inlet portion of the suction pipe 24 connecting the evaporator 4 and the compressor 21, and the object to be cooled An indoor temperature sensor 26 that detects the indoor air temperature of the storage chamber 32 that is a chamber is provided.

ここで、スパイラルフィン放熱器30は、周知の如く1本の冷媒配管にスパイラル状の1枚のフィンプレート31を圧着固定したものであり、スパイラルフィン放熱器30内の超臨界状態にある冷媒の温度勾配に従って、1枚のフィンプレート31も同様の温度勾配となる特徴がある。   Here, as is well known, the spiral fin radiator 30 is formed by crimping and fixing a spiral fin plate 31 to one refrigerant pipe. According to the temperature gradient, one fin plate 31 is also characterized by a similar temperature gradient.

また、スパイラルフィン放熱器30は、1本の冷媒配管を蛇行状に折曲した構成を基本としているため、高い耐圧設計が容易であり、高圧圧力が9〜15MPaと比較的高い冷凍システムに適用する場合、同一放熱能力を有するフィンチューブ熱交換器より安価に実現することができる。   Moreover, since the spiral fin radiator 30 is based on a configuration in which one refrigerant pipe is bent in a meandering manner, a high pressure resistance design is easy, and it is applied to a refrigeration system having a relatively high high pressure of 9 to 15 MPa. In this case, it can be realized at a lower cost than a finned tube heat exchanger having the same heat dissipation capability.

また、本実施の形態2の保冷庫は、図5に示すように、食品等の熱負荷を冷蔵する貯蔵室32の上部に機械室33を設け、能力可変型の圧縮機21やスパイラルフィン放熱器30等を配置している。さらに、貯蔵室32と機械室33の間に設けた断熱壁34の中には、蒸発器4や電動膨張弁22等を配置している。   Further, as shown in FIG. 5, the cool box of the second embodiment is provided with a machine room 33 in an upper part of a storage room 32 that refrigerates a heat load such as food, and the variable capacity compressor 21 and spiral fin heat dissipation. A container 30 and the like are arranged. Further, the evaporator 4, the electric expansion valve 22, and the like are disposed in the heat insulating wall 34 provided between the storage chamber 32 and the machine chamber 33.

このように、上部に冷凍システムを設けた業務用冷蔵庫等の保冷庫においては、蒸発器4が圧縮機21よりも下に配置されることが多く、吸入配管24の揚程が大きくなることから、吸入配管24内における冷凍機油と冷媒の混合物における動粘度の挙動が特に重要となる。   Thus, in a cold storage such as a commercial refrigerator provided with a refrigeration system in the upper part, the evaporator 4 is often arranged below the compressor 21, and the head of the suction pipe 24 becomes large. The behavior of the kinematic viscosity in the mixture of refrigerating machine oil and refrigerant in the suction pipe 24 is particularly important.

以上のように構成された実施の形態2の保冷庫について、以下その動作を説明する。   The operation of the cool box of the second embodiment configured as described above will be described below.

能力可変型の圧縮機21で圧縮され、吐出された冷媒は、スパイラルフィン放熱器30で外気と熱交換し、外気温度近傍まで冷却された後、電動膨張弁22で減圧されて、蒸発器4へ流れ、ここで蒸発する。そして、蒸発器4で蒸発したガス冷媒が圧縮機21へ還流し、以下前述の流れを繰り返す。   The refrigerant compressed and discharged by the variable capacity type compressor 21 exchanges heat with the outside air by the spiral fin radiator 30 and is cooled to the vicinity of the outside air temperature. Then, the refrigerant is depressurized by the electric expansion valve 22 and then the evaporator 4. Where it evaporates. Then, the gas refrigerant evaporated in the evaporator 4 is returned to the compressor 21, and the above-described flow is repeated thereafter.

ここで、スパイラルフィン放熱器30は、破線矢印で示す如く放熱器ファン7により機械室33内に導入した空気(外気)の流れとほぼ対向するように配置されている。したがって、スパイラルフィン放熱器30の内部では、圧縮機21に近い側が最も冷媒温度が高く、放熱器ファン7に近づくにつれて冷媒温度が低下する温度勾配が形成されている。これによって、比較的小さい放熱能力で、スパイラルフィン放熱器30の出口部の冷媒温度を略外気温度まで低下させることができ、簡素かつ安価に冷凍効率を向上することができる。   Here, the spiral fin radiator 30 is disposed so as to substantially face the flow of air (outside air) introduced into the machine chamber 33 by the radiator fan 7 as indicated by broken line arrows. Therefore, inside the spiral fin radiator 30, a temperature gradient is formed such that the refrigerant temperature is highest on the side close to the compressor 21, and the refrigerant temperature decreases as it approaches the radiator fan 7. Accordingly, the refrigerant temperature at the outlet of the spiral fin radiator 30 can be lowered to substantially the outside air temperature with a relatively small heat dissipation capability, and the refrigeration efficiency can be improved simply and inexpensively.

また、先の実施の形態1における冷凍システムと同様に、電動膨張弁22は、蒸発温度検知センサー23で検知された蒸発器4の蒸発温度と吸入配管入口温度検知センサー25で検知された吸入管24の入口部の温度に基づいて、膨張弁制御装置28によりその絞り量が最適制御されるものである。   Similarly to the refrigeration system in the first embodiment, the electric expansion valve 22 includes the evaporation temperature of the evaporator 4 detected by the evaporation temperature detection sensor 23 and the suction pipe detected by the suction pipe inlet temperature detection sensor 25. The expansion amount is optimally controlled by the expansion valve control device 28 based on the temperature of the 24 inlet portions.

この結果、内部熱交換器を用いて吸入管24を常温程度まで加温する従来の構成に比べて、蒸発温度と吸入管24内の冷媒および冷凍機油の温度との差を10℃以内にする本実施の形態2では、吸入管24内の冷凍機油と冷媒の混合物の動粘度をほぼ10mm2/s以下に抑えることができ、吸入配管24内での油の滞留を防止することができる。   As a result, the difference between the evaporation temperature and the temperature of the refrigerant and the refrigerating machine oil in the suction pipe 24 is made to be within 10 ° C. as compared with the conventional configuration in which the suction pipe 24 is heated to about room temperature using an internal heat exchanger. In the second embodiment, the kinematic viscosity of the mixture of the refrigerating machine oil and the refrigerant in the suction pipe 24 can be suppressed to about 10 mm 2 / s or less, and the stagnation of oil in the suction pipe 24 can be prevented.

また、先の実施の形態1における冷凍システムと同様に、能力可変型の圧縮機21は、室内温度センサー26で検知された貯蔵室32の室内空気温度と設定温度に基づいて、圧縮機制御装置27によりその回転数が最適制御されるものである。   Further, similarly to the refrigeration system in the first embodiment, the variable capacity compressor 21 is based on the indoor air temperature and the set temperature of the storage chamber 32 detected by the indoor temperature sensor 26. The rotational speed is optimally controlled by 27.

以上のように、本実施の形態2においては、先の実施の形態1における冷凍システムと同様に、冷凍システムにアキュームレータと内部熱交換器を搭載せず、蒸発器4の温度を検知する蒸発温度検知センサー23と、蒸発器4と能力可変型の圧縮機21を繋ぐ吸入配管24の入口部の温度を検知する吸入配管入口温度検知センサー25を備え、蒸発温度検知センサー23で検知された蒸発温度Teから決定される目標温度Tsと比較して、吸入配管入口温度検知センサー25で検知された実測値が高い場合は、電動膨張弁22の開度を大きくし、逆に吸入配管入口温度検知センサー23で検知された実測値が低い場合は、電動膨張弁22の開度を小さくする制御を行い、蒸発温度Teを制御することによって、蒸発器4と圧縮機21を繋ぐ吸入配管24の温度の差を10℃以内に保つことができる。   As described above, in the second embodiment, like the refrigeration system in the first embodiment, the evaporating temperature for detecting the temperature of the evaporator 4 without mounting the accumulator and the internal heat exchanger in the refrigeration system. An evaporating temperature detected by the evaporating temperature detecting sensor 23 is provided with a detecting sensor 23 and a suction piping inlet temperature detecting sensor 25 for detecting the temperature of the inlet portion of the suction piping 24 connecting the evaporator 4 and the variable capacity compressor 21. If the measured value detected by the suction pipe inlet temperature detection sensor 25 is higher than the target temperature Ts determined from Te, the opening of the electric expansion valve 22 is increased, and conversely the suction pipe inlet temperature detection sensor. If the actual measurement value detected at 23 is low, the opening of the electric expansion valve 22 is controlled to be small, and the evaporation temperature Te is controlled to control the suction between the evaporator 4 and the compressor 21. The difference between the temperature of the pipe 24 can be kept within 10 ° C..

その結果、吸入管24内の冷凍機油と冷媒の混合物の動粘度をほぼ10mm2/s以下に抑えることができ、機械室33を上部に配置した構成において、大きな揚程を持つ吸入配管24内での油の滞留を防止することができるとともに、電源投入時および安定時における圧縮機21の吐出冷媒の温度を略一定に保つことが可能となり、これにより圧縮機21の耐久性を損なうことがなく、また、電源投入時に蒸発温度Teを高く保つことがかのうとなり、これにより冷媒循環量を増大させ、冷凍能力の向上を図ることができる。   As a result, the kinematic viscosity of the mixture of the refrigerating machine oil and the refrigerant in the suction pipe 24 can be suppressed to about 10 mm 2 / s or less, and in the configuration in which the machine room 33 is arranged at the upper part, the suction pipe 24 having a large head Oil retention can be prevented, and the temperature of the refrigerant discharged from the compressor 21 when the power is turned on and when the compressor 21 is stable can be kept substantially constant, thereby not impairing the durability of the compressor 21. Further, it is possible to keep the evaporation temperature Te high when the power is turned on, thereby increasing the refrigerant circulation amount and improving the refrigerating capacity.

なお、本実施の形態2においては、スパイラルフィン放熱器30から電動膨張弁22までの配管を最短距離で結んだが、冷蔵あるいは冷凍機器等で使用される結露防止ヒータに換えて、スパイラルフィン放熱器30から電動膨張弁22までの配管を利用してもよい。かかる構成とすれば、外部に漏洩する冷熱を利用して電動膨張弁22に流入する冷媒温度を低下することができ、さらに冷凍効率の向上を図ることが期待できる。   In the second embodiment, the pipe from the spiral fin radiator 30 to the electric expansion valve 22 is connected with the shortest distance, but instead of the dew condensation prevention heater used in refrigeration or refrigeration equipment, the spiral fin radiator A pipe from 30 to the electric expansion valve 22 may be used. With such a configuration, it is possible to reduce the temperature of the refrigerant flowing into the electric expansion valve 22 using the cold heat leaked to the outside, and further improve the refrigeration efficiency.

なお、本発明は、実施の形態の保冷庫に限るものではなく、冷蔵庫、冷凍庫あるいは自動販売機等の貯蔵装置にも適用できるものである。   In addition, this invention is not restricted to the cool box of embodiment, It can apply also to storage apparatuses, such as a refrigerator, a freezer, or a vending machine.

以上のように、本発明にかかる冷凍システムおよびこれを備えた貯蔵装置は、吸入配管内での油の滞留を防止することができるとともに、電源投入時および安定時における圧縮機の吐出冷媒の温度を略一定に保つことができ、これにより圧縮機の耐久性を損なうことなく、冷蔵あるいは冷凍機器に要求される電源投入時の冷凍能力および安定時における冷凍効率等の冷凍システム性能の向上を図ることができる。したがって、冷媒のノンフロン化と機器の省エネルギー化が要求されるショーケースや業務用冷凍冷蔵庫、自動販売機等の冷蔵あるいは冷凍機器にも適用できる。   As described above, the refrigeration system and the storage device including the refrigeration system according to the present invention can prevent the oil from staying in the suction pipe, and the temperature of the refrigerant discharged from the compressor when the power is turned on and when it is stable. Can be maintained substantially constant, thereby improving the refrigeration system performance such as the refrigeration capacity at the time of power-on and the refrigeration efficiency at the time of stability required for refrigeration or refrigeration equipment without impairing the durability of the compressor. be able to. Therefore, the present invention can also be applied to refrigeration or refrigeration equipment such as showcases, commercial refrigeration refrigerators, and vending machines that require non-fluorocarbon refrigerants and energy saving equipment.

本発明の実施の形態1における冷凍システムの冷媒回路図Refrigerant circuit diagram of the refrigeration system in Embodiment 1 of the present invention 同実施の形態1における冷凍システムの制御基準線を示す図The figure which shows the control reference line of the refrigerating system in Embodiment 1 同実施の形態1における冷凍システムの冷凍機油の動粘度特性を示す図The figure which shows the kinematic viscosity characteristic of the refrigerating machine oil of the refrigerating system in the same Embodiment 1. 同実施の形態1における冷凍システムのモリエル線図Mollier diagram of the refrigeration system in the first embodiment 本発明の実施の形態2にける保冷庫の構成模式図Configuration schematic diagram of cold storage in Embodiment 2 of the present invention 従来の冷凍システムの冷媒回路図Refrigerant circuit diagram of conventional refrigeration system 従来の冷凍システムのモリエル線図Mollier diagram of conventional refrigeration system

符号の説明Explanation of symbols

2 放熱器
4 蒸発器
21 圧縮機(能力可変型の圧縮機)
22 電動膨張弁
24 吸入管
23 蒸発温度検知センサー
25 吸入配管入口温度検知センサー
26 室内温度検知センサー
2 radiator 4 evaporator 21 compressor (variable capacity compressor)
22 Electric expansion valve 24 Suction pipe 23 Evaporation temperature detection sensor 25 Suction pipe inlet temperature detection sensor 26 Indoor temperature detection sensor

Claims (7)

圧縮機と、放熱器と、膨張弁と、蒸発器を具備した冷凍システムにおいて、冷媒として二酸化炭素を主成分とする自然冷媒を使用するとともに、前記蒸発器の蒸発温度を−50℃〜0℃の範囲として、前記蒸発器の蒸発温度と前記圧縮機の吸入配管温度との差を20℃以内に保つようにした冷凍システム。   In a refrigeration system including a compressor, a radiator, an expansion valve, and an evaporator, a natural refrigerant mainly composed of carbon dioxide is used as a refrigerant, and the evaporation temperature of the evaporator is set to −50 ° C. to 0 ° C. The refrigeration system in which the difference between the evaporation temperature of the evaporator and the suction pipe temperature of the compressor is kept within 20 ° C. 前記圧縮機の潤滑油として、40℃での動粘度が30mm2/s〜300mm2/sであるポリアルキレングリコール冷凍機油を使用した請求項1に記載の冷凍システム。   The refrigerating system according to claim 1, wherein a polyalkylene glycol refrigerating machine oil having a kinematic viscosity at 40 ° C of 30 mm2 / s to 300 mm2 / s is used as the lubricating oil of the compressor. 前記蒸発器の蒸発温度を検知する蒸発温度センサーと、前記圧縮機の吸入配管における圧縮機近傍の温度を検知する吸入配管出口温度センサーを備え、前記蒸発温度センサーで検知した蒸発温度から決定される目標温度より、前記吸入配管出口温度センサーで検知された吸入配管温度が高い場合に前記膨張弁の開度を大きくし、低い場合に前記膨張弁の開度を小さくすることで蒸発温度を制御する請求項1または2に記載の冷凍システム。   An evaporation temperature sensor for detecting the evaporation temperature of the evaporator and a suction pipe outlet temperature sensor for detecting a temperature in the vicinity of the compressor in the suction pipe of the compressor are determined from the evaporation temperature detected by the evaporation temperature sensor. When the suction pipe temperature detected by the suction pipe outlet temperature sensor is higher than the target temperature, the opening degree of the expansion valve is increased, and when it is lower, the evaporation temperature is controlled by decreasing the opening degree of the expansion valve. The refrigeration system according to claim 1 or 2. 前記蒸発器の蒸発温度を検知する蒸発温度センサーと、前記圧縮機の吸入配管における蒸発器近傍の温度を検知する吸入配管入口温度センサーを備え、前記蒸発温度センサーで検知した蒸発温度から決定される目標温度より、前記吸入配管入口温度センサーで検知された吸入配管温度が高い場合に前記膨張弁の開度を大きくし、低い場合に前記膨張弁の開度を小さくすることで蒸発温度を制御する請求項1または2に記載の冷凍システム。   An evaporation temperature sensor for detecting the evaporation temperature of the evaporator and a suction pipe inlet temperature sensor for detecting the temperature in the vicinity of the evaporator in the suction pipe of the compressor are determined from the evaporation temperature detected by the evaporation temperature sensor. When the suction pipe temperature detected by the suction pipe inlet temperature sensor is higher than the target temperature, the opening degree of the expansion valve is increased, and when it is lower, the evaporation temperature is controlled by decreasing the opening degree of the expansion valve. The refrigeration system according to claim 1 or 2. 前記圧縮機を能力可変可能な圧縮機とし、被冷却室内の空気温度の高低で圧縮機の能力を制御する請求項1から4のいずれか一項に記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 4, wherein the compressor is a compressor whose capacity is variable, and the capacity of the compressor is controlled based on a level of air temperature in a room to be cooled. 前記圧縮機のシェルの温度、あるいは吐出配管における圧縮機近傍の温度を検知する高温保護検知センサーを備え、前記高温保護検知センサーによって検出した温度が所定値を越えた場合に、前記圧縮機の能力を所定時間毎に低下させる制御を行う請求項5に記載の冷凍システム。   The compressor has a high-temperature protection detection sensor that detects the temperature of the shell of the compressor or the temperature in the vicinity of the compressor in the discharge pipe, and the capability of the compressor when the temperature detected by the high-temperature protection detection sensor exceeds a predetermined value. The refrigeration system according to claim 5, wherein control is performed to lower the value at predetermined time intervals. 請求項1から6のいずれか一項に記載の冷凍システムを搭載した貯蔵装置。   The storage apparatus carrying the refrigeration system as described in any one of Claim 1 to 6.
JP2006123254A 2006-04-27 2006-04-27 Refrigeration system and storage equipment Pending JP2007292423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123254A JP2007292423A (en) 2006-04-27 2006-04-27 Refrigeration system and storage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123254A JP2007292423A (en) 2006-04-27 2006-04-27 Refrigeration system and storage equipment

Publications (1)

Publication Number Publication Date
JP2007292423A true JP2007292423A (en) 2007-11-08

Family

ID=38763195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123254A Pending JP2007292423A (en) 2006-04-27 2006-04-27 Refrigeration system and storage equipment

Country Status (1)

Country Link
JP (1) JP2007292423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447373C1 (en) * 2010-10-13 2012-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Evaporative crystalliser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447373C1 (en) * 2010-10-13 2012-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Evaporative crystalliser

Similar Documents

Publication Publication Date Title
JP4651627B2 (en) Refrigeration air conditioner
JP3988780B2 (en) Refrigeration equipment
JP5759017B2 (en) Air conditioner
JP4289427B2 (en) Refrigeration equipment
JP5981376B2 (en) Air conditioner and method of operating air conditioner
JP5132708B2 (en) Refrigeration air conditioner
JP5409715B2 (en) Air conditioner
JP5367100B2 (en) Dual refrigeration equipment
JP2011052884A (en) Refrigerating air conditioner
JP6420686B2 (en) Refrigeration cycle equipment
JP2004156858A (en) Refrigerating cycle device and control method thereof
JP6618609B2 (en) Refrigeration equipment
JP2008134031A (en) Refrigeration equipment using non-azeotropic refrigerant mixture
US20090064710A1 (en) Cooling apparatus
JP6758506B2 (en) Air conditioner
JP2011052838A (en) Refrigerating air conditioning device
JP2000346466A (en) Vapor compression type refrigerating cycle
JP2007187358A (en) Refrigeration system and cooler
JP2014178110A (en) Freezing air conditioner
JP2006336943A (en) Refrigeration system and cold storage
JP5770157B2 (en) Refrigeration equipment
JP5963669B2 (en) Refrigeration equipment
JP2007292423A (en) Refrigeration system and storage equipment
JP2016169911A (en) Refrigeration unit
CN110914608A (en) Refrigeration device and method for operating refrigeration device