JP2007291432A - Metal matrix composite material, and metal matrix composite structure - Google Patents
Metal matrix composite material, and metal matrix composite structure Download PDFInfo
- Publication number
- JP2007291432A JP2007291432A JP2006119164A JP2006119164A JP2007291432A JP 2007291432 A JP2007291432 A JP 2007291432A JP 2006119164 A JP2006119164 A JP 2006119164A JP 2006119164 A JP2006119164 A JP 2006119164A JP 2007291432 A JP2007291432 A JP 2007291432A
- Authority
- JP
- Japan
- Prior art keywords
- matrix composite
- metal matrix
- metal
- composite material
- carbon fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011156 metal matrix composite Substances 0.000 title claims abstract description 95
- 239000000463 material Substances 0.000 title abstract description 48
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 40
- 239000004917 carbon fiber Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 5
- 239000000956 alloy Substances 0.000 claims abstract description 5
- 238000005507 spraying Methods 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 abstract description 15
- 238000005304 joining Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 238000003466 welding Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000005219 brazing Methods 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 239000012779 reinforcing material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010285 flame spraying Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
本発明は、金属マトリックス中に炭素繊維を配向させた金属基複合材、及び金属基複合材と他の部材とが緊密に接合されてなる金属基複合構造体に関する。 The present invention relates to a metal matrix composite in which carbon fibers are oriented in a metal matrix, and a metal matrix composite structure in which a metal matrix composite and another member are closely bonded.
カーボンナノチューブ(CNT)、フラーレン又は炭素繊維は、従来から広く知られている酸化物や炭化物などの強化材に比べ、機械的性質のみならず電気的性質や熱的性質にも優れていることが知られている。 Carbon nanotubes (CNTs), fullerenes, or carbon fibers are superior not only in mechanical properties but also in electrical properties and thermal properties compared to conventionally known reinforcing materials such as oxides and carbides. Are known.
上記の理由等により、これらを強化材とする複合材は、自動車部品を始めとする広い分野での応用が期待されている。特に、マトリックスを金属とした複合材、すなわち金属基複合材は、樹脂系の複合材に比べ、耐熱性、耐摩耗性あるいは熱膨張特性に優れていることから、自動車部品としての応用が期待できる。また、近年においては、エンジン部品は使用環境が苛酷であるため、軽量かつ高強度だけでなく、伝熱性や低熱膨張性が厳しく要求されるようになってきている。 For the above reasons, composite materials using these as reinforcing materials are expected to be applied in a wide range of fields including automobile parts. In particular, composite materials with a metal matrix, that is, metal matrix composite materials, are superior in heat resistance, wear resistance, or thermal expansion characteristics compared to resin-based composite materials, and therefore can be expected to be used as automotive parts. . In recent years, since engine parts are used in harsh environments, not only light weight and high strength, but also heat transfer and low thermal expansion have been strictly demanded.
ところで、上記金属基複合材を具体的に部品として応用する場合、部品全体が上記金属基複合材であることはむしろ稀であり、必要な部位のみに必要な特性を付与させた金属基複合材とする方が、材料コストや製造コストの面からも好ましい。 By the way, when the above metal matrix composite material is applied specifically as a part, it is rather rare that the entire part is the above metal matrix composite material, and the metal matrix composite material in which the necessary properties are given only to the necessary parts. Is preferable from the viewpoint of material cost and manufacturing cost.
上記の場合、金属基複合材をその周辺部位とを接合することになるが、周辺部位の材質が複合材マトリックスと異種金属である場合には、いわゆる溶接を行うことは容易ではない。 In the above case, the metal matrix composite is joined to its peripheral part. However, when the material of the peripheral part is different from the composite matrix, it is not easy to perform so-called welding.
例えば、複合材マトリックスとしてアルミニウムを使用し、周辺部位として鉄系金属を使用する場合、溶融溶接を行おうとすると、脆弱な金属間化合物が生成してしまうため、健全な溶接を行うことは容易ではない。
しかし、接着による接合の場合、耐熱性や耐久性に限界があり、適用する部品が限られてしまう問題がある。また、機械的による接合の場合、接合界面において電気的および熱的な抵抗が大きくなるため、複合材の高熱伝導性という特徴を十分には生かしきれないおそれがある。更に、ろう付けによる接合は、より現実的な手法であるものの、フラックスやろう材といった副資材費の他に、高い精度を出すための加工工程、ろう付けの設備、あるいは事後のフラックス洗浄工程などに関して、コスト高になってしまうおそれがある。また、複合材中のマトリックスがアルミニウムの場合、ろう付け時の熱影響により炭素繊維が反応して劣化するおそれがある。 However, in the case of bonding by adhesion, there is a limit to heat resistance and durability, and there is a problem that the parts to be applied are limited. Further, in the case of mechanical joining, since electrical and thermal resistance is increased at the joining interface, there is a possibility that the characteristic of high thermal conductivity of the composite material cannot be fully utilized. In addition, joining by brazing is a more realistic method, but in addition to the cost of sub-materials such as flux and brazing material, processing process for high accuracy, brazing equipment, or subsequent flux cleaning process, etc. There is a risk that the cost will increase. Moreover, when the matrix in a composite material is aluminum, there exists a possibility that carbon fiber may react and deteriorate by the heat effect at the time of brazing.
一方、周辺部位の材質が複合材マトリックスと同種金属である場合でも、溶融溶接を行うことは容易とは言い難い。金属が溶融することによって、強化材が炭素繊維と反応して劣化したり、炭素繊維の分布が乱れたり、あるいはブローホール等の欠陥が発生することにより、著しく性能を損ねてしまうおそれがある。また、接着による接合、またはボルト締結などの機械的による結合、あるいはろう付けによる接合を用いた場合、上記と同様の問題が生じてしまう。更に、摩擦圧接、摩擦撹拌接合、または拡散接合といった固相接合は、溶融接合に比べ複合材の劣化は小さいものの、接合部の継ぎ手形状に制約があること、特殊な設備が必要であること、または処理時間が長くなるという問題がある。 On the other hand, even when the material of the peripheral part is the same kind of metal as the composite material matrix, it is difficult to say that fusion welding is easy. When the metal melts, the reinforcing material reacts with the carbon fiber to deteriorate, the distribution of the carbon fiber is disturbed, or defects such as blowholes are generated, so that the performance may be significantly impaired. In addition, when bonding by bonding, mechanical bonding such as bolt fastening, or bonding by brazing is used, the same problem as described above occurs. Furthermore, solid phase bonding such as friction welding, friction stir welding, or diffusion bonding is less deteriorated in the composite material than fusion bonding, but the joint shape of the joint is limited, and special equipment is required. Or there is a problem that processing time becomes long.
本発明の目的は、周辺部位と緊密に接合可能な金属基複合材であって、ピッチ系炭素繊維やカーボンナノチューブなどの熱伝導性に優れた炭素繊維強化金属基複合材、及び当該金属基複合材とその周辺部位とが緊密に接合されてなる金属基複合構造体を提供することにある。 An object of the present invention is a metal matrix composite that can be tightly bonded to a peripheral portion, and is a carbon fiber reinforced metal matrix composite having excellent thermal conductivity such as pitch-based carbon fiber and carbon nanotube, and the metal matrix composite An object of the present invention is to provide a metal matrix composite structure in which a material and its peripheral part are closely joined.
本発明者は、上記目的を達成するため鋭意研究を重ねた結果、金属基複合材表面の少なくとも周辺部位との接合面に対し、周辺部位と接合可能な金属で被覆することにより、上記目的が達成することを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventor has coated the metal matrix composite material surface with at least the peripheral part with a metal that can be joined to the peripheral part. It has been found that this has been achieved, and the present invention has been completed.
すなわち、本発明は、表面の少なくとも一部が他の部材と緊密に接合される金属基複合材であって、前記金属基複合材が、炭素繊維が一軸配向された状態で含有する単体金属または合金であり、少なくとも前記他の部材との接触面が、前記他の部材と接合可能な金属で被覆されている、金属基複合材である。 That is, the present invention is a metal matrix composite in which at least a part of the surface is intimately bonded to another member, and the metal matrix composite contains a single metal or carbon fiber uniaxially oriented. It is an alloy, and is a metal matrix composite in which at least a contact surface with the other member is coated with a metal that can be joined to the other member.
また、本発明は、上記金属基複合材、及び前記金属基複合材と緊密に接合される他の部材とからなる、金属基複合構造体である。 Moreover, this invention is a metal matrix composite structure which consists of the said metal matrix composite material and the other member closely joined with the said metal matrix composite material.
本発明の金属基複合材によれば、カーボンナノチューブ、フラーレンまたは炭素繊維などを強化材とする金属基複合材の特性を損なうことなく、その周辺部位と緊密に接合することができる。 According to the metal matrix composite of the present invention, it is possible to tightly join the peripheral portion without impairing the characteristics of the metal matrix composite using carbon nanotubes, fullerenes, carbon fibers or the like as a reinforcing material.
以下、本発明に係る金属基複合材について詳細に説明する。 Hereinafter, the metal matrix composite according to the present invention will be described in detail.
まず、本発明の特徴は、表面の少なくとも一部が他の部材と緊密に接合される金属基複合材であって、前記金属基複合材が、炭素繊維が一軸配向された状態で含有する単体金属または合金であり、少なくとも前記他の部材との接触面が、前記他の部材と接合可能な金属で被覆されていることである。 First, a feature of the present invention is a metal matrix composite in which at least a part of the surface is tightly joined to another member, and the metal matrix composite contains a carbon fiber in a uniaxially oriented state. It is a metal or an alloy, and at least a contact surface with the other member is covered with a metal that can be joined to the other member.
金属基複合材の強化材としては、炭素繊維を用いるのが好ましい。炭素繊維は、高強度であるだけでなく、電気や熱を良く通すという性質があるので、金属基複合材の強化材料としては好ましい。また、金属基複合材としての特徴をより生かすために、炭素繊維は一軸配向させた状態で金属マトリックスに含有させる。 As the reinforcing material for the metal matrix composite material, it is preferable to use carbon fiber. Carbon fiber not only has high strength but also has a property of passing electricity and heat well, so it is preferable as a reinforcing material for metal matrix composites. Moreover, in order to make the most of the characteristics as a metal matrix composite, carbon fibers are contained in a metal matrix in a uniaxially oriented state.
金属基複合材は、他の部材とを緊密に接合させるのが好ましい。金属基複合材が他の部材と緊密に接合されることにより、例えば、応力、熱または電気の抵抗をより小さくして連続的に伝達させることが可能となる。金属基複合材と他の部材とを緊密に接合ためには、溶融接合や固相接合などにより金属的に接合界面が結合される方法を用いればよい。 It is preferable that the metal matrix composite is closely joined to other members. By tightly joining the metal matrix composite to other members, for example, it is possible to continuously transmit stress, heat, or electrical resistance with a smaller resistance. In order to tightly join the metal matrix composite and the other member, a method in which the joining interface is metallicly bonded by melt bonding or solid phase bonding may be used.
また、金属基複合材と他の部材とを緊密に接合させるためには、金属基複合材の少なくとも他の部材との接触面が、他の部材と接合可能な金属で被覆されていることが好ましい。ここで、接合可能な金属としては、例えば、他の部材と同一あるいは同種の金属などが挙げられる。しかし、金属基複合材に被覆される金属と他の部材とが、脆弱な化合物を形成しないような組み合わせであれば、厳密に同じ組成であることを要しない。例えば、複合材マトリックスがアルミニウム合金であり、他の部材が低炭素鋼である場合、金属基複合材に被覆するものとしてはステンレス鋼を用いるのが好ましい。また、複合材マトリックスが銅であり、他の部材がアルミニウム合金である場合、金属基複合材に被覆するものとしてはアルミニウムあるいはアルミニウム合金を用いるのが好ましい。 In addition, in order to tightly bond the metal matrix composite and the other member, at least the contact surface of the metal matrix composite with the other member is covered with a metal that can be bonded to the other member. preferable. Here, examples of the metal that can be joined include the same or the same type of metal as other members. However, it is not necessary to have exactly the same composition as long as the metal covered with the metal matrix composite and the other member do not form a fragile compound. For example, when the composite material matrix is an aluminum alloy and the other members are low carbon steel, it is preferable to use stainless steel as the metal matrix composite. When the composite material matrix is copper and the other member is an aluminum alloy, it is preferable to use aluminum or an aluminum alloy as the metal matrix composite material.
金属基複合材に被覆される金属の厚さは、特に限定されるものではないが、極端に厚さが薄い場合、金属基複合材と他の部材とを接合する際に作業性が良くないため、好ましくは0.5mm以上、より好ましくは1.0mm以上である。 The thickness of the metal coated on the metal matrix composite is not particularly limited. However, when the thickness is extremely thin, workability is poor when joining the metal matrix composite to another member. Therefore, it is preferably 0.5 mm or more, more preferably 1.0 mm or more.
金属基複合材中のマトリックス金属としては、軽量で構造用部材に広く適用することができることから、単体金属であるアルミニウムやマグネシウム、または合金であるアルミニウム合金やマグネシウム合金などを用いることができ、これらのうち、取り扱いが容易で鋳造性に優れる点から、アルミニウムあるいはアルミニウム合金を用いることが好ましい。しかし、これら金属に限定される訳ではなく、用途によっては銅合金や、亜鉛合金などを用いることができることは言うまでもない。 As the matrix metal in the metal matrix composite material, since it is lightweight and can be widely applied to structural members, aluminum or magnesium as a single metal, or an aluminum alloy or magnesium alloy as an alloy can be used. Of these, aluminum or an aluminum alloy is preferably used from the viewpoint of easy handling and excellent castability. However, it is not necessarily limited to these metals, and it goes without saying that a copper alloy or a zinc alloy can be used depending on the application.
金属基複合材中に含有する炭素繊維としては、該金属基複合材に要求される機能や、製造のしやすさのバランスを考えて適宜選択することができるが、高強度や伝熱性が必要とされる場合には、連続炭素繊維を用いるのが好ましい。連続炭素繊維を用いる場合、一軸配向させるメリットとして上記以外に、製造しやすいことが挙げられる。なお、上記の場合、金属基複合材の異方性が大きくなるおそれがあるため、その点を考慮して金属基複合材の設計を行う必要がある。 The carbon fiber contained in the metal matrix composite can be selected as appropriate considering the balance between the functions required for the metal matrix composite and the ease of production, but requires high strength and heat conductivity. In this case, it is preferable to use continuous carbon fiber. When using continuous carbon fiber, it is easy to manufacture other than the above as a merit of uniaxial orientation. In the above case, since the anisotropy of the metal matrix composite may increase, it is necessary to design the metal matrix composite in consideration of this point.
連続炭素繊維としては、PAN系のものよりピッチ系のものを用いること好ましい。ピッチ系のものは、PAN系のものに比べ熱伝導性が高いだけでなく、強度や弾性率の選択の幅が広がるからである。 As the continuous carbon fiber, it is preferable to use a pitch-based carbon fiber rather than a PAN-based one. This is because the pitch type is not only higher in thermal conductivity than the PAN type, but also has a wider selection of strength and elastic modulus.
一方、異方性をあまり大きくしたくない場合、あるいは金属基複合材の製造しやすさに問題がある場合には、上記連続炭素繊維よりも短炭素繊維を用いるのが好ましい。この場合にも、上記と同等の理由で、ピッチ系のものを用いることが好ましい。また、熱伝導性の優れるカーボンナノチューブを用いるのも好ましい。
短炭素繊維を用いる場合の他のメリットとして、金属基複合材を粉末冶金法で焼結して製造する場合、焼結と同時に、マトリックス金属を他の金属で被覆できることが挙げられる。その具体的な方法は以下の通りである。まず、マトリックスとなる金造粉末と短炭素繊維を、混合あるいは複合化した状態で被覆される金属で製造された容器に充填及び封入する。次に、高温中で圧延あるいは押し出しをして、容器内部の混合粉あるいは複合粉を焼結させることにより複合材とすると同時に、その複合材を容器と緊密に固相接合させて、被覆層とする。
On the other hand, when it is not desired to increase the anisotropy too much, or when there is a problem in the ease of manufacturing the metal matrix composite, it is preferable to use short carbon fibers rather than the continuous carbon fibers. Also in this case, it is preferable to use a pitch type for the same reason as described above. It is also preferable to use carbon nanotubes having excellent thermal conductivity.
Another advantage of using short carbon fibers is that when the metal matrix composite is produced by sintering by powder metallurgy, the matrix metal can be coated with another metal simultaneously with the sintering. The specific method is as follows. First, a metal-made powder as a matrix and short carbon fibers are filled and sealed in a container made of a metal that is coated in a mixed or composite state. Next, it is rolled or extruded at a high temperature to sinter the mixed powder or composite powder inside the container to form a composite material, and at the same time, the composite material is closely solid-phase bonded to the container to form a coating layer. To do.
金属基複合材中の連続炭素繊維の含有率は、20〜70体積%であることが好ましい。当該含有率が20体積%未満である場合には、強化繊維としての効果が小さく、また、当該含有率が70体積%を超えると、欠陥が生じやすくなり、金属基複合材の性能が低下するおそれがある。 The content of continuous carbon fibers in the metal matrix composite is preferably 20 to 70% by volume. When the content is less than 20% by volume, the effect as a reinforcing fiber is small, and when the content exceeds 70% by volume, defects are likely to occur and the performance of the metal matrix composite is reduced. There is a fear.
また、金属基複合材中の、ピッチ系短炭素繊維またはカーボンナノチューブの含有率は、1〜30体積%であることが好ましい。当該含有率が1体積%未満である場合には、強化繊維としての効果が小さく、また、当該含有率が70体積%を超えると、欠陥が生じやすくなり、金属基複合材の性能が低下するおそれがある。
なお、製造コストが増加するものの、必要により連続炭素繊維と短炭素繊維の両方を金属基複合材に含有させても良い。
Moreover, it is preferable that the content rate of a pitch-type short carbon fiber or a carbon nanotube in a metal matrix composite is 1-30 volume%. When the content is less than 1% by volume, the effect as a reinforcing fiber is small, and when the content exceeds 70% by volume, defects are likely to occur and the performance of the metal matrix composite is reduced. There is a fear.
Although the manufacturing cost increases, if necessary, both continuous carbon fibers and short carbon fibers may be included in the metal matrix composite.
金属基複合材に他の部材と接合可能な金属と被覆する方法としては、短時間で熱影響の少なく、かつ、安価なプロセスであることが好ましいので、低温溶射法を採用することができる。蒸着やスパッタリングでは、ミリオーダーの厚さを被覆するには時間がかかりすぎるといった問題がある。アークやレーザーを熱源として肉盛りをすることは、基材である金属基複合材が熱影響により変形することや、ブローホールなどの欠陥を生じやすい。 As a method of coating the metal matrix composite with a metal that can be bonded to another member, a low-temperature thermal spraying method can be employed because it is preferably a process that is less affected by heat and less expensive in a short time. In vapor deposition and sputtering, there is a problem that it takes too much time to cover a thickness of millimeter order. Overlaying using an arc or laser as a heat source tends to cause deformation of the base metal matrix composite due to thermal effects or defects such as blow holes.
一方、溶射による被覆方法は、基本的に大気中において短時間で処理が可能である。溶射の中でも、例えば、プラズマ溶射のように高温の溶融粒子を基材に吹き付けて被覆する方法では、基材への熱影響が大きい。よって、低温溶射、具体的には、高速フレーム溶射やコールドスプレーと呼ばれる、粒子の温度が低く、半溶融あるいは未溶融の状態で高速で吹き付けて被覆する方法を採用するのが好ましい。この方法によれば、形成される被覆層は、欠陥が少なく、また、基材との密着度も高いため、熱などの伝達性能に問題は生じにくい。更に、短時間かつチャンバなどの特別な装置を準備することなく、容易にミニオーダーの被覆が可能となる。なお、金属基複合材表面の一部分のみに被覆を行う場合、あらかじめ複合材表面にマスキングを行うと良い。 On the other hand, the coating method by thermal spraying can basically be processed in the air in a short time. Among the thermal spraying, for example, in the method of spraying high temperature molten particles on the base material and covering the base material like plasma spraying, the thermal influence on the base material is large. Therefore, it is preferable to employ a low temperature spraying method, specifically, a method called high-speed flame spraying or cold spraying, which is performed by spraying at a high speed in a semi-molten or unmelted state where the particle temperature is low. According to this method, the coating layer to be formed has few defects and has a high degree of adhesion to the base material, so that problems such as heat transfer performance hardly occur. Furthermore, mini-order coating can be easily performed in a short time without preparing a special apparatus such as a chamber. In addition, when covering only a part of the surface of the metal matrix composite material, it is preferable to mask the surface of the composite material in advance.
以上の金属基複合材と、該金属基複合材と他の周辺部材とを緊密に接合することにより、金属基複合材を適用した部品全体に対し、少ない抵抗で熱や応力を伝達することができる。金属基複合材と他の周辺部材とを接合する際、過大な熱が与えられるのは前述の通り好ましくない。よって、例えば、レーザー溶接や電子ビーム溶接のように、エネルギー密度の大きい熱源を使用して高速で溶接するのが好ましい。また、抵抗溶接のように、短時間で接合界面のみを加熱して接合するのも良い。ろう付けを選択するのであれば、例えば、被覆される材料がアルミニウムで、金属基複合材のマトリックスがアルミニウム合金である組み合わせの場合、融点の低い亜鉛系ろう材を使用して、できるだけ短時間で接合するのが好ましい。 By tightly bonding the above metal matrix composite and the metal matrix composite and other peripheral members, heat and stress can be transmitted with low resistance to the entire part to which the metal matrix composite is applied. it can. As described above, it is not preferable that excessive heat is applied when the metal matrix composite is joined to other peripheral members. Therefore, for example, it is preferable to perform high-speed welding using a heat source having a large energy density, such as laser welding or electron beam welding. Moreover, it is good to join only by heating only a joining interface in a short time like resistance welding. If you choose brazing, for example, in the case of a combination where the material to be coated is aluminum and the matrix of the metal matrix composite is an aluminum alloy, use a zinc-based brazing material with a low melting point in as short a time as possible. It is preferable to join.
以下、本発明を実施例及び比較例に基づいて、さらに詳述するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example and a comparative example, this invention is not limited to these Examples.
(実施例1)
直径が約10mmのピッチ系連続炭素繊維を55体積%含有し、マトリックス金属として純アルミニウムを用いた金属基複合材を加圧鋳造法により作製した。続いて、得られた金属基複合材に対し、高速フレーム溶射法によりSUS410を約2mmの厚さになるように被覆した後、1.5mmの厚さに仕上げ、本例の金属基複合材を得た。更に、本例の金属基複合材とSS400板材を接触させ、該接触部にYAGレーザーを照射して、SUS410層とSS400板材表面を溶融溶接した。本例の金属基複合材とSS400板材との接合構造体は、金属基複合材とSS400板材との界面及び溶接部ともに欠陥はなく、緊密な連続体となっていた。
Example 1
A metal matrix composite material containing 55% by volume of pitch-based continuous carbon fiber having a diameter of about 10 mm and using pure aluminum as a matrix metal was produced by a pressure casting method. Subsequently, the obtained metal matrix composite was coated with SUS410 to a thickness of about 2 mm by a high-speed flame spraying method, and then finished to a thickness of 1.5 mm. Obtained. Further, the metal matrix composite material of this example and the SS400 plate material were brought into contact, and the contact portion was irradiated with a YAG laser to melt weld the SUS410 layer and the SS400 plate material surface. The joint structure of the metal matrix composite material and the SS400 plate material in this example had no defects in the interface between the metal matrix composite material and the SS400 plate material and the welded portion, and was a close continuous body.
(実施例2)
直径が約75mmの銅粉と直径約9mmのピッチ系ミドル短炭素繊維を、体積比で95:5となるよう配合し、これをメカニカルに混合して一体化させた。続いて、一体化させた上記混合体を厚さ3mmの純アルミニウム製容器に充填及び封入し、500℃で押し出しすることにより焼結し、金属基複合材を作製すると同時に、該金属基複合材の表面を純アルミニウムで被覆し、本例の金属基複合材を得た。更に、融点が380℃の亜鉛合金ろう材を用いて、本例の金属基複合材とADC12板材とを超音波ろう付けした。本例の金属基複合材とADC12板材との接合構造体は、実施例1の場合と同様、金属基複合材とADC12板材との界面及び溶接部ともに欠陥はなく、緊密な連続体となっていた。
(Example 2)
A copper powder having a diameter of about 75 mm and a pitch middle short carbon fiber having a diameter of about 9 mm were blended so that the volume ratio was 95: 5, and these were mechanically mixed and integrated. Subsequently, the integrated mixture is filled and sealed in a pure aluminum container having a thickness of 3 mm, and is sintered by extruding at 500 ° C. to produce a metal matrix composite. At the same time, the metal matrix composite Was coated with pure aluminum to obtain a metal matrix composite of this example. Furthermore, using a zinc alloy brazing material having a melting point of 380 ° C., the metal matrix composite material of this example and the ADC12 plate material were ultrasonically brazed. As in Example 1, the joint structure of the metal matrix composite material and the ADC12 plate material of this example has no defects at the interface between the metal matrix composite material and the ADC12 plate material and the welded portion, and is a tight continuous body. It was.
(比較例1)
直径が約10mmのピッチ系連続炭素繊維を55体積%含有し、マトリックス金属として純アルミニウムを用いた金属基複合材を加圧鋳造法により作製した。得られた金属基複合材の表面には何も被覆することなく、該金属基複合材をSS400板材とレーザー溶接した。本例の金属基複合材とSS400板材との接合構造体は、溶接部において割れ、ブローホール、不整ビートといった欠陥が多く現れ、健全な接合部は得られなかった。
(Comparative Example 1)
A metal matrix composite material containing 55% by volume of pitch-based continuous carbon fiber having a diameter of about 10 mm and using pure aluminum as a matrix metal was produced by a pressure casting method. The metal matrix composite was laser welded to the SS400 plate without covering the surface of the obtained metal matrix composite. In the joint structure of the metal matrix composite material of this example and the SS400 plate material, many defects such as cracks, blowholes, and irregular beats appeared in the welded portion, and a sound joint portion could not be obtained.
これらの結果から、本発明の金属基複合材は、その周辺部位と健全な接合をすることができ、金属基複合材の特性を十分に生かした金属基複合構造体を提供することができる。 From these results, the metal matrix composite of the present invention can be soundly joined to the peripheral portion thereof, and can provide a metal matrix composite structure that fully utilizes the characteristics of the metal matrix composite.
Claims (8)
前記金属基複合材は、炭素繊維が一軸配向された状態で含有する単体金属または合金であり、少なくとも前記他の部材との接触面が、前記他の部材と接合可能な金属で被覆されていることを特徴とする、金属基複合材。 A metal matrix composite in which at least a portion of the surface is intimately joined to another member,
The metal matrix composite is a single metal or alloy containing carbon fibers in a uniaxially oriented state, and at least a contact surface with the other member is coated with a metal that can be joined to the other member. A metal matrix composite characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006119164A JP2007291432A (en) | 2006-04-24 | 2006-04-24 | Metal matrix composite material, and metal matrix composite structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006119164A JP2007291432A (en) | 2006-04-24 | 2006-04-24 | Metal matrix composite material, and metal matrix composite structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007291432A true JP2007291432A (en) | 2007-11-08 |
Family
ID=38762334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006119164A Pending JP2007291432A (en) | 2006-04-24 | 2006-04-24 | Metal matrix composite material, and metal matrix composite structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007291432A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7799437B2 (en) * | 2007-09-21 | 2010-09-21 | Tsinghua University | Magnesium-based composite material and method for making the same |
US7829200B2 (en) * | 2007-08-31 | 2010-11-09 | Tsinghua University | Magnesium-based composite material and method for making the same |
JP2011241432A (en) * | 2010-05-17 | 2011-12-01 | Nissei Plastics Ind Co | Method of manufacturing compound material with high thermal conductivity |
JP2012528934A (en) * | 2009-06-03 | 2012-11-15 | ヴィーラント ウェルケ アクチーエン ゲゼルシャフト | Method for producing metal matrix composite |
EP2621035A4 (en) * | 2010-09-24 | 2014-12-03 | Ngk Spark Plug Co | Spark plug electrode, method for producing same, spark plug, and method for producing spark plug |
EP2621036A4 (en) * | 2010-09-24 | 2014-12-10 | Ngk Spark Plug Co | Spark plug electrode, method for producing same, spark plug, and method for producing spark plug |
CN104805383A (en) * | 2015-04-22 | 2015-07-29 | 哈尔滨工业大学 | A kind of Cf/Al composite material with low expansion and high thermal conductivity and preparation method thereof |
-
2006
- 2006-04-24 JP JP2006119164A patent/JP2007291432A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7829200B2 (en) * | 2007-08-31 | 2010-11-09 | Tsinghua University | Magnesium-based composite material and method for making the same |
US7799437B2 (en) * | 2007-09-21 | 2010-09-21 | Tsinghua University | Magnesium-based composite material and method for making the same |
US8210423B2 (en) * | 2007-09-21 | 2012-07-03 | Tsinghua University | Method for making magnesium-based composite material |
JP2012528934A (en) * | 2009-06-03 | 2012-11-15 | ヴィーラント ウェルケ アクチーエン ゲゼルシャフト | Method for producing metal matrix composite |
JP2011241432A (en) * | 2010-05-17 | 2011-12-01 | Nissei Plastics Ind Co | Method of manufacturing compound material with high thermal conductivity |
EP2621035A4 (en) * | 2010-09-24 | 2014-12-03 | Ngk Spark Plug Co | Spark plug electrode, method for producing same, spark plug, and method for producing spark plug |
EP2621036A4 (en) * | 2010-09-24 | 2014-12-10 | Ngk Spark Plug Co | Spark plug electrode, method for producing same, spark plug, and method for producing spark plug |
CN104805383A (en) * | 2015-04-22 | 2015-07-29 | 哈尔滨工业大学 | A kind of Cf/Al composite material with low expansion and high thermal conductivity and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007291432A (en) | Metal matrix composite material, and metal matrix composite structure | |
CN102794578B (en) | A kind of solder for brazing titanium alloy and steel or titanium aluminum alloy and steel | |
US8557383B2 (en) | Method of producing a material composite | |
JP2011502786A (en) | Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy | |
CN109332860B (en) | Arc additive manufacturing method of 5083 aluminum alloy/TC 4 titanium alloy structure | |
He et al. | Combination effects of nocolok flux with Ni powder on properties and microstructures of aluminum-stainless steel TIG welding-brazing joint | |
CN106141494B (en) | Solder and preparation method and soldering processes for soldering Mo Re alloys foil | |
CN105499834A (en) | Brazing material for brazing molybdenum-rhenium alloy, preparation method and brazing method | |
CN104878382A (en) | Alloy powder for laser cladding and method for laser cladding alloy powder | |
JP5016775B2 (en) | Products containing a composition having unstable zirconium oxide particles in a metal matrix and method for producing the same | |
JPH0570268A (en) | Carbon member with melt-sprayed metal coating layer excelling in adherence | |
CN105624470A (en) | Iron-nickel-based composite alloy powder for laser cladding and laser cladding method of powder | |
Sharma et al. | Effect of various factors on the brazed joint properties in al brazing technology | |
Liu et al. | Study on TIG welding of dissimilar Mg alloy and Cu with Fe as interlayer | |
US7624906B2 (en) | Ultrasonic brazing of aluminum alloy and aluminum matrix composite | |
CN112975027B (en) | A kind of aluminum copper welding method | |
CN102127729B (en) | Soldering strengthening method for thermal sprayed coating on surface of metal material | |
CN103846570A (en) | Preparation method of silver-based brazing filler metal for brazing high-volume-fraction SiC particle reinforced aluminum matrix composites | |
CN103801783A (en) | Solid-liquid two-phase region brazing method for high volume fraction silicon carbon particle reinforced aluminium matrix composite | |
CN101224526A (en) | Ni particle reinforced tin-silver based lead-free composite solder and preparation method thereof | |
CN100506461C (en) | Flux-filled wire for fusion welding of particle-reinforced aluminum matrix composites | |
CN100518996C (en) | Method for preparing strengthened coatings on the continuance casting crystallizer surface | |
CN113042843B (en) | Laser welding and brazing method for molybdenum/steel dissimilar metal | |
KR100954097B1 (en) | Method for Improving Bonding Characteristics of Heterojunctions between Titanium or Titanium Alloys and Steel Alloys by Using Silver Diffusion Control Layer and Silver-based Inserts | |
JP2006320673A (en) | Bonding method for heterogeneous metal member of golf club head |