JP2007290943A - Method for producing modified alumina particle-dispersed sol, method for producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle-dispersed sol, modified alumina particles, and thermoplastic resin composition obtained thereby - Google Patents
Method for producing modified alumina particle-dispersed sol, method for producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle-dispersed sol, modified alumina particles, and thermoplastic resin composition obtained thereby Download PDFInfo
- Publication number
- JP2007290943A JP2007290943A JP2006313088A JP2006313088A JP2007290943A JP 2007290943 A JP2007290943 A JP 2007290943A JP 2006313088 A JP2006313088 A JP 2006313088A JP 2006313088 A JP2006313088 A JP 2006313088A JP 2007290943 A JP2007290943 A JP 2007290943A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- alumina particles
- resin composition
- producing
- alumina particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 192
- 239000002245 particle Substances 0.000 title claims abstract description 158
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 67
- 239000011342 resin composition Substances 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 21
- 239000003607 modifier Substances 0.000 claims description 56
- 239000006185 dispersion Substances 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 42
- 239000002904 solvent Substances 0.000 claims description 29
- 239000003960 organic solvent Substances 0.000 claims description 23
- 238000009835 boiling Methods 0.000 claims description 21
- 230000004048 modification Effects 0.000 claims description 21
- 238000012986 modification Methods 0.000 claims description 21
- -1 inorganic acid salt anhydride Chemical class 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 150000002148 esters Chemical class 0.000 claims description 14
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 14
- 229910001593 boehmite Inorganic materials 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 239000007791 liquid phase Substances 0.000 claims description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 150000002484 inorganic compounds Chemical group 0.000 claims description 7
- 229910010272 inorganic material Inorganic materials 0.000 claims description 7
- 238000004898 kneading Methods 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 150000007522 mineralic acids Chemical class 0.000 claims description 6
- 150000007524 organic acids Chemical group 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 claims description 2
- 229940005991 chloric acid Drugs 0.000 claims description 2
- 239000002274 desiccant Substances 0.000 claims description 2
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 239000000945 filler Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 9
- 239000000047 product Substances 0.000 description 27
- 229920000642 polymer Polymers 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 15
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 12
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 239000008096 xylene Substances 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 8
- 230000002779 inactivation Effects 0.000 description 8
- 238000002407 reforming Methods 0.000 description 8
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920000515 polycarbonate Polymers 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 230000009849 deactivation Effects 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000005711 Benzoic acid Substances 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Chemical class 0.000 description 4
- 235000010233 benzoic acid Nutrition 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000010525 oxidative degradation reaction Methods 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000010526 radical polymerization reaction Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Inorganic materials [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 4
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920005497 Acrypet® Polymers 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000012024 dehydrating agents Substances 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- PEZBJHXXIFFJBI-UHFFFAOYSA-N ethanol;phosphoric acid Chemical compound CCO.OP(O)(O)=O PEZBJHXXIFFJBI-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000000113 methacrylic resin Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- MLCHBQKMVKNBOV-UHFFFAOYSA-N phenylphosphinic acid Chemical compound OP(=O)C1=CC=CC=C1 MLCHBQKMVKNBOV-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- HDPNBNXLBDFELL-UHFFFAOYSA-N 1,1,1-trimethoxyethane Chemical compound COC(C)(OC)OC HDPNBNXLBDFELL-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- RYRZSXJVEILFRR-UHFFFAOYSA-N 2,3-dimethylterephthalic acid Chemical compound CC1=C(C)C(C(O)=O)=CC=C1C(O)=O RYRZSXJVEILFRR-UHFFFAOYSA-N 0.000 description 1
- BSYJHYLAMMJNRC-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-ol Chemical compound CC(C)(C)CC(C)(C)O BSYJHYLAMMJNRC-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- TYFJTEPDESMEHE-UHFFFAOYSA-N 6,8-dihydroxy-3-[2-(4-methoxyphenyl)ethyl]-3,4-dihydroisochromen-1-one Chemical compound C1=CC(OC)=CC=C1CCC1OC(=O)C2=C(O)C=C(O)C=C2C1 TYFJTEPDESMEHE-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000007875 V-40 Substances 0.000 description 1
- STLLXWLDRUVCHL-UHFFFAOYSA-N [2-[1-[2-hydroxy-3,5-bis(2-methylbutan-2-yl)phenyl]ethyl]-4,6-bis(2-methylbutan-2-yl)phenyl] prop-2-enoate Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(C(C)C=2C(=C(C=C(C=2)C(C)(C)CC)C(C)(C)CC)OC(=O)C=C)=C1O STLLXWLDRUVCHL-UHFFFAOYSA-N 0.000 description 1
- IORUEKDKNHHQAL-UHFFFAOYSA-N [2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenyl] prop-2-enoate Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)OC(=O)C=C)=C1O IORUEKDKNHHQAL-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- ZEMWIYASLJTEHQ-UHFFFAOYSA-J aluminum;sodium;disulfate;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZEMWIYASLJTEHQ-UHFFFAOYSA-J 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- MLWPJXZKQOPTKZ-UHFFFAOYSA-N benzenesulfonyl benzenesulfonate Chemical compound C=1C=CC=CC=1S(=O)(=O)OS(=O)(=O)C1=CC=CC=C1 MLWPJXZKQOPTKZ-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 229940005989 chlorate ion Drugs 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-M chlorite Chemical compound [O-]Cl=O QBWCMBCROVPCKQ-UHFFFAOYSA-M 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- 229940005993 chlorite ion Drugs 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- UCQFCFPECQILOL-UHFFFAOYSA-N diethyl hydrogen phosphate Chemical compound CCOP(O)(=O)OCC UCQFCFPECQILOL-UHFFFAOYSA-N 0.000 description 1
- LMZLQYYLELWCCW-UHFFFAOYSA-N dimethoxy(phenyl)phosphane Chemical compound COP(OC)C1=CC=CC=C1 LMZLQYYLELWCCW-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- BEQVQKJCLJBTKZ-UHFFFAOYSA-N diphenylphosphinic acid Chemical compound C=1C=CC=CC=1P(=O)(O)C1=CC=CC=C1 BEQVQKJCLJBTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229960000443 hydrochloric acid Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- CAAULPUQFIIOTL-UHFFFAOYSA-N methyl dihydrogen phosphate Chemical compound COP(O)(O)=O CAAULPUQFIIOTL-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- BCDIWLCKOCHCIH-UHFFFAOYSA-N methylphosphinic acid Chemical compound CP(O)=O BCDIWLCKOCHCIH-UHFFFAOYSA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229940006477 nitrate ion Drugs 0.000 description 1
- 229940074355 nitric acid Drugs 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003008 phosphonic acid esters Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical group OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- QWNKTSFVIADEBR-UHFFFAOYSA-N phosphorous acid tributyl phosphate Chemical class P(O)(O)O.C(CCC)OP(OCCCC)(OCCCC)=O QWNKTSFVIADEBR-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 235000011127 sodium aluminium sulphate Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003458 sulfonic acid derivatives Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229940032330 sulfuric acid Drugs 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】熱可塑性樹脂に対する充填剤として実用することのできるアルミナ粒子を提供し、強度、弾性率、及び耐熱性などの諸特性を向上させた熱可塑性樹脂組成物を提供する。
【解決手段】アルミナ粒子を有機化合物と接触させて前記アルミナ粒子を改質変性する際において、前記アルミナ粒子と前記有機化合物との接触を100〜400℃の温度範囲で行う。これによって、前記アルミナ粒子の表面活性基が十分に失活され、所定の熱可塑性樹脂に配合した際に、その充填剤としての効果が発揮され、強度、弾性率、及び耐熱性などの諸特性が向上した熱可塑性樹脂組成物を得ることができる。
【選択図】なしAn object of the present invention is to provide an alumina particle that can be used as a filler for a thermoplastic resin, and to provide a thermoplastic resin composition having improved properties such as strength, elastic modulus, and heat resistance.
When the alumina particles are brought into contact with an organic compound to modify and modify the alumina particles, the alumina particles and the organic compound are contacted at a temperature range of 100 to 400 ° C. As a result, the surface active groups of the alumina particles are sufficiently deactivated, and when blended in a predetermined thermoplastic resin, the effect as a filler is exhibited, and various properties such as strength, elastic modulus, and heat resistance are exhibited. Can improve the thermoplastic resin composition.
[Selection figure] None
Description
本発明は、変性アルミナ粒子分散ゾルの製造方法、およびそのゾルを用いた変性アルミナ粒子ならびに熱可塑性樹脂組成物の製造方法とそれによって得られる変性アルミナ粒子分散ゾル、変性アルミナ粒子、熱可塑性樹脂組成物に関する。 The present invention relates to a method for producing a modified alumina particle-dispersed sol, a method for producing a modified alumina particle and a thermoplastic resin composition using the sol, and a modified alumina particle-dispersed sol, a modified alumina particle, and a thermoplastic resin composition obtained thereby. Related to things.
シリカをはじめとする金属酸化物微粒子は、近年さまざまな産業分野で有用性、応用性が認められているが、表面に大量の水酸基を有し、親水性の活性な表面を形成していることが多い。一方で、粒子径が小さくなるほど表面積は増大し、相互作用が強まるため、それだけ凝集も起こりやすくなる。これをナノ粒子として有機溶媒や樹脂中に均一分散させることは容易ではない。 Silica and other metal oxide fine particles have recently been recognized for their usefulness and applicability in various industrial fields, but they have a large amount of hydroxyl groups on the surface to form a hydrophilic active surface. There are many. On the other hand, the smaller the particle size, the larger the surface area, and the stronger the interaction, the more likely aggregation occurs. It is not easy to uniformly disperse these as nanoparticles in an organic solvent or resin.
上述したナノ粒子に相当するような微小な金属酸化物微粒子の、有機物質中での均一分散を達成するためには、前記金属酸化物微粒子の表面を、目的化合物に均一分散可能な官能基を有するように有機化合物で化学的に表面処理し、疎水化する手法が有効である。これにより、微粒子同士が凝集しにくくなり、有機化合物中での分散性を向上させることができる。 In order to achieve uniform dispersion of fine metal oxide fine particles corresponding to the above-mentioned nanoparticles in an organic substance, the surface of the metal oxide fine particles is provided with a functional group capable of uniformly dispersing the target compound. It is effective to chemically treat the surface with an organic compound to make it hydrophobic. Thereby, it becomes difficult for fine particles to aggregate and the dispersibility in an organic compound can be improved.
一方、有機樹脂の諸物性を向上させる手法として、有機高分子の特徴である柔軟性、低密度や成形性などを保持しつつ、無機化合物の特徴である高強度、高弾性率、耐熱性、電気特性などを併せ持つ材料の開発が盛んに行われており、このような物性改良手法として、従来のガラス繊維やタルクなどによる強化樹脂に代わり、前述のような金属酸化物微粒子を用いた複合材料、いわゆるポリマーナノコンポジットと呼ばれる樹脂組成物が注目されてきている。このような複合材料の例としては、「複合材料及びその製造方法(特許第2519045号/豊田中研)」や「ポリアミド複合材料及びその製造方法(特公平7−47644号/宇部興産他)」、「ポリオレフイン系複合材料およびその製造方法(特開平10−30039号/昭和電工)」などが挙げられる。 On the other hand, as a technique to improve various physical properties of organic resins, while maintaining the flexibility, low density and moldability that are the characteristics of organic polymers, the high strength, high elastic modulus, heat resistance, which are the characteristics of inorganic compounds, The development of materials that have both electrical properties has been actively carried out, and composite materials that use metal oxide fine particles as described above in place of conventional glass fiber and reinforced resin such as talc as a method for improving physical properties. A resin composition called a so-called polymer nanocomposite has attracted attention. Examples of such composite materials include “composite materials and manufacturing methods thereof (Patent No. 2519045 / Toyota Chuken)” and “polyamide composite materials and manufacturing methods thereof (Japanese Patent Publication No. 7-47644 / Ube Industries, etc.)”, “Polyolefin-based composite material and production method thereof (Japanese Patent Laid-Open No. 10-30039 / Showa Denko)” and the like.
熱可塑性樹脂の充填剤としては、従来から、二酸化ケイ素、二酸化チタン、酸化アルミニウム等の金属酸化物微粒子が広く利用されている。この用途に無機微粒子を適用するにあたり、仮に前述の凝集が抑えられるのであれば、無機微粒子の粒径は小さいほど好ましく、小粒径化にともなって表面積が大きくなるため、相互作用が強まり、従来に無かった特性の発現が期待される。 Conventionally, metal oxide fine particles such as silicon dioxide, titanium dioxide, and aluminum oxide have been widely used as fillers for thermoplastic resins. In applying inorganic fine particles to this application, if the above-mentioned aggregation can be suppressed, it is preferable that the particle size of the inorganic fine particles is small, and the surface area increases as the particle size is reduced. It is expected to develop characteristics that were not found in
無機微粒子のなかでも、アルミナ粒子は一般的には粗大なミクロンオーダーの粒子として存在するため、これを粉砕するなどして微細化して用いられている。しかしながら近年ではナノオーダーレベルのものも合成可能となってきている。例として、Degussa社製超微粒子状アルミナ「AEROXIDE(登録商標) Alu C」が挙げられる。 Among the inorganic fine particles, alumina particles are generally present as coarse micron-order particles, and are used by being pulverized or the like. However, in recent years, nano-order levels can also be synthesized. An example is the ultrafine alumina “AEROXIDE® Alu C” manufactured by Degussa.
ところがアルミナ粒子には、熱可塑性樹脂などの有機樹脂と混合した場合、熱可塑性樹脂の分子量が低下してしまい、これに付随してバルク組成物や塗膜として維持されるべき外観、可撓性、耐衝撃性を失うなど、ポリマーとしての物性を大きく損なうという欠点があった。 However, when alumina particles are mixed with an organic resin such as a thermoplastic resin, the molecular weight of the thermoplastic resin decreases, and this is accompanied by an appearance and flexibility that should be maintained as a bulk composition or coating film. There is a drawback that the physical properties of the polymer are greatly impaired, such as loss of impact resistance.
本発明は、熱可塑性樹脂に対する充填剤として実用することのできるアルミナ粒子を提供する変性アルミナ粒子分散ゾルの製造方法に関し、強度、弾性率、及び耐熱性などの諸特性を向上させた熱可塑性樹脂組成物を提供することを目的とする。 TECHNICAL FIELD The present invention relates to a method for producing a modified alumina particle-dispersed sol that provides alumina particles that can be used as a filler for thermoplastic resins, and has improved properties such as strength, elastic modulus, and heat resistance. An object is to provide a composition.
上記目的を達成すべく、本発明は、
アルミナ粒子を有機化合物もしくは無機化合物からなる変性剤と接触させて前記アルミナ粒子を改質変性する際において、前記アルミナ粒子と前記変性剤との接触を100〜400℃の温度範囲で行うことを特徴とする、変性アルミナ粒子分散ゾルの製造方法に関する。
In order to achieve the above object, the present invention provides:
When the alumina particles are brought into contact with a modifying agent composed of an organic compound or an inorganic compound to modify and modify the alumina particles, the contact between the alumina particles and the modifying agent is performed in a temperature range of 100 to 400 ° C. The present invention relates to a method for producing a modified alumina particle-dispersed sol.
本発明者らは、上記課題を解決すべく鋭意検討を実施した。その結果、アルミナ粒子の表面にはAlOH基に代表される化学的に活性な基と、その活性基との相互作用により引き寄せられた水(吸着水)が存在しており、熱可塑性樹脂に対して前記アルミナ粒子を充填剤として配合した場合に、その活性な基と吸着水が前記熱可塑性樹脂中に含まれる比較的弱い部分を攻撃して、加水分解や酸化劣化を生ぜしめていることを見出した。その結果、前記熱可塑性樹脂の分子量低下を生ぜしめ、得られた熱可塑性樹脂組成物の強度や弾性率低下などの諸特性を劣化させるとともに、前記熱可塑性樹脂組成物を着色してしまうなどの問題が生じていることを見出した。 The present inventors have intensively studied to solve the above problems. As a result, the surface of the alumina particles contains chemically active groups represented by AlOH groups and water (adsorbed water) drawn by the interaction between the active groups. When the alumina particles are blended as a filler, the active groups and adsorbed water attack the relatively weak parts contained in the thermoplastic resin to cause hydrolysis and oxidative degradation. It was. As a result, the molecular weight of the thermoplastic resin is reduced, and various properties such as strength and elastic modulus reduction of the obtained thermoplastic resin composition are deteriorated, and the thermoplastic resin composition is colored. I found a problem.
そこで、本発明者ら、上述した原因の究明に基づいて、アルミナ粒子を熱可塑性樹脂中に配合した際に、上述した加水分解や酸化劣化を抑制すべく前記アルミナ粒子表面に存在する活性な基を封止すべくさらに鋭意検討を実施した。その結果、前記アルミナ粒子を比較的高温で所定の変性剤と接触させることによって、前記アルミナ粒子の表面を改質し、上述した表面活性基および吸着水を失活できることを見出し、本発明を想到したものである。 Therefore, the present inventors, based on the investigation of the cause described above, when the alumina particles are blended in the thermoplastic resin, an active group present on the surface of the alumina particles so as to suppress the hydrolysis and oxidative degradation described above. Further intensive studies were conducted to seal the. As a result, the inventors have found that the surface of the alumina particles can be modified by bringing the alumina particles into contact with a predetermined modifier at a relatively high temperature, and the above-described surface active groups and adsorbed water can be deactivated. It is a thing.
なお、前記アルミナ粒子と変性剤との接触は、100℃未満の温度では不十分であり、100℃以上の温度で行う必要がある。また、接触させる際の温度の上限は、400℃である。この温度を超えて前記接触を実施しても、アルミナ粒子の改質の効果はそれ以上向上せず、高温操作のため取り扱い及び装置構成が複雑となるとともに、アルミナ粒子自体が結晶構造に含む結晶水を放出するなどの現象によりアルミナ粒子の変質、構造の不均質化などの望ましくない影響がある。 The contact between the alumina particles and the modifier is insufficient at a temperature of less than 100 ° C., and needs to be performed at a temperature of 100 ° C. or more. Moreover, the upper limit of the temperature at the time of making it contact is 400 degreeC. Even if the contact is carried out at a temperature exceeding this temperature, the effect of the modification of the alumina particles is not further improved, the handling and the device configuration are complicated due to the high-temperature operation, and the crystals containing the alumina particles themselves in the crystal structure. Phenomena such as the release of water have undesirable effects such as alteration of alumina particles and heterogeneous structure.
本発明の好ましい態様においては、前記アルミナ粒子と前記変性剤との接触を液相中で行う。この場合、前記アルミナ粒子と前記変性剤との接触を確実に行うことができ、前記アルミナ粒子の改質及び結果としての変性を効率的に行うことができる。このような接触を液相で行う場合、所定の有機溶媒を用い、この有機溶媒中で実施することもできるが、前記変性剤自体が液体である場合、別途有機溶媒を用いることなく、液体変性剤中で直接的に接触操作を行うこともできる。さらに液相として所定の樹脂を用い、加熱し溶融した樹脂を有機溶媒として用いることもできる。 In a preferred embodiment of the present invention, the contact between the alumina particles and the modifier is performed in a liquid phase. In this case, the contact between the alumina particles and the modifier can be reliably performed, and the modification of the alumina particles and the resulting modification can be efficiently performed. When such contact is performed in the liquid phase, a predetermined organic solvent can be used and the reaction can be performed in the organic solvent. However, when the modifier is a liquid, the liquid modification can be performed without using a separate organic solvent. The contact operation can also be performed directly in the agent. Further, a predetermined resin can be used as the liquid phase, and a heated and melted resin can be used as the organic solvent.
なお、本発明の熱可塑性樹脂組成物は、上述した表面活性基、吸着水が失活したアルミナ粒子と母材となる熱可塑性樹脂とを含むことを特徴とする。 The thermoplastic resin composition of the present invention is characterized by containing the above-mentioned surface active groups, alumina particles deactivated by adsorbed water, and a thermoplastic resin as a base material.
以上、本発明によれば、アルミナ粒子の表面活性基および吸着水を変性剤を用いて改質して失活するようにしているので、前記アルミナ粒子を熱可塑性樹脂中に充填剤として配合した場合にも、前記熱可塑性樹脂を加水分解や酸化劣化させることがない。したがって、前記熱可塑性樹脂の分子量低下などを抑制し、得られた熱可塑性樹脂組成物の強度、弾性率、及び耐熱性などの諸特性を前記アルミナ粒子の充填剤として効果によって向上させることができるようになる。また、前記熱可塑性樹脂組成物の、前記酸化劣化に起因した着色などを抑制することができる。 As described above, according to the present invention, the surface active groups of the alumina particles and the adsorbed water are modified with the use of a modifying agent so as to be deactivated. Therefore, the alumina particles are blended in the thermoplastic resin as a filler. Even in this case, the thermoplastic resin is not hydrolyzed or oxidized. Accordingly, the molecular weight reduction of the thermoplastic resin can be suppressed, and various properties such as strength, elastic modulus, and heat resistance of the obtained thermoplastic resin composition can be effectively improved as a filler for the alumina particles. It becomes like this. Moreover, the coloring etc. resulting from the said oxidative degradation of the said thermoplastic resin composition can be suppressed.
したがって、本発明の変性アルミナ粒子分散ゾルの製造方法によって充填剤として実用に供することが可能なアルミナ粒子を提供することができるとともに、充填剤配合によって強度、弾性率、及び耐熱性などの諸特性が改善された熱可塑性樹脂組成物を提供することができる。 Therefore, the production method of the modified alumina particle-dispersed sol of the present invention can provide alumina particles that can be put to practical use as a filler, and various properties such as strength, elastic modulus, and heat resistance can be obtained by blending the filler. Can be provided.
以下、本発明のその他の特徴及び利点について、発明を実施するための最良の形態に基づいて詳細に説明する。 Hereinafter, other features and advantages of the present invention will be described in detail based on the best mode for carrying out the invention.
(アルミナ粒子)
本発明で使用するアルミナ粒子は、市販のものから任意に選択可能だが、望ましくは、長径5〜500nmのアルミナ粒子である。ここでいう長径とは、異方性粒子における最も長い方向即ち長軸の長さであり、正八面体や球状の粒子のように等方性の粒子については長軸短軸の区別が無いため単にその径に相当する。長径が500nmよりも大きいものは、表面積が小さくなる為相互作用が不十分となり、熱可塑性樹脂に対する物性向上効果が満足に得られなくなるか、あるいは生成物として脆いものとなる。5nmを下回るものは製造工程が煩雑となり、凝集が進行しやすく、工業的にも不利となる。
(Alumina particles)
The alumina particles used in the present invention can be arbitrarily selected from commercially available ones, but are desirably alumina particles having a major axis of 5 to 500 nm. The major axis here is the length of the longest axis in anisotropic particles, that is, the length of the major axis. For isotropic particles such as regular octahedrons and spherical particles, there is no distinction between major and minor axes. It corresponds to the diameter. When the major axis is larger than 500 nm, the surface area becomes small and the interaction becomes insufficient, and the effect of improving the physical properties with respect to the thermoplastic resin cannot be obtained satisfactorily, or the product becomes brittle. If the thickness is less than 5 nm, the production process becomes complicated, aggregation tends to proceed, and this is industrially disadvantageous.
本発明におけるアルミナ微粒子の形状は特に限定されず、一般的な多面体だけでなく、直方体や板状、針状なども用いることができる。 The shape of the alumina fine particles in the present invention is not particularly limited, and not only a general polyhedron but also a rectangular parallelepiped, a plate shape, and a needle shape can be used.
アルミナ粒子の製法は特に限定されず、粒径が制御できる範囲に於いて、気相法、ゾルゲル法、コロイド沈殿法、溶融金属噴霧酸化法、アーク放電などの、任意の方法で得られたもので構わないが、比較的異方性の高い市販品としては、例えば触媒化成工業(株)製「Cataloid-AS-3」のような製品が挙げられる。 The method for producing the alumina particles is not particularly limited, and is obtained by an arbitrary method such as a gas phase method, a sol-gel method, a colloidal precipitation method, a molten metal spray oxidation method, or an arc discharge as long as the particle size can be controlled. However, as a commercially available product with relatively high anisotropy, for example, a product such as “Cataloid-AS-3” manufactured by Catalytic Chemical Industry Co., Ltd. may be mentioned.
アルミナ粒子の中でも特に本発明の効果が顕著なものとして、本質的にベーマイトの形の結晶性アルミナ−水和物が挙げられる。ここでいう“本質的に”、とは、アルミナの合成工程において100%の純度のベーマイトを得ることは工業的には困難であることから、5%程度のベーマイト以外の異なる結晶系が混在していることがあっても、全体としてベーマイトと見なせることを指して、ベーマイトと呼称することを意味する。 Among the alumina particles, particularly remarkable effect of the present invention is crystalline alumina hydrate in the form of boehmite. “Essentially” as used herein means that it is difficult industrially to obtain boehmite having a purity of 100% in the alumina synthesis process, and therefore different crystal systems other than about 5% boehmite are mixed. This means that it can be regarded as boehmite as a whole and called boehmite.
なお、アルミナの各種水和物のうち、ギブサイト、バイアライトといった3水和物は、実質的にはアルミナ水和物というよりは水酸化アルミニウムに相当し、前記高温改質・不活性化処理を行っても結晶水として保持されるOH基当量が多いため、熱可塑性樹脂へのダメージを抑えきれないことが多い。また、結晶水を持たないα-アルミナに関しては、一般に粒径が大きく、長径を500nm未満にまで微細化することが工業的にはやや困難である。したがってポリマーとの相互作用を期待するには、ベーマイトに比べるとやや不利となる。 Of the various hydrates of alumina, trihydrates such as gibbsite and vialite substantially correspond to aluminum hydroxide rather than alumina hydrate, and the high temperature reforming / inactivation treatment is performed. In many cases, the damage to the thermoplastic resin cannot be suppressed because there are many equivalents of OH groups retained as crystal water. Further, α-alumina having no water of crystallization generally has a large particle size, and it is somewhat difficult industrially to make the major axis finer to less than 500 nm. Therefore, in order to expect the interaction with the polymer, it is somewhat disadvantageous compared to boehmite.
さらに、結晶水が少なく表面積も大きいアルミナとして、δ-アルミナであるDegussa社製超微粒子状アルミナ「AEROXIDE(登録商標) Alu C」が挙げられるが、本アルミナは燃焼加水分解過程を経ており、既に粗大粒が含まれていることから、やはりベーマイトに比べるとやや不利となる。 Furthermore, as an alumina with a small amount of water of crystallization and a large surface area, Degussa's ultrafine particulate alumina “AEROXIDE (registered trademark) Alu C”, which is δ-alumina, is mentioned. This alumina has already undergone a combustion hydrolysis process, Since coarse grains are included, it is somewhat disadvantageous compared to boehmite.
本発明で使用する変性剤は有機化合物もしくは無機化合物であり、上述したアルミナ粒子の表面を改質し、その表面活性基を失活させるものであれば特に限定されるものではない。それぞれ単独で用いても構わないし、複数を組み合わせても良い。 The modifier used in the present invention is an organic compound or an inorganic compound, and is not particularly limited as long as it modifies the surface of the alumina particles described above and deactivates the surface active groups. Each may be used alone or in combination.
(変性剤)
本発明で使用する変性剤は、有機化合物を用いる場合、溶解度パラメーター(δ)が15〜35(MPa)1/2で、かつ大気圧における沸点が90℃以上であるものが好ましい。ここでいう溶解度パラメーター(δ)はJ.Brandrup、E.H.Immergut、E.A.Grulke編;Polymer Handbook、第4版(1999年、米国、John Wiley&Sons社刊、ISBN:第1巻0−47936−5、第2巻0−47936−6)第2巻VII/688〜VII/694ページにアルファベット順記載の表にある各種溶媒の数値である。表に記載のない溶媒の数値は同刊行物のVII章に記載の方法で決定する。
(Modifier)
In the case of using an organic compound, the modifier used in the present invention preferably has a solubility parameter (δ) of 15 to 35 (MPa) 1/2 and a boiling point of 90 ° C. or higher at atmospheric pressure. The solubility parameter (δ) here is J. Brandrup, E.M. H. Immergut, E.M. A. Grulke; Polymer Handbook, 4th edition (1999, published by John Wiley & Sons, USA, Volume 1: 0-47936-5, Volume 2: 0-47936-6) Volume 2 VII / 688-VII / 694 It is a numerical value of various solvents in the table described in alphabetical order on the page. Solvent values not listed in the table are determined by the method described in Chapter VII of the publication.
前記変性剤が前記溶解度パラメーター(δ)15〜35(MPa)1/2の範囲を満足しない場合、本発明の変性アルミナゾルを用いて樹脂組成物製造する際の該樹脂への変性アルミナ粒子の分散性が低下する場合がある。従って溶解度パラメーター(δ)の下限値は好ましくは18、さらに好ましくは19であり、その上限値は好ましくは32、さらに好ましくは30である。 When the modifier does not satisfy the solubility parameter (δ) of 15 to 35 (MPa) 1/2 , the dispersion of the modified alumina particles in the resin when the resin composition is produced using the modified alumina sol of the present invention May decrease. Therefore, the lower limit value of the solubility parameter (δ) is preferably 18, more preferably 19, and the upper limit value thereof is preferably 32, more preferably 30.
かかる変性剤は単一でも混合してでも使用可能であるが、複数種の混合物の場合、該混合物の溶解度パラメーター(δ)も上記溶解度パラメーター(δ)を満足するのが同様の理由から好ましい。ここでかかる混合物の場合は各変性剤(通常は前記Polymer Handbookの表にある溶媒から選ばれる)の溶解度パラメーターにそれぞれのモル分率を掛けた積の総和の数値を用いる。 Such modifiers can be used singly or in combination, but in the case of a mixture of a plurality of types, it is preferable for the same reason that the solubility parameter (δ) of the mixture also satisfies the solubility parameter (δ). In the case of such a mixture, the numerical value of the sum of products obtained by multiplying the solubility parameter of each modifier (usually selected from the solvents in the table of the Polymer Handbook) by the respective mole fractions is used.
次に第二の要件である大気圧における沸点について説明する。ここでいう沸点は、変性剤が複数種類の混合物である場合は、その混合物の成分のうち最も低い沸点を有するものの沸点である。これが100℃に満たないと変性効果(樹脂組成物への分散性や熱安定性など)が低下する場合がある。該沸点は好ましくは110℃以上、さらに好ましくは130℃以上、最も好ましくは150℃以上である。一方、その上限値は使用する際の熱に起因する好ましくない副反応(熱分解など)が問題とならず、かつ蒸留除去(必要に応じ減圧してもよい)できる限りにおいて制限はないが、通常大気圧において400℃、蒸留除去性から50mmHgの減圧度における沸点として通常300℃、好ましくは250℃、さらに好ましくは220℃である。 Next, the boiling point at atmospheric pressure, which is the second requirement, will be described. The boiling point here is the boiling point of the component having the lowest boiling point among the components of the mixture when the modifier is a mixture of a plurality of types. If this is less than 100 ° C., modification effects (such as dispersibility in the resin composition and thermal stability) may be reduced. The boiling point is preferably 110 ° C. or higher, more preferably 130 ° C. or higher, and most preferably 150 ° C. or higher. On the other hand, the upper limit is not limited as long as undesirable side reactions (thermal decomposition, etc.) due to heat at the time of use do not become a problem and can be removed by distillation (may be reduced in pressure if necessary) The boiling point at a reduced pressure of 50 mmHg is usually 300 ° C., preferably 250 ° C., more preferably 220 ° C.
かかる変性剤を前記アルミナ粒子に作用させる工程は、温度を高める目的などでオートクレーブなど密閉反応容器内で加圧状態で行ってもよい。 The step of causing the modifier to act on the alumina particles may be performed in a pressurized state in a closed reaction vessel such as an autoclave for the purpose of increasing the temperature.
前記変性剤は分子構造中に酸素原子、窒素原子、リン原子及び硫黄原子(以下、合わせてヘテロ原子と記載する場合がある)のいずれかを分子構造中に有する有機化合物であることが望ましい。これは該へテロ原子が孤立電子対を正帯電中心に供与する性質(例えば水素結合性や遷移金属原子への配位結合性など)に起因する強い溶媒和能力を有するので、前記アルミナ粒子を分散安定化する能力が高いと推測されるためである。具体的な化学構造例として、エーテル結合や3級アミノ基などの炭素原子との単結合のみを有する化学構造、ケトン基、アルデヒド基、カルボキシル基またはそのエステル、カーボネート結合、ウレタン結合、アミド結合などのカルボニル基を有する化学構造、ヘテロ原子を含有する芳香環(ピリジン環やピロール環など)、スルホン酸基またはそのエステル、リン酸基またはそのエステル、亜リン酸基またはそのエステルなどが挙げられる。 The modifying agent is preferably an organic compound having any one of an oxygen atom, a nitrogen atom, a phosphorus atom, and a sulfur atom (hereinafter sometimes collectively referred to as a hetero atom) in the molecular structure. This is because the heteroatom has a strong solvating ability due to the property of donating a lone pair of electrons to the positively charged center (for example, hydrogen bondability and coordination bondability to a transition metal atom). This is because the ability to stabilize dispersion is estimated to be high. Specific examples of chemical structures include chemical structures having only single bonds with carbon atoms such as ether bonds and tertiary amino groups, ketone groups, aldehyde groups, carboxyl groups or their esters, carbonate bonds, urethane bonds, amide bonds, etc. And a chemical structure having a carbonyl group, an aromatic ring containing a hetero atom (such as a pyridine ring or a pyrrole ring), a sulfonic acid group or an ester thereof, a phosphoric acid group or an ester thereof, a phosphorous acid group or an ester thereof.
これらの変性剤のうちオキシカルボニル基を分子構造に含有する変性剤、ならびに有機酸又はそのエステルに代表される変性剤を用いるのが好ましい。オキシカルボニル基を分子構造に含有する変性剤としては、例えばグリコール酸、乳酸、ヒドロアクリル酸、グリセリン酸、りんご酸、酒石酸、クエン酸、マンデル酸が挙げられる。 Of these modifiers, it is preferable to use a modifier containing an oxycarbonyl group in the molecular structure and a modifier represented by an organic acid or an ester thereof. Examples of the modifying agent containing an oxycarbonyl group in the molecular structure include glycolic acid, lactic acid, hydroacrylic acid, glyceric acid, malic acid, tartaric acid, citric acid, and mandelic acid.
また有機酸又はそのエステルに代表される変性剤としては、例えばスルホン酸、カルボン酸、リン酸の有機基置換誘導体が望ましい。これらの有機化合物は、水酸基、カルボニル基、窒素原子、リン原子及び硫黄原子などを有し、これによってその内部に、S=O結合、P=O結合、C=O結合およびOH基などの官能基を有するようになる。 Moreover, as a modifier represented by an organic acid or an ester thereof, for example, an organic group-substituted derivative of sulfonic acid, carboxylic acid, or phosphoric acid is desirable. These organic compounds have a hydroxyl group, a carbonyl group, a nitrogen atom, a phosphorus atom, a sulfur atom, and the like, and thereby have functional groups such as an S = O bond, a P = O bond, a C = O bond, and an OH group. Have a group.
したがって、アルミナ粒子表面の代表的な活性基であるAlOH基に対して強い配位を起こし、以下に詳述する高温処理を通じた脱水反応により、前記AlOH基を実質的に不可逆なAl-O-X(X=S,P,C)型のイオンに改質(イオン結合を形成)するようになる。この結果、前記アルミナ粒子の表面改質をより効果的に行うことができ、表面活性基をより効率的に失活することができるようになる。さらに前記AlOH基が失活した結果、粒子表面に水素結合などの相互作用で強固に粒子表面に存在している吸着水を除去できるようになる。 Therefore, strong coordination occurs with respect to AlOH groups, which are representative active groups on the surface of alumina particles, and the AlOH groups are substantially irreversible by a dehydration reaction through high-temperature treatment described in detail below. X = S, P, C) type ions are modified (ion bonds are formed). As a result, the surface modification of the alumina particles can be performed more effectively, and the surface active groups can be deactivated more efficiently. Furthermore, as a result of the deactivation of the AlOH group, the adsorbed water present on the particle surface can be removed firmly by interaction such as hydrogen bonding on the particle surface.
なお、以下に詳述するように、上記のようにして生じた2種類の水は、反応容器から揮散するため、アルミナ粒子の乾燥が進むことになる。 As will be described in detail below, the two types of water generated as described above are volatilized from the reaction vessel, so that the drying of the alumina particles proceeds.
一方、エステルの場合は、初期状態ではOH基を有していないものもあるが、以下に詳述する高温処理を通じた加水分解の結果、前記エステルには多くのOH基が生成するようになる。したがって、このOH基によって、上述したようにして、アルミナ粒子表面の代表的な活性基であるAlOH基を実質的に不可逆なAl-O-X(X=S,P,C)型のイオンに改質(イオン結合を形成)するようになる。この結果、前記アルミナ粒子の表面改質をより効果的に行うことができ、表面活性基をより効率的に失活することができるようになる。 On the other hand, some esters do not have OH groups in the initial state, but as a result of hydrolysis through high-temperature treatment described in detail below, many OH groups will be generated in the ester. . Therefore, with this OH group, as described above, the AlOH group, which is a typical active group on the surface of alumina particles, is reformed into substantially irreversible Al-OX (X = S, P, C) type ions. (Ion bonds are formed). As a result, the surface modification of the alumina particles can be performed more effectively, and the surface active groups can be deactivated more efficiently.
なお、上述した有機基置換誘導体において、その有機基は後段で混合されるポリマーを始めとする有機成分の種類に応じて適宜選択すればよく、例えば、以下に詳述するような熱可塑性樹脂に対しては、アミノアルキル基、エポキシアルキル基、フェニル基、メチル基、エチル基、プロピル基、ブチル基、オクチル基、イソシアネートアルキル基などから選ばれる。 In the organic group-substituted derivative described above, the organic group may be appropriately selected according to the type of organic component including the polymer mixed in the latter stage. For example, in the thermoplastic resin described in detail below, On the other hand, it is selected from aminoalkyl groups, epoxyalkyl groups, phenyl groups, methyl groups, ethyl groups, propyl groups, butyl groups, octyl groups, isocyanate alkyl groups, and the like.
具体的な変性剤の例としては、スルホン酸系誘導体の場合、メタンスルホン酸、エタンスルホン酸などのアルキルスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、スチレンスルホン酸、アルキルベンゼンスルホン酸などの芳香族スルホン酸、及びこれらの低級アルコールとのエステル、アルカリ金属塩、アンモニウム塩が挙げられる。 Specific examples of the modifier include, in the case of sulfonic acid derivatives, alkyl sulfonic acids such as methane sulfonic acid and ethane sulfonic acid, aromatics such as benzene sulfonic acid, p-toluene sulfonic acid, styrene sulfonic acid, and alkyl benzene sulfonic acid. Group sulfonic acids, esters thereof with these lower alcohols, alkali metal salts, and ammonium salts.
カルボン酸系誘導体の場合、酢酸、プロピオン酸、酪酸、吉草酸、ステアリン酸、リノール酸、乳酸、マロン酸、アジピン酸、マレイン酸、フマル酸、アクリル酸などのアルキルカルボン酸、安息香酸、フタル酸各異性体、サリチル酸などの芳香族カルボン酸、更にはポリアクリル酸などの高分子カルボン酸、及びこれらの低級アルコールとのエステル、アルカリ金属塩、アンモニウム塩が挙げられる。 In the case of carboxylic acid derivatives, acetic acid, propionic acid, butyric acid, valeric acid, stearic acid, linoleic acid, lactic acid, malonic acid, adipic acid, maleic acid, fumaric acid, acrylic acid and other alkyl carboxylic acids, benzoic acid, phthalic acid Examples include isomers, aromatic carboxylic acids such as salicylic acid, polymer carboxylic acids such as polyacrylic acid, and esters with these lower alcohols, alkali metal salts, and ammonium salts.
リン酸系誘導体の場合、トリブチルホスフェート、ジエチルホスフェート、メチルホスフェートなどのリン酸モノ/ジ/トリアルキルエステル、トリフェニルホスフェートなどのリン酸アリールエステル、ジメチルフェニルホスフォナイトなどのホスフォン酸エステル、トリブチルホスファイト、トリフェニルホスファイトなどの亜リン酸エステル、トリフェニルホスフィンオキシドなどのホスフィンオキシド、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどの環状亜リン酸エステル、メチルホスフォン酸、エチルホスフォン酸、フェニルホスフォン酸などのホスフォン酸、メチルホスフィン酸、エチルホスフィン酸、フェニルホスフィン酸、ジフェニルホスフィン酸などのホスフィン酸、およびこれらの低級アルコールとのエステル、アルカリ金属塩、アンモニウム塩が挙げられる。 In the case of phosphoric acid derivatives, phosphoric acid mono / di / trialkyl esters such as tributyl phosphate, diethyl phosphate and methyl phosphate, phosphoric acid aryl esters such as triphenyl phosphate, phosphonic acid esters such as dimethylphenyl phosphonite, tributyl phosphate Phosphites such as phyto, triphenyl phosphite, phosphine oxides such as triphenylphosphine oxide, cyclic phosphites such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, methyl Phosphonic acids such as phosphonic acid, ethyl phosphonic acid, and phenyl phosphonic acid, phosphinic acids such as methyl phosphinic acid, ethyl phosphinic acid, phenyl phosphinic acid, and diphenyl phosphinic acid, and lower alcohols thereof. Esters of alkali metal salts, ammonium salts.
なお、これら具体例の内、例えばトリブチルホスファイトなどは、以下に詳述する高温処理の条件下において液体であるので、以下に詳述するアルミナ粒子と変性剤との接触は液相下で行うことになる。この場合、前記アルミナ粒子と前記変性剤との接触を確実に行うことができ、前記アルミナ粒子の改質及び結果としての変性を効率的に行うことができる。 Of these specific examples, tributyl phosphite, for example, is a liquid under the conditions of the high-temperature treatment described in detail below, so that the contact between the alumina particles and the modifier described in detail below is performed in the liquid phase. It will be. In this case, the contact between the alumina particles and the modifier can be reliably performed, and the modification of the alumina particles and the resulting modification can be efficiently performed.
上記有機化合物の他にも有機酸無水物、加水分解性有機化合物を用いることもできる。これらの試薬は、粒子表面上の活性OH基に水素結合などで吸着している水をまず優先的に除去し、その後有機酸無水物、加水分解性有機化合物の有する有機基が活性基であるAlOH基に対して作用し、失活させ、変性アルミナ粒子を得るものである。有機酸無水物としては無水カルボン酸、無水スルホン酸があげることができ、より具体的な例としては無水酢酸、無水安息香酸、無水マレイン酸、無水フタル酸、無水ベンゼンスルホン酸、無水パラトルエンスルホン酸などである。加水分解性有機化合物としては前述した加水分解性を有するエステル化合物の他に、分子中にカーボネート結合を有する化合物、たとえばジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネートなどである。その他、オルトギ酸トリメチル、オルトギ酸トリエチル、オルト酢酸トリメチルなどのオルトエステル類も挙げられる。 In addition to the above organic compounds, organic acid anhydrides and hydrolyzable organic compounds can also be used. These reagents first remove water adsorbed to the active OH groups on the particle surface by hydrogen bonds first, and then the organic groups of the organic acid anhydrides and hydrolyzable organic compounds are the active groups. It acts on AlOH groups and deactivates them to obtain modified alumina particles. Examples of the organic acid anhydride include carboxylic anhydride and sulfonic anhydride. More specific examples include acetic anhydride, benzoic anhydride, maleic anhydride, phthalic anhydride, benzenesulfonic anhydride, and paratoluenesulfone anhydride. Such as acids. Examples of the hydrolyzable organic compound include compounds having a carbonate bond in the molecule, such as dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, and propylene carbonate, in addition to the ester compound having hydrolyzability described above. Other examples include orthoesters such as trimethyl orthoformate, triethyl orthoformate, and trimethyl orthoacetate.
(無機化合物)
本発明で使用する変性剤は、無機化合物を用いる場合、無機酸又は無機脱水性試薬を用いるのが好ましい。無機酸としては無機酸もしくはその塩化物を選ぶことができる。具体的な無機酸としては硫酸、塩酸、硝酸、塩素酸、亜塩素酸、過塩素酸、次亜塩素酸、リン酸などをあげることができる。その塩化物の例としては硫酸塩、硝酸塩、塩素化物、亜硫酸塩、亜硝酸塩、塩素酸塩、亜塩素酸塩、過塩素酸塩、次亜塩素酸塩、リン酸塩であり、具体例をあげると硫酸ナトリウム、硫酸カルシウム、ナトリウムミョウバン、硝酸ナトリウム、塩化ナトリウム、塩化カルシウム、塩素酸カリウム、リン酸カルシウムなどを挙げることができる。これらに含まれる硫酸イオン、塩化物イオン、硝酸イオン、塩素酸イオン、亜塩素酸イオン、過塩素酸イオン、次亜塩素酸イオンは上述した有機化合物と同様に、活性基であるAlOH基に対して作用し、高温処理することでOH基を不可逆なAl-O-X(X=硫酸イオン、塩化物イオンなど)のイオンに改質(イオン結合を形成)させて失活させることができる。また同様にAlOH基が失活した結果、粒子表面の水素結合などの相互作用が消失し、粒子表面に吸着していた水が容易に脱水できるようになり、結果として乾燥した変性アルミナ粒子を得ることができる。
(Inorganic compounds)
In the case of using an inorganic compound, the modifier used in the present invention is preferably an inorganic acid or an inorganic dehydrating reagent. As the inorganic acid, an inorganic acid or a chloride thereof can be selected. Specific examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitric acid, chloric acid, chlorous acid, perchloric acid, hypochlorous acid, and phosphoric acid. Examples of the chloride are sulfate, nitrate, chloride, sulfite, nitrite, chlorate, chlorite, perchlorate, hypochlorite, phosphate. Examples thereof include sodium sulfate, calcium sulfate, sodium alum, sodium nitrate, sodium chloride, calcium chloride, potassium chlorate, and calcium phosphate. Sulfate ion, chloride ion, nitrate ion, chlorate ion, chlorite ion, perchlorate ion, and hypochlorite ion contained in these are similar to the above-mentioned organic compounds with respect to the active group AlOH group. By acting at a high temperature, the OH group can be inactivated by reforming (forming ionic bonds) to irreversible Al-OX (X = sulfate ion, chloride ion, etc.) ions. Similarly, as a result of deactivation of AlOH groups, interactions such as hydrogen bonding on the particle surface disappear, and water adsorbed on the particle surface can be easily dehydrated, resulting in dry modified alumina particles. be able to.
無機脱水性試薬としては無機酸塩無水物、無機脱水剤を用いる。これらの試薬は、その試薬の有する脱水能力で粒子表面上の活性OH基に水素結合などで吸着している吸着水をまず優先的に除去し、その後試薬の有する有機基、イオンが、上述してきた内容と同様に活性基であるAlOH基に対して作用し、高温処理することで失活させ、乾燥した変性アルミナ粒子を得ることができる。無機酸塩無水物としては無水硫酸ナトリウム、無水硫酸マグネシウム、無水硝酸ナトリウム、などをあげることができる。無機脱水剤とは、いわゆる有機溶媒用乾燥剤として用いることができるもので、モレキュラーシーブス、水素化カルシウム、金属ナトリウムなどをあげることができる。ただしこれらの無機脱水剤は粒子表面上の吸着水、有機溶媒や樹脂中に溶存している水を除去する能力を有するが、活性基であるAlOH基に対してはほとんど効果が無く、他の変性剤との併用が好ましい。 As the inorganic dehydrating reagent, an inorganic acid anhydride and an inorganic dehydrating agent are used. These reagents first remove preferentially the adsorbed water adsorbed to the active OH groups on the particle surface by hydrogen bonds or the like due to the dehydrating ability of the reagents, and then the organic groups and ions of the reagents have been described above. In the same manner as described above, it can act on AlOH groups which are active groups and can be deactivated by high-temperature treatment to obtain dried modified alumina particles. Examples of the inorganic acid salt anhydride include anhydrous sodium sulfate, anhydrous magnesium sulfate, and anhydrous sodium nitrate. The inorganic dehydrating agent can be used as a so-called desiccant for organic solvents, and examples thereof include molecular sieves, calcium hydride, and sodium metal. However, these inorganic dehydrating agents have the ability to remove adsorbed water on the particle surface, water dissolved in organic solvents and resins, but have little effect on AlOH groups which are active groups. Use in combination with a modifier is preferred.
(アルミナ粒子と変性剤との接触)
本発明においては、上述したアルミナ粒子の表面活性基を失活するに際し、上述した変性剤を接触させる。この接触に際しては、環境温度を100〜400℃の範囲に設定する。かかる温度範囲は、前記アルミナ粒子表面の改質を十分に行って表面活性基の失活を効果的に実行するとともに、高温操作を回避し、取り扱い及び装置構成を簡略化するとともに、アルミナ粒子自体の構造変化や不均質化を抑制するために設定されたものである。
(Contact between alumina particles and modifier)
In the present invention, the above-described modifier is brought into contact with the above-described surface active group of the alumina particles when deactivated. At the time of this contact, the environmental temperature is set in a range of 100 to 400 ° C. Such a temperature range is sufficient to effectively modify the surface of the alumina particles to effectively deactivate the surface active groups, avoid high temperature operation, simplify the handling and apparatus configuration, and the alumina particles themselves. It is set to suppress structural change and heterogeneity of the material.
アルミナ粒子と変性剤とを接触させるに際しては、その接触効果をより向上させるために液相中で行うことが好ましい。液相中での接触を行うに際しては、前記変性剤が100〜400℃の温度範囲かつ接触の際に使用する反応系の圧力範囲において液体である場合については、前記変性剤中に前記アルミナ粒子を分散させることによって実施する。なお、常圧下、100〜400℃の温度範囲において液体を呈する、本発明で好ましく使用することのできる変性剤としては、上記に例示した有機化合物の内、トリブチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト及びフェニルホスフィン酸を挙げることができる。 When the alumina particles and the modifier are brought into contact with each other, it is preferably performed in a liquid phase in order to further improve the contact effect. When the contact in the liquid phase is performed, when the modifier is liquid in the temperature range of 100 to 400 ° C. and the pressure range of the reaction system used in the contact, the alumina particles are contained in the modifier. It is carried out by dispersing. In addition, as a modifier which can be preferably used in the present invention and exhibits a liquid in a temperature range of 100 to 400 ° C. under normal pressure, among the organic compounds exemplified above, tributyl phosphite, triphenyl phosphite, Mention may be made of cresyl phosphite and phenylphosphinic acid.
なお、上述した変性剤が液体であるか否かによらず、別途所定の有機溶媒を用い、この有機溶媒中にアルミナ粒子及び有機化合物を分散配合することによっても、前記アルミナ粒子と前記変性剤との接触を液相下で行うことができる。 It should be noted that, regardless of whether or not the above-described modifier is a liquid, a specific organic solvent is separately used, and the alumina particles and the modifier are dispersed and blended in the organic solvent. Can be contacted under liquid phase.
このような有機溶媒としては、100〜400℃の温度範囲かつ接触の際に使用する反応系の圧力範囲において液体であるものが用いられる。常圧下、100〜400℃で液体を呈する、本発明で好ましく使用することのできる有機溶媒としては、トルエン(沸点111℃)、キシレン(沸点140℃)などの芳香族炭化水素系溶媒、酢酸ブチル(沸点125℃)などのエステル系溶媒、シクロヘキサノン(沸点155℃)などのケトン系溶媒、1,4-ジオキサン(沸点101℃)やエチレングリコール及びそのエーテルなどのエーテル系溶媒、n-ブタノール(沸点118℃)、シクロヘキサノール(沸点160℃)などのアルコール系溶媒、syn-テトラクロロエタン(沸点146℃)などのハロゲン系溶媒、N,N−ジメチルホルムアミド(沸点153℃)、ジメチルスルホキシド(沸点189℃)などの非プロトン系極性溶媒などを挙げることができる。 As such an organic solvent, a solvent which is liquid in a temperature range of 100 to 400 ° C. and in a pressure range of a reaction system used for contact is used. Examples of the organic solvent that exhibits a liquid at 100 to 400 ° C. under normal pressure and can be preferably used in the present invention include aromatic hydrocarbon solvents such as toluene (boiling point 111 ° C.) and xylene (boiling point 140 ° C.), butyl acetate. Ester solvents such as (boiling point 125 ° C), ketone solvents such as cyclohexanone (boiling point 155 ° C), ether solvents such as 1,4-dioxane (boiling point 101 ° C) and ethylene glycol and its ethers, n-butanol (boiling point) 118 ° C), alcohol solvents such as cyclohexanol (boiling point 160 ° C), halogen solvents such as syn-tetrachloroethane (boiling point 146 ° C), N, N-dimethylformamide (boiling point 153 ° C), dimethyl sulfoxide (boiling point 189 ° C) And aprotic polar solvents such as
ただし、アルミナ粒子はこれらの高沸点溶媒に分散させる前の時点で、既に水も含む別種の溶媒に分散したゾルの状態であっても良く、この場合の溶媒の沸点は特に制限されない。 However, the alumina particles may be in the form of a sol that has already been dispersed in another solvent including water before being dispersed in these high-boiling solvents, and the boiling point of the solvent in this case is not particularly limited.
また、前記アルミナ粒子は、変性剤との接触させる際、変性剤及び/又は有機溶媒の総量に対して2〜50重量%の濃度に調製することが好ましい。アルミナ粒子の濃度が2重量%より希薄な場合は、反応装置あたりの実質処理量が少なくなり工業的に不利となる。アルミナ粒子の濃度が50重量%を超える場合は、流動性に劣ってくるため、接触操作が安定的に行えなくなるとともに、均一な表面処理が行えなくなることで、結果的に改質・不活性化も充分行えなくなる場合がある。 Moreover, when making the said alumina particle contact with a modifier | denaturant, it is preferable to prepare to the density | concentration of 2 to 50 weight% with respect to the total amount of a modifier | denaturant and / or an organic solvent. When the concentration of alumina particles is less than 2% by weight, the actual throughput per reactor is reduced, which is industrially disadvantageous. When the concentration of alumina particles exceeds 50% by weight, the fluidity is inferior, so that the contact operation cannot be performed stably and uniform surface treatment cannot be performed, resulting in modification and inactivation. May not be sufficient.
なお、上述したようにアルミナ粒子と変性剤との接触を液相下で行う場合、アルミナ粒子の形態は、粉体でも懸濁分散液でもケーキ状でも構わないが、粉体のものが取り扱い上望ましく、接触を通じた改質及び失活時間を短縮化することができる。なお、懸濁液またはケーキ状の場合は改質及び失活に長時間を要する場合がある。 As described above, when the contact between the alumina particles and the modifier is performed in a liquid phase, the form of the alumina particles may be powder, suspension dispersion, or cake, but the powder is preferable for handling. Desirably, the modification and deactivation time through contact can be shortened. In the case of a suspension or cake, it may take a long time for modification and deactivation.
アルミナ粒子と変性剤とを接触させる具体的な操作として、以下に示すようなものを例示することができる。 Specific examples of the operation for bringing the alumina particles into contact with the modifying agent include the following.
反応容器としては、冷却管を取り付けた一般的な加熱装置付き反応容器を用いることができ、有機溶媒を用いない場合、(i)未処理のアルミナ粒子を、表面活性基を失活させる上述した液体状の変性剤中に分散させ、(ii)次いで、得られた分散溶液を上記加熱装置付き反応容器にセットし、100〜400℃にて1〜24時間保持する。(iii)この間、冷却管の上端は開放しておき、発生する水分があれば揮散できるようにしておく。(iv)ついで、窒素又は乾燥空気雰囲気下で前記反応容器内を室温に戻し、(v)必要に応じて濾過、乾燥を行う。得られたアルミナ粒子は、組成物化するまでの間、密閉保存する。 As a reaction vessel, a general reaction vessel equipped with a cooling pipe and equipped with a heating device can be used. When an organic solvent is not used, (i) untreated alumina particles are deactivated on the surface active groups as described above. (Ii) Next, the obtained dispersion solution is set in the reaction vessel equipped with the heating device and held at 100 to 400 ° C. for 1 to 24 hours. (iii) During this time, the upper end of the cooling pipe is kept open so that it can be volatilized if there is water generated. (iv) Next, the inside of the reaction vessel is returned to room temperature in a nitrogen or dry air atmosphere, and (v) filtration and drying are performed as necessary. The obtained alumina particles are stored hermetically until composition.
また、有機溶媒を用いる場合は以下のようにして実施する。(i)未処理のアルミナ粒子を、常圧下、100〜400℃で液体を呈する(100〜400℃の温度範囲あるいはこれ以上の温度において沸点を有する)溶媒中に分散させるとともに、表面活性基を失活させる上述した有機化合物を分散させ、(ii)次いで、得られた分散溶液を上記加熱装置付き反応容器にセットし、100〜400℃にて1〜24時間保持する。(iii)この間、冷却管の上端は開放しておき、発生する水分があれば揮散できるようにしておく。(iv)ついで、窒素又は乾燥空気雰囲気下で前記反応容器内を室温に戻し、(v)必要に応じて濾過、乾燥を行う。得られたアルミナ粒子は、組成物化するまでの間、密閉保存する。 Moreover, when using an organic solvent, it implements as follows. (i) Untreated alumina particles are dispersed in a solvent exhibiting a liquid at 100 to 400 ° C. under normal pressure (having a boiling point at a temperature range of 100 to 400 ° C. or higher), and surface active groups are added. The above-described organic compound to be deactivated is dispersed. (Ii) Next, the obtained dispersion solution is set in the reaction vessel equipped with the heating device and held at 100 to 400 ° C. for 1 to 24 hours. (iii) During this time, the upper end of the cooling pipe is kept open so that it can be volatilized if there is water generated. (iv) Next, the inside of the reaction vessel is returned to room temperature in a nitrogen or dry air atmosphere, and (v) filtration and drying are performed as necessary. The obtained alumina particles are stored hermetically until composition.
上記アルミナ粒子を保存する際、上述した変性剤との接触を経ることにより、前記アルミナ粒子は所定の有機溶媒中に分散したゾルの形態と採るので、このようなアルミナ粒子分散ゾルの形態で保存するようにすることができる。 When the alumina particles are stored, the alumina particles are in the form of a sol dispersed in a predetermined organic solvent through contact with the above-described modifier. Therefore, the alumina particles are stored in the form of such an alumina particle-dispersed sol. To be able to.
また、適宜溶媒置換などを施し、他の有機溶媒中に表面改質及び失活されたアルミナ粒子を分散させてゾル化し、同じくアルミナ粒子分散ゾルの形態で保存するようにすることもできる。このような有機溶媒としては、トルエン、キシレン、酢酸ブチル、シクロヘキサノン、1,4-ジオキサン、エチレングリコール及びそのエーテル、ブタノール、シクロヘキサノール、テトラクロロエタン、N,N−ジメチルホルムアミド、ジメチルスルホキシドのなかの1つ以上から選ばれる有機溶媒であることが望ましい。 Further, it is possible to perform solvent substitution as appropriate, disperse the surface-modified and deactivated alumina particles in another organic solvent to form a sol, and store it in the form of an alumina particle-dispersed sol. Examples of such organic solvents include toluene, xylene, butyl acetate, cyclohexanone, 1,4-dioxane, ethylene glycol and its ether, butanol, cyclohexanol, tetrachloroethane, N, N-dimethylformamide, and dimethyl sulfoxide. An organic solvent selected from two or more is desirable.
但し、後者の場合、溶媒置換などを行うことになるので、工業的にはコスト高となって不利である。したがって、有機化合物との接触を行って得たアルミナ粒子分散ゾルの形態で保存することが好ましい。 However, in the latter case, solvent replacement is performed, which is disadvantageous in terms of industrial cost. Therefore, it is preferably stored in the form of an alumina particle-dispersed sol obtained by contact with an organic compound.
また、上述したアルミナ粒子分散ゾル中には、必要に応じて、相溶化剤、界面活性剤、有機溶媒などを加えることもできる。 Moreover, a compatibilizing agent, a surfactant, an organic solvent, and the like can be added to the above-described alumina particle-dispersed sol as necessary.
(熱可塑性樹脂組成物)
本発明の熱可塑性樹脂組成物は、上述のようにして表面改質及び失活されたアルミナ粒子と所定の熱可塑性樹脂とを含む。
(Thermoplastic resin composition)
The thermoplastic resin composition of the present invention contains alumina particles surface-modified and deactivated as described above and a predetermined thermoplastic resin.
前記熱可塑性樹脂は、任意の熱可塑性のポリマーから選ばれるが、特に本発明の効果が顕著なものとして、その骨格の化学構造にエステル結合、エーテル結合、アミド結合、イミド結合、ウレタン結合、スルフィド結合、スルホン結合が含まれるポリマーが挙げられる。これらの熱可塑性樹脂中に含まれるエステル結合やエーテル結合といった比較的弱い部分を、樹脂成形時の高温環境においてアルミナ粒子表面の活性な化学種が攻撃して、加水分解や酸化劣化を引き起こすと考えられる。 The thermoplastic resin is selected from arbitrary thermoplastic polymers. Particularly, the effect of the present invention is remarkable, and the chemical structure of the skeleton includes an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond, a sulfide. Examples of the polymer include a bond and a sulfone bond. It is considered that active chemical species on the surface of alumina particles attack the relatively weak parts such as ester bonds and ether bonds contained in these thermoplastic resins in the high temperature environment during resin molding, causing hydrolysis and oxidative degradation. It is done.
上記熱可塑性樹脂としては、ポリカーボネート樹脂(PC)、PMMAやPMAなどのアクリル樹脂、ポリエチレンテレフタレート(PET)ポリブチレンテレフタレート(PBT)などのポリエステル樹脂、ポリアリレート(PAR)、ポリフェニレンエーテル(PPE)、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、フェノキシ樹脂、ナイロン樹脂、ポリイミド樹脂、ウレタン樹脂、ポリアセタール、ポリビニルアセタールなどが挙げられる。 Examples of the thermoplastic resin include polycarbonate resin (PC), acrylic resin such as PMMA and PMA, polyester resin such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyarylate (PAR), polyphenylene ether (PPE), and polysulfone. (PSU), polyethersulfone (PES), polyetheretherketone (PEEK), phenoxy resin, nylon resin, polyimide resin, urethane resin, polyacetal, polyvinyl acetal, and the like.
前記熱可塑性樹脂組成物中におけるアルミナ粒子の濃度は、固形分として1〜70重量%の範囲が好ましい。1重量%未満では機械的強度などの諸特性の向上が認められ難くなる。70重量%を超えると比重の増加が無視できなくなるばかりでなく、衝撃強度の低下も無視できないものとなる。一般に、ポリマーに無機微粒子を大量に配合すると衝撃強度が減少するが、本発明の組成物はナノオーダーのアルミナ微粒子が均一分散したものなので、衝撃強度の低下は実用上小さいが、70重量%を超えるとこれが無視できなくなる。より好ましくは3〜30重量%がよい。 The concentration of the alumina particles in the thermoplastic resin composition is preferably in the range of 1 to 70% by weight as the solid content. If it is less than 1% by weight, it is difficult to recognize improvement in various properties such as mechanical strength. If it exceeds 70% by weight, an increase in specific gravity cannot be ignored, and a decrease in impact strength cannot be ignored. In general, when a large amount of inorganic fine particles are blended with a polymer, the impact strength is reduced. However, since the composition of the present invention is a uniform dispersion of nano-order alumina fine particles, the decrease in impact strength is practically small, but 70% by weight. If it exceeds, this cannot be ignored. More preferably, the content is 3 to 30% by weight.
(熱可塑性樹脂組成物の製造方法)
上記熱可塑性樹脂組成物の製造方法としては、使用する熱可塑性樹脂の種類に応じて、適宜選択することができる。もっとも簡便な直接混練法の場合、一般的な樹脂混練機を用いれば良く、例えば二軸押出成形機、真空微量混練押出機、ラボブラストミル等小型のものから、大型の機械まで、製造スケールに応じて選択する。本例では、このような混練法を用いるに際し、上述のようにして保存しておいたアルミナ粒子分散ゾルと熱可塑性樹脂とを混合し、溶融混練することによって目的とする熱可塑性樹脂組成物を得る。
(Method for producing thermoplastic resin composition)
As a manufacturing method of the said thermoplastic resin composition, it can select suitably according to the kind of thermoplastic resin to be used. In the case of the simplest direct kneading method, a general resin kneader may be used. For example, from a small machine such as a twin screw extruder, a vacuum microkneader extruder, a lab blast mill to a large machine, it can be used on a production scale. Select accordingly. In this example, when such a kneading method is used, the target thermoplastic resin composition is obtained by mixing the alumina particle-dispersed sol and the thermoplastic resin, which have been stored as described above, and melt-kneading. obtain.
他の熱可塑性樹脂組成物の製造方法として溶媒分散法がある。この方法は、熱可塑性樹脂とアルミナ粒子とを含む混合物を有機溶媒分散液とし、十分攪拌混合した後、溶媒を留去して組成物を得る方法である。本例では、上述のようにして予めアルミナ粒子分散ゾルを作製しているので、このゾル中に熱可塑性樹脂を配合して溶解し、高温減圧下において溶媒のみを留去して目的とする熱可塑性樹脂組成物を得る。 Another method for producing a thermoplastic resin composition is a solvent dispersion method. This method is a method in which a mixture containing a thermoplastic resin and alumina particles is used as an organic solvent dispersion, sufficiently mixed with stirring, and then the solvent is distilled off to obtain a composition. In this example, the alumina particle-dispersed sol has been prepared in advance as described above. Therefore, the thermoplastic resin is blended and dissolved in this sol, and only the solvent is distilled off under high temperature and reduced pressure to achieve the desired heat. A plastic resin composition is obtained.
本方法では、熱可塑性樹脂をアルミナ粒子分散ゾル中に溶解する必要があるので、前記ゾルを構成する溶媒は前記熱可塑性樹脂を溶解できるものから構成する必要がある。具体的には、例えばポリカーボネートの場合、テトラヒドロフラン、クロロホルム、メチレンクロライド、1,4-ジオキサン、シクロヘキサノン、テトラクロロエタンなどが挙げられる。 In this method, since it is necessary to dissolve the thermoplastic resin in the alumina particle-dispersed sol, the solvent constituting the sol needs to be composed of a material that can dissolve the thermoplastic resin. Specific examples include polycarbonate, tetrahydrofuran, chloroform, methylene chloride, 1,4-dioxane, cyclohexanone, tetrachloroethane, and the like.
また、その他の熱可塑性樹脂組成物の製造方法として、溶液重合法及び溶融重合法を挙げることができる。前者の場合、予め作製保存しておいたアルミナ粒子分散ゾル中にモノマーを溶解させ、ラジカル開始剤によって重合を進行させ、反応終了後、貧溶媒に注入することで目的とする熱可塑性樹脂組成物を析出させて得る。この方法は、アクリル樹脂などのビニル重合ポリマーをマトリクス熱可塑性樹脂として用いる場合に有効である。例えばメチルメタクリレートの場合、トルエン中でラジカル重合を行い、ヘキサン中に注入すれば組成物を析出させることができる。 Examples of other methods for producing a thermoplastic resin composition include a solution polymerization method and a melt polymerization method. In the former case, the desired thermoplastic resin composition is prepared by dissolving a monomer in an alumina particle-dispersed sol prepared and stored in advance, allowing polymerization to proceed with a radical initiator, and pouring into a poor solvent after completion of the reaction. Is obtained by precipitation. This method is effective when a vinyl polymer such as an acrylic resin is used as the matrix thermoplastic resin. For example, in the case of methyl methacrylate, the composition can be precipitated by radical polymerization in toluene and pouring into hexane.
後者の溶融重合法においては、予め作製保存しておいたアルミナ粒子分散ゾル中に縮合可能なモノマーを配合分散させ、減圧下攪拌させながら加熱して溶媒を留去しつつモノマーの縮重合を進行させ、生成する縮合副生成物を除去することで目的とする熱可塑性樹脂組成物を得る。例えば、ポリエチレンテレフタレートの場合、テレフタル酸とエチレングリコールとアルミナ粒子分散ゾルを混合後、攪拌・加熱・減圧留去によりゾルの溶媒と縮合で生成する水を留去すれば、ナノ組成物を得ることができる。 In the latter melt polymerization method, a condensable monomer is blended and dispersed in an alumina particle-dispersed sol that has been prepared and stored in advance, and the condensation polymerization of the monomer proceeds while the solvent is distilled off while stirring under reduced pressure. And removing the resulting condensation by-product yields the desired thermoplastic resin composition. For example, in the case of polyethylene terephthalate, after mixing terephthalic acid, ethylene glycol, and alumina particle-dispersed sol, if the water produced by condensation with the solvent of the sol is distilled off by stirring, heating, and vacuum distillation, a nano composition can be obtained. Can do.
以下に実施例を挙げるが、本発明はこれに制限されるものではない。 Examples are given below, but the present invention is not limited thereto.
実施例1〜5:アルミナ粒子高温改質・不活性化
実施例1
ベーマイト型アルミナ粒子分散液である川研ファインケミカル(株)製「アルミゾル−10D」(10%ベーマイトアルミナDMF(ジメチルホルムアミド)溶液)(長軸長さ30nm、短軸長さ10nm、固形分10wt%)500gに、シクロヘキサノール500gを加え、次の様に高温改質・不活性化(失活)を行った。(i)アルミナ粒子分散液をガラス容器内に入れ、攪拌翼とスリーワンモーター(HEIDON社製BL300R)により攪拌した。(ii)改質有機化合物として、フェニルホスフォン酸10gを添加し、更に攪拌した。(iii)攪拌しながらガラス容器を加熱し、150℃まで昇温した。(iv)100℃前後から発生する水分は、容器の上方にセットしたエステルトラップへ誘導し、系内に戻らないようにして留去した。(v)このまま16時間改質を行い、アルミナ粒子表面を充分に不活性化させた。(vi)乾燥空気を供給しつつ室温に戻した。この一連の操作により、高温改質・不活性化されたベーマイト型アルミナ粒子のシクロヘキサノール/DMF(ジメチルホルムアミド)分散液を得た。
Examples 1 to 5: High temperature reforming and inactivation of alumina particles
Example 1
“Aluminum sol-10D” (10% boehmite alumina DMF (dimethylformamide) solution) manufactured by Kawaken Fine Chemicals Co., Ltd., which is a boehmite type alumina particle dispersion (major axis length 30 nm, minor axis length 10 nm, solid content 10 wt%) 500 g of cyclohexanol was added to 500 g, and high temperature reforming / inactivation (deactivation) was performed as follows. (i) The alumina particle dispersion was placed in a glass container and stirred with a stirring blade and a three-one motor (BL300R manufactured by HEIDON). (Ii) As a modified organic compound, 10 g of phenylphosphonic acid was added and further stirred. (iii) The glass container was heated with stirring, and the temperature was raised to 150 ° C. (iv) Moisture generated from around 100 ° C. was guided to an ester trap set above the container and distilled off without returning to the system. (v) The modification was carried out for 16 hours as it was to sufficiently inactivate the surface of the alumina particles. (vi) The temperature was returned to room temperature while supplying dry air. Through this series of operations, a high temperature modified / inactivated boehmite type alumina particle cyclohexanol / DMF (dimethylformamide) dispersion was obtained.
実施例2
実施例1におけるシクロヘキサノール500gの代わりにシクロヘキサノン500g、改質剤フェニルホスフォン酸10gの代わりに、城北化学製エチルアシッドホスフェート(商品名「JP-502」)10gを用いた他は、実施例1と同様の操作を行い、高温改質・不活性化されたベーマイト型アルミナ粒子のシクロヘキサノン/DMF(ジメチルホルムアミド)分散液を得た。
Example 2
Example 1 except that 500 g of cyclohexanone was used instead of 500 g of cyclohexanol in Example 1 and 10 g of ethyl acid phosphate (trade name “JP-502”) manufactured by Johoku Chemical was used instead of 10 g of the modifier phenylphosphonic acid. A cyclohexanone / DMF (dimethylformamide) dispersion of boehmite-type alumina particles that had been modified and inactivated at high temperature was obtained.
実施例3
実施例1におけるシクロヘキサノール500gの代わりにジメチルスルホキシド1000g、改質剤フェニルホスフォン酸10gの代わりに、アルドリッチ製エタンスルホン酸10gを用い、反応温度を180℃まで昇温した他は、実施例1と同様の操作を行い、高温改質・不活性化されたベーマイト型アルミナ粒子のジメチルスルホキシド分散液を得た。
Example 3
Example 1 except that 1000 g of dimethyl sulfoxide instead of 500 g of cyclohexanol in Example 1 and 10 g of ethanesulfonic acid made by Aldrich instead of 10 g of phenylphosphonic acid modifier were used and the reaction temperature was raised to 180 ° C. A dimethyl sulfoxide dispersion of boehmite-type alumina particles that had been subjected to the same operation as that described above and which had been modified and inactivated at high temperature was obtained.
実施例4
実施例1における川研ファインケミカル(株)製「アルミゾル‐10D」溶液の代わりにアルミナ粒子分散液としてシーアイ化成(株)製「ナノテックアルミナ-アルコール分散品」(粒径31nm、固形分15%)330g、シクロヘキサノール1000gの代わりにキシレン1000g、改質剤フェニルホスフォン酸10gの代わりに和光純薬製安息香酸10gを用い、反応温度を140℃で行った他は、実施例1と同様の操作を行い、高温改質・不活性化されたアルミナ粒子のキシレン分散液を得た。
Example 4
330 g of “Nanotech Alumina-Alcohol Dispersion” manufactured by C-I Kasei Co., Ltd. as an alumina particle dispersion instead of the “Aluminum Sol-10D” solution manufactured by Kawaken Fine Chemical Co., Ltd. in Example 1 (particle size 31 nm, solid content 15%) The same procedure as in Example 1 was conducted except that 1000 g of xylene was used instead of 1000 g of cyclohexanol, 10 g of benzoic acid manufactured by Wako Pure Chemical Industries was used instead of 10 g of the modifier phenylphosphonic acid, and the reaction temperature was 140 ° C. And a xylene dispersion of alumina particles subjected to high temperature reforming and inactivation was obtained.
実施例5
実施例4における変性剤安息香酸10gの代わりに、改質無機化合物として和光純薬工業製濃硫酸7.5gを用いた他は、実施例1と同様の操作を行い、高温改質・不活性化されたベーマイト型アルミナ粒子のキシレン分散液を得た。
Example 5
In place of 10 g of the modifying agent benzoic acid in Example 4, 7.5 g of concentrated sulfuric acid manufactured by Wako Pure Chemical Industries, Ltd. was used as the modified inorganic compound, and the same operation as in Example 1 was performed to perform high temperature modification / inactivation. A xylene dispersion of the resulting boehmite type alumina particles was obtained.
実施例6
実施例4で調整した高温改質・不活性化されたアルミナ粒子のキシレン分散液500gを(i)ガラス容器内に入れ、マグネチックスターラーにより攪拌した。(ii)追加の変性剤として無水パラトルエンスルホン酸5gを添加し、更に攪拌した。(iii)攪拌しながらガラス容器を加熱し、140℃まで昇温した。(iv)このまま3時間加熱、改質を行った。(v)乾燥空気を供給しつつ室温に戻した。この一連の操作により、2種の変性剤で改質されたアルミナ粒子のキシレン分散液を得た。
Example 6
500 g of the xylene dispersion of alumina particles that had been modified and deactivated at high temperature prepared in Example 4 was placed in (i) a glass container and stirred with a magnetic stirrer. (Ii) As an additional modifier, 5 g of anhydrous paratoluenesulfonic acid was added and further stirred. (Iii) The glass container was heated with stirring, and the temperature was raised to 140 ° C. (Iv) Heating and reforming were carried out for 3 hours as they were. (V) It returned to room temperature, supplying dry air. Through this series of operations, a xylene dispersion of alumina particles modified with two kinds of modifiers was obtained.
実施例7
実施例1におけるシクロヘキサノール1000gと改質剤フェニルホスフォン酸10gの代わりにトリブチルホスファイト1000gを溶媒兼改質剤として用い、反応温度を250℃で行った他は、実施例1と同様の操作を行い、高温改質・不活性化されたベーマイト型アルミナ粒子を得た後、これをメンブランフィルターにて濾過し、ジメチルホルムアミド1000gに再分散することにより、ベーマイト型アルミナ粒子のジメチルホルムアミド分散液を得た。
Example 7
The same operation as in Example 1, except that 1000 g of cyclohexanol and 1000 g of the modifier phenyl phosphonic acid in Example 1 were used instead of 1000 g of tributyl phosphite as a solvent and modifier and the reaction temperature was 250 ° C. To obtain boehmite-type alumina particles that have been modified and deactivated at high temperature, and then filtered through a membrane filter and re-dispersed in 1000 g of dimethylformamide to obtain a dimethylformamide dispersion of boehmite-type alumina particles. Obtained.
実施例8〜16:アルミナ粒子含有樹脂組成物
実施例8(溶液混合)
実施例1で調製したベーマイト型アルミナ粒子分散液(固形分約5%)500gに、三菱エンジニアリングプラスチック(株)製ポリカーボネート「ノバレックス7025A」(重量平均分子量54000)75gをメチレンクロライド400g中に溶解したものを加えて、均一な溶液とした。徐々に減圧度を上げながら溶媒を除去し、最終的に100℃で1Torr以下の減圧下4時間留去し、更に混合物を(株)井元製作所製「真空微量混練押出機IMC−1170B型」を用いて260℃にて15分間混練して樹脂組成物を得た。生成物の灰分は23.5wt%であり、添加したアルミナ粒子がほぼ全量組成物化されていることを確認した。
Examples 8 to 16: Alumina particle-containing resin composition
Example 8 (solution mixing)
In 500 g of the boehmite type alumina particle dispersion (solid content: about 5%) prepared in Example 1, 75 g of polycarbonate “Novalex 7025A” (weight average molecular weight 54000) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was dissolved in 400 g of methylene chloride. Things were added to make a uniform solution. The solvent is removed while gradually increasing the degree of vacuum. Finally, the solvent is distilled off at 100 ° C. under a reduced pressure of 1 Torr or less for 4 hours, and the mixture is further manufactured by Imoto Seisakusho “Vacuum microkneading extruder IMC-1170B type”. And kneaded at 260 ° C. for 15 minutes to obtain a resin composition. The ash content of the product was 23.5 wt%, and it was confirmed that the added alumina particles were almost entirely composed.
この生成物は無色でほぼ透明の外観を有し、黄変などはなく、靭性を保持していた。衝撃強さ(アイゾット)は339J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は49700であり、初期の分子量をほぼ維持していた。この組成物を5%ジメチルホルムアミド溶液とし、平坦なガラス板上に約100μmの厚さにキャストすると、高透明で丈夫なフィルムが得られた。 This product had a colorless and almost transparent appearance, was not yellowed, and retained toughness. The impact strength (Izod) was 339 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 49700, and the initial molecular weight was almost maintained. When this composition was made into a 5% dimethylformamide solution and cast to a thickness of about 100 μm on a flat glass plate, a highly transparent and strong film was obtained.
実施例9(溶液混合)
実施例2で調製したベーマイト型アルミナ粒子分散液(固形分約5%)500gを用いて実施例8と同様の操作を行った。生成物の灰分は22.7wt%であり、添加したアルミナ粒子がほぼ全量組成物化されていることを確認した。この生成物は無色でほぼ透明の外観を有し、黄変などはなく、靭性を保持していた。衝撃強さ(アイゾット)は274J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は47900であり、初期の分子量をほぼ維持していた。
Example 9 (solution mixing)
The same operation as in Example 8 was performed using 500 g of the boehmite-type alumina particle dispersion (solid content: about 5%) prepared in Example 2. The ash content of the product was 22.7 wt%, and it was confirmed that the added alumina particles were almost entirely composed. This product had a colorless and almost transparent appearance, was not yellowed, and retained toughness. The impact strength (Izod) was 274 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 47900, and the initial molecular weight was almost maintained.
実施例10(溶融重合)
関東化学(株)製エチレングリコール124.1g(2mol)と関東化学(株)製ジメチルテレフタル酸194.2g(1mol)に、触媒として酢酸亜鉛18mg(0.1mmol)を添加し、実施例3で調整したベーマイト型アルミナ粒子分散液(固形分約5%)を240g加えて、徐々に減圧度を上げながら195℃まで昇温して溶媒および生成する水分を十分除去し、かつエステル交換反応を進行せしめたのち、280℃で3mTorr以下の減圧下3時間重合し、これを更に280℃にて15分間混練して樹脂組成物を得た。
Example 10 (melt polymerization)
In Example 3, zinc acetate 18 mg (0.1 mmol) was added as a catalyst to Kanto Chemical Co., Ltd. ethylene glycol 124.1 g (2 mol) and Kanto Chemical Co., Ltd. dimethyl terephthalic acid 194.2 g (1 mol). 240 g of the adjusted boehmite type alumina particle dispersion (solid content: about 5%) is added, the temperature is gradually raised to 195 ° C. while gradually increasing the degree of vacuum, and the solvent and water generated are sufficiently removed, and the transesterification proceeds. Then, the mixture was polymerized at 280 ° C. under a reduced pressure of 3 mTorr or less for 3 hours, and further kneaded at 280 ° C. for 15 minutes to obtain a resin composition.
生成物の灰分は5.0wt%であり、添加したアルミナがほぼ全量組成物化されていることを確認した。この組成物は無色半透明で黄変などはなく、靭性を有していた。衝撃強さ(アイゾット)は88J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は58000であり、十分な高分子量を維持していた。 The ash content of the product was 5.0 wt%, and it was confirmed that almost all of the added alumina was composed. This composition was colorless and translucent, did not yellow, and had toughness. The impact strength (Izod) was 88 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 58,000, and a sufficient high molecular weight was maintained.
実施例11(溶液重合)
400mLのトルエン中に、関東化学(株)製メタクリル酸メチル100.1g(1mol)、ラジカル開始剤として和光純薬工業(株)製V-40を12.2g(0.05mol)添加し、実施例4で調製したアルミナ粒子分散液(固形分約5%)を900g加えて、90℃まで昇温してラジカル反応を開始させ、攪拌しながら3時間重合を続けた。反応後反応液を2Lのヘキサン中に注入し、80℃で1Torr以下の減圧下4時間高温改質・不活性化したのち200℃にて15分間混練し、樹脂組成物を得た。
Example 11 (Solution polymerization)
In 400 mL of toluene, 100.1 g (1 mol) of methyl methacrylate manufactured by Kanto Chemical Co., Ltd., and 12.2 g (0.05 mol) of V-40 manufactured by Wako Pure Chemical Industries, Ltd. as a radical initiator were added. 900 g of the alumina particle dispersion (solid content: about 5%) prepared in Example 4 was added, the temperature was raised to 90 ° C. to initiate radical reaction, and polymerization was continued for 3 hours while stirring. After the reaction, the reaction solution was poured into 2 L of hexane, subjected to high temperature reforming / inactivation at 80 ° C. under reduced pressure of 1 Torr or less for 4 hours, and then kneaded at 200 ° C. for 15 minutes to obtain a resin composition.
生成物の灰分は32.2wt%であり、添加したアルミナがほぼ全量組成物化されていることを確認した。この組成物は無色透明で黄変などはなく、ある程度靭性を有していた。衝撃強さ(アイゾット)は37J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は66000であり、十分な高分子量を維持していた。 The ash content of the product was 32.2 wt%, and it was confirmed that the added alumina was almost entirely composed. This composition was colorless and transparent, did not yellow, and had some toughness. The impact strength (Izod) was 37 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 66000, and a sufficient high molecular weight was maintained.
実施例12(溶液混合)
実施例5で調製したベーマイト型アルミナ粒子分散液(固形分約5%)500gそして三菱レイヨン株式会社製メタクリル樹脂「アクリペット標準グレードV」を75g用いて実施例8と同様の操作を行った。生成物の灰分は21.2wt%であり、添加したアルミナ粒子がほぼ全量組成物化されていることを確認した。この生成物は無色でほぼ透明の外観を有し、黄変などはなく、靭性を保持していた。衝撃強さ(アイゾット)は240J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は70000であり、初期の分子量をほぼ維持していた。
Example 12 (solution mixing)
The same operation as in Example 8 was performed using 500 g of boehmite-type alumina particle dispersion (solid content: about 5%) prepared in Example 5 and 75 g of methacrylic resin “Acrypet Standard Grade V” manufactured by Mitsubishi Rayon Co., Ltd. The ash content of the product was 21.2 wt%, and it was confirmed that the added alumina particles were almost entirely composed. This product had a colorless and almost transparent appearance, was not yellowed, and retained toughness. The impact strength (Izod) was 240 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 70000, and the initial molecular weight was almost maintained.
実施例13(溶液混合)
実施例6で調製したベーマイト型アルミナ粒子分散液(固形分約5%)500gそして三菱レイヨン株式会社製メタクリル樹脂「アクリペット標準グレードV」を75g用いて実施例8と同様の操作を行った。生成物の灰分は23.5W%であり、添加したアルミナ粒子がほぼ全量組成物化されていることを確認した。この生成物は無色でほぼ透明の外観を有し、黄変などはなく、靭性を保持していた。衝撃強さ(アイゾット)は270J/mであった。
組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は78000であり、初期の分子量をほぼ維持していた。
Example 13 (solution mixing)
The same operation as in Example 8 was performed using 500 g of the boehmite-type alumina particle dispersion (solid content: about 5%) prepared in Example 6 and 75 g of methacrylic resin “Acrypet Standard Grade V” manufactured by Mitsubishi Rayon Co., Ltd. The ash content of the product was 23.5 W%, and it was confirmed that the added alumina particles were almost entirely composed. This product had a colorless and almost transparent appearance, was not yellowed, and retained toughness. The impact strength (Izod) was 270 J / m.
When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 78000, and the initial molecular weight was almost maintained.
実施例14(溶液混合)
実施例5で調製したベーマイト型アルミナ粒子分散液(固形分約5%)500gを用いて、実施例8と同様の操作を行った。生成物の灰分は25.1wt%であり、添加したアルミナ粒子がほぼ全量組成物化されていることを確認した。この生成物は微淡黄色でほぼ透明の外観を有し、靭性を保持していた。衝撃強さ(アイゾット)は374J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は50100であり、初期の分子量をほぼ維持していた。
Example 14 (solution mixing)
The same operation as in Example 8 was performed using 500 g of the boehmite-type alumina particle dispersion (solid content: about 5%) prepared in Example 5. The ash content of the product was 25.1 wt%, and it was confirmed that the added alumina particles were almost entirely composed. This product had a faint yellow, almost transparent appearance and retained toughness. The impact strength (Izod) was 374 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 50100, and the initial molecular weight was almost maintained.
比較例では、上記実施例におけるアルミナ粒子の高温改質・不活性化において、十分な加熱操作を行わなかったものを記載する。 In the comparative example, a case where sufficient heating operation was not performed in the high temperature reforming / inactivation of the alumina particles in the above example is described.
実施例15(表面改質と樹脂組成物)
(株)井元製作所製「真空微量混練押出機IMC―1170B型」に三菱エンジニアリングプラスチック(株)製ポリカーボネート「ノバレックス7025A」30gを加え、260gで3分間練った。そこへあらかじめ用意しておいたベーマイト型アルミナ粒子分散液である川研ファインケミカル(株)製「アルミゾル−10」(10%ベーマイトアルミナ水溶液)100gを濃縮した粘土状固形物と変性剤城北化学製ブトキシエチルアシッドホスフェート(商品名「JP‐506H」)2gを入れ、真空下10分間混練し樹脂組成物を得た。生成物の灰分は23.0wt%であり、添加したアルミナ粒子がほぼ全量組成物化されていることを確認した。衝撃強さ(アイゾット)は35J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は49000であり、初期の分子量をほぼ維持していた。
Example 15 (Surface modification and resin composition)
30 g of polycarbonate “Novalex 7025A” manufactured by Mitsubishi Engineering Plastics Co., Ltd. was added to “IMC-1170B type vacuum micro-kneading extruder IMC” manufactured by Imoto Seisakusho, and kneaded at 260 g for 3 minutes. Clay-like solids concentrated with 100 g of “Aluminum sol-10” (10% boehmite alumina aqueous solution) manufactured by Kawaken Fine Chemical Co., Ltd., a boehmite-type alumina particle dispersion prepared in advance, and butoxy manufactured by Johoku Chemical 2 g of ethyl acid phosphate (trade name “JP-506H”) was added and kneaded for 10 minutes under vacuum to obtain a resin composition. The ash content of the product was 23.0 wt%, and it was confirmed that the added alumina particles were almost entirely composed. The impact strength (Izod) was 35 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 49000, and the initial molecular weight was almost maintained.
実施例16(表面改質と樹脂組成物)
(株)井元製作所製「真空微量混練押出機IMC−1170B型」に実施例8にて得られた樹脂組成物30gおよび、追加の変性剤であるジフェニルカーボネート4gを入れ、真空下10分間、250℃で混練し樹脂組成物を得た。生成物の灰分は20.0wt%であり、衝撃強さ(アイゾット)は40J/mであった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は48000であった。
Example 16 (Surface modification and resin composition)
(Inc.) Imoto Seisakusho "vacuum micro-kneading extruder IMC-1170B type" 30 g of the resin composition obtained in Example 8 and 4 g of diphenyl carbonate as an additional modifier are placed in a vacuum for 250 minutes. The resin composition was obtained by kneading at ° C. The ash content of the product was 20.0 wt%, and the impact strength (Izod) was 40 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 48000.
比較例1.
1−1:アルミナ粒子分散
ベーマイト型アルミナ粒子分散液である川研ファインケミカル(株)製「アルミゾル−10D」(10%ベーマイトアルミナDMF(ジメチルホルムアミド)溶液)(長軸長さ30nm、短軸長さ10nm、固形分10wt%)500gに、シクロヘキサノール1000gを加え、次の操作を行った。(i)アルミナ粒子分散液をガラス容器内に入れ、攪拌翼とスリーワンモーター(HEIDON社製BL300R)により攪拌した。(ii)改質剤として、フェニルホスフォン酸10gを添加し、更に攪拌した。(iii)攪拌しながらガラス容器を加熱し、80℃までの昇温に留めた。(iv)このまま16時間混合を行った。(v)80℃のまま真空ポンプにより水分を留去し、同時に揮発するシクロヘキサノール分を追加しつつ、系の水分がほぼ無くなるまで留去を続けた。(vi)乾燥空気を供給しつつ室温に戻した。この一連の操作により、非高温改質アルミナ粒子のシクロヘキサノール分散液を得た。
Comparative Example 1.
1-1: Alumina particle-dispersed boehmite type alumina particle dispersion “Aluminum Sol-10D” (10% boehmite alumina DMF (dimethylformamide) solution) (major axis length 30 nm, minor axis length) manufactured by Kawaken Fine Chemical Co., Ltd. (10 nm, solid content 10 wt%) 500 g of cyclohexanol was added and the following operation was performed. (i) The alumina particle dispersion was placed in a glass container and stirred with a stirring blade and a three-one motor (BL300R manufactured by HEIDON). (ii) As a modifier, 10 g of phenylphosphonic acid was added and further stirred. (iii) The glass container was heated with stirring, and the temperature was raised to 80 ° C. (iv) Mixing was continued for 16 hours. (v) Moisture was distilled off with a vacuum pump at 80 ° C., and at the same time, while distilling off cyclohexanol, the distillation was continued until almost no water was left in the system. (vi) The temperature was returned to room temperature while supplying dry air. Through this series of operations, a cyclohexanol dispersion of non-high temperature modified alumina particles was obtained.
1−2:組成物化(溶液混合)
上記1−1で調製したアルミナ粒子分散液(固形分約5%)300gを用いて、実施例8と同様の溶液混合操作により、ポリカーボネート「ノバレックス7025A」(重量平均分子量54000)85gと樹脂組成物化した。生成物の灰分は14.2wt%であった。この生成物は黄変したコハク色の外観を有し、靭性に劣っており、2mm厚みのサンプル板でも手で割ることができた。衝撃強さ(アイゾット)は14J/mに留まった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量は9600であり、初期の分子量から大幅に低下していた。
1-2: Composition (solution mixing)
Using 300 g of the alumina particle dispersion liquid (solid content: about 5%) prepared in 1-1 above, 85 g of polycarbonate “Novalex 7025A” (weight average molecular weight 54000) and resin composition were obtained by the same solution mixing operation as in Example 8. Materialized. The ash content of the product was 14.2 wt%. This product had a yellowish amber appearance and poor toughness, and even a 2 mm thick sample plate could be broken by hand. The impact strength (Izod) remained at 14 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 9600, which was greatly reduced from the initial molecular weight.
比較例2.
2−1:アルミナ粒子分散
実施例2と同様、溶媒としてシクロヘキサノン1000g、改質剤として城北化学製エチルアシッドホスフェート(商品名「JP-502」)10gを用い、比較例1と同様、加熱を80℃までに抑えた操作を行い、非高温改質アルミナ粒子のシクロヘキサノン分散液を得た。
Comparative Example 2.
2-1: Alumina particle dispersion In the same manner as in Example 2, 1000 g of cyclohexanone was used as a solvent, and 10 g of ethyl acid phosphate (trade name “JP-502”) manufactured by Johoku Chemical was used as a modifier. A cyclohexanone dispersion of non-high temperature modified alumina particles was obtained by performing an operation suppressed to ℃.
2−2:組成物化(溶液混合)
上記比較例2−1の分散液を用い、上記1−2と同様に、ポリカーボネート「ノバレックス7025A」(重量平均分子量54000)と、固形分15wt%となるように樹脂組成物化した。生成物の灰分は14.6 wt%であった。この生成物は茶色の外観を有し、靭性に劣っており、衝撃強さ(アイゾット)は26J/mに留まった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量14000であり、初期の分子量から大幅に低下していた。
2-2: Composition (solution mixing)
Using the dispersion liquid of Comparative Example 2-1, a resin composition was prepared so as to have a polycarbonate “NOVAREX 7025A” (weight average molecular weight of 54000) and a solid content of 15 wt% in the same manner as in 1-2 above. The ash content of the product was 14.6 wt%. The product had a brown appearance, poor toughness, and impact strength (Izod) remained at 26 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 14,000, which was greatly reduced from the initial molecular weight.
比較例3.
3−1:アルミナ粒子分散
実施例3と同様、溶媒としてジメチルスルホキシド1000g、改質剤としてアルドリッチ製エタンスルホン酸10gを用い、比較例1と同様、加熱を80℃までに抑えた操作を行い、非高温改質アルミナ粒子のジメチルスルホキシド分散液を得た。
Comparative Example 3.
3-1: Alumina particle dispersion As in Example 3, 1000 g of dimethyl sulfoxide was used as the solvent, 10 g of ethanesulfonic acid manufactured by Aldrich was used as the modifier, and the operation was suppressed to 80 ° C. as in Comparative Example 1, A dimethyl sulfoxide dispersion of non-high temperature modified alumina particles was obtained.
3−2:組成物化(溶液重合)
実施例11と同様、400mLのトルエン中に、メタクリル酸メチル100.1g(1mol)、ラジカル開始剤12.2g(0.05mol)を添加し、上記比較例3−1で調製したアルミナ粒子分散液(固形分約5%)を900g加えて、ラジカル重合により組成物化した。この生成物は黄変した薄茶色の外観を有し、靭性に劣っており、2mm厚みのサンプル板でも手で容易に割ることができた。衝撃強さ(アイゾット)は10J/mに留まった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量22000であり、実施例11の分子量に比べて大幅に低下していた。
3-2: Composition (solution polymerization)
As in Example 11, 100.1 g (1 mol) of methyl methacrylate and 12.2 g (0.05 mol) of a radical initiator were added to 400 mL of toluene, and the alumina particle dispersion prepared in Comparative Example 3-1 above. 900 g of (solid content of about 5%) was added to form a composition by radical polymerization. This product had a yellowish pale brown appearance and poor toughness, and even a 2 mm thick sample plate could be easily broken by hand. The impact strength (Izod) remained at 10 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 22,000, which was significantly lower than the molecular weight of Example 11.
比較例4.
4−1:アルミナ粒子分散
実施例4と同様、溶媒としてキシレン1000g、改質剤としてアルドリッチ製安息香酸10gを用い、比較例1と同様、加熱を80℃までに抑えた操作を行い、非高温改質アルミナ粒子のキシレン分散液を得た。
Comparative Example 4.
4-1: Alumina Particle Dispersion As in Example 4, 1000 g of xylene was used as the solvent, 10 g of benzoic acid manufactured by Aldrich was used as the modifier, and the operation was suppressed to 80 ° C. as in Comparative Example 1, and the temperature was not high. A xylene dispersion of modified alumina particles was obtained.
4−2:組成物化(溶液重合)
実施例11と同様、400mLのトルエン中に、メタクリル酸メチル100.1g(1mol)、ラジカル開始剤12.2g(0.05mol)を添加し、上記比較例4−1で調製したアルミナ粒子分散液(固形分約5%)を900g加えて、ラジカル重合により組成物化した。この生成物は黄変した赤茶色の外観を有し、靭性に極めて劣っており、3mm厚みのサンプル板でも容易に手で割ることができた。衝撃強さ(アイゾット)は9J/mに留まった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量19000であり、実施例11の分子量に比べて大幅に低下していた。
4-2: Composition (solution polymerization)
As in Example 11, 100.1 g (1 mol) of methyl methacrylate and 12.2 g (0.05 mol) of a radical initiator were added to 400 mL of toluene, and the alumina particle dispersion prepared in Comparative Example 4-1 above. 900 g of (solid content of about 5%) was added to form a composition by radical polymerization. This product had a yellowish reddish brown appearance and extremely poor toughness, and even a sample plate having a thickness of 3 mm could be easily broken by hand. The impact strength (Izod) remained at 9 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 19000, which was significantly lower than the molecular weight of Example 11.
比較例5
5−1:アルミナ粒子分散
実施例7と同様、溶媒兼改質剤としてトリブチルホスファイト1000gを用い、比較例1と同様、加熱を80℃までに抑えた操作を行い、ろ過・溶媒置換により非高温改質アルミナ粒子のジメチルホルムアミド分散液を得た。
Comparative Example 5
5-1: Alumina Particle Dispersion As in Example 7, 1000 g of tributyl phosphite was used as a solvent and modifier, and as in Comparative Example 1, the operation was suppressed to 80 ° C., and filtration and solvent replacement were performed. A dimethylformamide dispersion of high temperature modified alumina particles was obtained.
5−2:組成物化(溶液混合)
上記比較例5−1の分散液を用い、上記比較例1−2と同様に、ポリカーボネート「ノバレックス7025A」(重量平均分子量54000)と、固形分15wt%となるように樹脂組成物化した。生成物の灰分は15.3 wt%であった。この生成物は薄茶色の外観を有し、靭性に劣っており、衝撃強さ(アイゾット)は46J/mに留まった。組成物のマトリクスポリマー分を抽出した後GPCにて分析すると、重量平均分子量13000であり、初期の分子量から大幅に低下していた。
5-2: Composition (solution mixing)
Using the dispersion liquid of Comparative Example 5-1, in the same manner as in Comparative Example 1-2, a resin composition was prepared so as to have a polycarbonate “Novalex 7025A” (weight average molecular weight 54000) and a solid content of 15 wt%. The ash content of the product was 15.3 wt%. The product had a light brown appearance, poor toughness, and impact strength (Izod) remained at 46 J / m. When the matrix polymer content of the composition was extracted and analyzed by GPC, the weight average molecular weight was 13,000, which was significantly lower than the initial molecular weight.
以上、実施例及び比較例を通じて得た熱可塑性樹脂組成物の特性値を表1にまとめた。 The characteristic values of the thermoplastic resin compositions obtained through Examples and Comparative Examples are summarized in Table 1.
表1から明らかなように、実施例6〜10を対応する比較例1〜5とそれぞれ対比して比較すると、アルミナ粒子に対して同じ有機溶媒を用いるとともに同じ改質有機化合物を用いているにも拘わらず、本発明の範囲外である80℃の温度で処理したものについては、重量平均分子量が大きく減少し、衝撃強さも大幅に減少していることが分かる。すなわち、本発明に従って実施して実施例においては、改質有機化合物によるアルミナ粒子表面の改質が十分に進行し、表面活性基が十分に失活されているのに対し、本発明と異なる温度(低い温度)でアルミナ粒子の表面改質を実施した場合は、表面改質が十分に行われず、表面活性基が十分に失活していないことが分かる。 As is clear from Table 1, when Examples 6 to 10 are compared with the corresponding Comparative Examples 1 to 5, respectively, the same organic solvent and the same modified organic compound are used for the alumina particles. Nevertheless, it can be seen that for those treated at a temperature of 80 ° C., which is outside the scope of the present invention, the weight average molecular weight is greatly reduced and the impact strength is also greatly reduced. That is, in the examples carried out according to the present invention, the modification of the surface of the alumina particles by the modified organic compound has sufficiently progressed, and the surface active groups have been sufficiently deactivated. When the surface modification of the alumina particles is performed at (low temperature), it can be seen that the surface modification is not sufficiently performed and the surface active groups are not sufficiently deactivated.
以上、具体例を挙げながら本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。 The present invention has been described in detail above with reference to specific examples. However, the present invention is not limited to the above contents, and various modifications and changes can be made without departing from the scope of the present invention.
例えば、本発明の熱可塑性樹脂組成物は、必要に応じて、酸化防止剤及び熱安定剤(例えば、ヒンダードフェノール、ヒドロキノン、チオエーテル、ホスファイト類及びこれらの置換体及びその組み合わせを含む)、紫外線吸収剤(例えばレゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノン等)、滑剤、離型剤(例えばシリコン樹脂、モンタン酸及びその塩、ステアリン酸及びその塩、ステアリルアルコール、ステアリルアミド等)、染料(例えばニトロシン等)、顔科(例えば硫化カドミウム、フタロシアニン等)を含む着色剤、添加剤添着液(例えばシリコンオイル等)、及び結晶核剤(例えばタルク、カオリン等)などを単独又は適宜組み合わせて添加することができる。 For example, the thermoplastic resin composition of the present invention optionally contains an antioxidant and a heat stabilizer (for example, including hindered phenol, hydroquinone, thioether, phosphites, and their substituted products and combinations thereof), UV absorbers (for example, resorcinol, salicylate, benzotriazole, benzophenone, etc.), lubricants, mold release agents (for example, silicon resin, montanic acid and its salts, stearic acid and its salts, stearyl alcohol, stearylamide, etc.), dyes (for example, nitrocin) Etc.), colorants including face departments (for example, cadmium sulfide, phthalocyanine, etc.), additive additives (for example, silicone oil), crystal nucleating agents (for example, talc, kaolin, etc.), etc. Can do.
具体的には、熱安定性を向上させるため、イルガノックス1010、1076(チバガイギー社製)等のヒンダードフェノール類、スミライザーGS、GM(住友化学社製)に代表される部分アクリル化多価フェノール類、イルガフオス168(チバガイギー社製)等のホスファイト類に代表される燐化合物などの熱安定剤を適量加えてもよい。 Specifically, in order to improve thermal stability, partially acrylated polyphenols represented by hindered phenols such as Irganox 1010 and 1076 (manufactured by Ciba-Geigy), Sumilizer GS, and GM (manufactured by Sumitomo Chemical Co., Ltd.) An appropriate amount of a heat stabilizer such as a phosphorus compound typified by phosphites such as Irgafos 168 (manufactured by Ciba Geigy) may be added.
本発明によれば、アルミナ粒子の表面活性基を十分に失活させているので、目的とする樹脂組成物中に対し、前記アルミナ粒子を悪影響を及ぼすことなく充填剤として配合することができる。したがって、熱可塑性樹脂が本来的に有する諸特性と、前記アルミナ粒子の充填剤としての相互作用によって、得られる(ナノ)熱可塑性樹脂組成物の機械的強度、寸法安定性を向上させることができるようになる。この結果、ヒートサイクルの負荷が掛かる電子部品、光学部品、自動車内外装材、更には家電や住宅に用いられる透明部材・備品・家具に好適に用いることができる。また、薄膜フィルムやコーティング剤とすることにより、耐久性、耐候性、耐磨耗性を向上するため、家電、住宅設備、電気・電子部品、光学部品に対して好適に用いることができる。 According to the present invention, since the surface active groups of the alumina particles are sufficiently deactivated, the alumina particles can be blended as a filler without adversely affecting the intended resin composition. Therefore, the mechanical strength and dimensional stability of the obtained (nano) thermoplastic resin composition can be improved by the various properties inherent to the thermoplastic resin and the interaction of the alumina particles as a filler. It becomes like this. As a result, it can be suitably used for electronic parts, optical parts, interior / exterior materials for automobiles, and transparent members / equipment / furniture used for home appliances and houses, which are subjected to heat cycle load. In addition, by using a thin film or a coating agent, durability, weather resistance, and abrasion resistance are improved, so that it can be suitably used for home appliances, housing equipment, electrical / electronic components, and optical components.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006313088A JP2007290943A (en) | 2006-03-29 | 2006-11-20 | Method for producing modified alumina particle-dispersed sol, method for producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle-dispersed sol, modified alumina particles, and thermoplastic resin composition obtained thereby |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006090541 | 2006-03-29 | ||
JP2006313088A JP2007290943A (en) | 2006-03-29 | 2006-11-20 | Method for producing modified alumina particle-dispersed sol, method for producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle-dispersed sol, modified alumina particles, and thermoplastic resin composition obtained thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007290943A true JP2007290943A (en) | 2007-11-08 |
Family
ID=38761948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006313088A Withdrawn JP2007290943A (en) | 2006-03-29 | 2006-11-20 | Method for producing modified alumina particle-dispersed sol, method for producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle-dispersed sol, modified alumina particles, and thermoplastic resin composition obtained thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007290943A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016500400A (en) * | 2012-12-18 | 2016-01-12 | ミツビシ ケミカル ヨーロッパ ゲーエムベーハー | Thermoplastic composition |
WO2017187780A1 (en) * | 2016-04-27 | 2017-11-02 | 東レバッテリーセパレータフィルム株式会社 | Slurry for secondary-battery separator, secondary-battery separator, and production processes therefor |
CN109075296A (en) * | 2016-07-25 | 2018-12-21 | 东丽株式会社 | Battery separator |
EP3861148A1 (en) * | 2018-10-03 | 2021-08-11 | Sasol (USA) Corporation | Aluminas and methods for producing same |
CN116440888A (en) * | 2022-01-06 | 2023-07-18 | 中国石油化工股份有限公司 | Macroporous modified alumina and production method thereof |
-
2006
- 2006-11-20 JP JP2006313088A patent/JP2007290943A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016500400A (en) * | 2012-12-18 | 2016-01-12 | ミツビシ ケミカル ヨーロッパ ゲーエムベーハー | Thermoplastic composition |
WO2017187780A1 (en) * | 2016-04-27 | 2017-11-02 | 東レバッテリーセパレータフィルム株式会社 | Slurry for secondary-battery separator, secondary-battery separator, and production processes therefor |
CN109075296A (en) * | 2016-07-25 | 2018-12-21 | 东丽株式会社 | Battery separator |
EP3861148A1 (en) * | 2018-10-03 | 2021-08-11 | Sasol (USA) Corporation | Aluminas and methods for producing same |
JP2022504289A (en) * | 2018-10-03 | 2022-01-13 | サソール(ユーエスエイ)コーポレーシヨン | Alumina and its manufacturing method |
JP7554186B2 (en) | 2018-10-03 | 2024-09-19 | サソール(ユーエスエイ)コーポレーシヨン | Alumina and its manufacturing method |
US12202983B2 (en) | 2018-10-03 | 2025-01-21 | Sasol (Usa) Corporation | Aluminas and methods for producing same |
CN116440888A (en) * | 2022-01-06 | 2023-07-18 | 中国石油化工股份有限公司 | Macroporous modified alumina and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453741B2 (en) | Polycarbonate resin composition and method for producing the same | |
US20080262126A1 (en) | Nanocomposite method of manufacture | |
JP6200426B2 (en) | Calcium carbonate filler for resin and resin composition containing the filler | |
TWI632113B (en) | Calcium carbonate filler for resin and resin composition containing the same | |
KR101729300B1 (en) | Organic zinc catalyst, preparation method of the catalyst and production method of poly(alkylene carbonate) resin over the catalyst | |
JP2009024068A (en) | Method for producing resin particles containing zirconium oxide nanoparticles and resin particles | |
JP2007290943A (en) | Method for producing modified alumina particle-dispersed sol, method for producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle-dispersed sol, modified alumina particles, and thermoplastic resin composition obtained thereby | |
JP5128882B2 (en) | Magnesium hydroxide fine particles and method for producing the same | |
JP2009090272A (en) | Method for producing particle-dispersed sol and particle-dispersed resin composition | |
CN104961961B (en) | Preparation method of nano-modified polyethylene anti-aging special material | |
TWI276669B (en) | Process for production of titanium dioxide pigment and resin compositions containing the pigment | |
JP2009227510A (en) | Surface reformed particle, manufacturing method, and resin composition | |
JP2009062244A (en) | Particle dispersion solution, resin composition thereof, and production method thereof | |
JP2007031684A (en) | Resin composition and method for producing resin composition | |
Hajibeygi et al. | Improving the properties of rigid polyvinyl chloride with surface-treated Mg (OH) 2 nanoparticles and ester-functionalized organic additive | |
JP2007238759A (en) | Method for producing resin composition and resin composition thereof | |
CN114585671B (en) | Heat stabilizer for polyester | |
JP2007002049A (en) | Method for producing polymer composite and polymer nanocomposite | |
JP2010095679A (en) | Method of producing dispersion containing metal oxide microparticles and dispersion containing metal oxide microparticles | |
JP4716514B2 (en) | Acicular apatite reinforced resin composition | |
JP2016040355A (en) | Metal oxide particle-containing composition and optical member | |
JP2011046810A (en) | Thermoplastic resin composition and process for producing the same | |
JP5082255B2 (en) | Resin composition containing long / short inorganic particle composite and method for producing the same | |
JP2007262278A (en) | Modified inorganic particle and resin composition, and method for producing them | |
JP2005206670A (en) | Flame retardant resin composition and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100202 |