[go: up one dir, main page]

JP2007290020A - Manufacturing method of medium diameter seamless steel pipe - Google Patents

Manufacturing method of medium diameter seamless steel pipe Download PDF

Info

Publication number
JP2007290020A
JP2007290020A JP2006122861A JP2006122861A JP2007290020A JP 2007290020 A JP2007290020 A JP 2007290020A JP 2006122861 A JP2006122861 A JP 2006122861A JP 2006122861 A JP2006122861 A JP 2006122861A JP 2007290020 A JP2007290020 A JP 2007290020A
Authority
JP
Japan
Prior art keywords
rolling
shoe
piercer
steel pipe
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122861A
Other languages
Japanese (ja)
Other versions
JP4609372B2 (en
Inventor
Takeshi Miyazawa
武 宮澤
Akira Yorifuji
章 依藤
Taro Kanayama
太郎 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006122861A priority Critical patent/JP4609372B2/en
Publication of JP2007290020A publication Critical patent/JP2007290020A/en
Application granted granted Critical
Publication of JP4609372B2 publication Critical patent/JP4609372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a medium diameter seamless pipe by which eccentric uneven thickness of the rolled stock succeeding to a detected rolled stock is reduced by detecting the generation of the eccentric uneven thickness on the spot during the piercer rolling of the same pipe-making lot. <P>SOLUTION: In the method of manufacturing the medium diameter seamless steel pipe including the piercer rolling by which the inclined rotation piercing rolling is performed with upper and lower rolls 31, 32 and a plug 11 between the rolls while guiding the rolled stock 9 with right and left shoes 33, 34, by monitoring shoe load during the piercer rolling, the shoe position on the side where a monitored value is below the prescribed lowest limit is changed to a position near the pass center line. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、中径(製品外径:177.8〜426.0mm)シームレス鋼管の製造方法に関し、特に、傾斜回転穿孔圧延で生ずる偏心性偏肉を低減しうる中径シームレス鋼管の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a medium diameter (product outer diameter: 177.8 to 426.0 mm) seamless steel pipe, and more particularly, to a method for producing a medium diameter seamless steel pipe capable of reducing eccentric thickness deviation caused by inclined rotary piercing rolling. .

中径シームレス鋼管は、例えば図3に示すような一連の熱間圧延により製造される。この例では、丸ビレット1を加熱炉2で1200℃程度以上に加熱後、ピアサ3で傾斜回転穿孔圧延してホロー10となし、これをエロンゲータ4で回転延伸圧延後、プラグミル5で軸方向孔型圧延し、次いでリーラ6で磨管し、さらに再加熱炉7で800〜900℃程度に再加熱後、サイザ8で外径成型する製造工程を示した。   The medium-diameter seamless steel pipe is manufactured by a series of hot rolling as shown in FIG. 3, for example. In this example, the round billet 1 is heated to about 1200 ° C. or more in the heating furnace 2, tilted and pierced and rolled by the piercer 3 to form a hollow 10, this is rotated and rolled by the elongator 4, and then the axial hole by the plug mill 5. A manufacturing process was shown in which die rolling was performed, then the tube was polished with a reeler 6, reheated to about 800 to 900 ° C. in a reheating furnace 7, and then formed into an outer diameter with a sizer 8.

かかる製造工程において、ピアサ圧延(傾斜回転穿孔圧延)で生じがちな形状不具合として偏心性偏肉(非特許文献1)が知られている。偏心性偏肉とは、図4に示すように、管20の外円中心Oに対して内円中心Oが偏り、この偏りが、穿孔圧延による素材のねじれと同方向、同周期で発生し、管長手方向に螺旋状に延在したものである。偏心性偏肉には、偏熱起因のものと設備起因のものとがある。 In such a manufacturing process, an eccentric thickness deviation (Non-Patent Document 1) is known as a shape defect that tends to occur in piercer rolling (tilted rotary piercing rolling). As shown in FIG. 4, the eccentric thickness deviation means that the inner circle center O 2 is deviated with respect to the outer circle center O 1 of the tube 20, and this deviation is in the same direction and in the same cycle as the twist of the material by piercing rolling. It is generated and extends spirally in the longitudinal direction of the tube. There are two types of eccentric thickness deviations, one due to heat deviation and the other due to equipment.

偏熱起因の偏心性偏肉は、素材が回転炉床に固定されて輻射加熱されることで、中心付近の頂部側が底部側よりも速く昇温して最終的に比較的高温部(変形抵抗が低い)となった偏熱状態が生じ、その比較的高温部にピアサプラグが誘導されることによって発生するものであり、螺旋の周期は比較的長い。偏熱の発生防止対策として、素材表面の最高温度到達後炉温を若干(20〜30℃)下げる炉温設定パターンとすることにより断面内の熱伝導を促して均熱化する方法、あるいは加熱炉をウォーキングビーム式のものに変更する方法が知られている。   Eccentricity deviation due to heat deviation is due to the fact that the material is fixed to the rotary hearth and radiantly heated, so that the top side near the center heats up faster than the bottom side, and finally the relatively high temperature part (deformation resistance) Is generated when a piercer plug is guided to a relatively high temperature portion, and the spiral period is relatively long. As a measure to prevent the occurrence of uneven heat, a furnace temperature setting pattern that lowers the furnace temperature slightly (20-30 ° C) after reaching the maximum temperature on the material surface to promote heat conduction in the cross section and soak or heat A method of changing the furnace to a walking beam type is known.

設備起因の偏心性偏肉は、ピアサプラグバー曲がり、プラグ加工精度不良、ピアサ本体スイングブロッククランプ不良、あるいはバーステイディアホールド不足によるバー振れ回り等により、プラグ先端がパス中心線から外れた状態となることにより発生するものであり、螺旋の周期は比較的短い。これへの対策は、設備管理を強化する以外にないというのが通説である。
日本鉄鋼協会編:第3版鉄鋼便覧III(2)条鋼・鋼管・圧延共通設備(昭和55年11月20日;丸善発行)、p.938−939
Eccentricity deviation due to equipment is caused by piercer plug bar bending, plug processing accuracy failure, piercer body swing block clamp failure, or bar swinging due to insufficient bar stay media hold, etc. The spiral period is relatively short. The common belief is that there is no other way but to strengthen equipment management.
Edited by Japan Iron and Steel Institute: Third Edition Steel Handbook III (2) Common Steel, Steel Pipe and Rolling Equipment (November 20, 1980; issued by Maruzen), p. 938-939

しかし、炉温設定パターン変更による均熱化対策だけでは、偏熱の完全防止は困難である。また、加熱炉をウォーキングビーム式のものに変更する対策は、偏熱低減効果は大きいが、大規模な設備改造を必要とする。
しかも、上記均熱化対策の実施あるいはウォーキングビーム式加熱炉の採用に加え、設備管理の強化を十分に実施していても、同一造管ロットの、ある圧延順番から突発的に許容限を超える偏心性偏肉(偏心性偏肉不良)が発生し、その圧延順番以降の最終圧延(サイザ圧延)成品が全て格落ち品となる場合がある。かかる偏心性偏肉不良の有無は、サイザ圧延後の精整ラインにおける断面寸法測定によりはじめて判明するのであり、ピアサ圧延中は圧延材に偏心性偏肉不良が生じているのかどうかは不明である。
However, it is difficult to completely prevent uneven heat by only taking measures to equalize the temperature by changing the furnace temperature setting pattern. In addition, the countermeasure to change the heating furnace to the walking beam type has a great effect of reducing the heat deviation, but requires a large-scale facility modification.
In addition to the implementation of the above-mentioned heat equalization measures or the adoption of a walking beam type heating furnace, even if the facility management is sufficiently strengthened, the allowable limit is suddenly exceeded from the rolling order of the same pipe lot. Eccentric thickness deviation (eccentricity deviation thickness failure) occurs, and the final rolling (sizer rolling) products after the rolling order may all be out of order. The presence or absence of such eccentric eccentric thickness defects can only be determined by measuring the cross-sectional dimensions in the finishing line after sizer rolling, and it is unclear whether there are eccentric eccentric thickness defects in the rolled material during piercer rolling. .

すなわち、従来の技術では、ピアサ圧延中の偏心性偏肉不良の発生をその場で検出することはできず、また、検出できたとしてもその場でとりうる有効な偏心性偏肉低減手段は不明であった。そのため、同一造管ロットにおいて、順次圧延されるうちのある圧延材に偏心性偏肉不良が発生すると、多くの場合、後続の圧延材でも同様に偏心性偏肉不良が発生してしまい、このことが歩留り向上の一大阻害要因となっていた。   That is, in the conventional technology, it is impossible to detect the occurrence of eccentric eccentric thickness failure during pierce rolling on the spot, and even if it can be detected, effective eccentric thickness reduction means that can be taken on the spot are not available. It was unknown. Therefore, in the same pipe making lot, when an eccentric eccentric thickness defect occurs in a rolled material that is being rolled sequentially, in many cases, an eccentric eccentric thickness defect also occurs in the subsequent rolled material. This was a major impediment to yield improvement.

そこで、本発明は、同一造管ロットのピアサ圧延中に、偏心性偏肉不良の発生をその場で検出し、該検出にかかった圧延材に後続する圧延材の偏心性偏肉を低減させる中径シームレス鋼管の製造方法を提供することを目的とする。   Therefore, the present invention detects the occurrence of eccentric eccentric thickness failure on the spot during piercer rolling of the same pipe-making lot, and reduces the eccentric eccentric thickness of the rolled material subsequent to the rolled material subjected to the detection. It aims at providing the manufacturing method of a medium diameter seamless steel pipe.

発明者らは、前記目的を達成するために鋭意検討し、その結果、ピアサ圧延後の偏心性偏肉の程度と該ピアサ圧延中のシュー荷重との間に有意な相関関係があることを見出し、この知見に基づいて本発明をなした。
すなわち、本発明は以下のとおりである。
1. 圧延材を左右のシューで案内しつつ上下のロールと該ロール間のプラグとで傾斜回転穿孔圧延するピアサ圧延を含む中径シームレス鋼管の製造方法において、前記ピアサ圧延中のシュー荷重を監視し、該監視値が所定の下限を下回った側のシューの位置を、パス中心線に近づく位置へ変更することを特徴とする中径シームレス鋼管の製造方法。
The inventors have intensively studied to achieve the above object, and as a result, found that there is a significant correlation between the degree of eccentric thickness deviation after piercing and the shoe load during piercing. The present invention was made based on this finding.
That is, the present invention is as follows.
1. In a method for producing a medium-diameter seamless steel pipe including piercer rolling, in which a rolled material is guided by a left and right shoe while tilting rotary piercing rolling with upper and lower rolls and a plug between the rolls, the shoe load during the piercing rolling is monitored, A method for producing a medium-diameter seamless steel pipe, characterized in that the position of the shoe on the side where the monitored value falls below a predetermined lower limit is changed to a position approaching the path center line.

2. 前記シュー位置の変更と併せて、上下のロールのロール間隔を変更することを特徴とする前項1に記載の中径シームレス鋼管の製造方法。
3. 前記シュー位置の変更と併せて、ロール間のプラグのパスライン方向の配置位置を変更することを特徴とする前項1または2に記載の中径シームレス鋼管の製造方法。
4. 前記シュー位置の変更、前記ロール間隔の変更、前記プラグの配置位置の変更の実行時期を、シュー荷重の監視値が前記下限を下回った圧延材のピアサ圧延終了後、その圧延材の次の圧延材をピアサ圧延する前としたことを特徴とする前項1〜3のいずれかに記載の中径シームレス鋼管の製造方法。
2. The method for manufacturing a medium-diameter seamless steel pipe according to item 1, wherein the roll interval between the upper and lower rolls is changed together with the change of the shoe position.
3. The method for producing a medium-diameter seamless steel pipe according to item 1 or 2, wherein the arrangement position of the plug between the rolls in the pass line direction is changed together with the change of the shoe position.
4). The execution time of the change of the shoe position, the change of the roll interval, and the change of the arrangement position of the plug is followed by the next rolling of the rolled material after the piercer rolling of the rolled material whose shoe load monitoring value is below the lower limit. 4. The method for producing a medium-diameter seamless steel pipe according to any one of items 1 to 3, wherein the material is before pierce rolling.

本発明によれば、同一造管ロットのピアサ圧延中に、偏心性偏肉不良の発生をその場で検出し、該検出にかかった圧延材に後続する圧延材の偏心性偏肉を低減させることが可能となる。   According to the present invention, during the pierce rolling of the same pipe-making lot, the occurrence of eccentric eccentric thickness failure is detected on the spot, and the eccentric thickness deviation of the rolled material following the rolled material subjected to the detection is reduced. It becomes possible.

ピアサ圧延では、例えば図2に示すように、圧延材9が、上下のロール31、32およびこれらロールの間に配置されたプラグ(ピアサプラグ)11により、傾斜回転穿孔圧延される。ピアサ出側ホロー外径を目標に合わせるために、左右にシュー33、34を配置し、圧延材9を案内するようにしている。ところで、圧延材9がシュー33、34に接触するとシュー33、34に押圧力が作用する。この押圧力を、シュー33、34に取付けたロードセル(図示省略)等の測定手段により測定したものがシュー荷重である。   In the piercer rolling, for example, as shown in FIG. 2, the rolled material 9 is inclined and pierced and rolled by upper and lower rolls 31 and 32 and plugs (piercer plugs) 11 arranged between these rolls. In order to adjust the outer diameter of the piercer exit side hollow to the target, shoes 33 and 34 are arranged on the left and right sides to guide the rolled material 9. By the way, when the rolled material 9 comes into contact with the shoes 33, 34, a pressing force acts on the shoes 33, 34. The pressing force is measured by a measuring means such as a load cell (not shown) attached to the shoes 33 and 34, which is a shoe load.

発明者らの前記知見によると、中径シームレス鋼管のピアサ圧延におけるシュー荷重と偏肉率、外径(ピアサ出側ホロー外径)との関係は、図1に模式グラフで示すようになる。ここで、偏肉率は、ピアサ出側ホローの長手方向のn個の位置i(i=1,…,n)における、円周方向の肉厚データから求めた平均肉厚tave(i)、最大肉厚tmax(i)、最小肉厚tmin(i)を用いて、次式で定義される。 According to the above findings of the inventors, the relationship between the shoe load, the wall thickness ratio, and the outer diameter (piercer outlet side hollow outer diameter) in piercer rolling of a medium-diameter seamless steel pipe is as shown in a schematic graph in FIG. Here, the thickness deviation rate is the average thickness t ave (i) obtained from the thickness data in the circumferential direction at n positions i (i = 1,..., N) in the longitudinal direction of the piercer exit side hollow. Using the maximum wall thickness t max (i) and the minimum wall thickness t min (i), the following equation is used.

偏肉率=Max[(tmax(i)−tmin(i))/tave(i)](×100%)
なお、円周方向の肉厚測定手段は、特に限定されないが、ここでは自動超音波厚さ計(USADT;JFEアドバンテック社製)を用いた。外径の測定手段は、特に限定されないが、ここでは外径パスを用いた。
図1に示されるように、偏肉率は、シュー荷重がある値、例えばF1より小さい範囲では高位安定であるが、シュー荷重がF1以上になるとシュー荷重の増大につれて顕著に減少する。一方、外径は、シュー荷重がF1より大きいある値、例えばF2、以下ではほぼ一定であり、この一定値が目標にされるが、シュー荷重がF2を超えるとシュー荷重の増大につれて顕著に減少する。そこで、ピアサ圧延中に左右のシュー荷重を監視し、該監視値が、例えばF1〜F2の範囲内で適宜に選んだ所定の下限、例えば偏肉率の許容上限に対応するシュー荷重、を下回った場合、当該ピアサ圧延を受けた圧延材には、比較的大きい偏心性偏肉が発生していると判定できる。このように、シュー荷重を監視することで、同一造管ロットのピアサ圧延中に、圧延材の偏心性偏肉不良の発生を、その場で検出することができる。
Unevenness ratio = Max [(t max (i) −t min (i)) / t ave (i)] (× 100%)
The thickness measuring means in the circumferential direction is not particularly limited, but an automatic ultrasonic thickness meter (USADT; manufactured by JFE Advantech) was used here. The means for measuring the outer diameter is not particularly limited, but an outer diameter path is used here.
As shown in FIG. 1, the thickness deviation rate is high and stable in a range where the shoe load is smaller than a certain value, for example, F1, but significantly decreases as the shoe load increases when the shoe load exceeds F1. On the other hand, the outer diameter is almost constant when the shoe load is larger than F1, for example, F2, and below, and this constant value is targeted. However, when the shoe load exceeds F2, the outer diameter decreases significantly as the shoe load increases. To do. Therefore, the left and right shoe loads are monitored during piercer rolling, and the monitored value falls below a predetermined lower limit appropriately selected within the range of F1 to F2, for example, the shoe load corresponding to the allowable upper limit of the thickness deviation rate. In this case, it can be determined that a relatively large eccentric thickness deviation has occurred in the rolled material subjected to the piercer rolling. In this way, by monitoring the shoe load, it is possible to detect the occurrence of the eccentric thickness defect of the rolled material on the spot during the piercer rolling of the same pipe making lot.

そして、この検出にかかった(左右いずれか一方または両方のシュー荷重が所定の下限を下回った)圧延材に後続する圧延材を同じ条件でピアサ圧延すると、同様に偏心性偏肉不良が発生する可能性が極めて高い。そこで、シュー荷重が所定の下限を下回った側(左右いずれか一方または両方の側)のシュー荷重を所定の下限以上の範囲内に戻すように措置する。   Then, when the rolled material following the rolled material subjected to this detection (the shoe load on either the left or right or both falls below a predetermined lower limit) under the same conditions is pierced, the eccentric eccentric thickness defect is similarly generated. Very likely. Therefore, a measure is taken so that the shoe load on the side where the shoe load falls below the predetermined lower limit (either one of the left or right side or both) is returned to the range above the predetermined lower limit.

この措置は、例えば図1Aに模式グラフで示すような、シュー位置とシュー荷重との関係に基づいてシュー位置変更量、例えばα、を適宜決定し、シュー位置を、現用の位置からαだけパス中心線側へシフトさせた位置へ変更することにより実行される。
図1および図1Aに示したような関係は、実験により予め決定することができる。これらの具体的数値関係は、素材の鋼種により異なるほか、上下ロールのロール間隔(ピアサロール間隔)、および該ロール間のプラグのパスライン方向の配置位置(ピアサプラグ位置)によっても異なってくるから、鋼種、ロール間隔、ピアサプラグ位置の各々で適宜定めた複数の水準毎に前記具体的数値関係を決定しておくのが好ましい。
As shown in the schematic graph of FIG. 1A, for example, this measure appropriately determines a shoe position change amount, for example, α based on the relationship between the shoe position and the shoe load, and passes the shoe position by α from the current position. It is executed by changing to a position shifted to the center line side.
The relationship as shown in FIG. 1 and FIG. 1A can be determined in advance by experiment. These specific numerical relationships differ depending on the steel type of the material, and also differ depending on the roll interval between the upper and lower rolls (piercer roll interval) and the arrangement position of the plug between the rolls in the pass line direction (piercer plug position). It is preferable to determine the specific numerical relationship for each of a plurality of levels appropriately determined for each of the roll interval and the piercer plug position.

もっとも、上記のシュー位置変更により、αを極力小さくしても、シュー荷重がF2を超えて外径が目標範囲を下回る場合がありうる。このような場合、次工程のエロンゲータ圧延において噛み込み不良などのトラブルが発生しやすくなり、それ以降の圧延工程による偏肉軽減の作用効果が低下する。
そこで、このような場合には、前記複数の水準毎に決定しておいた具体的数値関係に基づいて、外径が目標範囲に収まりうるピアサロール間隔および/またはピアサプラグ位置の水準(例えばαに対するシュー荷重の変化量がより小さい水準)を選定し、現用の水準から前記選定した水準へ変更することが好ましい。なお、このとき、ピアサロール間隔は拡大側(ピアサ出側ホロー外径が増す方向)に、ピアサプラグ位置はパスラインの上流側(プラグと上下のロールとの隙が減る方向)に、変更するのが好ましい。これらの変更量は、前記具体的数値関係に基づいて適宜決定しうる。
However, even if α is made as small as possible by changing the shoe position described above, the shoe load may exceed F2 and the outer diameter may fall below the target range. In such a case, troubles such as a biting failure are likely to occur in the elongator rolling in the next process, and the effect of reducing uneven thickness in the subsequent rolling process is reduced.
Therefore, in such a case, based on the specific numerical relationship determined for each of the plurality of levels, the level of the piercer roll interval and / or the piercer plug position where the outer diameter can be within the target range (for example, the shoe for α) It is preferable to select a level at which the amount of change in load is smaller) and change the current level to the selected level. At this time, the piercer roll interval should be changed to the enlarged side (the direction in which the outer diameter of the piercer outlet side hollow increases), and the piercer plug position to the upstream side (the direction in which the gap between the plug and the upper and lower rolls decreases). preferable. These change amounts can be appropriately determined based on the specific numerical relationship.

前記シュー位置変更、あるいはそれに加えたピアサロール間隔変更および/またはピアサプラグ位置変更は、前記検出にかかった圧延材の次以降のどの順番の圧延材から実行してもよいが、偏心性偏肉不良の発生本数を極力少なくする観点からして当然ながら、前記各変更措置の実行時期は、前記検出にかかった圧延材のピアサ圧延終了後、そのすぐ次に圧延される圧延材のピアサ圧延開始前の時期とするのが好ましい。   The shoe position change, or the piercer roll interval change and / or the piercer plug position change added thereto may be executed from any order of the rolled material subsequent to the rolled material subjected to the detection. Of course, from the viewpoint of minimizing the number of occurrences, the execution timing of each of the change measures is the time before the start of piercing rolling of the rolled material to be rolled immediately after the end of piercing rolling of the rolled material affected by the detection. Time is preferred.

なお、本発明の好適対象鋼種には、表1に示すものが含まれる。   Note that suitable steel types of the present invention include those shown in Table 1.

Figure 2007290020
Figure 2007290020

素材規格TCM14(JIS G7220相当)の丸ビレット(直径260mm)を素材とし、図3に示した製造工程においてピアサ圧延条件を下記の条件1〜4の各々とした工程No.1〜4により、最終仕上寸法=外径355.6mm×肉厚35.7mmになる中径シームレス鋼管を製造した。工程No.1は従来例、工程No.2〜4は本発明例に対応する。ピアサ出側ホロー外径の目標範囲は、下限=290mm、上限=300mmとした。なお、加熱炉の炉温は1230℃に、再加熱炉の炉温は980℃に、それぞれ設定した。   The round billet (diameter 260mm) of material standard TCM14 (equivalent to JIS G7220) is used as the raw material, and in the manufacturing process shown in FIG. A medium-diameter seamless steel pipe having a finishing dimension = outer diameter of 355.6 mm × thickness of 35.7 mm was manufactured. Process No. 1 corresponds to a conventional example, and Process Nos. 2 to 4 correspond to examples of the present invention. The target range of the outer diameter of the piercer exit side hollow was set such that the lower limit = 290 mm and the upper limit = 300 mm. The furnace temperature of the heating furnace was set to 1230 ° C, and the furnace temperature of the reheating furnace was set to 980 ° C.

[条件1] 1ロット(全N本;ただしNの値は表3に示す)のN本を1本ずつ順次ピアサ圧延する間中、ロール間隔:固定、ピアサプラグ位置:固定、シュー間隔:固定、シュー荷重:監視せず、とする。
[条件2] 1ロット(全N本;ただしNの値は表3に示す)のN本を1本ずつ順次ピアサ圧延する間中、ロール間隔およびピアサプラグ位置:条件1に同じ、シュー間隔:表2の要領Aで随時変更(ただしFmin、αの値は表3に示す)、シュー荷重:監視する、とする。
[Condition 1] During the piercer rolling of N lots of 1 lot (all N pieces; the value of N is shown in Table 3) one by one, roll interval: fixed, piercer plug position: fixed, shoe interval: fixed, Shoe load: Not monitored.
[Condition 2] Roll piercing and piercing plug position: Same as Condition 1 while shoe piercing: Table during the piercing of N lots of 1 lot (all N pieces; the value of N is shown in Table 3) one by one. Change at any time in procedure A in 2 (however, the values of F min and α are shown in Table 3), shoe load: monitor.

[条件3] 1ロット(全N本;ただしNの値は表3に示す)のN本を1本ずつ順次ピアサ圧延する間中、ロール間隔:表2の要領Bで随時変更(ただしβの値は表3に示す)、ピアサプラグ位置:条件2に同じ、シュー間隔およびシュー荷重:条件2に同じ、とする。
[条件4] 1ロット(全N本;ただしNの値は表3に示す)のN本を1本ずつ順次ピアサ圧延する間中、ロール間隔、シュー間隔およびシュー荷重:条件3に同じ、ピアサプラグ位置:表2の要領Cで随時変更(ただしγの値は表3に示す)、とする。
[Condition 3] During the pierce rolling of N lots of 1 lot (all N pieces; however, the value of N is shown in Table 3) one by one, roll interval: change at any time in the procedure B in Table 2 (however, β The values are shown in Table 3), the piercer plug position: the same as condition 2, and the shoe spacing and shoe load: the same as condition 2.
[Condition 4] Roller interval, shoe interval and shoe load: Same as condition 3, during piercer rolling of N lots of 1 lot (N in total; the value of N is shown in Table 3) one by one. Position: Changed as necessary in the procedure C of Table 2 (however, the value of γ is shown in Table 3).

Figure 2007290020
Figure 2007290020

従来例と本発明例について、サイザ圧延後の製品における偏心性偏肉起因の不合格率(不合格本数率)を調査した。ここで、偏肉率が10%以下のものを合格、それ超のものを不合格とした。調査結果を表3に示す。表3より、本発明によれば、ピアサ圧延での偏心性偏肉の発生を有効に抑制できることがわかる。   About the conventional example and the example of this invention, the failure rate (failure number rate) resulting from eccentricity unevenness in the product after sizer rolling was investigated. Here, those with an uneven thickness ratio of 10% or less were accepted, and those with an uneven thickness percentage were rejected. The survey results are shown in Table 3. From Table 3, it can be seen that according to the present invention, it is possible to effectively suppress the occurrence of eccentricity wall thickness in piercer rolling.

素材規格TK24H(JIS G3456相当)の丸ビレット(直径350mm)を素材とし、図3に示した製造工程においてピアサ圧延条件を前記の条件1〜4の各々とした工程No.5〜8により、最終仕上寸法=外径406.4mm×肉厚44mmになる中径シームレス鋼管を製造した。工程No.5は従来例、工程No.6〜8は本発明例に対応する。ピアサ出側ホロー外径の目標範囲は、下限=378mm、上限=381mmとした。なお、加熱炉の炉温は1260℃に、再加熱炉の炉温は980℃に、それぞれ設定した。   The round billet (diameter 350 mm) of the material standard TK24H (equivalent to JIS G3456) is used as the material, and in the manufacturing process shown in FIG. A medium-diameter seamless steel pipe having a finishing dimension = outer diameter of 406.4 mm × thickness of 44 mm was manufactured. Process No. 5 corresponds to a conventional example, and Process Nos. 6 to 8 correspond to examples of the present invention. The target range of the outer diameter of the piercer exit side hollow was set such that the lower limit = 378 mm and the upper limit = 381 mm. The furnace temperature of the heating furnace was set to 1260 ° C, and the furnace temperature of the reheating furnace was set to 980 ° C.

従来例と本発明例について、サイザ圧延後の製品における偏心性偏肉起因の不合格率(不合格本数率)を調査した。ここで、偏肉率が10%以下のものを合格、それ超のものを不合格とした。調査結果を表3に示す。表3より、本発明によれば、ピアサ圧延での偏心性偏肉の発生を有効に抑制できることがわかる。   About the conventional example and the example of this invention, the failure rate (failure number rate) resulting from eccentricity unevenness in the product after sizer rolling was investigated. Here, those with an uneven thickness ratio of 10% or less were accepted, and those with an uneven thickness percentage were rejected. The survey results are shown in Table 3. From Table 3, it can be seen that according to the present invention, it is possible to effectively suppress the occurrence of eccentricity wall thickness in piercer rolling.

Figure 2007290020
Figure 2007290020

シュー荷重と偏肉率、外径(ピアサ出側ホロー外径)との関係を示す模式グラフである。It is a schematic graph which shows the relationship between a shoe load, a thickness deviation rate, and an outer diameter (piercer exit side hollow outer diameter). シュー位置とシュー荷重との関係を示す模式グラフである。It is a schematic graph which shows the relationship between a shoe position and shoe load. ピアサ圧延の様子を示す模式図である。It is a schematic diagram which shows the mode of piercer rolling. 中径シームレス鋼管の製造工程の1例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process of a medium diameter seamless steel pipe. 偏心性偏肉の様相を示す模式図である。It is a schematic diagram which shows the aspect of eccentricity thickness deviation.

符号の説明Explanation of symbols

1 丸ビレット(素材)
2 加熱炉(回転炉床式加熱炉)
3 ピアサ(縦型2ロール傾斜回転穿孔圧延機)
4 エロンゲータ(縦型2ロール傾斜回転延伸圧延機)
5 プラグミル(プラグミル方式軸方向孔型圧延機)
6 リーラ(横型2ロール回転内外面磨管機)
7 再加熱炉(ウォーキングビーム式再加熱炉)
8 サイザ(8スタンドの2ロールカリバー型外径成型機)
9 圧延材
10 ホロー(中空材)
11 プラグ(ピアサプラグ)
12 プラグ(エロンゲータプラグ)
13 プラグ(プラグミルプラグ)
14 プラグ(リーラプラグ)
20 管
31 ロール(上ロール)
32 ロール(下ロール)
33 シュー(左シュー)
34 シュー(右シュー)
1 round billet (material)
2 Heating furnace (rotary hearth type heating furnace)
3 Piercer (vertical 2-roll inclined rotary piercing and rolling mill)
4 Elongator (vertical 2-roll inclined rotary rolling mill)
5 Plug mill (plug mill type axial hole rolling mill)
6 Leela (Horizontal 2-roll rotating inner and outer surface polishing pipe machine)
7 Reheating furnace (walking beam type reheating furnace)
8 Sizer (8-stand 2-roll caliber type outer diameter molding machine)
9 Rolled material
10 Hollow (hollow material)
11 Plug (Piercer plug)
12 Plug (Elongator plug)
13 Plug (plug mill plug)
14 Plug (Reeler plug)
20 tubes
31 roll (upper roll)
32 rolls (lower roll)
33 shoe (left shoe)
34 shoe (right shoe)

Claims (4)

圧延材を左右のシューで案内しつつ上下のロールと該ロール間のプラグとで傾斜回転穿孔圧延するピアサ圧延を含む中径シームレス鋼管の製造方法において、前記ピアサ圧延中のシュー荷重を監視し、該監視値が所定の下限を下回った側のシューの位置を、パス中心線に近づく位置へ変更することを特徴とする中径シームレス鋼管の製造方法。   In a method for producing a medium-diameter seamless steel pipe including piercer rolling, in which a rolled material is guided by a left and right shoe while tilting rotary piercing rolling with upper and lower rolls and a plug between the rolls, the shoe load during the piercing rolling is monitored, A method for producing a medium-diameter seamless steel pipe, characterized in that the position of the shoe on the side where the monitored value falls below a predetermined lower limit is changed to a position approaching the path center line. 前記シュー位置の変更と併せて、上下のロールのロール間隔を変更することを特徴とする請求項1に記載の中径シームレス鋼管の製造方法。   The method for producing a medium-diameter seamless steel pipe according to claim 1, wherein a roll interval between the upper and lower rolls is changed together with the change of the shoe position. 前記シュー位置の変更と併せて、ロール間のプラグのパスライン方向の配置位置を変更することを特徴とする請求項1または2に記載の中径シームレス鋼管の製造方法。   The method for producing a medium-diameter seamless steel pipe according to claim 1 or 2, wherein the arrangement position of the plug between the rolls in the pass line direction is changed together with the change of the shoe position. 前記シュー位置の変更、前記ロール間隔の変更、前記プラグの配置位置の変更の実行時期を、シュー荷重の監視値が前記下限を下回った圧延材のピアサ圧延終了後、その圧延材の次の圧延材をピアサ圧延する前としたことを特徴とする請求項1〜3のいずれかに記載の中径シームレス鋼管の製造方法。   The execution time of the change of the shoe position, the change of the roll interval, and the change of the arrangement position of the plug is followed by the next rolling of the rolled material after the piercer rolling of the rolled material whose shoe load monitoring value is below the lower limit. The method for producing a medium-diameter seamless steel pipe according to any one of claims 1 to 3, wherein the material is before pierce rolling.
JP2006122861A 2006-04-27 2006-04-27 Manufacturing method of medium diameter seamless steel pipe Active JP4609372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122861A JP4609372B2 (en) 2006-04-27 2006-04-27 Manufacturing method of medium diameter seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122861A JP4609372B2 (en) 2006-04-27 2006-04-27 Manufacturing method of medium diameter seamless steel pipe

Publications (2)

Publication Number Publication Date
JP2007290020A true JP2007290020A (en) 2007-11-08
JP4609372B2 JP4609372B2 (en) 2011-01-12

Family

ID=38761144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122861A Active JP4609372B2 (en) 2006-04-27 2006-04-27 Manufacturing method of medium diameter seamless steel pipe

Country Status (1)

Country Link
JP (1) JP4609372B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161900A (en) * 2006-12-27 2008-07-17 Jfe Steel Kk Manufacturing method of medium diameter seamless steel pipe
JP2022145611A (en) * 2021-03-17 2022-10-04 Jfeスチール株式会社 Inclined rolling equipment, inclined rolling method and seamless tube manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156611A (en) * 1979-05-22 1980-12-05 Kawasaki Steel Corp Controlling method for draft of reeling mill
JPS5722807A (en) * 1980-07-15 1982-02-05 Sumitomo Metal Ind Ltd Pipe making method
JPS6064716A (en) * 1983-09-20 1985-04-13 Kawasaki Steel Corp Control method of skew rolling mill for manufacturing seamless steel pipe
JPS62104611A (en) * 1985-11-01 1987-05-15 Kawasaki Steel Corp Operation controlling method for inclined rolling mill
JPH02121706A (en) * 1988-10-28 1990-05-09 Kawasaki Steel Corp Method and device for piercing and rolling seamless metal tube
JPH1058014A (en) * 1996-08-22 1998-03-03 Nippon Steel Corp Elongator rolling method of seamless steel pipe
JP2002035812A (en) * 2000-07-31 2002-02-05 Kawasaki Steel Corp Rolling method of raw pipe for seamless steel pipe production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156611A (en) * 1979-05-22 1980-12-05 Kawasaki Steel Corp Controlling method for draft of reeling mill
JPS5722807A (en) * 1980-07-15 1982-02-05 Sumitomo Metal Ind Ltd Pipe making method
JPS6064716A (en) * 1983-09-20 1985-04-13 Kawasaki Steel Corp Control method of skew rolling mill for manufacturing seamless steel pipe
JPS62104611A (en) * 1985-11-01 1987-05-15 Kawasaki Steel Corp Operation controlling method for inclined rolling mill
JPH02121706A (en) * 1988-10-28 1990-05-09 Kawasaki Steel Corp Method and device for piercing and rolling seamless metal tube
JPH1058014A (en) * 1996-08-22 1998-03-03 Nippon Steel Corp Elongator rolling method of seamless steel pipe
JP2002035812A (en) * 2000-07-31 2002-02-05 Kawasaki Steel Corp Rolling method of raw pipe for seamless steel pipe production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161900A (en) * 2006-12-27 2008-07-17 Jfe Steel Kk Manufacturing method of medium diameter seamless steel pipe
JP2022145611A (en) * 2021-03-17 2022-10-04 Jfeスチール株式会社 Inclined rolling equipment, inclined rolling method and seamless tube manufacturing method
JP7424399B2 (en) 2021-03-17 2024-01-30 Jfeスチール株式会社 Inclined rolling equipment, inclined rolling method, and seamless pipe manufacturing method

Also Published As

Publication number Publication date
JP4609372B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
CN103934269B (en) A kind of TC4 titanium alloy seamless tube and production method thereof
CN104874606B (en) The production method of high chromium content ferrite stainless steel seamless steel pipe
US8333092B2 (en) Piercer, plug and method of manufacturing seamless pipe or tube
CN103464507B (en) A kind of method of producing high-precision austenite seamless steel pipe
CN107695102B (en) A method of block after preventing thick-walled pipe roll piercing
CN101405096A (en) Method for manufacturing seamless pipe
EP1607148B1 (en) Method of manufacturing seamless tube
RU2544333C1 (en) Manufacturing method of cold-rolled pipes from alpha- and pseudo-alpha-alloys based on titanium
JP4609372B2 (en) Manufacturing method of medium diameter seamless steel pipe
JPWO2004103593A1 (en) Seamless pipe manufacturing method
EP2286934B1 (en) High-alloy seamless steel pipe manufacturing method
CN111922084A (en) A kind of seamless steel pipe perforation forming method
US9254511B2 (en) Method for producing seamless tube/pipe
JP4952242B2 (en) Manufacturing method of medium diameter seamless steel pipe
JP2998605B2 (en) Perforation rolling method and perforation rolling device for seamless metal pipe
JP2021098215A (en) Seamless steel pipe manufacturing method
JP3692597B2 (en) Method and apparatus for piercing and rolling seamless metal pipe
JPS597407A (en) Method for eliminating uneven thickness of seamless steel pipe
JP6225893B2 (en) Inclined rolling method for seamless metal pipe
JP3407704B2 (en) Manufacturing method of high carbon seamless steel pipe
JP3578052B2 (en) Piercing and rolling method of seamless steel pipe
JP2007260685A (en) Piercer plug and piercing and rolling method
RU2508955C1 (en) METHOD OF MAKING WELL CASING SIZED TO 244,5×7,9, 244,5×9 AND 244,5×10 mm AT PIPE ROLLING UNIT WITH PILGER MILLS
JP2004082174A (en) Manufacturing method of seamless steel pipe
JP2006150421A (en) Seamless steel pipe manufacturing method and plug mill plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250