[go: up one dir, main page]

JP2007265581A - 回折素子 - Google Patents

回折素子 Download PDF

Info

Publication number
JP2007265581A
JP2007265581A JP2006092707A JP2006092707A JP2007265581A JP 2007265581 A JP2007265581 A JP 2007265581A JP 2006092707 A JP2006092707 A JP 2006092707A JP 2006092707 A JP2006092707 A JP 2006092707A JP 2007265581 A JP2007265581 A JP 2007265581A
Authority
JP
Japan
Prior art keywords
phase difference
wavelength
region
diffraction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092707A
Other languages
English (en)
Inventor
Nobuji Kawamura
宜司 川村
Hajime Kurahashi
肇 倉▲はし▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Sano Corp
Original Assignee
Fujinon Sano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Sano Corp filed Critical Fujinon Sano Corp
Priority to JP2006092707A priority Critical patent/JP2007265581A/ja
Priority to US11/693,210 priority patent/US20070229955A1/en
Priority to CNA2007100914718A priority patent/CN101046523A/zh
Publication of JP2007265581A publication Critical patent/JP2007265581A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

【課題】特殊な液晶を用いることなく波長依存性のない回折素子を実現する。
【解決手段】入射光を回折させるための回折素子1には、透明基板30上に、入射光を回折させるための第1の位相差領域10と第2の位相差領域20とが交互に複数配列されて回折パターンが形成されている。第1の位相差領域10及び前記第2の位相差領域20には、入射光の複数の波長の位相差を揃えるために、複数の波長域のうち最短波長未満のピッチ間隔で複数の微小凹凸構造がナノオーダーで配列されている。そして、第1の位相差領域10の微小凹凸構造と前記第2の位相差領域20の微小凹凸構造とは直交している。ナノオーダーの微小凹凸構造により位相差が揃えられて、回折パターンにより回折効率に波長依存性が少ない回折機能を発揮することができる。
【選択図】 図1

Description

本発明は入射光を回折させる回折素子に関し、特に波長依存性が少ない回折素子に関するものである。
光学素子として入射光を回折させる回折素子があり、回折素子は例えば光ピックアップ等に用いられる。光ピックアップでは、光源から射出した光は、信号光として利用される他に、フォーカス誤差検出信号及びトラック誤差検出信号としても利用される。従って、回折素子は入射光のうち信号光を0次光として、フォーカス誤差検出信号及びトラック誤差検出信号を±1次光として回折させる。このため、回折素子は、ミクロンオーダーで凹凸構造がガラス基板上に形成された構成を採用している。
ところで、近年の光ピックアップでは、CD(Compact Disk:波長780nmの光を利用した光ディスク)及びDVD(Digital Versatile Disk:波長650nmの光を利用した光ディスク)の他に、大容量光ディスク(波長405nmの青色レーザを利用した光ディスク)が普及しつつある。これら3つの波長域の光を別個独立の光ピックアップとして設けると装置全体が大型化するため、光ピックアップの構成部品を3波長に対応させて、光ピックアップの小型化を図っている。これに伴い、光ピックアップに用いられる回折素子も3波長対応のものを使用する必要がある。
ここで、光ピックアップに使用される光学部品は、夫々特定の波長においてその光学特性が発揮されるものが多い。従って、光ピックアップに用いられる回折素子も、CD、DVD又は大容量光ディスクの何れかにおいて回折効率が最適になるように設計されている。このため、3波長のうち何れかに対応した回折素子を使用すると、1つの波長域の光では所定の回折効率が得られるが、他の波長域の光では回折効率が悪化するという問題がある。当該回折効率が悪化した波長域の光は、その光のパワーが減少するだけでなく、0次光と±1次光との間のパワーの配分比率も悪化するという問題を招来する。そうすると、安定した信号光の供給及びフォーカス誤差検出信号及びトラック誤差検出信号の供給を行うことができなくなる。
この問題を解決課題とするものが特許文献1に開示されている。特許文献1では、複屈折を有する光学異方性媒質と光学等方性媒質とを周期的に交互に配列して、光学異方性媒質を、光が透過する光軸方向と垂直な面内若しくはこれに近い面内での屈折率楕円の主軸方向を光軸方向に平行な軸の回りにねじれ回転させている。そして、偏光方向を回転することにより夫々の偏光方向に対して強度変調を与えている。
特開平2005−141033公報
ところで、特許文献1では、格子状の各領域において偏光方向を回転させるために、光学異方性媒質を用いている。光学異方性媒質としては、ツイスト配向させた低分子液晶を重合した高分子液晶が用いられる。従って、波長による回折効率の依存性を解消するためには、特殊な高分子液晶が必要とされる。光学異方性媒質では、ツイスト配向させた低分子液晶を重合した高分子液晶により偏光方向を回転させている。このため、プレツイスト角及びツイスト角を調整して光学異方性の配向を調整する必要があるが、このとき光学異方性媒質を充填する凹部の溝の角度を微調整する必要がある。また、光学異方性媒質において、偏光方向の回転角度を制御するために、プレツイスト角、ツイスト角、高分子液晶の材質や格子部分の高さ等種々の調整が必要となる。
従って、低分子液晶を重合させた特殊な高分子液晶を用いて偏光方向を回転させることは、上記の種々の微調整が必要となる。光ピックアップ等では、取り扱う波長がナノオーダーの極めて短い波長であるため、上記の種々の調整項目には極めて高い厳格性が求められる。つまり、種々の調整項目が完全でないとすると、回折効率にばらつきが発生することになる。逆に、種々の調整項目の厳格性を追求すると、回折素子の作製が極めて困難なものとなり、作製コストの点で大きな問題となる。
そこで、本発明は、特殊な液晶を用いることなく、回折効率に波長依存性の少ない回折素子を提供することを目的とする。
本発明の回折素子は、透明基板上に、入射光を回折させるための第1の位相差領域と第2の位相差領域とが交互に複数配列されて回折パターンが形成され、前記第1の位相差領域及び前記第2の位相差領域には、前記入射光の複数の波長の位相差を揃えるために、前記複数の波長域のうち最短となる波長よりも短いピッチで複数の微小凹凸構造が配列され、 前記第1の位相差領域の微小凹凸構造と前記第2の位相差領域の微小凹凸構造とは直交していることを特徴とする。
本発明は、特殊な液晶を用いることなく、回折効率に波長依存性が少なく、且つ入射光の偏光方向に依存しない回折素子を実現することができる。
A.本発明の回折素子の説明
以下、図面に基づいて、本発明の実施形態について説明する。図1及び図2に示されるように、本発明の回折素子1は、第1の位相差領域10と第2の位相差領域20とがガラス基板等の透明基板30の一面に形成されてなる。図1にも示されるように、第1の位相差領域10と第2の位相差領域20とは交互に配列された周期構造を採用している。第1の位相差領域10及び第2の位相差領域20には、図3にも示されるように、微小ピッチの凹凸構造が形成されている。微小ピッチの凹凸構造は、樹脂等に当該凹凸構造を転写することにより、又は透明基板30自体に溝を掘り込むことにより形成される。従って、凹凸構造の凹部(以下、凹部11とする)は空気層であり、凸部(以下、凸部12とする)は樹脂やガラス素材等の媒質層である。このため、空気層である凹部11と媒質層である凸部12とでは屈折率に差があり、凹部11の屈折率は凸部12の屈折率よりも低い。従って、凹部11を進行する光の伝搬速度は、凸部12を進行する光の伝搬速度よりも速くなる。
第1の位相差領域10の凹凸構造と第2の位相差領域20の凹凸構造とは相互に直交している関係となっている。第1の位相差領域10及び第2の位相差領域20の微小ピッチはナノオーダーのサブ波長周期を有する微小構造からなる。一方、第1の位相差領域10と第2の位相差領域20との交互配列からなるパターンはミクロンオーダーからなる周期構造であるものとする。従って、回折素子1は、2つのパターンを有していることになる。つまり、(1)第1の位相差領域10及び第2の位相差領域20の凹凸構造による微小ピッチのパターンと、(2)第1の位相差領域10と第2の位相差領域20との交互配列によるパターンと、の2つのパターンを有している。上記のうち(1)は、使用する波長(回折素子1に入射させるターゲットとなる波長)の位相差を揃えるために機能するものであり、(2)は回折機能を発揮する。上記(1)の機能と(2)の機能とにより、回折素子1は回折効率に波長依存性の少ない回折素子として機能することができる。以下、さらに詳しく説明していく。
上述したように、第1の位相差領域10及び第2の位相差領域20には、相互に直交する微小ピッチ(以下、微小ピッチPdとする)の凹凸構造が形成されている。ここで、第1の位相差領域10及び第2の位相差領域20の夫々の凹凸構造の微小ピッチPdについて説明する。各位相差領域の微小ピッチPdは、回折素子1に入射する入射光を回折させるときに使用される光の波長域のうち最短となる波長よりも短いピッチ(以下、最短波長未満とする)で形成する。第1の位相差領域10及び第2の位相差領域20の凹凸構造はターゲットとなる波長の位相差を揃える機能を発揮するため、これらが単体で回折現象を発生しないようにする必要がある。ここで、入射光の波長をλとし、m次光の回折角度をθとしたときに、微小ピッチPdとの間には、「Pd×sinθ=m×λ」の式が成立する。そうすると、回折現象を生じさせないためには、微小ピッチPdは「Pd<λ」の式を満たしている必要がある。そこで、微小ピッチPdは入射光の最短波長未満としている。
なお、図2にも示されるように、第1の位相差領域10の間隔と第2の位相差領域20の間隔とを合せた間隔(以下、回折ピッチPgとする)と微小ピッチPdとの関係は、「Pg>Pd」となる。つまり、複数の微小凹凸構造が集合して第1の位相差領域10及び第2の位相差領域20が構成されるため、「Pg>Pd」となる。
微小ピッチPdは、凸部12の間隔L1と凹部11の間隔L2としたときに、「Pd=L1+L2」である。ここでは、「L1=L2」であるものとし、第1の位相差領域10及び第2の位相差領域20の微小ピッチPdは、夫々等しいものとする。勿論、第1の位相差領域10の微小ピッチは第2の位相差領域20の微小ピッチと等しくなくてもよいが、両者の微小ピッチは入射光の波長域の最短波長未満にすることが条件となる。また、凸部12の間隔L1と凹部11の間隔L2とも、等しくなくてもよい。つまり、凸部12(及び凹部11)の微小ピッチPdに対する占有率(フィリングファクター)を半分にしなくてもよい。
ここで、サブ波長オーダーの凹凸構造を有する第1の位相差領域10に光が入射したときには、当該領域は位相差を揃えるような機能を発揮する。つまり、サブ波長オーダーの凹凸構造に光が入射すると、周期を持つ方向と持たない方向とで有効屈折率が異なる。そうすると、入射光の偏光方向によって屈折率差が異なることになり、複屈折性を入射光に作用する。複屈折性が作用すると、屈折率が大きい箇所は光の伝搬速度が遅くなり、屈折率が小さい箇所は光の伝搬速度が速くなる。このため、複屈折性の作用により位相差が発生する。
このとき、サブ波長オーダーの微小凹凸構造により入射光に与えられる位相差Rは、凹凸構造と平行な方向の偏光光に作用する屈折率をnTEとし、凹凸構造と垂直な方向の偏光光に作用する屈折率をnTMとし、凸部12の高さをdとし、入射光の波長をλとしたときに、「R=(nTE―nTM)×d/λ」となる。このときの微小ピッチPdに対する波長λの比率と位相差Rとの関係についてのグラフを図4に示す。図4において、横軸(λ/Pd)の値が「1」となる箇所が、入射光の波長λと凹凸構造の微小ピッチPdが等しくなる箇所である。当該箇所の前後においては、波長λが長くなるに従って、屈折率nTEと屈折率nTMとの差が広がっていく。屈折率nTEと屈折率nTMとの差は上記式の括弧内のものであり、分子の一部である。一方、波長λは上記式においては分母である。従って、波長λが長くなるに従って、屈折率nTEと屈折率nTMとの差が広がれば、上記式の分母が増えるに従って、分子も増えることになる。よって、横軸(λ/Pd)の値が「1」となる箇所の前後においては、位相差Rはほぼ一定になる。これにより、位相差Rを波長λによらず一定にすることができる。
特に、同図からも明らかなように、横軸(λ/Pd)の値がおおよそ「1.0」〜「2.0」程度の間において、屈折率nTEの曲線の勾配が緩やかになるのに対して屈折率nTMの曲線の勾配は急になる。つまり、微小ピッチPdが入射光の波長λの「1.0倍」〜「0.5倍」程度の範囲において、波長が長くなるに従って屈折率差が広がることになる。このため、当該範囲において位相差Rを一定にすることができる。
ここで、上記の位相差Rは、凸部12の高さdによっても変化する。そして、上記の屈折率nTE及びnTMは、凸部12である媒質層の屈折率、凹部11である空気層の屈折率及びフィリングファクターにより決定される。フィリングファクターは、上述したように、微小ピッチPdに対する凸部12の間隔L1の占有比率、つまり「L1/Pd」である。従って、微小ピッチPd、凸部12の高さd、屈折率の選択、フィリングファクターの設定等の種々の要素により、位相差Rを決定し得る。本発明では、回折素子1に入射させる光の波長の位相差Rを揃えることができればよいため、ターゲットとなる波長の位相差Rが揃えられるように上記の種々の要素の値を決定することができる。例えば、青色レーザを使用する大容量光ディスク、DVD及びCDの3波長を使用する場合には、ターゲットとなる波長は405nm、650nm及び780nmであるため、3波長において位相差Rが揃えられるように上記の種々の値を決定することができる。つまり、ターゲットとなる複数の波長において位相差Rが揃えられるように決定する。
第2の位相差領域20も位相差Rを揃えるためのものであるため、第1の位相差領域10と同様の構成を採用する。ただし、凹凸構造は第1の位相差領域10とは直交しているため、入射光の偏光方向に対する屈折率の作用は第1の位相差領域10とは逆になる。
上述したように、第1の位相差領域10及び第2の位相差領域20が多波長(ターゲットとなる複数の波長)において位相差Rを揃えるような機能を発揮するが、第1の位相差領域10と第2の位相差領域20とが交互に配列された回折パターンを採用すると、回折効率に波長依存性が少ない回折素子を得ることができる。この理由について説明する。
第1の位相差領域10と第2の位相差領域20とは、相互に直交する凹凸構造を有しているため、夫々入射光の偏光方向によって異なる屈折率を作用する。そして、第1の位相差領域10及び第2の位相差領域20には、サブ波長オーダーの凹凸構造が複数形成されている。従って、第1の位相差領域10と第2の位相差領域20との交互配列からなる回折パターンにおいて、第1の位相差領域10と第2の位相差領域20との屈折率が異なれば、回折現象が発生することになる。つまり、第1の位相差領域10と第2の位相差領域20とを、一般的な回折素子の凹凸パターンと同じものとみなすことができる。そうすると、回折現象により入射光に対して回折機能を作用させることができる。このとき、一般的な回折素子は、入射光を回折させるために凹凸により高低差を設ける必要がある。一方、本発明の回折素子1は、第1の位相差領域10と第2の位相差領域20との間に高低差を設けることは要しない。つまり、第1の位相差領域10及び第2の位相差領域20により、一般的な回折素子の凹凸形状の役割を果たすことになる。
なお、第1の位相差領域10と第2の位相差領域20との回折ピッチはナノオーダーの間隔で形成される格子が複数形成されたものであるため、第1の位相差領域10と第2の位相差領域20とはミクロンオーダーの間隔で形成されているものとしている。ただし、ミクロンオーダーには限定されない。回折現象を作用させるためには、少なくとも回折ピッチPgは、入射光の波長λ以上である必要がある。「Pg≧λ」を満たすことが回折現象発生の条件となるから、当該条件を満たすものであれば、回折ピッチPgは任意の間隔で形成することができる。また、ここでは、第1の位相差領域10及び第2の位相差領域20の間隔を等しくしているが、異なっているものでもよい。
図5を用いて、回折パターンによる作用について具体的に説明する。図5において、回折素子1の入射側を図中の「in」の側とし、出射側を図中の「out」の側とする。同図(a)では、回折素子1に第1の位相差領域10の凹凸構造と平行な偏光方向を有する偏光光(以下、Y偏光光とする)が入射している。このとき、入射光の偏光方向は、第1の位相差領域10の凹凸構造とは平行であるが、第2の位相差領域20の凹凸構造とは直交している。ここで、凹凸構造と平行な方向の偏光光が入射したときに作用する屈折率をn1(凹凸構造と平行な偏光光に対する屈折率)とし、直交する方向の偏光光が入射したときに作用する屈折率をn2(凹凸構造と直交する偏光光に対する屈折率)とすると、屈折率n1と屈折率n2との間には、「n1>n2」の関係式が成立する。そうすると、第1の位相差領域10と第2の位相差領域20との間には屈折率差を生じることになる。このため、回折素子1に入射する入射光に回折現象が生じる。
ここで、上述したように、m次光における回折角度をθとしたときには、「Pg×sinθ=m×λ」の式が成立する。従って、±1次光に回折させるときの回折角度θは、「θ=sin―1(λ/Pg)」となる。よって、フォーカス誤差信号やトラック誤差信号等として用いられる±1次光の回折角度θは、使用される波長λ及び回折ピッチPgとにより任意に決定することができる。通常、回折ピッチPgとしては、回折作用を発揮するために、数ミクロン乃至数百ミクロンの間隔で形成される。
また、第1の位相差領域10を透過する光と第2の位相差領域20を透過する光との間の位相差によって、0次光と±1次光とのエネルギーの配分比率が定まる。このとき、第1の位相差領域10を透過する光と第2の位相差領域20を透過する光との間の位相差は、凸部12の高さdによって定まる。よって、凸部12の高さdを適宜制御することにより、エネルギー配分比率を任意に制御することができる。
次に、図5(b)に示されるように、第2の位相差領域20の凹凸構造に平行な方向の偏光方向を有する偏光光(以下、X偏光光とする)が入射した場合について説明する。この場合、入射光の偏光方向は第2の位相差領域20には対しては平行であるが、第1の位相差領域10に対しては直交している。従って、第1の位相差領域10を光が透過するときの屈折率n2は、第2の位相差領域20を光が透過するときの屈折率と比較して高い。そうすると、第1の位相差領域10と第2の位相差領域20との間には屈折率差を生じることになる。このため、回折素子1に入射する入射光に回折現象が生じる。
図5(c)には、入射光の偏光方向が第1の位相差領域10の凹凸構造及び第2の位相差領域20の凹凸構造の何れに対しても傾斜している場合について説明する。つまり、入射光である偏光光はX偏光光及びY偏光光の何れに対しても傾斜している場合について説明する。この場合、入射光はX偏光光とY偏光光との2つの偏光成分を有するため、入射光をX偏光光とY偏光光とに分解することができる。このため、第1の位相差領域10に入射する入射光のうち、Y偏光光に対しては屈折率が低く(屈折率n1)、X偏光光に対しては屈折率が高い(屈折率n2)。一方、第2の位相差領域20に入射する入射光のうち、X偏光光に対してはX偏光光に対しては屈折率が低く(屈折率n1)、Y偏光光に対しては屈折率が高い(屈折率n2)。そうすると、X偏光光及びY偏光光の夫々に対して、屈折率差が作用し、X偏光光とY偏光光との間に伝搬速度に差を生じ、全体として回折現象が生じる。
従って、入射光の偏光方向が何れの偏光方向であったとしても、回折素子1は回折現象を作用する。換言すれば、回折素子1に偏光方向の依存性がないこととなる。
以上説明したように、本発明の回折素子は、第1の位相差領域及び第2の位相差領域には夫々サブ波長オーダーの凹凸構造が形成されることにより、多波長に渡って位相差を揃える機能を発揮させ、第1の位相差領域の凹凸構造と第2の位相差領域の凹凸構造とを直交させることにより、全体として回折素子としての機能を作用させている。このため、特殊な液晶を用いることなく、回折効率に波長依存性がない回折素子を実現することができる。また、第1の位相差領域の凹凸構造と第2の位相差領域の凹凸構造とを直交させることにより、夫々の偏光成分に分解することができることから、入射光の偏光方向に依存することがない回折素子を実現することができる。
なお、図1に示した第1の位相差領域10の凹凸構造は透明基板30の短手方向に、第2の位相差領域20の凹凸構造は透明基板30の長手方向に形成しているが、例えば、図6に示されるように、透明基板30の短手方向及び長手方向に対して斜めに形成してもよい。ただし、第1の位相差領域10の凹凸構造と第2の位相差領域20の凹凸構造とは相互に直交している条件は満たしている必要がある。
B.本発明の回折素子を適用した場合の回折効率についての説明
次に、上述した回折素子1の回折効率の特性について説明する。図7は、第1の位相差領域10及び第2の位相差領域20における各波長域の位相差を示す図である。ここでは、第1の位相差領域10及び第2の位相差領域20の凹凸構造の微小ピッチPdを「400nm」とし、凹部11の間隔L2を「125nm」とし、凸部12の間隔L1を「275nm」として説明する。また、ターゲットとなる波長としては、CDの波長(780nm)、DVDの波長(650nm)及び青色レーザを用いる大容量光ディスク(405nm)を含む波長域とするため、その範囲はおおよそ「395nm〜815nm」程度とする。また、格子の高さdは「2400nm」とする。ここでは、「395nm〜815nm」の波長域をターゲットとして説明しているが、勿論これに限定はされない。また、青色レーザを用いる大容量光ディスク、DVD及びCDの波長は厳密に、405nm、650nm及び780nmの波長の光ではなく、中心波長が405nm、650nm及び780nmの波長の光であり、夫々多少前後する。CDの波長は、中心波長を785nm又は790nmとする2種類がある。そこで、中心波長を785又は790nmとして、25nm程度は前後するため、「760nm〜815nm」程度の範囲を含むものとする。DVDの波長としては、中心波長を660nmとして、20nm程度は前後するため、「640nm〜680nm」程度の範囲を含むものとする。そして、青色レーザを用いる大容量光ディスクの波長としては、中心波長を405nm又は408nmとする2種類がある。そこで、中心波長を405nm又は408nmとして、夫々前後10nm又は8nm程度は前後するため、「395nm〜415nm」程度の範囲を含むものとする。
ここで、第1の位相差領域10及び第2の位相差領域20の凹凸構造の微小ピッチPdは「400nm」であるため、入射光の最短波長である「405nm」よりも短い。従って、微小ピッチ間隔Pdが満たさなくてはならない最短波長未満という条件は満たす。図7を参照すると、第1の位相差領域10及び第2の位相差領域20の夫々に形成されたサブ波長の周期構造で形成された凹凸構造により、青色レーザを用いた大容量光ディスクの波長405nm、DVDの波長650nm及びCDの波長780nmにおいて、位相差が「0・25」に近づいている。ここで、1波長分は「360°」であるため、位相差「0.25」は「90°」となる。よって、全ての波長域で位相差を「90°」に近づけることができる。
次に、第1の位相差領域10及び第2の位相差領域20を凹凸パターンが相互に直交するように形成すると、第1の位相差領域10と第2の位相差領域20とでは入射光の偏光方向によって異なる屈折率を作用する。このため、回折現象を生じるが、上述したように第1の位相差領域10及び第2の位相差領域20は、波長405、650及び780nmの全ての波長域で位相差が90°に近づいているため、図8に示されるように、回折素子1の回折効率は、青色レーザを用いた大容量光ディスク、DVD及びCDの全ての波長域においてほぼ一定にすることができる。図中では、0次光と±1次光との合計は、波長に依らずほぼフラットに90%程度の回折効率を得ている。そして、同図からも明らかなように、0次光は各波長域においてほぼ50%程度のフラットな回折効率を得ることができ、また±1次光は各波長域においてほぼ20%程度のフラットな回折効率を得ることができる。
よって、信号光として使用される0次光も、フォーカス誤差検出信号及びトラック誤差検出信号として使用される±1次光も、波長依存性のない安定した回折効率を得ることができる。従って、全ての波長域で信号光、フォーカス誤差検出信号及びトラック誤差検出信号を安定して供給することができ、回折効率に波長依存性のない回折素子1を実現することができる。
なお、微小ピッチPd、凸部12の高さd、フィリングファクター等の種々の要素をターゲットとなる多波長において最適なものを選択することにより、ターゲットとなる多波長(波長405nm、650nm、780nm)において位相差を全て揃えることができる。このときは、回折効率に波長依存性が全くない回折素子1を得ることができる。勿論、完全に位相差を揃えるものではなくても、ターゲットとなる波長において位相差が揃えられるように第1の位相差領域10及び第2の位相差領域20は作用するため、上記の種々の要素は適宜設定することが可能である。
上述したものは、波長405、650、780nm、つまり青色レーザを用いた大容量光ディスク、DVD、CDの波長域について説明したが、勿論3波長ではなく、2波長にも対応することができる。例えば、CD及びDVDの2波長に対応した回折素子1の場合は、微小ピッチPdは、最短となる波長である650nmよりも短く形成することにより、回折効率に波長依存性がない回折素子1を得ることができる。
また、上述したように、青色レーザを用いた大容量光ディスクは、中心波長を405nm又は408nmとする2種類があり、中心波長405nmの場合は10nm程度、中心波長408nmの場合は8nm程度前後する。そこで、これらのうち最も短い波長として395nmが考えられるが、波長395nmの青色レーザを用いた大容量光ディスクの場合は、ピッチ間隔Pdを395nmよりも短くする必要がある。そこで、ピッチ間隔Pdを394nmとした一例について説明すると、凹部11の間隔L2を「123nm」とし、凸部12の間隔L1を「271nm」としたときに、好適な回折効率を得ることができる。
C.本発明の回折素子を製造する製造方法についての説明
次に、上述した回折素子1を製造するための製造方法について説明する。回折素子1の第1の位相差領域10及び第2の位相差領域20の凹凸構造は、サブ波長の周期構造を有している。このため、ナノオーダーの凹凸構造を形成する必要があるため、極めて微小な微小ピッチで凹凸構造を形成することができる方法を用いる必要がある。その方法としては、例えばエッチングによる方法や蒸着による方法等の方法があるが、ここでは、微小構造のパターニング方法として高い生産性を有するナノインプリントを用いて、回折素子1を製造する方法について説明する。
ナノインプリントは、モールド(金型)を用いて微小構造のパターンを転写する方法である。ナノインプリントには、主に熱式ナノインプリントと光硬化式ナノインプリントとの2種類があり、熱式ナノインプリントは熱可塑性樹脂を使用してパターン転写を行い、光硬化式ナノインプリントはUV(Ultra Violet)硬化樹脂を使用してパターン転写を行うものである。ここでは、幅広い種類の樹脂材料を使用できるという点から、熱式ナノインプリントを使用するものとする。
熱式ナノインプリントを用いる場合、ガラス基板等の透明基板上に熱可塑性樹脂を塗布し、微小構造のパターンが形成されたモールドを加圧して加熱する。これにより、熱可塑性樹脂にはパターンが転写される。そして、熱可塑性樹脂にパターンが転写された後に、モールドを冷却して熱可塑性樹脂からモールドを引き離す。以上により、モールドに形成されている微小構造のパターンが転写される。そこで、予めモールドに回折素子1のパターン、つまり、相互に直交する微小凹凸構造を有する第1の位相差領域10と第2の位相差領域20とが交互に周期的に配列された回折パターンを形成しておき、このモールドを用いて透明基板上に塗布された熱可塑性樹脂に回折素子1のパターンを転写する。これにより、回折素子1を製造することができる。
以上は、熱式ナノインプリントによる回折素子1の製造方法について説明したが、光硬化式ナノインプリントによるものでもよい。また、エッチングによる方法や蒸着による方法等によるものでもよい。要は、回折素子1の微小構造のパターンを形成するものであれば、任意の方法を適用することができる。
E.回折素子の別の形状
図9には、回折素子の形状として、図1及び図6に示した形状とは異なる形状を有しているものを例示している。図9の回折素子では、輪帯状の構成を採用している。つまり、第1の位相差領域と第2の位相差領域とを交互に配列していることは図1及び図6とは変わらないが、図1及び図6では直線状に第1の位相差領域と第2の位相差領域とが交互に配列されているのに対し、図9の回折素子では、輪帯状に第1の位相差領域91と第2の位相差領域92とを配列している。第1の位相差領域91と第2の位相差領域92との交互配列の態様は、図1及び図6とは異なるが、夫々の位相差領域の凹凸構造は相互に直交している。
従って、第1の位相差領域91及び第2の位相差領域92には夫々サブ波長オーダーの凹凸構造が形成されることにより、多波長に渡って位相差を揃える機能を発揮させ、第1の位相差領域91の第2の位相差領域92の凹凸構造を直交させることにより、回折効率に波長依存性がない回折素子を実現することができる。
回折素子の平面図である。 回折素子の側面図である。 回折素子の一部についての拡大図である。 波長・微小ピッチ比に対する有効屈折率の特性を示すグラフである。 入射光の偏光方向によって回折作用を示す説明図である。 第1の位相差領域及び第2の位相差領域のパターンを斜めに形成した場合の回折素子の平面図である。 波長に対する位相差の特性を示すグラフである。 波長に対する回折効率の特性を示すグラフである。 輪帯状にした回折素子の平面図である。
符号の説明
1 回折素子 10 第1の位相差領域
11 凹部 12 凸部
20 第2の位相差領域 30 透明基板
Pd 微小ピッチ Pg 回折ピッチ
λ 波長

Claims (2)

  1. 透明基板上に、入射光を回折させるための第1の位相差領域と第2の位相差領域とが交互に複数配列されて回折パターンが形成され、
    前記第1の位相差領域及び前記第2の位相差領域には、前記入射光の複数の波長の位相差を揃えるために、前記複数の波長域のうち最短となる波長よりも短いピッチで複数の微小凹凸構造が配列され、
    前記第1の位相差領域の微小凹凸構造と前記第2の位相差領域の微小凹凸構造とは直交していることを特徴とする回折素子。
  2. 前記回折素子に入射する光は、波長が395nm乃至415nm、640nm乃至680nm又は760nm乃至815nmのうち少なくとも2以上の波長域の光であることを特徴とする請求項1記載の回折素子。

JP2006092707A 2006-03-30 2006-03-30 回折素子 Pending JP2007265581A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006092707A JP2007265581A (ja) 2006-03-30 2006-03-30 回折素子
US11/693,210 US20070229955A1 (en) 2006-03-30 2007-03-29 Diffraction device
CNA2007100914718A CN101046523A (zh) 2006-03-30 2007-03-30 衍射元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092707A JP2007265581A (ja) 2006-03-30 2006-03-30 回折素子

Publications (1)

Publication Number Publication Date
JP2007265581A true JP2007265581A (ja) 2007-10-11

Family

ID=38558479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092707A Pending JP2007265581A (ja) 2006-03-30 2006-03-30 回折素子

Country Status (3)

Country Link
US (1) US20070229955A1 (ja)
JP (1) JP2007265581A (ja)
CN (1) CN101046523A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223936A (ja) * 2008-03-14 2009-10-01 Ricoh Co Ltd 光ピックアップおよびこれを用いる光情報処理装置
JP2018514803A (ja) * 2015-04-02 2018-06-07 ユニヴァーシティー オブ ロチェスター 仮想現実および拡張現実ニアアイディスプレイ用の自由形状ナノ構造面
KR20190107727A (ko) * 2017-01-27 2019-09-20 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
JP2022183206A (ja) * 2017-01-27 2022-12-08 マジック リープ, インコーポレイテッド メタ表面のための反射防止コーティング
US11789198B2 (en) 2015-11-06 2023-10-17 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11796818B2 (en) 2016-05-06 2023-10-24 Magic Leap, Inc. Metasurfaces with asymetric gratings for redirecting light and methods for fabricating

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223938A (ja) * 2008-03-14 2009-10-01 Ricoh Co Ltd 光ピックアップおよびこれを用いる光情報処理装置
JP5218079B2 (ja) * 2009-01-15 2013-06-26 株式会社リコー 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器
JP2010261999A (ja) * 2009-04-30 2010-11-18 Ricoh Co Ltd 光学素子、偏光フィルタ、光アイソレータ、光学装置
IL201110A (en) * 2009-09-22 2014-08-31 Vorotec Ltd Device and method of navigation
WO2011104714A1 (en) 2010-02-25 2011-09-01 Shlomo Vorovitchik Light filter with varying polarization angles and processing algorithm
CN102401924B (zh) * 2011-12-01 2013-06-12 明基材料有限公司 图案化相位延迟膜及其制造方法
JP2017527857A (ja) * 2014-09-15 2017-09-21 カリフォルニア インスティチュート オブ テクノロジー 平面デバイスを用いた偏光および波面の同時制御
CN104375227B (zh) * 2014-12-05 2017-01-25 苏州大学 一种多次曝光拼接制作大面积全息光栅的方法
NZ773845A (en) 2015-03-16 2022-07-01 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
JP6851992B2 (ja) 2015-06-15 2021-03-31 マジック リープ, インコーポレイテッドMagic Leap,Inc. 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
KR102379691B1 (ko) 2016-04-08 2022-03-25 매직 립, 인코포레이티드 가변 포커스 렌즈 엘리먼트들을 가진 증강 현실 시스템들 및 방법들
CN109716176B (zh) * 2016-06-07 2021-09-17 艾瑞3D 有限公司 用于深度采集和三维成像的光场成像装置和方法
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
CN110199220B (zh) * 2016-11-18 2022-11-01 奇跃公司 使用交叉光栅的波导光复用器
EP4152085A1 (en) 2016-11-18 2023-03-22 Magic Leap, Inc. Spatially variable liquid crystal diffraction gratings
CN110249256B (zh) 2016-12-08 2023-03-03 奇跃公司 基于胆甾型液晶的衍射装置
US10895784B2 (en) 2016-12-14 2021-01-19 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
IL307783A (en) 2017-01-23 2023-12-01 Magic Leap Inc Eyepiece for virtual, augmented, or mixed reality systems
IL268427B2 (en) 2017-02-23 2024-03-01 Magic Leap Inc Variable focus virtual imagers based on polarization conversion
AU2018239264B2 (en) 2017-03-21 2023-05-18 Magic Leap, Inc. Eye-imaging apparatus using diffractive optical elements
US11841481B2 (en) 2017-09-21 2023-12-12 Magic Leap, Inc. Augmented reality display with waveguide configured to capture images of eye and/or environment
KR102716968B1 (ko) 2017-12-15 2024-10-11 매직 립, 인코포레이티드 증강 현실 디스플레이 시스템을 위한 접안렌즈들
CN108802881B (zh) * 2018-05-21 2022-03-08 苏州大学 一种高衍射效率光栅结构和制备方法
KR102670423B1 (ko) 2018-10-22 2024-05-28 캘리포니아 인스티튜트 오브 테크놀로지 3d 엔지니어링된 재료에 기반한 컬러 및 다중-스펙트럼 이미지 센서
JP2022509083A (ja) 2018-11-20 2022-01-20 マジック リープ, インコーポレイテッド 拡張現実ディスプレイシステムのための接眼レンズ
CN111352181A (zh) * 2018-12-21 2020-06-30 余姚舜宇智能光学技术有限公司 一种二元光学元件及其制造方法和投射模组
CN111716711A (zh) * 2019-03-22 2020-09-29 北京石墨烯研究院 用于光固化3d打印的树脂槽及三维打印装置
CN111716710A (zh) * 2019-03-22 2020-09-29 北京石墨烯研究院 用于光固化3d打印的树脂槽及三维打印装置
EP3987343A4 (en) 2019-06-20 2023-07-19 Magic Leap, Inc. EYEWEARS FOR AUGMENTED REALITY DISPLAY SYSTEM
US11239276B2 (en) 2019-10-18 2022-02-01 California Institute Of Technology CMOS color image sensors with metamaterial color splitting
US12320988B2 (en) 2019-10-18 2025-06-03 California Institute Of Technology Broadband polarization splitting based on volumetric meta-optics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238497B2 (ja) * 1992-11-12 2001-12-17 松下電器産業株式会社 光ピックアップヘッド装置
US6373808B1 (en) * 1999-10-08 2002-04-16 Lg Electronics Inc. Optical pick-up apparatus capable of eliminating a cross-talk component from adjacent tracks

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223936A (ja) * 2008-03-14 2009-10-01 Ricoh Co Ltd 光ピックアップおよびこれを用いる光情報処理装置
JP2018514803A (ja) * 2015-04-02 2018-06-07 ユニヴァーシティー オブ ロチェスター 仮想現実および拡張現実ニアアイディスプレイ用の自由形状ナノ構造面
US11789198B2 (en) 2015-11-06 2023-10-17 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11796818B2 (en) 2016-05-06 2023-10-24 Magic Leap, Inc. Metasurfaces with asymetric gratings for redirecting light and methods for fabricating
US11243338B2 (en) 2017-01-27 2022-02-08 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
JP2022051816A (ja) * 2017-01-27 2022-04-01 マジック リープ, インコーポレイテッド 異なって向けられたナノビームを有するメタ表面によって形成された回折格子
JP7142015B2 (ja) 2017-01-27 2022-09-26 マジック リープ, インコーポレイテッド 異なって向けられたナノビームを有するメタ表面によって形成された回折格子
JP2022183206A (ja) * 2017-01-27 2022-12-08 マジック リープ, インコーポレイテッド メタ表面のための反射防止コーティング
US11681153B2 (en) 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces
KR102553802B1 (ko) * 2017-01-27 2023-07-07 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
KR20230106742A (ko) * 2017-01-27 2023-07-13 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해형성된 회절 격자
JP2023107867A (ja) * 2017-01-27 2023-08-03 マジック リープ, インコーポレイテッド 異なって向けられたナノビームを有するメタ表面によって形成された回折格子
JP2020507113A (ja) * 2017-01-27 2020-03-05 マジック リープ, インコーポレイテッドMagic Leap,Inc. 異なって向けられたナノビームを有するメタ表面によって形成された回折格子
KR20190107727A (ko) * 2017-01-27 2019-09-20 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
JP7416551B2 (ja) 2017-01-27 2024-01-17 マジック リープ, インコーポレイテッド 異なって向けられたナノビームを有するメタ表面によって形成された回折格子
KR102668813B1 (ko) * 2017-01-27 2024-05-22 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
JP7564913B2 (ja) 2017-01-27 2024-10-09 マジック リープ, インコーポレイテッド 異なって向けられたナノビームを有するメタ表面によって形成された回折格子

Also Published As

Publication number Publication date
CN101046523A (zh) 2007-10-03
US20070229955A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP2007265581A (ja) 回折素子
KR101105186B1 (ko) 편광성 회절소자 및 광 헤드장치
JP2011187108A (ja) 偏光性回折格子及びその製造方法、並びに、その偏光性回折格子を用いた光ピックアップ装置
WO2012160740A1 (ja) 光回折素子、光ピックアップ及び光回折素子の製造方法
JP2003315540A (ja) 偏光回折素子及びその作製方法
US20060193235A1 (en) Diffraction element and optical head device
WO2004097816A1 (ja) 回折素子および光ヘッド装置
KR100779693B1 (ko) 파장선택형 회절소자 및 이를 갖는 광헤드장치
JP5195024B2 (ja) 回折素子、光減衰器、光ヘッド装置および投射型表示装置
JP4518009B2 (ja) 3波長用回折素子、位相板付3波長用回折素子および光ヘッド装置
JP2003288733A (ja) 開口制限素子および光ヘッド装置
JP2010156906A (ja) 液晶光学素子および光ピックアップ装置
JP2009085974A (ja) 偏光素子およびその製造方法
CN100351927C (zh) 衍射元件和光学头装置
JP4999485B2 (ja) 光束分割素子および光束分割方法
JP4337510B2 (ja) 回折素子および光ヘッド装置
JP2010211856A (ja) 1/4波長板
JP2006106726A (ja) 偏光回折素子
JPS62111203A (ja) 形態屈折率双変調型位相格子
US7697391B2 (en) Massively multi-level optical data storage using subwavelength sized nano-grating structures
JP2005091939A (ja) 偏光分離素子とその製造方法、光ピックアップおよび光記録媒体駆動装置
JP2013073047A (ja) 広帯域1/4波長板
JP4325365B2 (ja) 光ヘッド装置
JP2003029014A (ja) 偏光性回折素子
KR100580973B1 (ko) 파장선택형 회절소자 및 이를 갖는 광헤드장치