[go: up one dir, main page]

JP2007263882A - Underground exploration equipment - Google Patents

Underground exploration equipment Download PDF

Info

Publication number
JP2007263882A
JP2007263882A JP2006092040A JP2006092040A JP2007263882A JP 2007263882 A JP2007263882 A JP 2007263882A JP 2006092040 A JP2006092040 A JP 2006092040A JP 2006092040 A JP2006092040 A JP 2006092040A JP 2007263882 A JP2007263882 A JP 2007263882A
Authority
JP
Japan
Prior art keywords
carriage
underground exploration
depth
received signals
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092040A
Other languages
Japanese (ja)
Other versions
JP4613141B2 (en
Inventor
Hiroshi Iida
洋志 飯田
Sadahito Okura
禎人 大倉
Takeshi Ishii
武 石井
Shinichi Akiyama
信一 秋山
Masaru Tsunasaki
勝 綱崎
Masaki Nose
正樹 野瀬
Yasuhiro Toyoda
康弘 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Japan Radio Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Japan Radio Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Japan Radio Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2006092040A priority Critical patent/JP4613141B2/en
Publication of JP2007263882A publication Critical patent/JP2007263882A/en
Application granted granted Critical
Publication of JP4613141B2 publication Critical patent/JP4613141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】埋設物からの微弱な反射波の識別性に優れた地中探査装置を提供する。
【解決手段】地中探査装置100は、地表面を移動する台車10と、台車10に搭載され地中に探査用電磁波を放射する送信アンテナ11と、送信アンテナ11と異なる距離離間して台車10にそれぞれ搭載され埋設物からの反射波を受信する第1及び第2の受信アンテナ(12,13)と、両受信アンテナの受信信号をそれぞれ記憶するバッファメモリ21と、記憶された少なくとも一方の受信信号から埋設物の深度を算出する深度算出回路24と、両受信信号を比較し、台車10の移動方向距離と深度の両者に基づいて受信信号の埋設物同定を行う同定回路22と、同定された埋設物の両受信信号の台車移動方向偏差を深度値から補正する補正回路23と、補正された両受信信号を合成する合成表示回路25と、を備えている。
【選択図】図1
An underground exploration device having excellent discrimination of weak reflected waves from a buried object is provided.
An underground exploration device 100 includes a carriage 10 that moves on the ground surface, a transmission antenna 11 that is mounted on the carriage 10 and radiates electromagnetic waves for exploration into the ground, and a carriage 10 that is spaced apart from the transmission antenna 11 by a different distance. The first and second receiving antennas (12, 13) for receiving the reflected waves from the buried object, the buffer memory 21 for storing the received signals of both receiving antennas, and at least one received reception A depth calculation circuit 24 that calculates the depth of the buried object from the signal, an identification circuit 22 that compares the two received signals and identifies the buried object of the received signal based on both the moving direction distance and the depth of the carriage 10. A correction circuit 23 that corrects the carriage movement direction deviation of both received signals of the buried object from the depth value, and a composite display circuit 25 that combines the corrected both received signals.
[Selection] Figure 1

Description

本発明は、地中に探査用電磁波を放射して埋設物からの反射波を受信することにより埋設物を探査する地中探査装置に関する。   The present invention relates to an underground exploration device for exploring a buried object by emitting an electromagnetic wave for exploration in the ground and receiving a reflected wave from the buried object.

従来の地中探査装置においては、探査用電磁波を送信アンテナから地中に向けて放射し、探査用電磁波が土砂と電気的性質の異なる埋設物との境界面で反射され、反射波が受信アンテナに到達するまでの伝搬時間から反射物体までの距離を求め、地中探査装置が地表を移動することにより所望の地中画像を得ている。   In conventional underground exploration devices, exploration electromagnetic waves are radiated from the transmitting antenna toward the ground, and the exploration electromagnetic waves are reflected at the interface between the earth and sand and the buried object having different electrical properties, and the reflected waves are received by the receiving antenna. The distance to the reflecting object is obtained from the propagation time to reach the object, and the underground exploration device obtains a desired underground image by moving the ground surface.

この地中画像は、一つの受信アンテナにより受信された受信信号に基づいて形成されるため、地表による反射やその表面に沿う漏洩による干渉電磁波の影響により、小形状の埋設物からの微弱な反射波を識別するには限界があった。   Since this underground image is formed based on the received signal received by one receiving antenna, it is weakly reflected from small-sized embedded objects due to the influence of interference electromagnetic waves due to reflection from the ground surface and leakage along its surface. There was a limit to identifying waves.

このような問題を解決するために特許文献1には、複数の受信アンテナを送信アンテナの中心線に対して左右が線対称となるように配置し、干渉電磁波の影響を低減して埋設物からの微弱な反射波を識別する技術が開示されている。   In order to solve such a problem, Patent Document 1 discloses that a plurality of receiving antennas are arranged so that the left and right are symmetrical with respect to the center line of the transmitting antenna to reduce the influence of the interference electromagnetic wave from the embedded object. A technique for discriminating weak reflected waves is disclosed.

また、埋設物の深度を正確に測定するためには地中の比誘電率を正確に測定する必要があるため、特許文献2には二つの受信アンテナを用いて地中の比誘電率を正確に測定し、埋設物の深度を測定する技術が開示されている。   In addition, since it is necessary to accurately measure the relative dielectric constant in the ground in order to accurately measure the depth of the buried object, Patent Document 2 accurately describes the relative dielectric constant in the ground using two receiving antennas. A technique for measuring the depth of a buried object is disclosed.

特開平11−166977号公報Japanese Patent Laid-Open No. 11-166977 特開平11−84020号公報Japanese Patent Laid-Open No. 11-84020

特許文献1の技術は、二つの受信アンテナの中央に送信アンテナを配置して埋設物から両方向への反射波を両受信アンテナが受信し、二つの地中画像を作成して重ね合わせることで小形状の埋設物の識別を可能としている。   The technique of Patent Document 1 is small by arranging a transmitting antenna at the center of two receiving antennas, receiving the reflected waves in both directions from the embedded object, creating two underground images, and superimposing them. This makes it possible to identify shaped objects.

特許文献1に示される装置は、送信アンテナから二つの受信アンテナまでの経路の長さが同じであるため、両受信信号を単純に加算して埋設物からの信号を雑音や干渉電磁波から識別容易であるという利点を有する。しかしながら、一方で受信アンテナの配置を送信アンテナに対して偏在させたことによる効果を得ることができないという欠点があった。   Since the device shown in Patent Document 1 has the same path length from the transmitting antenna to the two receiving antennas, it is easy to distinguish the signal from the embedded object from noise and interference electromagnetic waves by simply adding both received signals. It has the advantage of being. However, on the other hand, there is a drawback that it is not possible to obtain the effect due to the uneven arrangement of the receiving antenna with respect to the transmitting antenna.

例えば特許文献2に示されているように、送信アンテナ及び二つの受信アンテナを水平方向に一直線上で所定距離離間して配置する地中探査装置により、埋設物の正確な深度及び比誘電率を測定することが可能であるが、特許文献1の従来技術ではこのような測定が不可能であった。   For example, as shown in Patent Document 2, by using an underground exploration device that arranges a transmitting antenna and two receiving antennas on a straight line at a predetermined distance in a horizontal direction, an accurate depth and relative permittivity of an embedded object can be obtained. Although it is possible to measure, such a measurement is impossible in the prior art of Patent Document 1.

しかしながら、特許文献2の従来技術では、送信アンテナから二つの受信アンテナまでのおのおの経路の長さが異なるため、送信アンテナから放射された探査用電磁波が同一埋設物で反射し、受信アンテナにてそれぞれ受信される経路及び角度が異なる。このため、得られた地中画像における埋設物の表示位置が異なり、そのままでは重ねて表示することができないという別の問題があった。   However, in the prior art of Patent Document 2, since the length of each path from the transmitting antenna to the two receiving antennas is different, the search electromagnetic wave radiated from the transmitting antenna is reflected by the same embedded object, The received path and angle are different. For this reason, the display position of the embedded object in the obtained underground image is different, and there is another problem that it is not possible to display it as it is.

そこで、本発明に係る地中探査装置は、特許文献1に示されるような小形状の埋設物の重ね合わせによる識別機能を維持しながら、特許文献2で示される正確な深度を測定する機能の二つを併せ持つ地中探査装置を提供することを目的とする。   Therefore, the underground exploration device according to the present invention has the function of measuring the accurate depth shown in Patent Document 2 while maintaining the identification function by superimposing small-shaped embedded objects as shown in Patent Document 1. The object is to provide an underground exploration device that combines the two.

以上のような目的を実現するために、本発明に係る地中探査装置は、地表面を移動する台車と、台車に搭載され地中に探査用電磁波を放射する送信アンテナと、送信アンテナと異なる距離離間して台車にそれぞれ搭載され埋設物からの反射波を受信する第1及び第2の受信アンテナと、両受信アンテナの受信信号をそれぞれ記憶するバッファメモリと、少なくとも一方の受信信号に基づいて深度を算出する深度算出回路と、両受信信号を比較し、台車の移動方向距離と深度の両者に基づいて受信信号の埋設物同定を行う同定回路と、同定された埋設物の両受信信号の台車移動方向偏差を深度値から補正する補正回路と、補正された両受信信号を合成する合成表示回路と、を備えることを特徴とする。   In order to achieve the above object, an underground exploration apparatus according to the present invention is different from a transmission vehicle that is a carriage that moves on the ground surface, a transmission antenna that is mounted on the carriage and radiates electromagnetic waves for exploration, and the transmission antenna. Based on at least one received signal, first and second receiving antennas that are mounted on a carriage at a distance and receive reflected waves from an embedded object, a buffer memory that stores received signals from both receiving antennas, respectively A depth calculation circuit that calculates the depth, an identification circuit that compares both received signals and identifies the embedded object of the received signal based on both the moving direction distance and the depth of the carriage, and both received signals of the identified embedded object It is characterized by comprising a correction circuit that corrects the carriage movement direction deviation from the depth value, and a combined display circuit that combines both corrected received signals.

また、本発明に係る地中探査装置において、合成表示回路は、補正された両受信信号の和演算にて合成することを特徴とする。   Further, in the underground exploration device according to the present invention, the composite display circuit is characterized in that the composite display circuit combines by correcting the sum of the two received signals.

さらに、本発明に係る地中探査装置において、合成表示回路は、補正された両受信信号の差演算にて合成することを特徴とする。   Furthermore, in the underground exploration apparatus according to the present invention, the composite display circuit is characterized in that the composite display circuit performs synthesis by calculating a difference between both corrected reception signals.

さらにまた、本発明に係る地中探査装置において、合成表示回路は、補正された両受信信号の積演算にて合成することを特徴とする。   Furthermore, in the underground exploration apparatus according to the present invention, the composite display circuit is characterized in that it combines by a product operation of both corrected reception signals.

本発明を用いると、 小形状の埋設物の識別機能を維持しながら、正確な深度を測定する機能の二つを併せ持つ地中探査装置を提供することをが可能になるという効果がある。   By using the present invention, there is an effect that it is possible to provide an underground exploration device having two functions of measuring an accurate depth while maintaining a function of identifying a small-sized embedded object.

以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1には地中探査装置100の全体構成が示されている。地中探査装置100は、車輪31によって地表面を移動する台車10と、台車10の移動方向と移動距離とを検出するロータリエンコーダ14と、台車10に搭載され地中に探査用電磁波を放射する送信アンテナ11と、送信アンテナ11と異なる距離離間して台車10にそれぞれ搭載され埋設物からの反射波を受信する第1及び第2の受信アンテナ(12,13)と、制御部15と、を含んでいる。   FIG. 1 shows the overall configuration of the underground exploration device 100. The underground exploration device 100 radiates exploration electromagnetic waves in the ground mounted on the carriage 10, the carriage 10 that moves on the ground surface by the wheels 31, the rotary encoder 14 that detects the movement direction and distance of the carriage 10, and the like. A transmission antenna 11; first and second reception antennas (12, 13) that are mounted on the carriage 10 at a different distance from the transmission antenna 11 and receive a reflected wave from an embedded object; and a control unit 15. Contains.

制御部15は、両受信アンテナ(12,13)の受信信号をそれぞれ記憶するバッファメモリ21と、記憶された少なくとも一方の受信信号から埋設物の深度を算出する深度算出回路24と、両受信信号を比較し、台車10の移動方向距離と深度の両者に基づいて受信信号の埋設物同定を行う同定回路22と、同定された埋設物の両受信信号の台車移動方向偏差を深度値から補正する補正回路23と、補正された両受信信号を合成する合成表示回路25と、操作スイッチ26と、を備えている。   The control unit 15 includes a buffer memory 21 that stores reception signals of both reception antennas (12, 13), a depth calculation circuit 24 that calculates the depth of the embedded object from at least one stored reception signal, and both reception signals. And the identification circuit 22 for identifying the embedded object of the received signal based on both the moving direction distance and the depth of the carriage 10 and the carriage movement direction deviation of both received signals of the identified buried object are corrected from the depth value. A correction circuit 23, a combined display circuit 25 that combines the corrected reception signals, and an operation switch 26 are provided.

なお、合成表示回路25は、操作スイッチ26からの入力に応じて後述する演算表示を実行し、操作者に対して埋設物に関する様々な情報を提供する。   Note that the composite display circuit 25 performs calculation display described later in response to an input from the operation switch 26, and provides various information regarding the embedded object to the operator.

図2は、地中探査装置100が地表面に沿って埋設管40の上を移動する場合の探査用電磁波の伝達経路を示している。地中探査装置100には、送信アンテナ11と受信アンテナ1(12)が距離a離間して配置されており、送信アンテナ11と受信アンテナ2(13)は距離“a+b”離間して配置されている。図2(A)は装置100が測定スタート点から距離X移動して埋設管40の上に移動した状態を示しており、図2(B)は進行方向に装置100が距離c移動(X+c)した状態を示している。   FIG. 2 shows a transmission path of the electromagnetic wave for exploration when the underground exploration device 100 moves on the buried pipe 40 along the ground surface. In the underground exploration device 100, the transmitting antenna 11 and the receiving antenna 1 (12) are arranged with a distance a apart, and the transmitting antenna 11 and the receiving antenna 2 (13) are arranged with a distance "a + b" apart. Yes. FIG. 2A shows a state in which the apparatus 100 has moved a distance X from the measurement start point and has moved onto the buried pipe 40, and FIG. 2B shows that the apparatus 100 has moved a distance c in the traveling direction (X + c). Shows the state.

図2(A)の状態では送信アンテナ11から放射された探査用電磁波が埋設管40の境界面で反射して受信アンテナ13にT2時間で到達する。以下、この伝達経路を平行型2という。図2(B)の状態では送信アンテナ11から放射された探査用電磁波が埋設管40の境界面で反射して受信アンテナ12にT1時間で到達する。以下、この伝達経路を平行型1という。装置100は、送受信アンテナ(11,12,13)の離間距離と、到達時間T2,T1と、に基づいて特許文献2の公知技術で算出した比誘電率から埋設管40の深度dを算出する。なお、比誘電率と深度dの算出方法の説明は省略する。   In the state of FIG. 2A, the search electromagnetic wave radiated from the transmission antenna 11 is reflected by the boundary surface of the buried tube 40 and reaches the reception antenna 13 in T2 time. Hereinafter, this transmission path is referred to as a parallel type 2. In the state of FIG. 2B, the search electromagnetic wave radiated from the transmission antenna 11 is reflected by the boundary surface of the buried tube 40 and reaches the reception antenna 12 in T1 time. Hereinafter, this transmission path is referred to as a parallel type 1. The apparatus 100 calculates the depth d of the buried pipe 40 from the relative dielectric constant calculated by the known technique of Patent Document 2 based on the separation distance of the transmission / reception antennas (11, 12, 13) and the arrival times T2, T1. . A description of the calculation method of the relative permittivity and the depth d is omitted.

図3には、地中探査装置100によって得られた地中画像を示し、地中画像を受信アンテナ(12,13)の設置位置により補正する処理の概要が示されている。なお、受信アンテナ(12)で得られた平行型1における同一埋設物のエコーを破線で示し、受信アンテナ(13)で得られた平行型2における同一埋設物のエコーを実線で示す。   FIG. 3 shows an underground image obtained by the underground exploration device 100, and shows an outline of processing for correcting the underground image based on the installation position of the receiving antennas (12, 13). The echo of the same embedded object in the parallel type 1 obtained by the receiving antenna (12) is indicated by a broken line, and the echo of the same embedded object in the parallel type 2 obtained by the receiving antenna (13) is indicated by a solid line.

図3の地中画像に示されるように、深度は同じであるが、エコーの表示位置と形状とは一致しない。これは、送受信アンテナの離間距離によるものである。そこで、本実施形態では平行型1と平行型2で得られた地中画像から同一深度の同一埋設物のエコーを探す処理を同定回路22で実行する。同定回路22によって得られた同一埋設物のエコーは次に示す処理により補正される。   As shown in the underground image of FIG. 3, the depth is the same, but the echo display position and shape do not match. This is due to the distance between the transmitting and receiving antennas. Therefore, in the present embodiment, the identification circuit 22 executes a process of searching for the echo of the same buried object at the same depth from the underground images obtained by the parallel type 1 and the parallel type 2. The echo of the same embedded object obtained by the identification circuit 22 is corrected by the following process.

受信アンテナ13を基準とし、受信アンテナ13から平行型1における同一埋設物のエコー(破線)までの距離は“b+a/2”であり、受信アンテナ13から平行型2における同一埋設物のエコー(実線)までの距離は“(a+b)/2”である。二つのエコーのオフセット距離は“b/2”であるので、この水平方向オフセットを与えることにより同一埋設物のエコーは一致する。本実施形態では、水平方向オフセット処理を補正回路23で実行している。   With reference to the receiving antenna 13, the distance from the receiving antenna 13 to the echo (broken line) of the same embedded object in the parallel type 1 is "b + a / 2", and the echo of the same embedded object in the parallel type 2 from the receiving antenna 13 (solid line) ) Is “(a + b) / 2”. Since the offset distance between the two echoes is “b / 2”, the echoes of the same embedded object coincide with each other by giving this horizontal offset. In the present embodiment, the horizontal direction offset processing is executed by the correction circuit 23.

図4は、地中探査装置100で得られた地中画像のエコー合成イメージを示している。受信アンテナR1(12)によるエコーと受信アンテナR2(13)によるエコーから上述した同定回路22にて同一埋設物のエコーを同定し、補正回路23にて水平方向オフセットを与えて補正する。さらに、合成表示回路25はエコーの重ね合わせ表示をする。   FIG. 4 shows an echo composite image of the underground image obtained by the underground exploration device 100. The echo of the same embedded object is identified by the above-described identification circuit 22 from the echo by the reception antenna R1 (12) and the echo by the reception antenna R2 (13), and the correction circuit 23 corrects it by giving a horizontal offset. Further, the composite display circuit 25 displays the echoes in a superimposed manner.

図5には、地中探査装置100によって得られた(A)平行型1と(B)平行型2の受信信号を用いた演算表示(C,D)を示している。また、地中画像の中の4本の矢印は埋設管の位置を示し、近接した2本の埋設管とその他2本の埋設管とのエコーが示されている。   FIG. 5 shows calculation display (C, D) using the received signals of (A) parallel type 1 and (B) parallel type 2 obtained by the underground exploration device 100. In addition, four arrows in the underground image indicate the positions of the buried pipes, and echoes of the two buried pipes close to each other and the other two buried pipes are shown.

合成表示回路25による演算表示は、重なり合った平行型1と平行型2の二つの受信信号の各データを演算することにより二つの画像間で相関のあるデータを強調するものである。例えば図5に示す(C)和演算は、平行型1と平行型2の和を取る演算であり、アベレージング効果により滑らかな画像が得られる。図5(C)の和演算において近接した2本の埋設管からのエコーが強調され、歪んだエコーとして表示されていることが分かる。   The calculation display by the composite display circuit 25 is to emphasize the correlated data between the two images by calculating the respective data of the two parallel type 1 and parallel type 2 received signals. For example, the (C) sum operation shown in FIG. 5 is an operation that takes the sum of the parallel type 1 and the parallel type 2, and a smooth image is obtained by the averaging effect. It can be seen that echoes from two adjacent buried pipes are emphasized and displayed as distorted echoes in the sum calculation of FIG.

図5に示す(D)差演算は、平行型1と平行型2との差分を求める演算であり、相関性のあるデータが弱まり、ノイズ性のデータが強まる。このため、差演算においてノイズ性の異常データがない場合は正常な測定であることがわかる。このように差演算は、測定結果を評価する場合に用いられ、データ検証用として使用される。   The (D) difference calculation shown in FIG. 5 is an operation for obtaining a difference between the parallel type 1 and the parallel type 2, and the correlated data is weakened and the noise data is strengthened. Therefore, it can be seen that the measurement is normal when there is no noise abnormal data in the difference calculation. As described above, the difference calculation is used when the measurement result is evaluated, and is used for data verification.

図6には、地中探査装置100によって測定された受信信号による空洞や埋設管の強調処理結果が示されている。図6に示す(E)積演算は、平行型1と平行型2の積を求める演算であり、相関性のあるデータを明瞭にする。また、他の積演算と区別するため(単純)と示した。図6に示す(F)積演算(負極性)は、平行型1と平行型2の負極性データのみを積し、演算結果に“−1”を積することにより、空洞反射などが明瞭になる。これは例えば地中探査装置100において、空洞からの反射波は負極を示すことが多く、逆に埋設管からは正極の反射波が得られることから、このような演算を施すことにより空洞を際だたせることが可能となる。   FIG. 6 shows the result of emphasis processing of the cavity and the buried pipe by the received signal measured by the underground exploration device 100. The (E) product operation shown in FIG. 6 is an operation for obtaining a product of the parallel type 1 and the parallel type 2, and makes correlated data clear. Also, it is shown as (simple) to distinguish from other product operations. (F) Product calculation (negative polarity) shown in FIG. 6 is obtained by multiplying only the negative polarity data of parallel type 1 and parallel type 2 and multiplying the calculation result by “−1”, thereby making the cavity reflection clear. Become. This is because, for example, in the underground exploration device 100, the reflected wave from the cavity often indicates the negative electrode, and conversely, the reflected wave of the positive electrode is obtained from the buried pipe. It becomes possible to make it.

図6に示す(G)積演算(正極性)は、平行型1と平行型2の正極性データのみを積することで埋設管反射などを明瞭にする。また、(H)積演算(両極性)は、(F)積演算(負極性)と(G)積演算(正極性)の和を取ることにより、空洞反射と埋設管反射とを明瞭にする。   The (G) product calculation (positive polarity) shown in FIG. 6 clarifies buried pipe reflection and the like by accumulating only the positive polarity data of the parallel type 1 and the parallel type 2. In addition, (H) product calculation (bipolarity) makes the cavity reflection and buried pipe reflection clear by taking the sum of (F) product calculation (negative polarity) and (G) product calculation (positive polarity). .

なお、地中の比誘電率が非均一な場合や電磁波の伝達経路が図2又は図3に示した単純モデリング通りにならない場合があるため、二つの地中画像の同一埋設物のエコーが同定処理や補正処理を用いても画像ずれが発生する。そこで、本実施形態では、例えば積演算(正極性又は両極性)を得た後に、再度、同定回路22にてエコーのピークが最大となる位置を見つけて、後段の補正回路23により再補正する。この処理により、地中画像ぼけに対応することが可能となる。なお、このような再同定及び再補正は、自動的に処理してもよいし手動により処理を開始してもよい。   Note that there are cases where the relative permittivity in the ground is not uniform or the electromagnetic wave transmission path may not follow the simple modeling shown in FIG. 2 or FIG. Even if processing or correction processing is used, an image shift occurs. Therefore, in the present embodiment, for example, after obtaining the product operation (positive polarity or bipolar), the position where the peak of the echo is maximized is again found by the identification circuit 22 and recorrected by the correction circuit 23 at the subsequent stage. . By this processing, it is possible to deal with the underground image blur. Such re-identification and re-correction may be processed automatically or may be started manually.

以上、上述したように、本実施形態に係る地中探査装置を用いることにより、小形状の埋設物の識別機能と、正確な深度を測定する機能との二つを併せ持つ地中探査装置を提供することが可能となる。   As described above, by using the underground exploration device according to the present embodiment, the underground exploration device having both the identification function of the small-shaped embedded object and the function of measuring the accurate depth is provided. It becomes possible to do.

なお、本実施形態では、単一の平行型1と平行型2との受信信号を利用したエコー合成表示の流れを示したが、これに限定するものではなく、複数回測定した平行型1と平行型2との受信信号を利用することも可能である。その場合、単一の受信信号を利用した場合に比べて、土砂などの媒質の非均一性による誤差を小さくすることが可能となる。   In the present embodiment, the flow of echo synthesis display using the received signals of the single parallel type 1 and the parallel type 2 has been shown. However, the present invention is not limited to this, and the parallel type 1 measured multiple times and It is also possible to use a reception signal with the parallel type 2. In this case, it is possible to reduce an error due to non-uniformity of a medium such as earth and sand as compared with a case where a single received signal is used.

本発明の実施形態に係る地中探査装置の全体構成図である。1 is an overall configuration diagram of an underground exploration device according to an embodiment of the present invention. 電磁波の伝達経路を説明する。An electromagnetic wave transmission path will be described. 地中画像を受信アンテナの設置位置により補正する概要を示す概要図である。It is a schematic diagram which shows the outline | summary which correct | amends an underground image with the installation position of a receiving antenna. 地中画像の合成イメージ図である。It is a composite image figure of an underground image. 地中探査装置によって得られた演算表示のイメージ図である。It is an image figure of the calculation display obtained by the underground exploration device. 地中探査装置によって得られた演算表示のイメージ図である。It is an image figure of the calculation display obtained by the underground exploration device.

符号の説明Explanation of symbols

10 台車、11 送信アンテナ、12 受信アンテナ、13 受信アンテナ、14 ロータリエンコーダ、15 制御部、21 バッファメモリ、22 同定回路、23 補正回路、24 深度算出回路、25 合成表示回路、26 操作スイッチ、31 車輪、40 埋設管、100 地中探査装置。   10 trolleys, 11 transmitting antennas, 12 receiving antennas, 13 receiving antennas, 14 rotary encoders, 15 control units, 21 buffer memories, 22 identification circuits, 23 correction circuits, 24 depth calculation circuits, 25 composite display circuits, 26 operation switches, 31 Wheels, 40 buried pipes, 100 underground exploration equipment.

Claims (4)

地表面を移動する台車と、台車に搭載され地中に探査用電磁波を放射する送信アンテナと、送信アンテナと異なる距離離間して台車にそれぞれ搭載され埋設物からの反射波を受信する第1及び第2の受信アンテナと、
両受信アンテナの受信信号をそれぞれ記憶するバッファメモリと、
少なくとも一方の受信信号に基づいて深度を算出する深度算出回路と、
両受信信号を比較し、台車の移動方向距離と深度の両者に基づいて受信信号の埋設物同定を行う同定回路と、
同定された埋設物の両受信信号の台車移動方向偏差を深度値から補正する補正回路と、
補正された両受信信号を合成する合成表示回路と、
を備えることを特徴とする地中探査装置。
A carriage that moves on the ground surface, a transmission antenna that is mounted on the carriage and radiates electromagnetic waves for exploration, and a first antenna that receives a reflected wave from an embedded object that is mounted on the carriage at a different distance from the transmission antenna. A second receiving antenna;
A buffer memory for storing the received signals of both receiving antennas;
A depth calculation circuit for calculating a depth based on at least one received signal;
An identification circuit that compares the two received signals and identifies the embedded object of the received signal based on both the moving direction distance and depth of the carriage,
A correction circuit for correcting the carriage movement direction deviation of both received signals of the identified buried object from the depth value;
A combined display circuit for combining the corrected received signals;
An underground exploration device characterized by comprising:
請求項1に記載の地中探査装置において、
合成表示回路は、補正された両受信信号の和演算にて合成することを特徴とする地中探査装置。
In the underground exploration device according to claim 1,
An underground exploration apparatus characterized in that the combined display circuit combines the corrected received signals with a sum operation.
請求項1に記載の地中探査装置において、
合成表示回路は、補正された両受信信号の差演算にて合成することを特徴とする地中探査装置。
In the underground exploration device according to claim 1,
An underground exploration apparatus characterized in that the combined display circuit combines the corrected reception signals with a difference calculation.
請求項1に記載の地中探査装置において、
合成表示回路は、補正された両受信信号の積演算にて合成することを特徴とする地中探査装置。
In the underground exploration device according to claim 1,
An underground exploration apparatus characterized in that the combined display circuit combines the corrected reception signals by product operation.
JP2006092040A 2006-03-29 2006-03-29 Underground exploration equipment Expired - Fee Related JP4613141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092040A JP4613141B2 (en) 2006-03-29 2006-03-29 Underground exploration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092040A JP4613141B2 (en) 2006-03-29 2006-03-29 Underground exploration equipment

Publications (2)

Publication Number Publication Date
JP2007263882A true JP2007263882A (en) 2007-10-11
JP4613141B2 JP4613141B2 (en) 2011-01-12

Family

ID=38637006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092040A Expired - Fee Related JP4613141B2 (en) 2006-03-29 2006-03-29 Underground exploration equipment

Country Status (1)

Country Link
JP (1) JP4613141B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244021A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Inspection method
JP2016211897A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Measurement method and underground rader device
JP2018205155A (en) * 2017-06-06 2018-12-27 日本信号株式会社 Underground radar device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113685A (en) * 1987-10-28 1989-05-02 Nippon Telegr & Teleph Corp <Ntt> Object detecting method and apparatus
JPH1184020A (en) * 1997-09-03 1999-03-26 Sekisui Chem Co Ltd Method and device for measuring dielectric constant or depth of buried object
JPH11142525A (en) * 1997-11-12 1999-05-28 Takuwa:Kk Optical cable embedded position measuring method and optical cable embedded position measuring instrument
JPH11166977A (en) * 1997-12-04 1999-06-22 Ntt Electornics Corp Buried object surveying antenna
JP2002014163A (en) * 2000-06-28 2002-01-18 Rikogaku Shinkokai Search radar and search method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113685A (en) * 1987-10-28 1989-05-02 Nippon Telegr & Teleph Corp <Ntt> Object detecting method and apparatus
JPH1184020A (en) * 1997-09-03 1999-03-26 Sekisui Chem Co Ltd Method and device for measuring dielectric constant or depth of buried object
JPH11142525A (en) * 1997-11-12 1999-05-28 Takuwa:Kk Optical cable embedded position measuring method and optical cable embedded position measuring instrument
JPH11166977A (en) * 1997-12-04 1999-06-22 Ntt Electornics Corp Buried object surveying antenna
JP2002014163A (en) * 2000-06-28 2002-01-18 Rikogaku Shinkokai Search radar and search method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244021A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Inspection method
JP2016211897A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Measurement method and underground rader device
JP2018205155A (en) * 2017-06-06 2018-12-27 日本信号株式会社 Underground radar device
JP7081907B2 (en) 2017-06-06 2022-06-07 日本信号株式会社 Ground penetrating radar device

Also Published As

Publication number Publication date
JP4613141B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US10341633B2 (en) Systems and methods for correcting erroneous depth information
US8560169B2 (en) Vehicular parking feasibility determining system, vehicular parking space detection system and vehicular movable range detection system
JP6781265B2 (en) Radar installation judgment using unstructured data
KR102183224B1 (en) System for Correcting Misalignment of Radar Installment Angle and Method thereof
US20170322299A1 (en) In-vehicle object determining apparatus
JPWO2016103464A1 (en) Obstacle detection device and obstacle detection method
US9983302B2 (en) System and method for correcting vehicle tracing-position of radar sensor using laser scanner
JP2009014445A (en) Range finder
JP7167675B2 (en) Object detection device and object detection method
KR20140124145A (en) Apparatus and Method for compensating installment angle of multi radar for vehicle
JP2018105688A (en) Obstacle detection device
JP4613141B2 (en) Underground exploration equipment
JP2017215214A (en) Moving object detection device, program and record medium
US11726178B2 (en) LIDAR sensor apparatus and control method thereof
CN113581174A (en) Obstacle positioning method and obstacle positioning device for vehicle
KR20180039942A (en) Apparatus and method for driving ultrasonic sensor
WO2021024562A1 (en) Target detection device
JPH09218265A (en) Apparatus for automatically correcting center axis of radar
US20140050052A1 (en) Method and system for detecting spatial position of indicator object by using sound wave
EP3529124B1 (en) Method and on-board unit for the detection of crosstalk phenomena
JP2000180547A (en) Obstacle detection device
JP2019032607A (en) Parking support device
US20230204767A1 (en) Dual-band ultrasonic sensing apparatus for vehicles and control method thereof
CN113009472B (en) Method and system for determining the position and/or velocity of at least one object
JP4730832B2 (en) In-vehicle radar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees