[go: up one dir, main page]

JP2007260604A - Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility - Google Patents

Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility Download PDF

Info

Publication number
JP2007260604A
JP2007260604A JP2006091139A JP2006091139A JP2007260604A JP 2007260604 A JP2007260604 A JP 2007260604A JP 2006091139 A JP2006091139 A JP 2006091139A JP 2006091139 A JP2006091139 A JP 2006091139A JP 2007260604 A JP2007260604 A JP 2007260604A
Authority
JP
Japan
Prior art keywords
sludge
organic acid
temperature
treated water
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006091139A
Other languages
Japanese (ja)
Inventor
Masanobu Okata
政信 大方
Kenji Yamamura
健治 山村
Junji Takahashi
淳司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Tokyo Metropolitan Government
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government, Sumitomo Heavy Industries Environment Co Ltd filed Critical Tokyo Metropolitan Government
Priority to JP2006091139A priority Critical patent/JP2007260604A/en
Publication of JP2007260604A publication Critical patent/JP2007260604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】エネルギーの節約を図ることができる有機酸生成方法、有機酸生成装置及び排水処理設備を提供する。
【解決手段】有機酸生成装置1は、生汚泥の温度を調整する温度調整部2と、温度が調整された生汚泥を嫌気的に発酵させて有機酸を得る発酵槽27と、を備え、温度調整部2は、有機酸を用いた排水処理で得られた処理水を温熱源又は冷熱源とするヒートポンプ51を有し、ヒートポンプ51を用いて生汚泥の加温又は冷却を行う。
【選択図】図1
An organic acid generation method, an organic acid generation apparatus, and a wastewater treatment facility capable of saving energy are provided.
An organic acid generator includes a temperature adjusting unit that adjusts the temperature of raw sludge, and a fermentation tank that anaerobically ferments the temperature-adjusted raw sludge to obtain an organic acid. The temperature adjustment unit 2 includes a heat pump 51 that uses treated water obtained by wastewater treatment using an organic acid as a heat source or a cold heat source, and heats or cools raw sludge using the heat pump 51.
[Selection] Figure 1

Description

本発明は、汚泥を嫌気的に発酵させて有機酸を生成させる有機酸生成方法、有機酸生成装置、及びそれらを利用する排水処理設備に関するものである。   The present invention relates to an organic acid generation method, an organic acid generation apparatus, and a wastewater treatment facility using them, in which sludge is anaerobically fermented to generate an organic acid.

従来、河川や海、湖沼などの富栄養化による藻類やアオコの異常発生を防止すべく、生物処理法による下水の脱窒あるいは脱リン処理が行われており、この生物処理法で用いられる有機物を得るために、下水汚泥を嫌気的に発酵させる方法が知られている。このような下水汚泥を原料とした有機酸発酵処理で有機酸を生成させ、生成された有機酸を生物処理法の有機源として有効利用することができる。   Conventionally, denitrification or dephosphorization of sewage has been carried out by biological treatment methods to prevent the occurrence of abnormal algae and sea cucumbers due to eutrophication of rivers, seas, lakes, etc. Organic substances used in this biological treatment method In order to obtain sewage sludge, a method of anaerobically fermenting sewage sludge is known. An organic acid can be produced by an organic acid fermentation treatment using such sewage sludge as a raw material, and the produced organic acid can be effectively used as an organic source in a biological treatment method.

このような汚泥の有機酸発酵処理において、生物処理法で用いられる有機酸の生成率を高めるためには、発酵中における汚泥の温度を適正化することが必要であり、下記非特許文献1には、予め定めた一定温度下において下水汚泥の発酵を効率よく行う旨が記載されている。
前凝集と担体を用いた下水高度処理システムの実用化に関する調査研究,「2001年度 下水道新技術研究所年報」,財団法人 下水道新技術推進機構,2002年10月,2/2巻,P131−136
In such an organic acid fermentation treatment of sludge, it is necessary to optimize the temperature of the sludge during fermentation in order to increase the production rate of the organic acid used in the biological treatment method. Describes that fermentation of sewage sludge is efficiently performed at a predetermined temperature.
Research on practical application of advanced sewage treatment system using pre-coagulation and carrier, “2001 Annual Report on New Research Institute for Sewerage Technology”, New Organization for Sewerage Technology Promotion, October 2002, 2/2, P131-136

しかしながら、有機酸の原料である下水汚泥の温度は、夏期には高くなり冬期には低くなるといったように、季節や天候の影響を受けて変化する。よって、非特許文献1の方法では、発酵中の下水汚泥を一定温度に維持するために、導入される下水汚泥の温度に応じて発酵槽内を加温したり冷却したりする必要がある。そして、有機酸生成装置及びそれを用いる下水処理設備においては、省エネルギー化を図るため、下水汚泥の加温や冷却を行う場合にも、必要とするエネルギーを節約することが求められる。   However, the temperature of sewage sludge, which is a raw material for organic acids, varies depending on the influence of seasons and weather, such as high in summer and low in winter. Therefore, in the method of Non-Patent Document 1, in order to maintain the sewage sludge during fermentation at a constant temperature, it is necessary to heat or cool the inside of the fermenter according to the temperature of the introduced sewage sludge. And in an organic acid production | generation apparatus and a sewage treatment facility using the same, in order to attain energy saving, also when heating and cooling a sewage sludge, it is calculated | required to save required energy.

そこで、本発明は、エネルギーの節約を図ることができる有機酸生成方法、有機酸生成装置及び排水処理設備を提供することを目的とする。   Then, an object of this invention is to provide the organic acid production | generation method, organic acid production | generation apparatus, and waste water treatment equipment which can aim at energy saving.

本発明の有機酸生成方法は、汚泥を嫌気的に発酵させて有機酸を生成させる有機酸生成方法において、汚泥の温度を調整する温度調整工程と、温度調整工程で温度が調整された汚泥を嫌気的に発酵させて有機酸を得る発酵工程と、を備え、温度調整工程では、有機酸を用いた排水処理で得られた処理水を温熱源又は冷熱源とするヒートポンプを用いて、汚泥の加温又は冷却を行うことを特徴とする。   The organic acid production method of the present invention is an organic acid production method in which sludge is fermented anaerobically to produce an organic acid, a temperature adjustment step for adjusting the temperature of the sludge, and a sludge whose temperature is adjusted in the temperature adjustment step. A fermentation process for anaerobically fermenting to obtain an organic acid, and in the temperature adjustment process, using a heat pump that uses treated water obtained by wastewater treatment using an organic acid as a heat source or a cold source, Heating or cooling is performed.

この有機酸生成方法では、有機酸の生成率を向上させるために、温度調整工程で汚泥を適温に調整することができる。また、温度調整工程では、処理水を温熱源又は冷熱源とするヒートポンプを用いているので、処理水の保有する熱エネルギーを利用した加温又は冷却が可能である。従って、本来は廃棄される処理水の熱エネルギーを有効利用することができ、汚泥の温度調整のためのエネルギーを節約することができる。   In this organic acid production method, the sludge can be adjusted to an appropriate temperature in the temperature adjustment step in order to improve the production rate of the organic acid. Moreover, in the temperature adjustment process, since the heat pump which uses treated water as a heat source or a cold heat source is used, heating or cooling using the thermal energy possessed by the treated water is possible. Accordingly, it is possible to effectively use the heat energy of the treated water that is originally discarded, and to save energy for adjusting the temperature of the sludge.

また、本発明の有機酸生成方法は、温度調整工程において汚泥が流動する汚泥流動路に処理水を供給して、汚泥流動路を洗浄する洗浄工程を更に備えることが好ましい。汚泥流動路には、流動する汚泥に含まれる固形物が堆積する可能性があり、固形物の堆積により汚泥の円滑な流動が妨げられることで、温度調整効率が低下する場合がある。ところが、この有機酸生成方法によれば、洗浄工程によって汚泥流動路が洗浄されるので、汚泥流動路における固形物の堆積が抑制され、その結果、温度調整工程における汚泥の加温又は冷却が円滑に行われる。また、本来は廃棄される処理水を有効利用して汚泥流動路の洗浄に用いているので、洗浄水のコストを節約することができる。   Moreover, it is preferable that the organic acid production | generation method of this invention is further equipped with the washing | cleaning process which supplies process water to the sludge flow path in which sludge flows in a temperature adjustment process, and wash | cleans a sludge flow path. In the sludge flow path, there is a possibility that solids contained in the flowing sludge may accumulate, and the smooth flow of sludge is hindered by the accumulation of solids, which may reduce the temperature adjustment efficiency. However, according to this organic acid generation method, the sludge flow path is washed by the washing process, so that the accumulation of solid matter in the sludge flow path is suppressed, and as a result, the sludge is smoothly heated or cooled in the temperature adjustment process. To be done. Moreover, since the treated water originally discarded is effectively used for cleaning the sludge flow path, the cost of the cleaning water can be saved.

また、温度調整工程では、発酵工程における発酵中の汚泥の温度が18〜23℃になるように、汚泥の温度を調整することが好ましい。このような温度下で汚泥の発酵が行われれば、有機酸の生成率を向上させることができる。   Moreover, in the temperature adjustment step, it is preferable to adjust the temperature of the sludge so that the temperature of the sludge during fermentation in the fermentation step becomes 18 to 23 ° C. If the sludge is fermented at such a temperature, the organic acid production rate can be improved.

また、本発明の有機酸生成装置は、汚泥を嫌気的に発酵させて有機酸を生成させる有機酸生成装置において、汚泥の温度を調整する温度調整手段と、温度調整手段で温度が調整された汚泥を嫌気的に発酵させて有機酸を得る発酵槽と、を備え、温度調整手段は、有機酸を用いた排水処理で得られた処理水を温熱源又は冷熱源とするヒートポンプを有し、ヒートポンプを用いて汚泥の加温又は冷却を行うことを特徴とする。   The organic acid generator of the present invention is an organic acid generator that anaerobically fertilizes sludge to produce an organic acid. The temperature is adjusted by the temperature adjusting means for adjusting the temperature of the sludge and the temperature adjusting means. A fermenter that ferments sludge anaerobically to obtain an organic acid, and the temperature adjustment means has a heat pump that uses treated water obtained by wastewater treatment using the organic acid as a heat source or a cold source, Heating or cooling sludge is performed using a heat pump.

この有機酸生成装置では、有機酸の生成率を向上させるために、温度調整手段で汚泥を適温に調整することができる。また、温度調整手段は、処理水を温熱源又は冷熱源とするヒートポンプを備えているので、処理水の保有する熱エネルギーを利用した加温又は冷却が可能である。従って、本来は廃棄される処理水の熱エネルギーを有効利用することができ、汚泥の温度調整のためのエネルギーを節約することができる。   In this organic acid generator, the sludge can be adjusted to an appropriate temperature by the temperature adjusting means in order to improve the production rate of the organic acid. Moreover, since the temperature adjusting means includes a heat pump that uses the treated water as a heat source or a cold heat source, it can be heated or cooled using the thermal energy held by the treated water. Accordingly, it is possible to effectively use the heat energy of the treated water that is originally discarded, and to save energy for adjusting the temperature of the sludge.

また、本発明の有機酸生成装置は、汚泥が流動する温度調整手段の汚泥流動路に処理水を供給して、汚泥流動路を洗浄する洗浄手段を更に備えることが好ましい。汚泥流動路には、流動する汚泥に含まれる固形物が堆積する可能性があり、固形物の堆積により汚泥の円滑な流動が妨げられることで、温度調整効率が低下する場合がある。ところが、この有機酸生成装置によれば、洗浄手段によって汚泥流動路が洗浄されるので、汚泥流動路における固形物の堆積が抑制され、その結果、温度調整手段における汚泥の加温又は冷却が円滑に行われる。また、本来は廃棄される処理水を有効利用して汚泥流動路の洗浄に用いているので、洗浄水のコストを節約することができる。   Moreover, it is preferable that the organic acid generator of the present invention further includes a cleaning unit that supplies the treated water to the sludge flow path of the temperature adjusting unit through which the sludge flows to wash the sludge flow path. In the sludge flow path, there is a possibility that solids contained in the flowing sludge may accumulate, and the smooth flow of sludge is hindered by the accumulation of solids, which may reduce the temperature adjustment efficiency. However, according to this organic acid generator, since the sludge flow path is washed by the washing means, solid matter accumulation in the sludge flow path is suppressed, and as a result, the sludge is smoothly heated or cooled in the temperature adjusting means. To be done. Moreover, since the treated water originally discarded is effectively used for cleaning the sludge flow path, the cost of the cleaning water can be saved.

また、温度調整手段は、発酵槽における発酵中の汚泥の温度が18〜23℃になるように、汚泥の温度を調整することが好ましい。このような温度下で汚泥の発酵が行われれば、有機酸の生成率を向上させることができる。   Moreover, it is preferable that a temperature adjustment means adjusts the temperature of sludge so that the temperature of the sludge in fermentation in a fermenter may be 18-23 degreeC. If the sludge is fermented at such a temperature, the organic acid production rate can be improved.

また、本発明の排水処理設備は、上記何れかの有機酸生成装置と、排水を導入し、有機酸生成装置で得られる有機酸を用いて排水を生物処理する生物処理槽と、を備えたことを特徴とする。この排水処理設備によれば、有機酸生成装置において有機酸生成に使用するエネルギーが抑えられるので、排水処理のためのエネルギーを節約することができる。   Moreover, the wastewater treatment facility of the present invention includes any one of the organic acid generators described above and a biological treatment tank that introduces wastewater and biologically treats the wastewater using the organic acid obtained by the organic acid generator. It is characterized by that. According to this wastewater treatment facility, the energy used for organic acid generation in the organic acid generator can be suppressed, so that energy for wastewater treatment can be saved.

本発明の有機酸生成方法、有機酸生成装置及び排水処理設備によれば、エネルギーの節約を図ることができる。   According to the organic acid generation method, the organic acid generation apparatus, and the wastewater treatment facility of the present invention, energy can be saved.

以下、図面を参照しつつ本発明に係る有機酸生成方法、有機酸生成装置、及び排水処理設備の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of an organic acid generation method, an organic acid generation apparatus, and a wastewater treatment facility according to the present invention will be described in detail with reference to the drawings.

図1に示す排水処理設備100は、下水処理場に採用されているもので、下水に対して、生物的窒素除去及び生物的リン除去を含む高度処理を行う設備である。図に示すように、排水処理設備100は、最初沈殿池3、生物処理槽5、最終沈殿池7と共に有機酸生成装置1を備えている。   A wastewater treatment facility 100 shown in FIG. 1 is employed in a sewage treatment plant, and is a facility that performs advanced treatment including biological nitrogen removal and biological phosphorus removal on sewage. As shown in the figure, the wastewater treatment facility 100 includes an organic acid generator 1 together with a first sedimentation tank 3, a biological treatment tank 5, and a final sedimentation tank 7.

排水処理設備100には、下水処理場の図示しない沈砂池で比較的粒径が大きい固形物が沈降分離され、布、空き缶、ビニール類等の篩渣がスクリーンにて除去され、ポンプ井よりポンプアップされた流入下水が、ラインL1を通じて導入される。ラインL1からの流入下水は、最初沈殿池3に導入され、重力沈降により最初沈殿池3の底部に沈降する生汚泥とそれ以外の上澄み液とに分離される。ここで分離された生汚泥は図示しない汚泥掻寄機で汚泥溜まり部3aに掻き寄せられて、一部はラインL11を通じて有機酸生成装置1に送られ、残りは、余剰汚泥とともに図示しない汚泥処理槽に送られて処理される。上澄み液は被処理水としてラインL2を通じて生物処理槽5に送られる。詳細は後述するが、有機酸生成装置1は、この生汚泥を発酵処理し、例えば、酢酸、プロピオン酸、酪酸といった有機酸を含んだ発酵液をラインL20から排出する。   In the wastewater treatment facility 100, a solid substance having a relatively large particle size is settled and separated in a sand basin (not shown) of a sewage treatment plant, and sieves such as cloth, empty cans and vinyl are removed by a screen, and pumped from a pump well. The raised inflow sewage is introduced through the line L1. The inflowing sewage from the line L1 is first introduced into the settling basin 3 and separated into raw sludge and other supernatant liquid that sink to the bottom of the first settling basin 3 by gravity settling. The separated raw sludge is scraped to the sludge reservoir 3a by a sludge scraper (not shown), and a part thereof is sent to the organic acid generator 1 through the line L11, and the remainder is sludge treatment (not shown) together with the excess sludge. It is sent to the tank for processing. The supernatant liquid is sent to the biological treatment tank 5 through the line L2 as water to be treated. Although details will be described later, the organic acid generator 1 ferments the raw sludge, and discharges a fermentation broth containing an organic acid such as acetic acid, propionic acid, and butyric acid from the line L20.

生物処理槽5は、嫌気―無酸素―好気法による生物処理を行う処理槽であり、嫌気槽5a、無酸素槽5b、好気槽5cをこの順に備えている。ラインL2から嫌気槽5aに導入された上澄み液である被処理水は、嫌気槽5a、無酸素槽5b、好気槽5cの順に送られながら、それぞれの槽で嫌気性処理、無酸素処理、好気性処理が行われた後、ラインL3を通じて最終沈殿池7に送られる。このとき、ラインL20を通じて、有機酸生成装置1から有機酸を含む発酵液が嫌気槽5aに供給されることで、生物処理槽5における被処理水の脱窒反応あるいは脱リン反応が促進されることになる。また、好気槽5cには、散気装置5dが設けられており、送風機5eから送り込まれた空気により好気槽5c内の被処理水を曝気する。また、好気槽5cの滞留液は、循環ポンプ5fによりラインL4を通じて無酸素槽5bに送られ、循環導入されている。ここで、ラインL20から発酵液が無酸素槽5bに供給されてもよい。   The biological treatment tank 5 is a treatment tank that performs biological treatment by an anaerobic-anoxic-aerobic method, and includes an anaerobic tank 5a, an anaerobic tank 5b, and an aerobic tank 5c in this order. Water to be treated, which is a supernatant liquid introduced from the line L2 into the anaerobic tank 5a, is sent in the order of the anaerobic tank 5a, the anaerobic tank 5b, and the aerobic tank 5c, while anaerobic treatment and anaerobic treatment are performed in each tank After the aerobic treatment, the final settling tank 7 is sent through the line L3. At this time, the denitrification reaction or the dephosphorization reaction of the to-be-processed water in the biological treatment tank 5 is accelerated | stimulated by supplying the fermented liquor containing an organic acid from the organic acid production | generation apparatus 1 to the anaerobic tank 5a through the line L20. It will be. Further, the aerobic tank 5c is provided with an air diffuser 5d, and the water to be treated in the aerobic tank 5c is aerated by the air sent from the blower 5e. Further, the staying liquid in the aerobic tank 5c is sent to the anoxic tank 5b through the line L4 by the circulation pump 5f and circulated. Here, the fermentation liquid may be supplied from the line L20 to the anoxic tank 5b.

最終沈殿池7に送られた生物処理水は、浮遊する活性汚泥を沈降分離させた後、ラインL5を通じて排出される。排出されたこの処理水の一部は、ラインL8を通じて有機酸生成装置1へ送られ、残りは、図示しない設備において三次処理や滅菌処理が行われた後、河川等に放流される。最終沈殿池7で沈降した活性汚泥は、活性汚泥溜まり部7aからラインL6を通じて排出される。排出された活性汚泥の一部は、ラインL7を通じて生物処理槽5の嫌気槽5aに返送され、残りは、図示しない設備における汚泥処理工程を経て処理される。   The biologically treated water sent to the final settling basin 7 is discharged through the line L5 after the suspended activated sludge is settled and separated. A part of the discharged treated water is sent to the organic acid generator 1 through the line L8, and the rest is discharged to a river or the like after tertiary treatment and sterilization treatment are performed in an unillustrated facility. The activated sludge settled in the final sedimentation basin 7 is discharged from the activated sludge reservoir 7a through the line L6. A part of the discharged activated sludge is returned to the anaerobic tank 5a of the biological treatment tank 5 through the line L7, and the rest is processed through a sludge treatment process in a facility (not shown).

上記の有機酸生成装置1について、更に詳細に説明する。有機酸生成装置1は、上述の通り、流入下水から分離された生汚泥を原料とし、生汚泥中の有機物を酸生成菌によって嫌気的に発酵させて、有機酸を得る装置である。図1に示すように、有機酸生成装置1は、汚泥貯留槽23、ストレーナ26、汚泥温度調整部(温度調整手段)2、酸発酵槽27、濃縮槽43、及び発酵液貯留槽49を備えている。原料となる生汚泥は、ラインL11を通じて装置1に導入され、まず汚泥貯留槽23に一旦貯留され、汚泥貯留槽23に設けられた汚泥撹拌機25によって撹拌される。撹拌されて均一な汚泥濃度となった生汚泥は、夾雑物等を除去するストレーナ26を通過した後、汚泥供給ポンプP1により、ラインL12を通じて、温度調整部2へ導入される。温度調整部2において加温又は冷却され温度が18〜23℃に調整された生汚泥は、ラインL13を通じて酸発酵槽27に導入される。この温度調整部2の詳細については後述する。   The organic acid generator 1 will be described in more detail. As described above, the organic acid generator 1 is an apparatus that uses raw sludge separated from inflow sewage as a raw material, and an organic matter in the raw sludge is anaerobically fermented by acid-producing bacteria to obtain an organic acid. As shown in FIG. 1, the organic acid generator 1 includes a sludge storage tank 23, a strainer 26, a sludge temperature adjustment unit (temperature adjustment means) 2, an acid fermentation tank 27, a concentration tank 43, and a fermentation liquid storage tank 49. ing. Raw sludge as a raw material is introduced into the apparatus 1 through the line L11, first stored temporarily in the sludge storage tank 23, and stirred by the sludge stirrer 25 provided in the sludge storage tank 23. The raw sludge that has been stirred to a uniform sludge concentration passes through the strainer 26 that removes contaminants and the like, and is then introduced into the temperature adjustment unit 2 through the line L12 by the sludge supply pump P1. The raw sludge heated or cooled in the temperature adjusting unit 2 and adjusted to a temperature of 18 to 23 ° C. is introduced into the acid fermentation tank 27 through the line L13. Details of the temperature adjusting unit 2 will be described later.

なお、この汚泥貯留槽23及びストレーナ26は無くてもよく、ラインL11からの生汚泥が直接酸発酵槽27に導入されてもよい。また、汚泥貯留槽23に導入される生汚泥の汚泥濃度が低すぎる場合には、別途汚泥濃縮槽で前濃縮した後に汚泥貯留槽23又は酸発酵槽27に導入することが好ましい。   The sludge storage tank 23 and the strainer 26 may not be provided, and the raw sludge from the line L11 may be directly introduced into the acid fermentation tank 27. Moreover, when the sludge density | concentration of the raw sludge introduced into the sludge storage tank 23 is too low, it is preferable to introduce | transduce into the sludge storage tank 23 or the acid fermentation tank 27, after pre-concentrating with a sludge concentration tank separately.

酸発酵槽27は、導入された生汚泥を発酵処理し有機酸を生成させる槽である。この酸発酵槽27は、槽内に滞留する発酵汚泥Sを撹拌する酸発酵攪拌機29、発酵汚泥SのpHを測定するpHセンサ31、発酵汚泥Sの温度を測定する温度センサ33、発酵汚泥Sの酸化還元電位を測定するORPセンサ34、及び槽内に酸性剤(例えば、塩酸)又はアルカリ剤(例えば、水酸化ナトリウム)を投入して発酵汚泥SのpHを調整するpH調整装置35を備えている。また、図示しないが、酸発酵槽27は、発酵汚泥Sの酸化還元電位を調整するための空気供給装置を備えてもよい。酸発酵槽27では、これらのpHセンサ31、温度センサ33、ORPセンサ34から得られた情報に基づいて、槽内のpH等の発酵条件が適切に制御され、酸生成菌が発酵汚泥S中の有機物を分解して有機酸を生成する有機酸発酵反応が進行する。酸発酵槽27の適切な発酵条件とは、例えば、温度約20℃、ORP約−300〜−200mV、pH約4〜6.5である。   The acid fermentation tank 27 is a tank that ferments the introduced raw sludge to produce an organic acid. The acid fermentation tank 27 includes an acid fermentation stirrer 29 for stirring the fermentation sludge S staying in the tank, a pH sensor 31 for measuring the pH of the fermentation sludge S, a temperature sensor 33 for measuring the temperature of the fermentation sludge S, and the fermentation sludge S. ORP sensor 34 for measuring the oxidation-reduction potential of pH, and pH adjusting device 35 for adjusting the pH of fermentation sludge S by introducing an acid agent (for example, hydrochloric acid) or an alkali agent (for example, sodium hydroxide) into the tank. ing. Moreover, although not shown in figure, the acid fermentation tank 27 may be equipped with the air supply apparatus for adjusting the oxidation-reduction potential of the fermentation sludge S. In the acid fermentation tank 27, fermentation conditions such as pH in the tank are appropriately controlled based on information obtained from the pH sensor 31, temperature sensor 33, and ORP sensor 34, and acid producing bacteria are in the fermentation sludge S. Organic acid fermentation reaction that decomposes the organic matter to produce an organic acid proceeds. Suitable fermentation conditions for the acid fermenter 27 are, for example, a temperature of about 20 ° C., an ORP of about −300 to −200 mV, and a pH of about 4 to 6.5.

このように、生汚泥を温度調整部2に導入し温度調整した後に、酸発酵槽27に導入することで、酸発酵槽27内の生汚泥は18〜23℃といった発酵に適した温度となる。その結果、発酵槽27内では効率のよい有機酸発酵反応によって有機酸の生成率が向上される。そして、この発酵反応によって生成した有機酸を含む発酵汚泥が、ラインL14を通じて濃縮槽43に送られる。   Thus, after introducing raw sludge into the temperature adjustment part 2 and adjusting temperature, it introduce | transduces into the acid fermentation tank 27, and the raw sludge in the acid fermentation tank 27 becomes temperature suitable for fermentation, such as 18-23 degreeC. . As a result, in the fermenter 27, the organic acid production rate is improved by an efficient organic acid fermentation reaction. And the fermented sludge containing the organic acid produced | generated by this fermentation reaction is sent to the concentration tank 43 through the line L14.

濃縮槽43は円形断面をなしており、槽の下部で回転する掻き寄せブレード47aを有する掻寄機47を備えている。ラインL14を通じて濃縮槽43に導入された発酵汚泥は重力沈降によって固液分離される。この固液分離によって重力沈降した固体成分の一部は、濃縮汚泥としてラインL16を通じてポンプP2によって酸発酵槽27に返送されて再び発酵処理される。上記重力沈降した固体成分の残りは、余剰汚泥としてラインL17を通じて設備100外に排出され、酸発酵槽27で発生する発酵残渣等と一緒に、図示しない設備によって焼却処理あるいは消化処理される。なお、ここでは、重力沈降による固液分離を行う濃縮槽43に代えて、分離膜で固液分離を行う膜分離槽を採用してもよい。   The concentration tank 43 has a circular cross section, and includes a scraper 47 having a scraping blade 47a that rotates at the lower part of the tank. The fermented sludge introduced into the concentration tank 43 through the line L14 is solid-liquid separated by gravity sedimentation. A part of the solid component that has been gravity settled by the solid-liquid separation is returned to the acid fermentation tank 27 by the pump P2 through the line L16 as concentrated sludge and subjected to fermentation treatment again. The remainder of the solid component that has been gravity settled is discharged out of the equipment 100 through the line L17 as surplus sludge, and is incinerated or digested by the equipment (not shown) together with the fermentation residue and the like generated in the acid fermentation tank 27. Here, instead of the concentration tank 43 that performs solid-liquid separation by gravity sedimentation, a membrane separation tank that performs solid-liquid separation with a separation membrane may be employed.

一方、濃縮槽43で上澄みとして分離された発酵液はラインL15を通じて発酵液貯留槽49へ送られ、この発酵液貯留槽49内で一旦貯留された後、ラインL20を通じて、有機酸を含む発酵液として排出される。そして、前述のとおり、ラインL20を通じて排出されたこの発酵液は、嫌気−無酸素−好気法の有機源として生物処理槽5に供給される。なお、この発酵液貯留槽49を省略して、濃縮槽43からの発酵液を生物処理槽5に直接供給してもよい。   On the other hand, the fermented liquid separated as the supernatant in the concentration tank 43 is sent to the fermented liquid storage tank 49 through the line L15, and once stored in the fermented liquid storage tank 49, the fermented liquid containing the organic acid through the line L20. As discharged. And as above-mentioned, this fermentation liquid discharged | emitted through the line L20 is supplied to the biological treatment tank 5 as an organic source of an anaerobic-anoxic-aerobic method. Note that the fermentation solution storage tank 49 may be omitted, and the fermentation solution from the concentration tank 43 may be directly supplied to the biological treatment tank 5.

このような排水処理設備100においては、生物処理槽5での被処理水の脱リン処理、脱窒処理を効率よく行わせるために、有機酸生成装置1における有機酸の生成率を向上することが必要である。この装置1において、発酵汚泥Sには、酸生成菌ばかりでなくメタン生成菌も含まれているので、酸発酵槽27の発酵汚泥S中では、酸生成菌が汚泥を有機酸に変化させる有機酸発酵反応と、生成した有機酸をメタン生成菌がメタンガスに変化させてしまうメタン発酵反応とが同時に進行する。このため、有機酸の生成率を向上するためには、有機酸発酵反応とメタン発酵反応との活性のバランスを考慮し、発酵汚泥Sの温度を18〜23℃にすることが適切である。発酵汚泥Sの温度が18℃よりも低ければ、有機酸発酵反応の活性が低いので有機酸の生成自体が少なすぎ、発酵汚泥Sの温度が23℃よりも高ければ、メタン発酵反応の活性が高いので生成した多くの有機酸がメタンガスに変化してしまうからである。   In such a wastewater treatment facility 100, in order to efficiently perform dephosphorization treatment and denitrification treatment of water to be treated in the biological treatment tank 5, the organic acid production rate in the organic acid production apparatus 1 is improved. is required. In this apparatus 1, the fermented sludge S contains not only acid producing bacteria but also methanogenic bacteria. Therefore, in the fermented sludge S of the acid fermentation tank 27, the acid producing bacteria change the sludge into an organic acid. The acid fermentation reaction and the methane fermentation reaction in which the methanogenic bacteria change the generated organic acid into methane gas proceed simultaneously. For this reason, in order to improve the production rate of the organic acid, it is appropriate to set the temperature of the fermentation sludge S to 18 to 23 ° C. in consideration of the balance of the activity of the organic acid fermentation reaction and the methane fermentation reaction. If the temperature of the fermented sludge S is lower than 18 ° C, the activity of the organic acid fermentation reaction is low, so that the production of the organic acid itself is too little. If the temperature of the fermented sludge S is higher than 23 ° C, the activity of the methane fermentation reaction is high. This is because a large amount of organic acid produced is changed to methane gas because it is high.

しかしながら、排水処理設備100に導入される下水の温度は、季節によって変化するので、下水から分離される生汚泥の温度も同様に変化する。例えば、冬季の生汚泥の温度は15℃程度であり、夏季の生汚泥の温度は25℃程度である。このように、季節によって生汚泥の温度が一定せず、有機酸生成に適した上記の範囲を外れてしまう場合があるので、上述したとおり、有機酸生成装置1は、生汚泥を加温又は冷却するための温度調整部2を備えている。   However, since the temperature of the sewage introduced into the wastewater treatment facility 100 changes depending on the season, the temperature of the raw sludge separated from the sewage also changes. For example, the temperature of raw sludge in winter is about 15 ° C., and the temperature of raw sludge in summer is about 25 ° C. Thus, since the temperature of raw sludge is not constant depending on the season and may fall outside the above range suitable for organic acid generation, as described above, the organic acid generator 1 heats raw sludge or A temperature adjusting unit 2 for cooling is provided.

そして、この温度調整部2は、生汚泥の加温又は冷却に要するエネルギーを出来るだけ小さくすべく、ヒートポンプ51を有しており、温度調整部2は、このヒートポンプ51を用いて、酸発酵槽27に導入される前の生汚泥を加温又は冷却することにしている。   And this temperature adjustment part 2 has the heat pump 51 in order to make the energy required for heating or cooling of raw sludge as small as possible, The temperature adjustment part 2 uses this heat pump 51, and is an acid fermenter. The raw sludge before being introduced to No. 27 is heated or cooled.

以下、この温度調整部2について説明する。温度調整部2は、上記ヒートポンプ51と、ラインL8から導入された処理水が流動する処理水流路53aと、ラインL12から導入された生汚泥が流動する汚泥流路(汚泥流動路)53bと、水が循環する循環流路53cとを備えている。更に温度調整部2は、汚泥流路53bを流動する生汚泥と、循環流路53cを流動する水との熱交換を行う熱交換器52cを備えている。ヒートポンプ51は、炭化水素やアンモニア等の凝縮性の作動流体が循環する循環流路51rと、循環流路51r上に設けられたコンプレッサ51s及び膨張弁51tを備えている。更に、ヒートポンプ51は、循環流路51rと処理水流路53aとの熱交換を行う熱交換器52aを備えている。また、ヒートポンプ51は、循環流路51rと循環流路53cとの熱交換を行う熱交換器52bとを備えている。熱交換器52a,52b,52cとしては、各種のものを使用することができるが、ここでは、例えば、固体壁伝熱面を有するシェルアンドチューブ型熱交換器を採用することができる。   Hereinafter, the temperature adjusting unit 2 will be described. The temperature adjustment unit 2 includes the heat pump 51, a treated water flow path 53a through which treated water introduced from the line L8 flows, a sludge flow path (sludge flow path) 53b through which raw sludge introduced from the line L12 flows, And a circulation channel 53c through which water circulates. Furthermore, the temperature adjustment unit 2 includes a heat exchanger 52c that performs heat exchange between raw sludge flowing through the sludge flow path 53b and water flowing through the circulation flow path 53c. The heat pump 51 includes a circulation channel 51r through which a condensable working fluid such as hydrocarbon and ammonia circulates, and a compressor 51s and an expansion valve 51t provided on the circulation channel 51r. Furthermore, the heat pump 51 includes a heat exchanger 52a that performs heat exchange between the circulation channel 51r and the treated water channel 53a. The heat pump 51 also includes a heat exchanger 52b that performs heat exchange between the circulation channel 51r and the circulation channel 53c. Various types of heat exchangers 52a, 52b, and 52c can be used. Here, for example, a shell-and-tube heat exchanger having a solid wall heat transfer surface can be employed.

このような構成に基づいて、ヒートポンプ51は、処理水流路53aの処理水と循環流路53cの水との間の熱の移動を行わせることができる。また、循環流路51rに設けられた4方弁(図示しない)を切替え制御し、作動流体の流動方向を制御することで、このような熱の移動を双方向に行わせることが可能である。   Based on such a configuration, the heat pump 51 can cause heat transfer between the treated water in the treated water channel 53a and the water in the circulation channel 53c. In addition, by switching and controlling a four-way valve (not shown) provided in the circulation channel 51r and controlling the flow direction of the working fluid, it is possible to cause such heat movement to be performed in both directions. .

例えば冬季において、ラインL12の生汚泥の温度が18℃よりも低い場合には、熱交換器52aが蒸発器として機能し、熱交換器52bが凝縮器として機能するように、循環流路51rにおける流動方向を制御する。この場合、ヒートポンプ51の動作により、処理水流路53aの処理水の温度が、ヒートポンプ51の作動流体を経由して循環流路53cの水に移動する。更に、循環流路53cの水の温度が、熱交換器52cにおいて汚泥流路53bの生汚泥に移動することで、生汚泥の温度が上昇することになる。このようにして生汚泥の加温が達成され、生汚泥の温度は有機酸生成に適した18〜23℃とされる。このとき、処理水流路53aの処理水は冷却されて、ラインL9に排出されラインL5に合流する。   For example, in the winter season, when the temperature of the raw sludge in the line L12 is lower than 18 ° C., the heat exchanger 52a functions as an evaporator and the heat exchanger 52b functions as a condenser. Control the flow direction. In this case, due to the operation of the heat pump 51, the temperature of the treated water in the treated water channel 53a moves to the water in the circulation channel 53c via the working fluid of the heat pump 51. Further, the temperature of the water in the circulation channel 53c moves to the raw sludge in the sludge channel 53b in the heat exchanger 52c, so that the temperature of the raw sludge increases. In this way, warming of the raw sludge is achieved, and the temperature of the raw sludge is set to 18 to 23 ° C. suitable for organic acid production. At this time, the treated water in the treated water channel 53a is cooled, discharged to the line L9, and merged with the line L5.

また、例えば夏季において、ラインL12の生汚泥の温度が23℃よりも高い場合には、熱交換器52aが凝縮器として機能し、熱交換器52bが蒸発器として機能するように、循環流路51rにおける流動方向を制御する。この場合、ヒートポンプ51の動作により、上記とは逆の順序で熱が移動し、生汚泥の温度が低下することになる。このようにして生汚泥の冷却が達成され、生汚泥の温度は有機酸生成に適した18〜23℃とされる。このとき、処理水流路53aの処理水は加熱されて、ラインL9に排出されラインL5に合流する。   Further, for example, in the summer, when the temperature of the raw sludge in the line L12 is higher than 23 ° C., the circulation channel is configured so that the heat exchanger 52a functions as a condenser and the heat exchanger 52b functions as an evaporator. The flow direction in 51r is controlled. In this case, due to the operation of the heat pump 51, heat is transferred in the reverse order to the above, and the temperature of the raw sludge is lowered. In this way, cooling of the raw sludge is achieved, and the temperature of the raw sludge is set to 18 to 23 ° C. suitable for organic acid production. At this time, the treated water in the treated water flow path 53a is heated, discharged to the line L9, and joined to the line L5.

このように、有機酸生成装置1は設備100内で大量に発生する処理水を温熱源又は冷熱源としているので、外部からの熱源を準備する必要がない。また、ヒートポンプ51の作用によって、生汚泥と処理水との温度差がほとんどない状態から、生汚泥の加温又は冷却が可能である。従って、本来であれば大量の処理水がそのまま後工程に送られていたが、この処理水が保有する熱エネルギーを有効利用することができ、生汚泥の温度調整に要するエネルギーを節約することができる。また、このような生汚泥の温度調整により、季節ごとの下水温度の変化に関わらず、有機酸の生成率が向上し、生物処理槽5での被処理水の脱リン処理、脱窒処理が効率よく行われる。   Thus, since the organic acid production | generation apparatus 1 uses the treated water generated in large quantities in the installation 100 as a heat source or a cold heat source, it is not necessary to prepare the heat source from the outside. In addition, due to the action of the heat pump 51, the raw sludge can be heated or cooled from a state where there is almost no temperature difference between the raw sludge and the treated water. Therefore, although a large amount of treated water was originally sent to the subsequent process as it is, the thermal energy possessed by this treated water can be used effectively, and the energy required for temperature adjustment of raw sludge can be saved. it can. In addition, by adjusting the temperature of the raw sludge, the production rate of organic acid is improved regardless of the seasonal change in the sewage temperature, and the dephosphorization treatment and denitrification treatment of the treated water in the biological treatment tank 5 are performed. It is done efficiently.

上記の温度調整部2においては、固形物を含む生汚泥が汚泥流路53bを流動することになるので、汚泥流路53bにはスケールやスライムが付着し易い。このような付着物によって、汚泥流路53bにおける生汚泥の円滑な流動が妨げられ、なおかつ熱交換が行われる熱交換器52c内の汚泥流路53bの伝熱面が付着物で覆われることによって、熱交換器52cの熱交換効率が低下してしまう。また、伝熱面付近においては、熱交換効率向上のために流路が狭い場合があるので、流路の閉塞も起こり易い。そこで、有機酸生成装置1は、汚泥流路53bを洗浄するための洗浄ライン(洗浄手段)L61,L62を備えている。   In the temperature adjusting unit 2, since raw sludge containing solids flows through the sludge flow path 53b, scale and slime are likely to adhere to the sludge flow path 53b. By such a deposit, the smooth flow of raw sludge in the sludge channel 53b is hindered, and the heat transfer surface of the sludge channel 53b in the heat exchanger 52c in which heat exchange is performed is covered with the deposit. The heat exchange efficiency of the heat exchanger 52c will decrease. Further, in the vicinity of the heat transfer surface, the flow path may be narrow in order to improve the heat exchange efficiency, and therefore the flow path is likely to be blocked. Therefore, the organic acid generator 1 includes cleaning lines (cleaning means) L61 and L62 for cleaning the sludge flow path 53b.

この汚泥流路53bの洗浄工程では、温度調整部2のバルブV1を閉じ、バルブV2を開けることで、処理水流路53aの処理水が、洗浄ラインL61を通じて、汚泥流路53bに流入する。この場合、バルブV3,V4を閉じ、バルブV5を開けておくことで、流入した処理水は、熱交換機52c内の汚泥流路53bを流動し、洗浄ラインL62から排出される。そして、このような処理水の流動によって汚泥流路53bの付着物が剥離され、熱交換器52c内の汚泥流路53bの伝熱面が洗浄されることになる。従って、汚泥流路53bにおける生汚泥の流動が円滑に維持されることと相俟って、伝熱面における熱交換効率を良好に維持することができる。伝熱面の付着物を除去するための装置として、スポンジボール循環装置やブラシ洗浄装置が知られているが、有機酸生成装置1における上記洗浄手段は、これらの装置と比較して設備や操作が簡単であるという利点を有する。以上のような洗浄工程は、例えば、設備100の所定の運転時間ごとにバルブV1〜V5を操作することで行うことができる。   In the cleaning process of the sludge flow path 53b, the valve V1 of the temperature adjustment unit 2 is closed and the valve V2 is opened, whereby the treated water in the treated water flow path 53a flows into the sludge flow path 53b through the cleaning line L61. In this case, by closing the valves V3 and V4 and opening the valve V5, the inflowing treated water flows through the sludge flow path 53b in the heat exchanger 52c and is discharged from the cleaning line L62. And the deposit | attachment of the sludge flow path 53b peels by such a flow of treated water, and the heat-transfer surface of the sludge flow path 53b in the heat exchanger 52c is wash | cleaned. Therefore, coupled with the smooth flow of raw sludge in the sludge flow path 53b, the heat exchange efficiency on the heat transfer surface can be maintained well. As a device for removing deposits on the heat transfer surface, a sponge ball circulation device and a brush cleaning device are known. However, the cleaning means in the organic acid generator 1 has facilities and operations as compared with these devices. Has the advantage of being simple. The cleaning process as described above can be performed, for example, by operating the valves V <b> 1 to V <b> 5 every predetermined operation time of the facility 100.

なお、上記洗浄工程において、洗浄ラインL61に合流するようにラインL63から空気又は窒素等の気体を導入し、処理水と気体との混合流体によって汚泥流路53bを洗浄すれば、洗浄効果をより高めることができる。また、上記の洗浄手段では、汚泥流路53bを、通常の生汚泥の流動方向とは逆向きに処理水が流動するが、通常の生汚泥の流動方向と同じ向きに処理水が流動するようにしても同様の効果が得られる。また、熱交換器52cを2台設けて、それぞれの熱交換器52cにおいて通常の運転と洗浄工程とを交互に行うようにしてもよい。このようにすれば、熱交換器52cにおいて、生汚泥の温度調整を連続的に行うことができる。   In the above-described cleaning process, if a gas such as air or nitrogen is introduced from the line L63 so as to join the cleaning line L61, and the sludge flow path 53b is cleaned with a mixed fluid of treated water and gas, the cleaning effect is further improved. Can be increased. In the above cleaning means, the treated water flows through the sludge flow path 53b in the direction opposite to the normal raw sludge flow direction, but the treated water flows in the same direction as the normal raw sludge flow direction. However, the same effect can be obtained. Alternatively, two heat exchangers 52c may be provided, and the normal operation and the cleaning process may be alternately performed in each heat exchanger 52c. If it does in this way, in the heat exchanger 52c, the temperature adjustment of raw sludge can be performed continuously.

本発明は、前述した実施形態に限定されるものではない。例えば、有機酸生成装置1に導入される有機酸の原料としての汚泥は、最初沈殿池3で発生する汚泥に限られず、最終沈殿池7で発生する汚泥であってもよいし、最初沈殿池3の汚泥と最終沈殿池7の汚泥とを併用してもよい。   The present invention is not limited to the embodiment described above. For example, the sludge as the raw material of the organic acid introduced into the organic acid generator 1 is not limited to the sludge generated in the first settling basin 3 but may be sludge generated in the final settling basin 7 or the first settling basin. 3 and the sludge of the final sedimentation basin 7 may be used in combination.

本発明に係る排水処理設備の一実施形態を示す図である。It is a figure which shows one Embodiment of the waste water treatment facility which concerns on this invention.

符号の説明Explanation of symbols

1…有機酸生成装置、3…温度調整部(温度調整手段)、5…生物処理槽、27…酸発酵槽、51…ヒートポンプ、53b…汚泥流路(汚泥流動路)、100…排水処理設備、L61,L62…洗浄ライン(洗浄手段)、S…発酵汚泥。
DESCRIPTION OF SYMBOLS 1 ... Organic acid production | generation apparatus, 3 ... Temperature adjustment part (temperature adjustment means), 5 ... Biological treatment tank, 27 ... Acid fermentation tank, 51 ... Heat pump, 53b ... Sludge flow path (sludge flow path), 100 ... Waste water treatment equipment , L61, L62 ... cleaning line (cleaning means), S ... fermented sludge.

Claims (7)

汚泥を嫌気的に発酵させて有機酸を生成させる有機酸生成方法において、
前記汚泥の温度を調整する温度調整工程と、
前記温度調整工程で温度が調整された前記汚泥を嫌気的に発酵させて前記有機酸を得る発酵工程と、を備え、
前記温度調整工程では、前記有機酸を用いた排水処理で得られた処理水を温熱源又は冷熱源とするヒートポンプを用いて、前記汚泥の加温又は冷却を行うことを特徴とする有機酸生成方法。
In the organic acid production method in which sludge is anaerobically fermented to produce an organic acid,
A temperature adjusting step for adjusting the temperature of the sludge;
A fermentation step of anaerobically fermenting the sludge whose temperature has been adjusted in the temperature adjustment step to obtain the organic acid,
In the temperature adjustment step, the sludge is heated or cooled using a heat pump that uses the treated water obtained by the wastewater treatment using the organic acid as a heat source or a cold source. Method.
前記温度調整工程において前記汚泥が流動する汚泥流動路に前記処理水を供給して、前記汚泥流動路を洗浄する洗浄工程を更に備えたことを特徴とする請求項1記載の有機酸生成方法。   The organic acid generation method according to claim 1, further comprising a cleaning step of supplying the treated water to a sludge flow path in which the sludge flows in the temperature adjusting step to wash the sludge flow path. 前記温度調整工程では、
前記発酵工程における発酵中の前記汚泥の温度が18〜23℃になるように、前記汚泥の温度を調整することを特徴とする請求項1又は2に記載の有機酸生成方法。
In the temperature adjustment step,
The method for producing an organic acid according to claim 1 or 2, wherein the temperature of the sludge is adjusted so that the temperature of the sludge during fermentation in the fermentation step is 18 to 23 ° C.
汚泥を嫌気的に発酵させて有機酸を生成させる有機酸生成装置において、
前記汚泥の温度を調整する温度調整手段と、
前記温度調整手段で温度が調整された前記汚泥を嫌気的に発酵させて前記有機酸を得る発酵槽と、を備え、
前記温度調整手段は、前記有機酸を用いた排水処理で得られた処理水を温熱源又は冷熱源とするヒートポンプを有し、前記ヒートポンプを用いて前記汚泥の加温又は冷却を行うことを特徴とする有機酸生成装置。
In an organic acid generator that produces an organic acid by anaerobically fertilizing sludge,
Temperature adjusting means for adjusting the temperature of the sludge;
A fermentor for anaerobically fermenting the sludge whose temperature is adjusted by the temperature adjusting means to obtain the organic acid,
The temperature adjusting means includes a heat pump using a treated water obtained by the waste water treatment using the organic acid as a heat source or a cold heat source, and heats or cools the sludge using the heat pump. An organic acid generator.
前記汚泥が流動する前記温度調整手段の汚泥流動路に前記処理水を供給して、前記汚泥流動路を洗浄する洗浄手段を更に備えたことを特徴とする請求項4記載の有機酸生成装置。   5. The organic acid generator according to claim 4, further comprising a cleaning means for supplying the treated water to a sludge flow path of the temperature adjusting means through which the sludge flows to wash the sludge flow path. 前記温度調整手段は、
前記発酵槽における発酵中の前記汚泥の温度が18〜23℃になるように、前記汚泥の温度を調整することを特徴とする請求項4又は5に記載の有機酸生成装置。
The temperature adjusting means is
The organic acid generator according to claim 4 or 5, wherein the temperature of the sludge is adjusted so that the temperature of the sludge during fermentation in the fermenter is 18 to 23 ° C.
請求項4〜6の何れか一項に記載の有機酸生成装置と、
排水を導入し、前記有機酸生成装置で得られる有機酸を用いて前記排水を生物処理する生物処理槽と、を備えたことを特徴とする排水処理設備。




The organic acid generator according to any one of claims 4 to 6,
A wastewater treatment facility comprising: a biological treatment tank that introduces wastewater and biologically treats the wastewater using an organic acid obtained by the organic acid generator.




JP2006091139A 2006-03-29 2006-03-29 Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility Pending JP2007260604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091139A JP2007260604A (en) 2006-03-29 2006-03-29 Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091139A JP2007260604A (en) 2006-03-29 2006-03-29 Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility

Publications (1)

Publication Number Publication Date
JP2007260604A true JP2007260604A (en) 2007-10-11

Family

ID=38634122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091139A Pending JP2007260604A (en) 2006-03-29 2006-03-29 Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility

Country Status (1)

Country Link
JP (1) JP2007260604A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148675A (en) * 2007-12-19 2009-07-09 Sumitomo Heavy Industries Environment Co Ltd Organic acid production apparatus and method
JP2011230007A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Sewage treatment system
JP2011245413A (en) * 2010-05-26 2011-12-08 Japan Organo Co Ltd Water treatment system and water treatment method
JP2012091118A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system and water treatment method
JP2012091117A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system
JP2013119081A (en) * 2011-12-09 2013-06-17 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus for phosphorus-containing wastewater
JP2014188485A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment method
CN107253816A (en) * 2017-07-20 2017-10-17 青岛善水生态科学研究院股份有限公司 A kind of sludge conditioning device and its conditioning technique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214598A (en) * 1989-02-15 1990-08-27 Kankyo Tekunosu Kk Treatment of sewage
JP2005279551A (en) * 2004-03-30 2005-10-13 Kurita Water Ind Ltd Biological treatment method for organic wastewater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214598A (en) * 1989-02-15 1990-08-27 Kankyo Tekunosu Kk Treatment of sewage
JP2005279551A (en) * 2004-03-30 2005-10-13 Kurita Water Ind Ltd Biological treatment method for organic wastewater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148675A (en) * 2007-12-19 2009-07-09 Sumitomo Heavy Industries Environment Co Ltd Organic acid production apparatus and method
JP2011230007A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Sewage treatment system
JP2011245413A (en) * 2010-05-26 2011-12-08 Japan Organo Co Ltd Water treatment system and water treatment method
JP2012091118A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system and water treatment method
JP2012091117A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system
JP2013119081A (en) * 2011-12-09 2013-06-17 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus for phosphorus-containing wastewater
JP2014188485A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment method
CN107253816A (en) * 2017-07-20 2017-10-17 青岛善水生态科学研究院股份有限公司 A kind of sludge conditioning device and its conditioning technique

Similar Documents

Publication Publication Date Title
JP2007260604A (en) Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility
Dai et al. Toward energy-neutral wastewater treatment: A membrane combined process of anaerobic digestion and nitritation–anammox for biogas recovery and nitrogen removal
KR20190063615A (en) A water-purifying treatment device with renewable energy generation plant and using waste glass and artificial filter medium Manufactured by Method
Maleki Psychrophilic anaerobic membrane bioreactor (AnMBR) for treating malting plant wastewater and energy recovery
JP5372845B2 (en) Organic wastewater treatment system and method
JP4002851B2 (en) Sewage treatment equipment
CN207079137U (en) A kind of small-size rural underground powerless AOS sewage-treatment plants
JP4503418B2 (en) Method and apparatus for treating organic wastewater containing salts
KR20100124402A (en) Heat pump system having a microfilter for heating and cooling using effluent wasteheat discharged from the plant of sewage and waste water
JP2007054726A (en) Method and device for treating waste water
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JP4688714B2 (en) Organic acid generation method
JP4645568B2 (en) Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
RU2480521C2 (en) Device for effluent treatment, method of washing of device for effluent treatment and method of effluent treatment using this device
JPH08112600A (en) Combined septic tank
WO2020166074A1 (en) Water treatment system and water treatment method
JP3911591B2 (en) Wastewater treatment method
JP2008188533A (en) Water treatment apparatus
JPH04341397A (en) Methane fermentation treatment apparatus and methane fermentation method
JPS62237998A (en) Reactor for biofilter
JP2006297262A (en) Organic acid generation method, organic acid generator and wastewater treatment facility
JP6359490B2 (en) Sewage treatment system and sewage treatment method
JP2020195966A (en) Wastewater treatment system and wastewater treatment method
JP4519149B2 (en) Operation method of medium temperature methane fermentation treatment apparatus and medium temperature methane fermentation treatment apparatus
CN221166385U (en) Aquaculture wastewater denitrification recycling system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104