[go: up one dir, main page]

JP2007254276A - Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same - Google Patents

Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same Download PDF

Info

Publication number
JP2007254276A
JP2007254276A JP2007047347A JP2007047347A JP2007254276A JP 2007254276 A JP2007254276 A JP 2007254276A JP 2007047347 A JP2007047347 A JP 2007047347A JP 2007047347 A JP2007047347 A JP 2007047347A JP 2007254276 A JP2007254276 A JP 2007254276A
Authority
JP
Japan
Prior art keywords
plane
sintered body
main surface
slurry
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007047347A
Other languages
Japanese (ja)
Inventor
Makoto Osaki
誠 大崎
Hiromitsu Mishima
洋光 三島
Yasuto Muramoto
康人 村元
Akio Fukuii
明雄 福飯
Koji Enokida
功治 榎田
Sakujin Horio
作人 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007047347A priority Critical patent/JP2007254276A/en
Publication of JP2007254276A publication Critical patent/JP2007254276A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】ゲルキャスティング法により製造された、幅100mm以上、長さ2m以上、厚さ20mm以上の長尺板形状のアルミナ質焼結体からなる大型の液晶製造装置用部材において、アルミナ粒子の配向に起因する焼成時の収縮バラツキで、亀裂や破損が発生するという問題があった。
【解決手段】長さ2000mm以上、幅100mm以上、厚さ20mm以上の略直方体のアルミナ質焼結体であって、長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面の端部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.01〜0.15であること。
【選択図】図1
Alignment of alumina particles in a large-sized liquid crystal production apparatus member made of an alumina sintered body having a length of 100 mm or more, a length of 2 m or more, and a thickness of 20 mm or more manufactured by a gel casting method There was a problem that cracks and breakage occurred due to shrinkage variations during firing due to the above.
A substantially rectangular parallelepiped alumina sintered body having a length of 2000 mm or more, a width of 100 mm or more, and a thickness of 20 mm or more, and a peak intensity ratio of X-ray diffraction at the central portion of the main surface in the longitudinal direction {(006) Plane / (110) plane} and the X-ray diffraction peak intensity ratio {(006) plane / (110) plane} at the end of the main surface in the longitudinal direction are 0.01 to 0.00 mm in absolute value. Be 15.
[Selection] Figure 1

Description

本発明は、アルミナ質焼結体とその製造方法及びそれらを用いた液晶製造装置に関するものである。   The present invention relates to an alumina sintered body, a production method thereof, and a liquid crystal production apparatus using the same.

近年の液晶テレビの大画面化を受け液晶製造用ガラス基板は製造効率の観点から大面積化され長辺が2mを超えるサイズに達している。これに伴いガラス基板を扱う液晶製造装置も大型化の一途を辿り、液晶製造装置の構造部品であるバーミラー、エンドエフェクターいずれにも長辺が2mを越える大型化の要求が強まっている。液晶製造装置用のバーミラーは、露光装置の位置決めに使用される部品で、エンドエフェクターはガラス基板搬送時にガラス基板を支える支持体として使用されるものである。   In response to the recent increase in the screen size of liquid crystal televisions, glass substrates for liquid crystal production have been increased in area from the viewpoint of production efficiency and have reached a size with a long side exceeding 2 m. Along with this, liquid crystal manufacturing apparatuses that handle glass substrates have been increasing in size, and there is an increasing demand for increasing the size of the bar mirror and end effector, which are structural parts of the liquid crystal manufacturing apparatus, with a long side exceeding 2 m. A bar mirror for a liquid crystal manufacturing apparatus is a component used for positioning of an exposure apparatus, and an end effector is used as a support for supporting the glass substrate during conveyance of the glass substrate.

これらの大型セラミックス部品用の成形方法としては、最近では安価で安全に製品形状に近い成形体を得る成形方法として鋳込み成形方法が脚光を浴びている。具体的には、熱硬化性樹脂をバインダとして用いたゲルキャスティング法である。ゲルキャスティング法は1990年頃開発された鋳込み成形方法の一種で、非吸水性型に熱硬化性樹脂などをバインダとして添加した泥しょうを充填した後、硬化する成形方法である。ただし、熱硬化性樹脂もしくは室温でも硬化するよう開始剤を添加した泥しょうを用いるゲルキャスティング法では樹脂の硬化に伴う1〜2%程度の収縮があるため、固形鋳込み方法と同様に成形中の寸法収縮が無視できず複雑な形状、かつ大型の製品製造には不適当であることが分かった。   As a molding method for these large ceramic parts, a cast molding method has recently been spotlighted as a molding method for obtaining a molded body that is inexpensive and safely close to the product shape. Specifically, it is a gel casting method using a thermosetting resin as a binder. The gel casting method is a kind of cast molding method developed around 1990, and is a molding method in which a non-water-absorbent mold is filled with a slurry added with a thermosetting resin as a binder and then cured. However, in the gel casting method using a thermosetting resin or a slurry added with an initiator so as to be cured at room temperature, there is about 1 to 2% shrinkage accompanying the curing of the resin. It has been found that dimensional shrinkage cannot be ignored and is inadequate for manufacturing complex shapes and large products.

そこで、本件発明者らは成形中の寸法収縮の課題を解決するため、バインダとしてエマルジョンを用い、このエマルジョンを破壊することによって固化する新たなゲルキャスティング手法を開発し、成形中の寸法収縮の課題が解決され、中空形状などの複雑形状、かつ大型セラミック部品の成形体については製造可能となった。   Therefore, in order to solve the problem of dimensional shrinkage during molding, the present inventors have developed a new gel casting technique that uses an emulsion as a binder and solidifies by breaking this emulsion, and the problem of dimensional shrinkage during molding. As a result, complex shapes such as hollow shapes and large ceramic parts can be manufactured.

しかしながら、その後の焼成工程において発生する焼成収縮により、前記セラミック部品に用いるセラミック焼結体に様々な亀裂や破損が発生するという問題が明らかとなった。   However, the problem that various cracks and breakages occur in the ceramic sintered body used for the ceramic component due to the firing shrinkage that occurs in the subsequent firing step has been clarified.

このような問題に対し、特許文献1にはアルミナ粒子形状により成形体に粒子配向が生じ、これが原因で焼結体にクラックが生じることを示唆した記載がある。
特開平09−255413号公報
In order to solve such a problem, Patent Document 1 has a description suggesting that particle orientation occurs in the molded body due to the shape of the alumina particles, which causes cracks in the sintered body.
JP 09-255413 A

特許文献1では、前述の成形体中のアルミナ粒子の配向性について、成形体表面のX線回折結果からJCPDSカードにも示されているアルミナのX線回折におけるメインピークである(104)面帰属ピーク強度と(030)面帰属ピーク強度に着目し、これらの関係をある一定範囲内とした成形体とすれば、焼成後にクラックや破損のないβ−アルミナ管を製造できるとしている。   In Patent Document 1, regarding the orientation of alumina particles in the above-mentioned molded body, the (104) plane assignment is the main peak in the X-ray diffraction of alumina also shown in the JCPDS card from the X-ray diffraction result of the surface of the molded body. Focusing on the peak intensity and the (030) plane attribute peak intensity, if it is a molded body in which these relationships are within a certain range, a β-alumina tube free from cracks and breakage after firing can be produced.

しかしながら、前記手法はプレス成形法により比較的薄い肉厚の管状成形体を製造する場合にのみ適用できる技術であり、大型アルミナ構造体を鋳込み成形法で製造する場合には適用できない。   However, the above technique is a technique that can be applied only when a relatively thin-walled tubular molded body is manufactured by a press molding method, and cannot be applied when a large-sized alumina structure is manufactured by a casting molding method.

本発明者らは、種々の分析により割れや破損の生じたアルミナ焼結体には、鋳込み成形時にスラリーを成形型に流し込む際にアルミナ粒子が複雑に配向するために焼結体の結晶粒子にクラックや破損の要因となる配向性が生じていることを突き止めていた。   The present inventors have found that alumina sintered bodies that have been cracked or damaged by various analyzes have a structure in which the alumina particles are oriented in a complicated manner when the slurry is poured into a mold during casting. It was ascertained that the orientation that causes cracks and breakage occurred.

つまり、鋳込み成形法ではアルミナ粉体、バインダ、分散剤、水を混合してスラリー化しこれを鋳込み成形型に流し込むが、このとき型内各部で成形型との摩擦等が原因でスラリーの流れ込み方が異なり、これを乾燥、焼成してアルミナ構造体を製造するとスラリーの流れの方向に沿ってアルミナ粒子が配列し、アルミナ結晶粒子の配向が起こる。そしてこのような各部で異なる結晶配向性を持っていると、乾燥時には主にスラリー中の水分の蒸発により収縮するので、クラックや破損の問題なく成形体を製造することができるが、これを焼成するとアルミナ結晶成長に伴う焼成収縮が起こり、同じ焼結体内各部で異なる収縮挙動を示し、焼結体に亀裂や破損が生じてしまう。   In other words, in the casting method, alumina powder, binder, dispersant, and water are mixed to form a slurry, which is then poured into the casting mold. At this time, the slurry flows due to friction with the molding die at each part of the mold. However, when an alumina structure is produced by drying and firing, alumina particles are arranged along the direction of the slurry flow, and orientation of the alumina crystal particles occurs. And if each part has different crystal orientation, it shrinks mainly due to the evaporation of moisture in the slurry during drying, so a molded product can be manufactured without problems of cracks and breakage. Then, the firing shrinkage accompanying the alumina crystal growth occurs, and different shrinkage behaviors are exhibited in each part in the same sintered body, so that the sintered body is cracked or broken.

本発明では、前述のような同じ焼結体内各部での異なる収縮挙動を低減することができる大型のアルミナ質焼結体およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a large-sized alumina sintered body capable of reducing the different shrinkage behavior in each part of the same sintered body as described above and a method for producing the same.

本発明のアルミナ質焼結体は前記課題に鑑み、長さ2000mm以上、幅100mm以上、厚さ20mm以上の略直方体のアルミナ質焼結体であって、長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面の端部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.01〜0.15であることを特徴とする。   In view of the above problems, the alumina sintered body of the present invention is a substantially rectangular parallelepiped alumina sintered body having a length of 2000 mm or more, a width of 100 mm or more, and a thickness of 20 mm or more, and X in the central portion of the main surface in the longitudinal direction. The difference between the peak intensity ratio {(006) plane / (110) plane} of the line diffraction and the peak intensity ratio {(006) plane / (110) plane} of the X-ray diffraction at the end of the main surface in the longitudinal direction is The absolute value is 0.01 to 0.15.

さらに、長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面に平行な断面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.0005〜0.15であることを特徴とする。   Further, the peak intensity ratio {(006) plane / (110) plane} of the X-ray diffraction in the central portion of the main surface in the longitudinal direction and the peak intensity of X-ray diffraction in the central portion of the cross section parallel to the main surface in the longitudinal direction. The difference from the ratio {(006) plane / (110) plane} is 0.0005 to 0.15 in absolute value.

さらに、平均ボイド率が4%以下であって、前記長手方向の主面の中央部におけるボイド率と、前記長手方向の主面の端部におけるボイド率との差が絶対値で2%以下、および、前記主面の中央部におけるボイド率と、前記主面に平行な断面の中央部におけるボイド率との差が、絶対値で2%以下であることを特徴とする。   Furthermore, the average void ratio is 4% or less, and the difference between the void ratio at the center of the main surface in the longitudinal direction and the void ratio at the end of the main surface in the longitudinal direction is 2% or less in absolute value, And the difference between the void ratio in the central part of the main surface and the void ratio in the central part of the cross section parallel to the main surface is 2% or less in absolute value.

また、前記アルミナ質焼結体の製造方法であって、アルミナ粉体,溶媒,バインダ,分散剤,架橋剤を混合して作製した粘度0.05〜0.5Pa・sのスラリーを調合する工程、非吸水性の成形型の長手方向の内面に撥水性物質を形成する工程、周波数1〜30Hz、振幅0.2〜5.0mmで前記成形型を振動させながら、前記スラリーを充填する工程とを有することを特徴とする。   The method for producing the alumina sintered body is a step of preparing a slurry having a viscosity of 0.05 to 0.5 Pa · s prepared by mixing alumina powder, a solvent, a binder, a dispersant, and a crosslinking agent. A step of forming a water-repellent substance on the inner surface in the longitudinal direction of the non-water-absorbing mold, a step of filling the slurry while vibrating the mold at a frequency of 1 to 30 Hz and an amplitude of 0.2 to 5.0 mm; It is characterized by having.

さらに、前記アルミナ質焼結体を支持部材として用いたことを特徴とする。   Furthermore, the alumina sintered body is used as a support member.

本発明によれば、高い強度を保ちつつ、変形や亀裂、破損等の不具合のないアルミナ質焼結体とすることが可能となる。このようなアルミナ質焼結体を構造部材として用いた場合には、必要とされる形状以上に肉厚を厚くすることなく剛性を得ることができるため、軽量化できる。さらに、成形型を振動させるにあたり、内面に撥水性物質を介在することで、長手方向、厚さ方向の結晶配向による密度差の発生を抑制することができ、より均質で各部の機械的強度に差のないアルミナ質焼結体とすることができる。   According to the present invention, it is possible to obtain an alumina-based sintered body that is free from defects such as deformation, cracking, and breakage while maintaining high strength. When such an alumina sintered body is used as a structural member, the rigidity can be obtained without increasing the thickness beyond the required shape, and thus the weight can be reduced. Furthermore, when the mold is vibrated, a water-repellent substance is interposed on the inner surface, so that the occurrence of density differences due to crystal orientation in the longitudinal direction and thickness direction can be suppressed, making the mechanical strength of each part more uniform. An alumina sintered body having no difference can be obtained.

以下、本発明を実施するための最良の形態について示す。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明は長さ2000mm以上、幅100mm以上、厚さ20mm以上の略直方体のアルミナ質焼結体であって、長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面の端部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.01〜0.15であることを特徴とするものである。   The present invention is a substantially rectangular parallelepiped alumina sintered body having a length of 2000 mm or more, a width of 100 mm or more, and a thickness of 20 mm or more, and a peak intensity ratio {(006) plane of X-ray diffraction at the center of the main surface in the longitudinal direction. / (110) plane} and the X-ray diffraction peak intensity ratio {(006) plane / (110) plane} at the end of the main surface in the longitudinal direction are 0.01 to 0.15 in absolute value. It is characterized by being.

なお、図3に本発明のアルミナ質焼結体のX線回折チャートの一例を示す。図3の縦軸はピーク強度を示し、横軸は回折角度を示している。(006)面に相当する結晶ピークは、図3の回折角度2θ=41°〜42°間に存在しており、(110)面に相当する結晶ピークは、図3の回折角度2θ=37°〜38°間に存在している。   FIG. 3 shows an example of an X-ray diffraction chart of the alumina sintered body of the present invention. The vertical axis in FIG. 3 indicates the peak intensity, and the horizontal axis indicates the diffraction angle. The crystal peak corresponding to the (006) plane exists between the diffraction angles 2θ = 41 ° to 42 ° in FIG. 3, and the crystal peak corresponding to the (110) plane is the diffraction angle 2θ = 37 ° in FIG. It exists between ˜38 °.

本発明では、長手方向の主面の中央部1と端部、あるいは、主面に平行な断面の中央部3と前記主面の中央部1とについて、それぞれX線回折を実施し、図3に示すようなチャートから算出されるピーク強度比を用いてその差を求めるものである。
ここで、前記のように長手方向の主面の中央部1と端部とのX線回折における(006)面と(110)面のピーク強度比を比較する理由を以下に示す。
In the present invention, X-ray diffraction is performed on the central portion 1 and the end portion of the main surface in the longitudinal direction, or the central portion 3 of the cross section parallel to the main surface and the central portion 1 of the main surface, respectively. The difference is obtained using the peak intensity ratio calculated from the chart as shown in FIG.
Here, the reason for comparing the peak intensity ratios of the (006) plane and the (110) plane in the X-ray diffraction between the central portion 1 and the end portion of the main surface in the longitudinal direction as described above will be described below.

本発明は前述したように、鋳込み成形であるゲルキャスティング法を用いており、非吸水性の成形型にスラリーを充填するものである。なお、非吸水性とは水(液体)を吸収しない材質からなる成形型のことであり、特に本発明では、熱伝導性が良好な金属製の成形型を用いるのがより好適であり、具体的な金属製成形型の材質としては、アルミニウム,アルミニウム合金,チタン,チタン合金,マグネシウム合金等が軽量で充分な強度,耐熱製を有しているために良い。   As described above, the present invention uses the gel casting method, which is casting, and fills a non-water-absorbing mold with the slurry. Non-water-absorbing means a mold made of a material that does not absorb water (liquid). In the present invention, it is more preferable to use a metal mold having good thermal conductivity. As a material of a typical metal mold, aluminum, aluminum alloy, titanium, titanium alloy, magnesium alloy and the like are good because they are lightweight and have sufficient strength and heat resistance.

そしてスラリー充填後、成形型内では、スラリーの充填の仕方や充填後に成形型内壁にスラリーがぶつかることにより様々なスラリーの流れが生じるが、一般的なアルミナ粒子は扁平形状をしており、スラリーの流れに対し、抵抗が少なくなる向き(流れ方向に対し、扁平形状粒子の厚さ方向が垂直となる向き)に配向する。本発明のアルミナ質焼結体においては、長手方向と平行な流れでスラリーを充填した場合、成形型のスラリー充填口付近とその対面の成形型端部付近、さらには中央部で様々なスラリーの流れが形成され、アルミナ結晶粒子が異なる結晶配向性を有することとなる。   After the slurry is filled, in the mold, various slurry flows occur due to the slurry filling method and the slurry colliding with the inner wall of the mold after the filling, but general alumina particles have a flat shape. In the direction in which the resistance decreases (the direction in which the thickness direction of the flat particles is perpendicular to the flow direction). In the alumina sintered body of the present invention, when the slurry is filled in a flow parallel to the longitudinal direction, various kinds of slurries are formed near the slurry filling port of the mold, near the end of the mold facing the mold, and further at the center. A flow is formed, and the alumina crystal particles have different crystal orientations.

本発明はこのような主面の端部2と中央部1で異なる結晶配向性を有した長尺板形状製品の結晶配向性の分布について、製品表面のX線回折結果からこれを確認したものである。   In the present invention, the distribution of the crystal orientation of the long plate-shaped product having different crystal orientations at the end portion 2 and the central portion 1 of the main surface is confirmed from the X-ray diffraction result on the product surface. It is.

そして、その回折チャートから、アルミナ質焼結体の(006)面と(110)面のピーク強度の比率を算出し、前記長手方向の主面の端部2と中央部1でその比率の差が所定の範囲内であれば、アルミナ質焼結体に亀裂や破損をもたらす収縮率の差が生じることがなく、良好な略直方体のアルミナ質焼結体を製造することが可能であることを見出したものである。   Then, from the diffraction chart, the ratio of the peak intensity of the (006) plane and the (110) plane of the alumina sintered body is calculated, and the difference in the ratio between the end portion 2 and the central portion 1 of the main surface in the longitudinal direction is calculated. Is within the predetermined range, there is no difference in shrinkage ratio that causes cracking or breakage in the alumina sintered body, and it is possible to produce a good substantially rectangular parallelepiped alumina sintered body. It is what I found.

このように、X線回折における回折チャートの(006)面と(110)面に着目してその比率を算出し、さらにこの比率に関して長手方向の主面の中央部1と端部の差を確認する理由は次の通りである。   As described above, paying attention to the (006) plane and the (110) plane of the diffraction chart in X-ray diffraction, the ratio is calculated, and further, the difference between the central portion 1 and the end portion of the main surface in the longitudinal direction is confirmed with respect to this ratio. The reason for doing this is as follows.

ここで多結晶体の結晶配向性を示すために用いられるミラー指数表示は、多結晶体中の結晶の向きを、互いに直角に交わるA軸、B軸、C軸を使って、これらの軸のうち、どの軸に交わる面に倣って結晶が配向しているかを示したものである。   Here, the Miller index notation used for indicating the crystal orientation of the polycrystal is obtained by using the A, B, and C axes that intersect at right angles to each other in the directions of the crystals in the polycrystal. Of these, the axis along which the plane intersects is shown.

よって、(006)はC軸に垂直に交わる面、(110)はA軸とB軸に交わりC軸に平行な面に結晶が配向していることを表しており、(006)面と(110)面は垂直に交わっている。よって、2つの面のうち、どちらの面に倣って結晶が配向しているかを確認することで、両者が全く異なる結晶配向性を有しているかが確認できる。   Therefore, (006) represents a plane perpendicular to the C axis, and (110) represents that the crystal is oriented on a plane that intersects the A axis and the B axis and is parallel to the C axis. 110) planes intersect perpendicularly. Therefore, by confirming which of the two surfaces follows the crystal orientation, it can be confirmed whether the two have completely different crystal orientations.

プレス成形法等で製造されたアルミナ質焼結体は、一般的に前記(110)面やその他の(104)面、(113)面、(116)面への結晶配向性が顕著に現れ、通常は前記(006)面にはほとんどピークが存在しない。従って、前記(006)面のピーク強度が特に高いアルミナ質焼結体は、従来とは異なる面に多数のアルミナ結晶粒子が配向していることとなる。   In general, the alumina sintered body produced by the press molding method or the like, the crystal orientation to the (110) plane and the other (104) plane, (113) plane, (116) plane appears remarkably, Usually, there is almost no peak on the (006) plane. Therefore, in the alumina sintered body having a particularly high peak intensity on the (006) plane, a large number of alumina crystal particles are oriented on a plane different from the conventional one.

このような場合、一般的な結晶配向性を有したアルミナ質焼結体の焼成時の収縮挙動、特に収縮方向について比較すると、(006)面への結晶配向性が高いアルミナ質焼結体は一般的な(110)面への結晶配向性の高いアルミナ質焼結体の収縮方向とは異なる方向への収縮が大きい。そして、このように異なる方向への収縮差が大きくなると、焼結体内部にひずみ応力が生じ、この応力が集中する箇所に、焼結体の強度を超える応力が加わった場合には、焼結体に亀裂や破損を生じることとなる。   In such a case, when compared with the shrinkage behavior during firing of the alumina sintered body having general crystal orientation, particularly the shrink direction, the alumina sintered body having high crystal orientation toward the (006) plane is The shrinkage in a direction different from the shrinkage direction of a general alumina sintered body having a high crystal orientation toward the (110) plane is large. If the shrinkage difference in different directions becomes large in this way, strain stress is generated inside the sintered body, and if stress exceeding the strength of the sintered body is applied to the location where this stress is concentrated, The body will crack and break.

従って、アルミナ粒子が各部で異なる方向に配向し易い部材においては、前記(006)面と(110)面のX線回折におけるピーク強度の比率を確認することは、亀裂や破損のないアルミナ質焼結体を得るためには重要である。   Therefore, in a member in which the alumina particles are easily oriented in different directions in each part, it is possible to confirm the ratio of the peak intensity in the X-ray diffraction of the (006) plane and the (110) plane. It is important to obtain a union.

本発明では、さらにアルミナ質焼結体表面の前記(006)面と(110)面のX線回折におけるピーク強度の比率{(006)面/(110)面}を確認するものであり、長さ2000mm以上の略直方体形状の長手方向の主面の中央部1の{(006)面/(110)面}と端部の{(006)面/(110)面}の差、すなわち長手方向での結晶配向性のバラツキを確認し、これを0.01〜0.15の範囲内とすることが、亀裂や破損のない製品を得る上で特に重要であるといえる。   In the present invention, the peak intensity ratio {(006) plane / (110) plane} in the X-ray diffraction of the (006) plane and (110) plane on the surface of the alumina sintered body is further confirmed. Difference between the {(006) plane / (110) plane} of the central portion 1 of the longitudinal main surface of the substantially rectangular parallelepiped shape with a length of 2000 mm or more and the {(006) plane / (110) plane} at the end, that is, the longitudinal direction It can be said that it is particularly important to confirm the variation of the crystal orientation in the range of 0.01 to 0.15 in order to obtain a product free from cracks and breakage.

ここで、前記長手方向の主面の中央部1とは、図1に示すように、略直方体形状のアルミナ質焼結体の長さの1/2の距離の地点を幅方向に結んだ直線を中心として、両端部に向かって±30mmの幅(図1の1)を持たせた範囲を言う。また、長手方向の主面の端部2とはアルミナ質焼結体の端部から、30mmの幅(図1の2)の範囲を言う。   Here, as shown in FIG. 1, the central portion 1 of the main surface in the longitudinal direction is a straight line connecting points in the width direction that are ½ the length of the substantially rectangular parallelepiped alumina sintered body. Is a range having a width of ± 30 mm (1 in FIG. 1) toward both ends. Moreover, the edge part 2 of the main surface of a longitudinal direction means the range of the width (2 of FIG. 1) of 30 mm from the edge part of an alumina sintered compact.

また、前記X線回折におけるピーク強度比(006)面/(110)面の主面の中央部1と端部2との差が0.01未満である場合には、アルミナ質焼結体中の結晶粒子が前記C軸以外の方向に良好に分散した状態となっているが、このような状態では、アルミナ粒子が扁平状であるために、粒子同士の接触面積が小さくなる。接触面積が小さくなると、より高温で焼成するか、あるいは焼結助剤成分を添加して焼結性を高めなければ、アルミナ質焼結体を高密度化しにくくなる。よって、若干のC軸への結晶粒子配向を持たせた焼結体とした方が逆に高密度化、高強度化の観点からすると良い。またX線回折におけるピーク強度比(006)面/(110)面の主面の中央部1と端部2との差が0.15を超えると、アルミナ焼結体内に、大きな収縮差が生じ、略直方体のアルミナ質焼結体が中央から破損、変形し、良好な製品が得られない。   Further, when the difference between the central portion 1 and the end portion 2 of the principal surface of the peak intensity ratio (006) plane / (110) plane in the X-ray diffraction is less than 0.01, in the alumina sintered body The crystal particles are well dispersed in directions other than the C axis. In such a state, the alumina particles are flat, so that the contact area between the particles is small. If the contact area is small, it is difficult to increase the density of the alumina sintered body unless firing is performed at a higher temperature or the sintering property is not increased by adding a sintering aid component. Therefore, it is better to use a sintered body having a slight crystal grain orientation along the C axis from the viewpoint of increasing the density and increasing the strength. Further, when the difference between the central portion 1 and the end portion 2 of the principal surface of the peak intensity ratio (006) plane / (110) plane in X-ray diffraction exceeds 0.15, a large shrinkage difference is generated in the alumina sintered body. The substantially rectangular parallelepiped alumina sintered body is damaged and deformed from the center, and a good product cannot be obtained.

さらに、本発明においては、長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面に平行な断面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.0005〜0.15であることが好ましい。   Furthermore, in the present invention, the X-ray diffraction peak intensity ratio {(006) plane / (110) plane} at the central portion of the major surface in the longitudinal direction and the X at the central portion of the cross section parallel to the major surface in the longitudinal direction. The difference from the peak intensity ratio {(006) plane / (110) plane} of the line diffraction is preferably 0.0005 to 0.15 in absolute value.

ここで前記0.01〜0.15の範囲をX1、0.0005〜0.15の範囲をX2と例えると、X1の範囲が長手方向でのバラツキであるのに対し、X2の範囲は肉厚方向のバラツキを確認する手段と言える。前記X2が、0.0005以上であれば、X1の下限理由と同様に、C軸への配向がほとんどない状態であるため、アルミナ粒子が扁平状であるために、粒子同士の接触面積が大きくなり、アルミナ質焼結体を緻密化させやすい。よって、C軸への結晶配向性を多少有した方がゲルキャスティング法におけるアルミナ質焼結体の製造においては、焼結体をより高密度化、高強度化することが可能となる。   Here, when the range of 0.01 to 0.15 is X1, and the range of 0.0005 to 0.15 is X2, the range of X1 is the variation in the longitudinal direction, whereas the range of X2 is the meat. It can be said to be a means for confirming variation in the thickness direction. If the X2 is 0.0005 or more, as in the reason for the lower limit of the X1, since there is almost no orientation to the C axis, the alumina particles are flat, so the contact area between the particles is large. It becomes easy to densify the alumina sintered body. Therefore, in the production of an alumina sintered body in the gel casting method, it is possible to increase the density and the strength of the sintered body if the crystal orientation to the C axis is somewhat.

さらに、前記X2の値が0.15を以下であれば、肉厚方向の焼結体の収縮率差のバラツキが小さく、これらが亀裂、破損の原因となる応力となって焼結体に作用することがなくなるため好ましい。   Furthermore, if the value of X2 is 0.15 or less, the variation in the shrinkage difference of the sintered body in the thickness direction is small, and these act as stresses causing cracks and breakage on the sintered body. This is preferable because it does not occur.

なお、前記主面に平行な断面の中央部3とは、たとえば図1の3に示す部分であり、この主面に平行な断面の中央部3のX線回折を行うための加工は、平面研削盤で製品表面を削っていくか、もしくはスライサー等の切断用機械で切断すれば良く、その表面の面粗さは算術平均表面粗さRaを500μm以下とするのが良い。   The central portion 3 of the cross section parallel to the main surface is, for example, the portion shown in FIG. 1, and the processing for performing X-ray diffraction of the central portion 3 of the cross section parallel to the main surface is a plane. The surface of the product may be shaved with a grinder or cut with a cutting machine such as a slicer. The surface roughness of the surface should be an arithmetic average surface roughness Ra of 500 μm or less.

また、本発明のアルミナ質焼結体はその平均ボイド率が4%以下であって、前記長手方向の主面の中央部におけるボイド率と、前記長手方向の主面の端部におけるボイド率との差が絶対値で2%以下、および、前記主面の中央部におけるボイド率と、前記主面に平行な断面の中央部におけるボイド率との差が、絶対値で2%以下であることが好ましい。   The alumina sintered body of the present invention has an average void ratio of 4% or less, and a void ratio at the center of the major surface in the longitudinal direction and a void ratio at the end of the major surface in the longitudinal direction. The difference between the absolute value is 2% or less, and the difference between the void ratio in the central portion of the main surface and the void ratio in the central portion of the cross section parallel to the main surface is 2% or less in absolute value. Is preferred.

前記アルミナ質焼結体の平均ボイド率を4%以下とすることで、従来の小型のアルミナ質焼結体と同等の機械的特性を有することができる。   By setting the average void ratio of the alumina sintered body to 4% or less, it is possible to have mechanical characteristics equivalent to those of a conventional small-sized alumina sintered body.

また前記長手方向の主面の中央部1と主面の端部2のボイド率差を2%以下とすることにより、大型のアルミナ質焼結体の長手方向における主面の中央部1と端部2に発生する密度差を低減することができ、密度差に起因する強度、ヤング率等の機械的特性のバラツキの発生を抑制することが可能となる。   Further, by setting the void ratio difference between the central portion 1 of the main surface in the longitudinal direction and the end portion 2 of the main surface to 2% or less, the central portion 1 and the end of the main surface in the longitudinal direction of the large alumina sintered body The density difference generated in the portion 2 can be reduced, and the occurrence of variations in mechanical properties such as strength and Young's modulus due to the density difference can be suppressed.

さらには、前記主面の中央部1と、主面に平行な断面の中央部3とのボイド率差も2%以下とすることにより、厚さ方向での機械的特性のバラツキを抑制することが可能となり、このようなアルミナ質焼結体とすれば、これを例えば液晶製造装置用の支持部材として適用した場合に、長手方向、厚さ方向へかかる荷重により変形や亀裂、破損を生じることがないために良好である。   Furthermore, the variation in the mechanical characteristics in the thickness direction is suppressed by setting the void ratio difference between the central portion 1 of the main surface and the central portion 3 of the cross section parallel to the main surface to 2% or less. When such an alumina sintered body is used as a support member for a liquid crystal manufacturing apparatus, for example, deformation, cracking, or damage is caused by a load applied in the longitudinal direction and thickness direction. Good because there is no.

アルミナ質焼結体の平均ボイド率が4%以下であれば、強度、ヤング率等の機械的特性が低下することなく、かつ主面の中央部1と主面の端部2、または、主面の中央部1と主面に平行な断面の中央部3のボイド率差が2%を以下である場合には、機械的特性に劣るボイド率の高い部分にアルミナ質焼結体にかかる応力が集中し、変形や亀裂、破損を生じるために好ましくない。   If the average void ratio of the alumina sintered body is 4% or less, mechanical properties such as strength and Young's modulus are not deteriorated, and the central portion 1 of the main surface and the end portion 2 of the main surface, or the main When the void ratio difference between the central portion 1 of the surface and the central portion 3 of the cross section parallel to the main surface is 2% or less, the stress applied to the alumina sintered body on the portion with a high void ratio inferior to the mechanical properties This is not preferable because it concentrates and causes deformation, cracks and breakage.

なお、ボイド率の測定方法としては、アルミナ質焼結体表面を鏡面加工した後、画像解析装置(ニレコ社製 LUZEX−FS)にて100倍の倍率で任意の10ヶ所を観察し、この画像から面積9×10μm中に存在するボイド数、ボイド平均径を測定した後、前記9×10μmを総面積とし、総ボイド数×ボイド平均径/総面積×100の式を用いてボイド率(%)として算出する。 As a method for measuring the void ratio, after the surface of the alumina sintered body is mirror-finished, an arbitrary 10 locations are observed with an image analyzer (LUZEX-FS manufactured by Nireco Corporation) at a magnification of 100 times. Then, the number of voids existing in the area 9 × 10 4 μm 2 and the average void diameter are measured, and then the total area is 9 × 10 4 μm 2 and the formula of total void number × void average diameter / total area × 100 is calculated. And calculated as a void fraction (%).

本発明のアルミナ質焼結体のボイド率は、図1で示した主面の中央部1および主面の端部2のうち、任意の表面10ヶ所の測定を実施しこれを平均したものである。   The void ratio of the alumina sintered body of the present invention is obtained by measuring 10 points on the surface of the central portion 1 and the end portion 2 of the main surface shown in FIG. 1 and averaging them. is there.

ボイド率差については、長手方向の主面の中央部1と主面の端部2、ならびに、前記主面の中央部1と主面に平行な断面の中央部3とのうち、それぞれの面の任意5箇所の測定値の平均をそれぞれ算出する。   Regarding the void ratio difference, each of the central portion 1 and the end portion 2 of the main surface in the longitudinal direction, and the central portion 1 of the main surface and the central portion 3 of the cross section parallel to the main surface, respectively. The average of the measured values at any five points is calculated.

次に、本発明のアルミナ質焼結体の製造方法について詳細を示す。   Next, the manufacturing method of the alumina sintered body of the present invention will be described in detail.

本発明のアルミナ質焼結体の製造方法としては、アルミナ粉体,溶媒,バインダ,分散剤,架橋剤を混合して作製した粘度0.05〜0.5Pa・sのスラリーを調合する工程、非吸水性の成形型の長手方向の内面に撥水性物質を形成する工程、周波数1〜30Hz、振幅0.2〜5.0mmで前記成形型を振動させながら、前記スラリーを充填する工程とを有するものである。   As a method for producing an alumina sintered body of the present invention, a step of preparing a slurry having a viscosity of 0.05 to 0.5 Pa · s prepared by mixing alumina powder, a solvent, a binder, a dispersant, and a crosslinking agent, Forming a water-repellent substance on the inner surface in the longitudinal direction of the non-water-absorbing mold, filling the slurry while vibrating the mold at a frequency of 1 to 30 Hz and an amplitude of 0.2 to 5.0 mm. It is what you have.

本発明における製造方法では、成形型を振動させるにあたり、内面に撥水性物質を介在することで、長手方向、厚さ方向の結晶配向による密度差の発生を抑制することができ、より均質で各部の機械的強度に差のないアルミナ質焼結体とすることができる。   In the production method of the present invention, when the mold is vibrated, a water-repellent substance is interposed on the inner surface, thereby suppressing the occurrence of density differences due to the crystal orientation in the longitudinal direction and the thickness direction. It is possible to obtain an alumina sintered body having no difference in mechanical strength.

ここで、前記のようにスラリー粘度を0.05〜0.5Pa・sとするのは、0.05Pa・s未満の粘度では、成形型からスラリーが漏れやすく、また、スラリー粘度を低く抑えようとすると、スラリー中の粉体含有率を下げねばならず、また、粉体含有率を下げるとスラリー乾燥後の収縮率や焼成時の収縮率が大きくなるために好ましくない。   Here, the viscosity of the slurry is set to 0.05 to 0.5 Pa · s as described above. When the viscosity is less than 0.05 Pa · s, the slurry is likely to leak from the mold, and the slurry viscosity should be kept low. Then, the powder content in the slurry must be reduced, and lowering the powder content is not preferable because the shrinkage after drying the slurry and the shrinkage during firing are increased.

さらには、前記成形体表面の主面の中央部1と主面の端部2のX線回折による(006)面と(110)面のピーク強度比の差の値X1が0.01未満となるために好ましくない。この値が0.01未満とすればスラリー粘度が低く成形型内面との摩擦がほとんど発生しないからである。   Furthermore, the value X1 of the difference in peak intensity ratio between the (006) plane and the (110) plane by X-ray diffraction of the central portion 1 of the main surface and the end portion 2 of the main surface is less than 0.01. This is not preferable. This is because, if this value is less than 0.01, the slurry viscosity is low and friction with the inner surface of the mold hardly occurs.

また、0.5Pa・sを超える粘度とすると、成形型へスラリーを充填する際に、成形型の内壁と、該内壁に接するスラリーとの間で摩擦を生じ、この摩擦力で内壁に接するスラリー表面のアルミナ粒子に結晶配向性を生じ、前記X1の値が0.15を超えるために好ましくない。   Further, when the viscosity exceeds 0.5 Pa · s, when the slurry is filled into the mold, friction is generated between the inner wall of the mold and the slurry in contact with the inner wall, and the slurry is in contact with the inner wall by this frictional force. Crystal orientation is generated in the alumina particles on the surface, and the value of X1 exceeds 0.15, which is not preferable.

また、前記スラリー注入方向と平行な成形型内面からスラリー充填口周囲までの距離を150mm以内とするのが好ましく、150mmを超えるとスラリー充填口と成形型内壁までの距離が遠くなり、スラリーを充填口から注入した際に前記充填口から内壁表面に達する間の成形型端部に、スラリーの流動性が著しく悪くなる部分が生じる。   In addition, the distance from the inner surface of the mold parallel to the slurry injection direction to the periphery of the slurry filling port is preferably within 150 mm. When the distance exceeds 150 mm, the distance between the slurry filling port and the inner wall of the molding die is increased, and the slurry is filled. When injected from the mouth, a portion where the fluidity of the slurry is remarkably deteriorated is generated at the end of the mold while reaching the surface of the inner wall from the filling port.

その部分の結晶配向性が他と異なるために、結果的にこの収縮差で特に充填口付近の成形体各部に亀裂や破損を生じる可能性が高いが、150mm以内であればこのような問題が生じることなく、良好なアルミナ質焼結体を形成可能となる。   Since the crystal orientation of the portion is different from the others, as a result, there is a high possibility that cracks and breakage will occur in each part of the molded body particularly near the filling port due to this shrinkage difference. A good alumina sintered body can be formed without the occurrence.

また、前記スラリーについては、成形型に注入する前に0.01MPaの真空雰囲気下で15分〜2時間真空脱泡するのが好ましい。本発明のスラリーは比較的粘度が低く、スラリー中に気泡の残留は少ないものの微細な気泡は残留しており、真空脱泡を実施すれば、スラリーを成形型へ注入して成形し焼成後に、アルミナ質焼結体中のボイド率を4%以下、前記長手方向の主面の中央部1と端部2におけるボイド率の差、および前記主面の中央部1と前記主面に平行な断面の中央部3とにおけるボイド率の差をそれぞれ2%以下とすることが容易となる。スラリー中の残留気泡はもともと原料粉体やバインダ中に含まれていると考えられ、スラリー作製工程のいずれかで真空雰囲気下に一定時間スラリーを曝すことによって、大半は除去されると思われる。真空脱泡時間が15分未満ではスラリー中に残留した気泡を充分に除去することができず、真空脱泡時間が2時間を超えるとスラリーが固化してしまうために好ましくない。   The slurry is preferably degassed in a vacuum atmosphere of 0.01 MPa for 15 minutes to 2 hours before being injected into the mold. The slurry of the present invention has a relatively low viscosity, and there are few bubbles remaining in the slurry, but fine bubbles remain.If vacuum defoaming is performed, the slurry is injected into a mold and molded and fired. The void ratio in the alumina sintered body is 4% or less, the difference in the void ratio between the central portion 1 and the end portion 2 of the main surface in the longitudinal direction, and the cross section parallel to the central portion 1 of the main surface and the main surface It becomes easy to make the difference of the void ratio in the central part 3 of each 2% or less. It is considered that residual bubbles in the slurry are originally contained in the raw material powder and the binder, and most of them are considered to be removed by exposing the slurry for a certain period of time in a vacuum atmosphere in any of the slurry preparation steps. If the vacuum defoaming time is less than 15 minutes, bubbles remaining in the slurry cannot be sufficiently removed, and if the vacuum defoaming time exceeds 2 hours, the slurry is not preferable.

図2(a)にスラリー充填口11を備えた成形型10の長手方向の片端面を正面から見た場合の模式図を示す。スラリー充填口11は、成形型端面12に図のような四角形の他には、円形、多角形状等、様々な貫通孔が設置可能である。そしてこのスラリー充填口11にスラリー充填ポンプ等(不図示)を接続し、成形型10内にスラリー17が充填される。そして、スラリー充填口11は、図2(a)の点線で示された成形型内面13からの距離が、幅方向距離14、高さ方向距離15ともに150mm以内に設置されるのが好ましい。   FIG. 2A shows a schematic view when one end face in the longitudinal direction of the mold 10 provided with the slurry filling port 11 is viewed from the front. The slurry filling port 11 can be provided with various through-holes such as a circular shape and a polygonal shape in addition to the square as shown in the figure on the mold end surface 12. A slurry filling pump or the like (not shown) is connected to the slurry filling port 11, and the slurry 17 is filled into the molding die 10. And it is preferable that the distance from the shaping | molding die inner surface 13 shown by the dotted line of Fig.2 (a) is the slurry filling port 11 within 150 mm in both the width direction distance 14 and the height direction distance 15. FIG.

さらに、スラリー充填する前には、前記成形型内面13とスラリー17との接触部に撥水性物質を介在させてスラリー充填するのが好ましい。   Furthermore, before the slurry is filled, it is preferable that the slurry is filled with a water-repellent substance in the contact portion between the mold inner surface 13 and the slurry 17.

図2(b)に、成形型を長手方向に垂直な断面として見たときの模式図を示す。図2(b)に示すように成形型16には、その内面とスラリー17の間に撥水性物質18が内面全体にわたって介在させてある。撥水性物質18を介在させたことで、スラリー17中の溶媒の撥水効果が発揮され、スラリー17中のアルミナ粒子が配向する要因の1つであるスラリー17と成形型内面13との摩擦を少なくすることが可能となる。このため、成形、焼成後の焼結体においても、亀裂や破損の原因となるアルミナ結晶粒子の配向が起こりにくい。   FIG. 2B is a schematic diagram when the mold is viewed as a cross section perpendicular to the longitudinal direction. As shown in FIG. 2B, the mold 16 has a water repellent substance 18 interposed between the inner surface and the slurry 17 over the entire inner surface. By interposing the water repellent material 18, the water repellent effect of the solvent in the slurry 17 is exhibited, and the friction between the slurry 17 and the mold inner surface 13, which is one of the factors for orienting the alumina particles in the slurry 17. It can be reduced. For this reason, even in the sintered body after molding and firing, the orientation of the alumina crystal particles that cause cracks and breakage hardly occurs.

前記撥水性物質18としては、フッ素系樹脂、シリコーン、ユリア樹脂、メラミン樹脂との複合体等、撥水性を有する物質を成形型内面13にコーティングするか、あるいはシート状にして成形型内面13全体に貼り付けて使用する。   As the water repellent material 18, a water repellent material such as a fluororesin, silicone, urea resin, melamine resin or the like is coated on the inner surface 13 of the mold, or is formed into a sheet and the entire inner surface 13 of the mold. Affix to and use.

また、図2(b)に示すように成形型16の底面側には、成形型16に振動を与えるための振動装置19が設置してある。そして、成形型16を振動させながら成形型16内にスラリー17を充填することにより、振動がスラリー17中のアルミナ粒子、特に成形型内面13に接するスラリー17、もしくは成形型内面13近傍のスラリー17中のアルミナ粒子が配向性を持つことを防止できる。この方法は、振動の周波数、振幅により、前記長手方向の主面の中央部1と端部におけるボイド率の差、および、前記主面の中央部1と前記主面に平行な断面の中央部3におけるボイド率の差を制御することが可能である。スラリー17中のアルミナ粒子が配向性を持つことを防止できる振動の周波数としては1〜30Hz、振幅としては0.2〜5mmと大きな方がより効果的である。この周波数、振幅の振動を成形型16に与えながら成形を実施することにより、前記主面の中央部1と前記主面に平行な断面の中央部3とのピーク強度比の差を0.0005〜0.15の範囲とし、亀裂や破損のない良好な本発明のアルミナ質焼結体を製造することが可能となる。   As shown in FIG. 2B, a vibration device 19 for applying vibration to the mold 16 is installed on the bottom surface side of the mold 16. Then, by filling the molding die 16 with the slurry 17 while vibrating the molding die 16, the vibration causes the alumina particles in the slurry 17, particularly the slurry 17 in contact with the molding die inner surface 13, or the slurry 17 near the molding die inner surface 13. It is possible to prevent the alumina particles therein from having orientation. In this method, the difference in the void ratio between the central portion 1 and the end portion of the main surface in the longitudinal direction, and the central portion of the cross section parallel to the central portion 1 and the main surface of the main surface, depending on the frequency and amplitude of vibration. 3 can be controlled. A larger vibration frequency of 1 to 30 Hz and an amplitude of 0.2 to 5 mm are more effective for preventing the alumina particles in the slurry 17 from having orientation. By performing molding while applying vibrations of this frequency and amplitude to the mold 16, the difference in peak intensity ratio between the central portion 1 of the main surface and the central portion 3 of the cross section parallel to the main surface is 0.0005. It is possible to produce a good alumina-based sintered body of the present invention having a range of ˜0.15 and free from cracks and breakage.

なお、前記振動装置としては、通常、電磁振動方式を用いるが、他に圧電式、超音波式等さまざまな市販の振動装置を採用可能であり、共振により成形型16を振動させる構造としても良い。   As the vibration device, an electromagnetic vibration method is usually used, but various other commercially available vibration devices such as a piezoelectric type and an ultrasonic type can be adopted, and a structure for vibrating the mold 16 by resonance may be adopted. .

以上、本発明の実施形態について説明したが、本発明の範囲を逸脱しない範囲であれば種々の改良や変更したものにも適用することができることは言うまでもない。   As mentioned above, although embodiment of this invention was described, it cannot be overemphasized that it can apply also to what was variously improved and changed if it is the range which does not deviate from the scope of the present invention.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
ゲルキャスティング法により、アルミナ質焼結体からなる本発明の液晶製造装置用部材の製造を行った。
Example 1
A member for a liquid crystal production apparatus of the present invention made of an alumina sintered body was produced by a gel casting method.

まず、純度99%以上の市販のアルミナ原料粉体、溶媒(水)、バインダ、分散剤、架橋剤を万能混合攪拌機を用いて混合し、成形用スラリーを作製した。前記成形用スラリーとしては、溶媒量を調整し、0.01MPa以下の真空雰囲気にて30分以上真空脱泡した後、種々の粘度の成形用スラリーを作製した。なお、成形用スラリー粘度については、市販のE型粘度計を用いて測定した値を示している。   First, a commercially available alumina raw material powder having a purity of 99% or more, a solvent (water), a binder, a dispersant, and a crosslinking agent were mixed using a universal mixing stirrer to prepare a molding slurry. As the molding slurry, the amount of solvent was adjusted, and after vacuum degassing for 30 minutes or more in a vacuum atmosphere of 0.01 MPa or less, molding slurries with various viscosities were prepared. In addition, about the slurry viscosity for shaping | molding, the value measured using the commercially available E-type viscosity meter is shown.

そして、前記成形用スラリーを幅200mm、長さ2500mm、厚さ30mmの長尺板形状の成形体を成形可能な金属製の成形型を準備し、その端部中央に設けた高さ20mm、幅100mmのスラリー充填口から前記成形用スラリーを充填する。   Then, a metal mold capable of forming a long plate-shaped molded body having a width of 200 mm, a length of 2500 mm, and a thickness of 30 mm is prepared for the molding slurry, and a height of 20 mm and a width provided at the center of the end portion thereof. The molding slurry is filled from a 100 mm slurry filling port.

また、成形用スラリー充填の際には、成型型に周波数25Hz、振幅3mmの振動を与えながら成型を実施している。   Further, at the time of filling the molding slurry, the molding is performed while applying vibration with a frequency of 25 Hz and an amplitude of 3 mm to the molding die.

次に、成形型に成形用スラリー充填後、スラリー充填口から成形用スラリーが流出しないようにスラリー充填口を閉塞した後、成形型を加熱し、スラリーをゲル化させる。そしてゲル化した成形体を成形型より取りだし、大型乾燥機に投入して乾燥し、溶媒を蒸発させた成形体とする。   Next, after filling the molding die with the molding slurry, the slurry filling port is closed so that the molding slurry does not flow out of the slurry filling port, and then the molding die is heated to gel the slurry. And the molded object which gelatinized is taken out from a shaping | molding die, it puts into a large sized dryer, it dries, and it is set as the molded object which evaporated the solvent.

しかる後、前記成形体を焼成炉内で1650℃の温度で焼成し、略直方体のアルミナ質焼結体を製造した。   Thereafter, the compact was fired at a temperature of 1650 ° C. in a firing furnace to produce a substantially rectangular alumina sintered body.

そして評価方法としては、前記アルミナ質焼結体の主面の端部2と主面の中央部1のX線回折を行いその回折チャートから、{(006)面/(110)面}ピーク強度比率の差を算出した。製造したアルミナ質焼結体を大型水槽に貯留されたカラーチェック液中に浸し、部材表面に亀裂があればカラーチェック液が亀裂に染み込み、亀裂の有無が確認できるようにして外観検査を実施した。また、製造したアルミナ質焼結体の一部を切断加工し、これをさらに試験片形状に加工して、この試験片を用いてJISR1601−1995に準拠した3点曲げ強度試験を実施した。また、前記3点曲げ試験実施後の試験片について、アルキメデス法を用いて密度測定を実施した。   And as an evaluation method, X-ray diffraction of the end portion 2 of the main surface of the alumina sintered body and the central portion 1 of the main surface is performed, and from the diffraction chart, {(006) plane / (110) plane} peak intensity The difference in ratio was calculated. The manufactured alumina sintered body was immersed in the color check solution stored in the large water tank, and if there was a crack on the surface of the member, the color check solution soaked into the crack, and the appearance inspection was carried out so that the presence or absence of the crack could be confirmed. . Further, a part of the produced alumina sintered body was cut and processed into a test piece shape, and a three-point bending strength test based on JIS R1601-1995 was performed using this test piece. Moreover, the density measurement was implemented using the Archimedes method about the test piece after the said 3 point | piece bending test implementation.

これらの結果を表1に示す。

Figure 2007254276
These results are shown in Table 1.
Figure 2007254276

本発明の範囲外である試料No.1については、外観検査では焼結体中に亀裂や破損は生じなかったものの、スラリー粘度を低くするため、スラリー中の粉体量を極力少なくした影響で、1650℃の焼成温度では焼結体密度が低く、強度も低い値であった。また、主面の中央部1と端部2の{(006)面/(110)}面のピーク強度比率の差X1についても、0.01未満と低く、この影響によりアルミナ質焼結体密度、強度が低くなった。   Sample No. which is outside the scope of the present invention. As for No. 1, although no cracks or breakage occurred in the sintered body in the appearance inspection, the sintered body was sintered at a firing temperature of 1650 ° C. due to the effect of reducing the amount of powder in the slurry as much as possible in order to reduce the slurry viscosity. The density was low and the strength was low. Further, the difference X1 in the peak intensity ratio between the central portion 1 of the main surface 1 and the end portion 2 of the {(006) plane / (110)} plane is as low as less than 0.01. , The strength is low.

また、本発明の範囲外である試料No.7については、前記X1の値が大きく、アルミナ質焼結体の結晶配向による収縮差が大きく、これにより発生した応力により焼結体に亀裂が生じていた。   In addition, sample No. which is outside the scope of the present invention. For No. 7, the value of X1 was large, the shrinkage difference due to the crystal orientation of the alumina sintered body was large, and cracks were generated in the sintered body due to the stress generated thereby.

(実施例2)
次に実施例1と同様の工程を用い、成形型に表2に示す周波数の振動を与えながら、本発明のアルミナ質焼結体である試料No.8〜14を製造する試験を行った。なお、振幅は3mm固定で試験を実施した。
(Example 2)
Next, using the same steps as in Example 1, while applying vibrations having the frequencies shown in Table 2 to the mold, Sample No. which is the alumina sintered body of the present invention was used. The test which manufactures 8-14 was done. The test was conducted with the amplitude fixed at 3 mm.

試験後に、製造したアルミナ質焼結体を平面研削盤にて1/2の厚さに加工して、その加工表面の中央部3のX線回折分析を行ってその回折チャートから{(006)面/(110)面}のピーク強度比率を算出し、主面の中央部1の{(006)面/(110)面}のピーク強度比率との差を算出した。   After the test, the produced alumina sintered body was processed to a thickness of ½ with a surface grinder, and X-ray diffraction analysis was performed on the center portion 3 of the processed surface to obtain {(006) Plane / (110) plane} was calculated, and the difference from the peak intensity ratio of {(006) plane / (110) plane} at the central portion 1 of the main surface was calculated.

結果を表2に示す。

Figure 2007254276
The results are shown in Table 2.
Figure 2007254276

表2からX2を0.0005〜0.15の範囲内とするには、成形型に与える振動の周波数を1〜30Hzとすれば良いことが確認される結果であった。   From Table 2, it was confirmed that the frequency of vibration applied to the mold should be 1 to 30 Hz in order to set X2 within the range of 0.0005 to 0.15.

また、表2の試料No.11と同じ周波数で固定して、表3に示すように振幅を変化させて実施例1と同様の工程にて本発明の液晶製造装置用部材を製造した。部材製造後、前記と同様に、平面研削盤にて1/2の厚さに加工して、その加工表面の中央部3のX線回折分析を行ってその回折チャートから{(006)面/(110)面}のピーク強度比率を算出し、予めX線回折分析を実施して得られた主面中央の(006)面と(110)面のピーク強度比率の差X2を算出した。   In addition, sample No. The member for a liquid crystal manufacturing apparatus of the present invention was manufactured in the same process as in Example 1 by fixing at the same frequency as 11 and changing the amplitude as shown in Table 3. After the member is manufactured, it is processed to a thickness of 1/2 with a surface grinder in the same manner as described above, and X-ray diffraction analysis is performed on the central portion 3 of the processed surface, and {(006) plane / The peak intensity ratio of (110) plane} was calculated, and the difference X2 between the peak intensity ratios of the (006) plane and the (110) plane at the center of the main surface obtained by performing X-ray diffraction analysis in advance was calculated.

結果を表3に示す。

Figure 2007254276
The results are shown in Table 3.
Figure 2007254276

表3から、成形型に与える振動の振幅については、大きい方がよりアルミナ焼結体を高密度、高強度化でき、さらに結晶配向性も良好なもとできることが確認された。これは内面に撥水性物質を形成しているからであり、撥水性物質を形成していなければ成形型に与える振動で密度が向上したとしても、配向性による収縮率差により強度が低下するおそれがあるといえる。   From Table 3, it was confirmed that the larger the amplitude of vibration given to the mold, the higher the density and strength of the alumina sintered body and the better the crystal orientation. This is because a water-repellent substance is formed on the inner surface, and if the water-repellent substance is not formed, the strength may decrease due to the difference in shrinkage due to orientation even if the density is improved by vibration applied to the mold. It can be said that there is.

(実施例3)
実施例1と同様の調合内容、同様の形状、同様の製法を用い、スラリーの真空脱泡時間のみを種々変更して本発明の液晶製造装置用部材を製造した。そして、この部材から高さ3mm、幅4mm、長さ10mmの試験片を主面の中央部1、主面の端部2、主面に平行な断面の中央部3からそれぞれ切り出し、この表面を鏡面加工した後、画像解析装置(ニレコ社製 LUZEX−FS)にて100倍の倍率で任意の10ヶ所を観察し、この画像から面積9×10μm中に存在するボイド数、ボイド平均径を測定した後、前記9×10μmを総面積とし、総ボイド数×ボイド平均径/総面積×100の式を用いてそれぞれのボイド率(%)B1(主面中央),B2(主面端部),B3(主面に平行な中央断面)を算出した。
(Example 3)
Using the same composition, the same shape, and the same manufacturing method as in Example 1, only the vacuum defoaming time of the slurry was variously changed to manufacture the liquid crystal manufacturing apparatus member of the present invention. Then, a test piece having a height of 3 mm, a width of 4 mm, and a length of 10 mm is cut out from the central portion 1 of the main surface, the end portion 2 of the main surface, and the central portion 3 of the cross section parallel to the main surface. After mirror finishing, 10 arbitrary positions were observed with an image analysis apparatus (LUZEX-FS manufactured by Nireco Corporation) at a magnification of 100 times. From this image, the number of voids present in an area of 9 × 10 4 μm 2 , void average After measuring the diameter, the 9 × 10 4 μm 2 is defined as the total area, and the void ratio (%) B1 (main surface center), B2 is calculated using the formula of total void number × void average diameter / total area × 100. (Main surface end) and B3 (central cross section parallel to the main surface) were calculated.

結果を表4に示す。

Figure 2007254276
The results are shown in Table 4.
Figure 2007254276

表4から、真空脱泡時間が15分未満の10分と短い試料No.22については、そのボイド率が4%を超え、主面中央B1と主面端部B2または主面中央B1と主面に平行な中央断面B3のボイド率差も2%を超えており、この3点曲げ強度をJIS規格に基づき測定したところ、300MPa以下の低い値を示し、機械的特性が良好ではなかった。   From Table 4, sample No. 1 with a short vacuum defoaming time of less than 15 minutes and 10 minutes. For No. 22, the void ratio exceeds 4%, and the void ratio difference between the main surface center B1 and the main surface end B2 or the main surface center B1 and the central section B3 parallel to the main surface also exceeds 2%. When the three-point bending strength was measured based on the JIS standard, it showed a low value of 300 MPa or less, and the mechanical properties were not good.

また、試料No.28については脱泡時間が長すぎたため、水分が凍り、スラリーが固化して成形することができなかった。   Sample No. Regarding 28, since the defoaming time was too long, the water was frozen and the slurry was solidified and could not be molded.

これと比較して試料No.23〜27については、15〜120分間で良好な脱泡を実施したために、ボイド率は4%以下、ボイド率差2%以下と良好な値を示し、この3点曲げ試験結果は全て300MPa以上の強度を有し、機械的特性に優れることが確認できた。   In comparison with this, sample No. For Nos. 23 to 27, since good defoaming was carried out in 15 to 120 minutes, the void ratio showed a good value of 4% or less and a void ratio difference of 2% or less. All of these three-point bending test results were 300 MPa or more. It was confirmed that the material has excellent mechanical properties.

本発明の液晶製造装置用部材の主面中央、主面端部、中央断面の範囲を示す概略図である。It is the schematic which shows the range of the main surface center, main surface edge part, and center cross section of the member for liquid crystal manufacturing apparatuses of this invention. 本発明の成形型についての説明図であり、(a)が成形型の長手方向片側端面の模式図、(b)が成形型の長手方向に垂直な断面及び振動装置断面の模式図を示す。It is explanatory drawing about the shaping | molding die of this invention, (a) is a schematic diagram of the longitudinal direction one side end surface of a shaping | molding die, (b) shows the cross section perpendicular | vertical to the longitudinal direction of a shaping | molding die, and the schematic diagram of a vibration apparatus cross section. 本発明の一実施形態のアルミナ質焼結体のX線回折図であるIt is an X-ray diffraction pattern of the alumina sintered body of one embodiment of the present invention.

符号の説明Explanation of symbols

1:主面の中央部
2:主面の端部
3:主面に平行な断面の中央部
10,16:成形型
11:スラリー充填口
12:成形型端面
13:成形型内面
14:(成形型内面に対する充填口位置の)幅方向距離
15:(成形型内面に対する充填口位置の)高さ方向距離
17:スラリー
18:撥水性物質
19:振動装置
1: Central portion of main surface 2: End portion of main surface 3: Central portion of cross section parallel to main surface 10, 16: Mold 11: Slurry filling port 12: Mold end surface 13: Mold inner surface 14: (Mold Distance in the width direction 15 (of the filling port position relative to the inner surface of the mold): Distance in the height direction (of the filling port position relative to the inner surface of the mold) 17: Slurry 18: Water-repellent substance 19: Vibration device

Claims (5)

長さ2000mm以上、幅100mm以上、厚さ20mm以上の略直方体のアルミナ質焼結体であって、
長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面の端部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.01〜0.15であることを特徴とするアルミナ質焼結体。
A substantially rectangular parallelepiped alumina sintered body having a length of 2000 mm or more, a width of 100 mm or more, and a thickness of 20 mm or more,
X-ray diffraction peak intensity ratio {(006) plane / (110) plane} at the center of the main surface in the longitudinal direction and X-ray diffraction peak intensity ratio {(006) plane at the end of the main surface in the longitudinal direction / (110) plane} is 0.01 to 0.15 in absolute value.
長手方向の主面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}と、長手方向の主面に平行な断面の中央部におけるX線回折のピーク強度比{(006)面/(110)面}との差が、絶対値で0.0005〜0.15であることを特徴とする請求項1に記載のアルミナ質焼結体。 X-ray diffraction peak intensity ratio {(006) plane / (110) plane} at the center of the principal surface in the longitudinal direction and X-ray diffraction peak intensity ratio at the center of the cross section parallel to the major surface in the longitudinal direction { 2. The alumina sintered body according to claim 1, wherein the difference between (006) plane / (110) plane} is 0.0005 to 0.15 in absolute value. 平均ボイド率が4%以下であって、
前記長手方向の主面の中央部におけるボイド率と、前記長手方向の主面の端部におけるボイド率との差が絶対値で2%以下、および、前記主面の中央部におけるボイド率と、前記主面に平行な断面の中央部におけるボイド率との差が、絶対値で2%以下であることを特徴とする請求項1または2に記載のアルミナ質焼結体。
The average void fraction is 4% or less,
The difference between the void ratio at the center of the main surface in the longitudinal direction and the void ratio at the end of the main surface in the longitudinal direction is 2% or less in absolute value, and the void ratio at the center of the main surface, The alumina sintered body according to claim 1 or 2, wherein a difference from a void ratio in a central portion of a cross section parallel to the main surface is 2% or less in absolute value.
請求項1〜3のいずれかに記載のアルミナ質焼結体の製造方法であって、
アルミナ粉体,溶媒,バインダ,分散剤,架橋剤を混合して作製した粘度0.05〜0.5Pa・sのスラリーを調合する工程、
非吸水性の成形型の長手方向の内面に撥水性物質を形成する工程、
周波数1〜30Hz、振幅0.2〜5.0mmで前記成形型を振動させながら、前記スラリーを充填する工程とを有する
ことを特徴とするアルミナ質焼結体の製造方法。
A method for producing an alumina sintered body according to any one of claims 1 to 3,
Preparing a slurry having a viscosity of 0.05 to 0.5 Pa · s prepared by mixing alumina powder, a solvent, a binder, a dispersant, and a crosslinking agent;
Forming a water-repellent substance on the inner surface in the longitudinal direction of the non-water-absorbing mold,
And a step of filling the slurry while vibrating the molding die at a frequency of 1 to 30 Hz and an amplitude of 0.2 to 5.0 mm.
請求項1〜3のいずれかに記載のアルミナ質焼結体を支持部材として用いた
ことを特徴とする液晶製造装置。
A liquid crystal manufacturing apparatus using the alumina sintered body according to claim 1 as a support member.
JP2007047347A 2006-02-27 2007-02-27 Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same Pending JP2007254276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047347A JP2007254276A (en) 2006-02-27 2007-02-27 Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006050975 2006-02-27
JP2007047347A JP2007254276A (en) 2006-02-27 2007-02-27 Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007254276A true JP2007254276A (en) 2007-10-04

Family

ID=38628885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047347A Pending JP2007254276A (en) 2006-02-27 2007-02-27 Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007254276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535723B1 (en) * 2010-02-12 2016-01-13 NGK Insulators, Ltd. Method of fluid observation and fluid for observing flow
JP2021054676A (en) * 2019-09-30 2021-04-08 京セラ株式会社 Ceramic structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535723B1 (en) * 2010-02-12 2016-01-13 NGK Insulators, Ltd. Method of fluid observation and fluid for observing flow
JP2021054676A (en) * 2019-09-30 2021-04-08 京セラ株式会社 Ceramic structure

Similar Documents

Publication Publication Date Title
JP6078885B2 (en) Composite refractory and method for producing composite refractory
JP6512401B2 (en) Reaction sintered silicon carbide member
KR102135638B1 (en) Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product
CN1789204A (en) Herbst bremer goldschlaegerei
EP2289860A1 (en) Composite material and method for producing the same
US20160304402A1 (en) Refractory composite comprising a geopolymer and method of making a refractory composite
JP4726403B2 (en) Method for producing three-dimensional structure and method for producing ceramic sintered body
CN106796925B (en) Aluminum-silicon carbide composite and its manufacturing method
JP4718397B2 (en) Manufacturing method of vacuum suction device
CN114746379A (en) Inorganic fiber molded body, heating furnace, structure, and method for producing inorganic fiber molded body
KR101821559B1 (en) Sintered zircon material for forming block
JP2007254276A (en) Alumina sintered body, manufacturing method thereof, and liquid crystal manufacturing apparatus using the same
JP5680116B2 (en) Reinforced composite material, method of preparing it, method of using it to prepare a product, and product formed by such a method and method of using the product
CN106715004A (en) Composite body and method for producing same
JP5199151B2 (en) Ceramic fired body and manufacturing method thereof
Kandi et al. Effect of monomers content and their ratio on gelcasting of fused silica ceramics
JP2006062898A (en) Metal-ceramic composite structure and manufacturing method thereof
JP4439311B2 (en) Manufacturing method of three-dimensional structure
JP2017105707A (en) Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body
KR20180125117A (en) Refractory article, composition for coating refractory article and method of manufacturing the refractory article
JP2008050251A (en) Alumina sintered body, manufacturing method thereof, and stage member for semiconductor or liquid crystal manufacturing apparatus using the same
JP4504036B2 (en) Amorphous silica molded body and method for producing the same
JP6366976B2 (en) Heat treatment member made of porous ceramics
JP6359916B2 (en) Manufacturing method of ceramic molded body
JP2000061917A (en) Ito molding and manufacture thereof and manufacture of ito sintered body