[go: up one dir, main page]

JP2007250439A - Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery - Google Patents

Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery Download PDF

Info

Publication number
JP2007250439A
JP2007250439A JP2006074761A JP2006074761A JP2007250439A JP 2007250439 A JP2007250439 A JP 2007250439A JP 2006074761 A JP2006074761 A JP 2006074761A JP 2006074761 A JP2006074761 A JP 2006074761A JP 2007250439 A JP2007250439 A JP 2007250439A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alkaline
storage battery
alloy
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006074761A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kiyoku
佳文 曲
Jun Ishida
潤 石田
Shigekazu Yasuoka
茂和 安岡
Hiroshi Nakamura
宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006074761A priority Critical patent/JP2007250439A/en
Publication of JP2007250439A publication Critical patent/JP2007250439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance corrosion resistance and improve a cycle life of an alkaline storage battery in a state that hydrogen storing capacity in a hydrogen storage alloy for the alkaline storage battery is maintained high. <P>SOLUTION: For a negative electrode 2 of the alkaline storage battery, a hydrogen storage alloy is used which is expressed by a general formula Ln<SB>1-x</SB>Mg<SB>x</SB>Ni<SB>y-a-b</SB>Al<SB>a</SB>M<SB>b</SB>(in the formula, Ln is at least one kind of element selected from rare earth elements containing Y, M is at least one kind of element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, Zr, and Ti, and conditions of 0.05≤x≤0.35, 2.8≤y≤3.9, 0.05≤a≤0.30, 0≤b≤0.5 is satisfied), and in which a half value width Δθ<SB>1</SB>of the strongest peak appearing in a range of 2θ=44 to 46° is smaller than the half value width Δθ<SB>2</SB>of the strongest peak appearing in the range of 2θ=34.5 to 36.5° in an X-ray diffraction measurement using Cu-Kα ray as the X-ray. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池及びこのアルカリ蓄電池の負極に使用するアルカリ蓄電池用水素吸蔵合金に係り、特に、アルカリ蓄電池の負極に使用するアルカリ蓄電池用水素吸蔵合金における水素吸蔵能力を高く維持した状態で、その耐食性を高め、アルカリ蓄電池のサイクル寿命を向上させるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery including a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, and a hydrogen storage alloy for an alkaline storage battery used for the negative electrode of the alkaline storage battery. It is characterized in that the corrosion resistance is enhanced and the cycle life of the alkaline storage battery is improved while maintaining a high hydrogen storage capacity in the hydrogen storage alloy for the alkaline storage battery to be used.

従来、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池が広く使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。   Conventionally, nickel-cadmium storage batteries have been widely used as alkaline storage batteries, but in recent years they have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have come to attract attention.

そして、このようなニッケル・水素蓄電池からなるアルカリ蓄電池が各種のポータブル機器に使用されるようになり、このアルカリ蓄電池をさらに高性能化させることが期待されている。   And the alkaline storage battery which consists of such a nickel-hydrogen storage battery comes to be used for various portable apparatuses, and it is anticipated that this alkaline storage battery will be further improved in performance.

ここで、このようなアルカリ蓄電池においては、その負極に使用する水素吸蔵合金として、一般にCaCu5型の結晶を主相とする希土類−ニッケル系水素吸蔵合金や、Ti,Zr,V及びNiを含むラーベス相系のAB2型の結晶を主相とする水素吸蔵合金等が一般に使用されている。 Here, in such an alkaline storage battery, the hydrogen storage alloy used for the negative electrode generally includes a rare earth-nickel hydrogen storage alloy whose main phase is a CaCu 5 type crystal, Ti, Zr, V and Ni. A hydrogen storage alloy or the like whose main phase is a Laves phase AB 2 type crystal is generally used.

しかし、上記のような水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、アルカリ蓄電池をさらに高容量化させることが困難であった。   However, the hydrogen storage alloy as described above does not necessarily have sufficient hydrogen storage capacity, and it has been difficult to further increase the capacity of the alkaline storage battery.

そして、近年においては、上記の希土類−ニッケル系水素吸蔵合金における水素吸蔵能力を向上させるために、上記の希土類−ニッケル系水素吸蔵合金にMg等を含有させて、CaCu5型以外のCe2Ni7型やCeNi3型等の結晶構造を有する水素吸蔵合金を用いることが提案されている(例えば、特許文献1参照)。 In recent years, in order to improve the hydrogen storage capacity of the rare earth-nickel hydrogen storage alloy, Mg or the like is contained in the rare earth-nickel hydrogen storage alloy, and Ce 2 Ni other than CaCu 5 type is used. It has been proposed to use a hydrogen storage alloy having a crystal structure such as 7 type or CeNi 3 type (see, for example, Patent Document 1).

しかし、上記のように希土類−ニッケル系水素吸蔵合金にMg等を含有させCe2Ni7型やCeNi3型等の結晶構造を有するようにした水素吸蔵合金においても、耐食性が必ずしも十分でなく、このような水素吸蔵合金を用いたアルカリ蓄電池の場合、依然として十分なサイクル寿命が得られないという問題があった。
特開2002−69554号公報
However, even in the hydrogen storage alloy in which the rare earth-nickel-based hydrogen storage alloy contains Mg or the like and has a crystal structure such as Ce 2 Ni 7 type or CeNi 3 type, the corrosion resistance is not always sufficient, In the case of an alkaline storage battery using such a hydrogen storage alloy, there is still a problem that a sufficient cycle life cannot be obtained.
JP 2002-69554 A

本発明は、負極に希土類元素とニッケルとマグネシウムとを含むCaCu5型以外のCe2Ni7型やCeNi3型等の結晶構造を有するアルカリ蓄電池用水素吸蔵合金を使用したアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、上記のようなアルカリ蓄電池用水素吸蔵合金における水素吸蔵量を高く維持した状態で、その耐食性を高め、アルカリ蓄電池におけるサイクル寿命を向上させることを課題とするものである。 The present invention relates to an alkaline storage battery using a hydrogen storage alloy for an alkaline storage battery having a crystal structure such as Ce 2 Ni 7 type or CeNi 3 type other than CaCu 5 type containing rare earth elements, nickel and magnesium as a negative electrode. In a state where the hydrogen storage amount in the hydrogen storage alloy for alkaline storage batteries is maintained high, the corrosion resistance is improved and the cycle life in the alkaline storage battery is improved. It is to be an issue.

本発明におけるアルカリ蓄電池用水素吸蔵合金においては、上記のような課題を解決するため、一般式Ln1-xMgxNiy-a-bAla(式中、LnはYを含む希土類元素から選択される少なくとも1種の元素、MはV,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,B,Zr及びTiから選択される少なくとも1種の元素であり、0.05≦x≦0.35、2.8≦y≦3.9、0.05≦a≦0.30、0≦b≦0.5の条件を満たす。)で表され、Cu−Kα線をX線源とするX線回折測定において、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より小さくなるようにした。 In the hydrogen storage alloy for alkaline storage batteries according to the present invention, in order to solve the above-described problems, the general formula Ln 1-x Mg x Ni yab Al a M b (wherein Ln is selected from rare earth elements including Y). And at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, Zr, and Ti. It is a seed element and satisfies the following conditions: 0.05 ≦ x ≦ 0.35, 2.8 ≦ y ≦ 3.9, 0.05 ≦ a ≦ 0.30, and 0 ≦ b ≦ 0.5. In the X-ray diffraction measurement using the Cu—Kα ray as an X-ray source, the half-value width Δθ 1 of the strongest peak appearing in the range of 2θ = 44 to 46 ° is in the range of 2θ = 34.5 to 36.5 °. It was made to be smaller than the half-value width Δθ 2 of the strongest peak appearing in FIG.

ここで、上記のアルカリ蓄電池用水素吸蔵合金は、c軸方向にCaCu5型格子とラーベス型AB2格子が規則的に配列された長周期の構造となり、Ce2Ni7型(P63/mmc)又はこれに類似した結晶構造、例えばGd2Ni7型(R−3m),PuNi3型(R−3m),CeNi3型(P63/mmc),Ce5Co19型(R−3m),Pr5Co19型(P63/mmc)の結晶構造を有している。 Here, the hydrogen storage alloy for alkaline storage battery has a long-period structure in which CaCu 5 type lattice and Laves type AB 2 lattice are regularly arranged in the c-axis direction, and Ce 2 Ni 7 type (P63 / mmc). Or a similar crystal structure, such as Gd 2 Ni 7 type (R-3m), PuNi 3 type (R-3m), CeNi 3 type (P63 / mmc), Ce 5 Co 19 type (R-3m), Pr 5 Co 19 type (P63 / mmc) crystal structure.

そして、上記のCe2Ni7型又はこれに類似した結晶構造のアルカリ蓄電池用水素吸蔵合金において、2θ=34.5〜36.5°の範囲に現れる最強ピークは(xy0)面に起因し、また2θ=44〜46°の範囲に現れる最強ピークは(xyz)面に起因する。また、これらの最強ピークの半値幅は、面間隔の変化等による結晶の歪みや、結晶子の大きさに起因して変化し、これらの半値幅は、結晶の歪みが大きくなるほど、また結晶子が小さくなるほど大きくなる。 And in the above-mentioned Ce 2 Ni 7 type or a hydrogen storage alloy for alkaline storage batteries having a crystal structure similar to this, the strongest peak appearing in the range of 2θ = 34.5 to 36.5 ° is attributed to the (xy0) plane, The strongest peak appearing in the range of 2θ = 44 to 46 ° is attributed to the (xyz) plane. In addition, the half-value width of these strongest peaks changes due to crystal distortion due to changes in interplanar spacing or the size of the crystallite, and these half-value widths increase as the crystal strain increases. The smaller it becomes, the larger it becomes.

そして、上記の2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が小さくなるほど、結晶のc軸方向の歪みが小さくなると共に、この結晶子が大きくなり、水素の吸蔵,放出時における歪みが緩和されると考えられる。 Then, as the half-value width Δθ 1 of the strongest peak appearing in the range of 2θ = 44 to 46 ° becomes smaller, the distortion of the crystal in the c-axis direction becomes smaller and the crystallite becomes larger. It is thought that the distortion in the is relieved.

また、本発明のアルカリ蓄電池においては、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極に上記のようなアルカリ蓄電池用水素吸蔵合金を用いるようにした。   Further, in the alkaline storage battery of the present invention, in the alkaline storage battery including the positive electrode, the negative electrode using the hydrogen storage alloy, and the alkaline electrolyte, the above-described hydrogen storage alloy for alkaline storage battery is used for the negative electrode. did.

本発明におけるアルカリ蓄電池用水素吸蔵合金においては、一般式Ln1-xMgxNiy-a-bAla(式中、LnはYを含む希土類元素から選択される少なくとも1種の元素、MはV,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,B,Zr及びTiから選択される少なくとも1種の元素であり、0.05≦x≦0.35、2.8≦y≦3.9、0.05≦a≦0.30、0≦b≦0.5の条件を満たす。)で表され、Cu−Kα線をX線源とするX線回折測定において、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より小さくなるようにしたため、上記のように結晶のc軸方向の歪みが小さくなると共に、結晶子が大きくなり、水素の吸蔵,放出時における歪みが緩和されて、このアルカリ蓄電池用水素吸蔵合金が微粉化するのが抑制されるようになる。 In the hydrogen storage alloy for alkaline storage batteries according to the present invention, the general formula Ln 1-x Mg x Ni yab Al a M b (wherein Ln is at least one element selected from rare earth elements including Y, M is V , Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, Zr, and Ti, at least 0.05 ≦ x ≦ 0.35, 2.8 ≦ y ≦ 3.9, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.5). In the X-ray diffraction measurement using the source, the half-value width Δθ 1 of the strongest peak appearing in the range of 2θ = 44 to 46 ° is more than the half-value width Δθ 2 of the strongest peak appearing in the range of 2θ = 34.5 to 36.5 °. As described above, the distortion in the c-axis direction of the crystal is reduced as described above, and the result is The crystallite becomes larger, the strain at the time of occlusion and release of hydrogen is relaxed, and the hydrogen storage alloy for alkaline storage batteries is suppressed from being pulverized.

この結果、負極に上記のようなアルカリ蓄電池用水素吸蔵合金を用いた本発明のアルカリ蓄電池においては、充放電を行った場合に、このアルカリ蓄電池用水素吸蔵合金が微粉化して耐食性が低下するのが防止されるようになり、このアルカリ蓄電池におけるサイクル寿命が向上する。   As a result, in the alkaline storage battery of the present invention using the hydrogen storage alloy for alkaline storage batteries as described above for the negative electrode, when charged and discharged, the hydrogen storage alloy for alkaline storage batteries is pulverized and the corrosion resistance decreases. Is prevented, and the cycle life of the alkaline storage battery is improved.

以下、本発明の実施例に係るアルカリ蓄電池用水素吸蔵合金及びこのアルカリ蓄電池用水素吸蔵合金を用いたアルカリ蓄電池について具体的に説明すると共に、比較例を挙げ、本発明の実施例に係るアルカリ蓄電池においてはサイクル寿命が向上することを明らかにする。なお、本発明におけるアルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the hydrogen storage alloy for an alkaline storage battery according to an embodiment of the present invention and the alkaline storage battery using the hydrogen storage alloy for the alkaline storage battery will be described in detail, a comparative example will be given, and the alkaline storage battery according to the embodiment of the present invention will be described. In, it is clarified that the cycle life is improved. In addition, the hydrogen storage alloy for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.

(実施例1)
実施例1においては、負極に用いるアルカリ蓄電池用水素吸蔵合金を製造するにあたり、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを所定の合金組成になるように混合し、これをアルゴンガス雰囲気中において高周波誘導溶解炉により1500℃で溶融させた後、これを冷却させて水素吸蔵合金のインゴットを得た。なお、この水素吸蔵合金の組成を高周波プラズマ分光分析法(ICP)によって分析した結果、この水素吸蔵合金の組成はLa0.17Pr0.33Nd0.33Mg0.17Ni3.10Al0.20になっていた。
Example 1
In Example 1, in producing a hydrogen storage alloy for an alkaline storage battery used for a negative electrode, rare earth elements La, Pr, and Nd, Mg, Ni, and Al are mixed so as to have a predetermined alloy composition, This was melted at 1500 ° C. in a high-frequency induction melting furnace in an argon gas atmosphere, and then cooled to obtain a hydrogen storage alloy ingot. As a result of analyzing the composition of the hydrogen storage alloy by high frequency plasma spectroscopy (ICP), the composition of the hydrogen storage alloy was La 0.17 Pr 0.33 Nd 0.33 Mg 0.17 Ni 3.10 Al 0.20 .

そして、この水素吸蔵合金のインゴットをアルゴン雰囲気中において液化開始温度よりも60℃低い温度で10時間熱処理して均質化させた後、この水素吸蔵合金のインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、上記の組成になった実施例1の水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金の粉末についてレーザ回折・散乱式粒度分布測定装置により粒度分布を測定した結果、重量積分が50%における平均粒径が65μmになっていた。   The hydrogen storage alloy ingot was heat treated in an argon atmosphere at a temperature 60 ° C. lower than the liquefaction start temperature for 10 hours to homogenize, and then the hydrogen storage alloy ingot was mechanically pulverized in an inert atmosphere. This was classified to obtain a hydrogen storage alloy powder of Example 1 having the above composition. As a result of measuring the particle size distribution of the hydrogen storage alloy powder using a laser diffraction / scattering particle size distribution measuring device, the average particle size at a weight integral of 50% was 65 μm.

そして、負極を作製するにあたっては、上記の水素吸蔵合金の粉末100重量部に対して、ポリアクリル酸ナトリウムを0.4重量部、カルボキシメチルセルロースを0.1重量部、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60重量%)を2.5重量部の割合で混合させてペーストを調製した。そして、このペーストを、ニッケル鍍金を施した厚みが60μmのパンチングメタルからなる導電性芯体の両面に均一に塗布し、これを乾燥させてプレスした後、これを所定の寸法に切断して、水素吸蔵合金電極からなる負極を作製した。   In preparing the negative electrode, 0.4 parts by weight of sodium polyacrylate, 0.1 part by weight of carboxymethylcellulose, and polytetrafluoroethylene dispersion (100 parts by weight of the above-mentioned hydrogen storage alloy powder) Dispersion medium: water, solid content 60 wt%) was mixed at a ratio of 2.5 parts by weight to prepare a paste. And this paste is uniformly applied to both sides of a conductive core made of a punching metal having a thickness of 60 μm with nickel plating, dried and pressed, and then cut into predetermined dimensions, A negative electrode composed of a hydrogen storage alloy electrode was produced.

一方、正極を作製するにあたっては、亜鉛を2.5重量%,コバルトを1.0重量%含有する水酸化ニッケル粉末を硫酸コバルト水溶液中に投入し、これを攪拌しながら、1モルの水酸化ナトリウム水溶液を徐々に滴下してpHを11にして反応させ、その後、沈殿物を濾過し、これを水洗し、真空乾燥させて、表面に水酸化コバルトが5重量%被覆された水酸化ニッケルを得た。次いで、このように水酸化コバルトが被覆された水酸化ニッケルに、25重量%の水酸化ナトリウム水溶液を1:10の重量比になるように加えて含浸させ、これを8時間攪拌しながら85℃で加熱処理した後、これを水洗し、乾燥させて、上記の水酸化ニッケルの表面がナトリウム含有コバルト酸化物で被覆された正極材料を得た。なお、上記のコバルト酸化物におけるコバルトの価数は3.05であった。   On the other hand, in preparing the positive electrode, nickel hydroxide powder containing 2.5% by weight of zinc and 1.0% by weight of cobalt was put into a cobalt sulfate aqueous solution, and 1 mol of hydroxide was stirred while stirring the powder. A sodium aqueous solution is gradually added dropwise to cause the reaction to a pH of 11, and then the precipitate is filtered, washed with water and dried under vacuum to obtain nickel hydroxide having a surface coated with 5% by weight of cobalt hydroxide. Obtained. Next, the nickel hydroxide thus coated with cobalt hydroxide was impregnated with a 25 wt% aqueous sodium hydroxide solution in a weight ratio of 1:10, and this was stirred at 85 ° C. while stirring for 8 hours. After heat-treating, this was washed with water and dried to obtain a positive electrode material in which the surface of the nickel hydroxide was coated with sodium-containing cobalt oxide. In addition, the valence of cobalt in said cobalt oxide was 3.05.

次いで、この正極材料を95重量部、酸化亜鉛を3重量部、水酸化コバルトを2重量部の割合で混合させたものに、0.2重量%のヒドロキシプロピルセルロース水溶液を50重量部加え、これらを混合させてスラリーを調製した。そして、このスラリーを目付けが約600g/m2になったニッケル発泡体に充填し、これを乾燥させてプレスした後、所定の寸法に切断して非焼結式ニッケル極からなる正極を作製した。 Subsequently, 95 parts by weight of the positive electrode material, 3 parts by weight of zinc oxide, and 2 parts by weight of cobalt hydroxide were mixed with 50 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution. Were mixed to prepare a slurry. Then, the slurry was filled in a nickel foam having a basis weight of about 600 g / m 2 , dried and pressed, and then cut into a predetermined size to produce a positive electrode composed of a non-sintered nickel electrode. .

そして、セパレータとしてポリプロピレン製の不織布を使用し、またアルカリ電解液としてKOHとNaOHとLiOH・H2Oとが8:0.5:1の重量比で含まれ、これらの総和が30重量%になったアルカリ電解液を使用し、図1に示すような円筒型で設計容量が1500mAhになったアルカリ蓄電池を作製した。 Then, a nonwoven fabric made of polypropylene is used as a separator, and KOH, NaOH, and LiOH.H 2 O are included as an alkaline electrolyte in a weight ratio of 8: 0.5: 1, and the total of these is 30% by weight. Using the alkaline electrolyte thus obtained, an alkaline storage battery having a cylindrical shape and a design capacity of 1500 mAh as shown in FIG. 1 was produced.

ここで、上記のアルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、この電池缶4内にアルカリ電解液を注液させた後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に設けられたガス放出口6aを閉塞させるようにして、この正極蓋6と正極外部端子9との間にコイルスプリング10によって付勢された閉塞板11を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて、電池内部のガスが大気中に放出されるようにした。   Here, in producing the alkaline storage battery, as shown in FIG. 1, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are spirally wound and accommodated in a battery can 4. The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and an alkaline electrolyte is injected into the battery can 4. The battery can 4 and the positive electrode lid 6 were sealed via an insulating packing 8, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8. Further, a closing plate 11 urged by a coil spring 10 is provided between the positive electrode cover 6 and the positive electrode external terminal 9 so as to close the gas discharge port 6a provided in the positive electrode cover 6, and the battery When the internal pressure of the battery rises abnormally, the coil spring 10 is compressed so that the gas inside the battery is released into the atmosphere.

(実施例2〜9)
実施例2〜9においては、アルカリ蓄電池用水素吸蔵合金を製造するにあたり、上記の実施例1の場合と、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを混合させる割合だけを変更させて、下記の表1に示す組成になった水素吸蔵合金の粉末を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例2〜9のアルカリ蓄電池を作製した。
(Examples 2-9)
In Examples 2 to 9, in producing a hydrogen storage alloy for an alkaline storage battery, the ratio of mixing rare earth elements La, Pr and Nd, Mg, Ni and Al in the case of Example 1 above The alkaline storage batteries of Examples 2 to 9 were used in the same manner as in Example 1 except that the hydrogen storage alloy powder having the composition shown in Table 1 below was used. Was made.

(比較例1,2)
比較例1,2においても、アルカリ蓄電池用水素吸蔵合金を製造するにあたり、上記の実施例1の場合と、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを混合させる割合だけを変更させて、下記の表1に示す組成になった水素吸蔵合金の粉末を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、比較例1,2のアルカリ蓄電池を作製した。
(Comparative Examples 1 and 2)
Also in Comparative Examples 1 and 2, in producing the hydrogen storage alloy for alkaline storage batteries, the ratio of mixing rare earth elements La, Pr and Nd, Mg, Ni and Al in the case of Example 1 above. The alkaline storage batteries of Comparative Examples 1 and 2 were used in the same manner as in Example 1 except that the hydrogen storage alloy powder having the composition shown in Table 1 below was used. Was made.

ここで、上記の実施例1〜9及び比較例1,2において作製した上記の各水素吸蔵合金の粉末を、さらに粉砕機(IKA Labortechnik社製 Type A10S2)を用いて10分間粉砕し、このように粉砕した各水素吸蔵合金の粉末について、Cu−Kα線をX線源とするX線回折測定装置(株式会社 島津製作所製 XD−610)を用い、管電圧40kV,管電流40mA,スキャン速度0.5°/min,受光スリット幅0.3mmの条件でX線回折測定を行い、それぞれ得られたピークプロファイルに基づいて2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1(°)及び2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2(°)を算出し、その結果を表1に示した。 Here, the hydrogen storage alloy powders prepared in Examples 1 to 9 and Comparative Examples 1 and 2 were further pulverized for 10 minutes using a pulverizer (Type A10S2 manufactured by IKA Labortechnik). For each hydrogen storage alloy powder crushed into an X-ray diffraction measurement apparatus (XD-610, manufactured by Shimadzu Corporation) using Cu-Kα ray as an X-ray source, tube voltage 40 kV, tube current 40 mA, scan speed 0 X-ray diffraction measurement was performed under the conditions of 0.5 ° / min and a light receiving slit width of 0.3 mm, and the half-value width Δθ 1 (° of the strongest peak appearing in the range of 2θ = 44 to 46 ° based on the obtained peak profile. ) And 2θ = 34.5-36.5 °, the half-value width Δθ 2 (°) of the strongest peak was calculated, and the results are shown in Table 1.

Figure 2007250439
Figure 2007250439

この結果、上記の実施例1〜9において作製した水素吸蔵合金では、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より小さくなっていたのに対して、比較例1,2において作製した水素吸蔵合金では、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より大きくなっていた。 As a result, in the hydrogen storage alloys prepared in Examples 1 to 9, the half-value width Δθ 1 of the strongest peak appearing in the range of 2θ = 44 to 46 ° is in the range of 2θ = 34.5 to 36.5 °. Whereas the full width at half maximum Δθ 2 of the strongest peak appeared was smaller than that of the hydrogen storage alloys produced in Comparative Examples 1 and 2, the full width at half maximum Δθ 1 of the strongest peak that appeared in the range of 2θ = 44 to 46 ° was It was larger than the half-value width Δθ 2 of the strongest peak appearing in the range of 2θ = 34.5 to 36.5 °.

次に、上記のようにして作製した実施例1〜9及び比較例1,2の各アルカリ蓄電池をそれぞれ45℃の温度雰囲気中に10時間放置し、その後、各アルカリ蓄電池を150mAの電流で16時間充電させた後、1500mAの電流で電池電圧が1.0Vになるまで放電させ、これを1サイクルとして、3サイクルの充放電を行った。   Next, the alkaline storage batteries of Examples 1 to 9 and Comparative Examples 1 and 2 prepared as described above were left in a temperature atmosphere of 45 ° C. for 10 hours, and then each alkaline storage battery was subjected to 16 mA at a current of 150 mA. After charging for a period of time, the battery was discharged at a current of 1500 mA until the battery voltage reached 1.0 V, and this was regarded as one cycle, and charging / discharging for 3 cycles was performed.

そして、上記のように3サイクルの充放電を行った実施例1〜9及び比較例1,2の各アルカリ蓄電池を解体して、それぞれの負極から水素吸蔵合金粒子を取り出し、これを水洗し、減圧乾燥させた後、酸素分析装置(Leco社製 RO−416DR)を用いて、各水素吸蔵合金中における酸素濃度を測定した。そして、実施例1の水素吸蔵合金中における酸素濃度を基準の100として、実施例2〜9及び比較例1,2の各水素吸蔵合金中における酸素濃度を算出し、その結果を下記の表2に示した。   Then, the alkaline storage batteries of Examples 1 to 9 and Comparative Examples 1 and 2 that were charged and discharged for 3 cycles as described above were disassembled, and the hydrogen storage alloy particles were taken out from the respective negative electrodes, and this was washed with water. After drying under reduced pressure, the oxygen concentration in each hydrogen storage alloy was measured using an oxygen analyzer (RO-416DR manufactured by Leco). Then, the oxygen concentration in each of the hydrogen storage alloys of Examples 2 to 9 and Comparative Examples 1 and 2 was calculated using the oxygen concentration in the hydrogen storage alloy of Example 1 as the reference 100, and the results are shown in Table 2 below. It was shown to.

Figure 2007250439
Figure 2007250439

この結果、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より小さい水素吸蔵合金を用いた実施例1〜9のものにおいては、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より大きい水素吸蔵合金を用いた比較例1,2のものに比べて、充放電後の水素吸蔵合金中における酸素濃度が低くなっており、水素吸蔵合金の耐食性が向上していた。 As a result, a hydrogen storage alloy is used in which the half width Δθ 1 of the strongest peak appearing in the range of 2θ = 44 to 46 ° is smaller than the half width Δθ 2 of the strongest peak appearing in the range of 2θ = 34.5 to 36.5 °. In Examples 1 to 9, the full width at half maximum Δθ 1 of the strongest peak appearing in the range of 2θ = 44 ° to 46 ° is half width Δθ 1 of the strongest peak appearing in the range of 2θ = 34.5 to 36.5 °. Compared with those of Comparative Examples 1 and 2 using a hydrogen storage alloy larger than 2 , the oxygen concentration in the hydrogen storage alloy after charge and discharge was low, and the corrosion resistance of the hydrogen storage alloy was improved.

そして、このように実施例1〜9の各アルカリ蓄電池においては、充放電後の水素吸蔵合金中における酸素濃度が低くなって、水素吸蔵合金の耐食性が向上する結果、比較例1,2の各アルカリ蓄電池に比べて、サイクル寿命が向上するようになる。   And in each alkaline storage battery of Examples 1-9 in this way, as a result of the oxygen concentration in the hydrogen storage alloy after charging / discharging becoming low and improving the corrosion resistance of the hydrogen storage alloy, each of Comparative Examples 1 and 2 Compared with alkaline storage batteries, the cycle life is improved.

本発明の実施例1〜9及び比較例1,2において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in Examples 1-9 and Comparative Examples 1 and 2 of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
6a ガス放出口
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
11 閉塞板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode cover 6a Gas discharge port 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring 11 Closure board

Claims (4)

一般式Ln1-xMgxNiy-a-bAla(式中、LnはYを含む希土類元素から選択される少なくとも1種の元素、MはV,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,B,Zr及びTiから選択される少なくとも1種の元素であり、0.05≦x≦0.35、2.8≦y≦3.9、0.05≦a≦0.30、0≦b≦0.5の条件を満たす。)で表され、Cu−Kα線をX線源とするX線回折測定において、2θ=44〜46°の範囲に現れる最強ピークの半値幅Δθ1が、2θ=34.5〜36.5°の範囲に現れる最強ピークの半値幅Δθ2より小さいことを特徴とするアルカリ電池用水素吸蔵合金。 In the general formula Ln 1-x Mg x Ni yab Al a M b ( wherein, at least one element Ln is selected from rare earth elements including Y, M is V, Nb, Ta, Cr, Mo, Mn, Fe , Co, Ga, Zn, Sn, In, Cu, Si, P, B, Zr and Ti, at least one element selected from 0.05 ≦ x ≦ 0.35, 2.8 ≦ y ≦ 3.9, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.5), and 2θ = 44 in X-ray diffraction measurement using Cu—Kα rays as an X-ray source. A hydrogen storage alloy for an alkaline battery, wherein the half-value width Δθ 1 of the strongest peak appearing in the range of ˜46 ° is smaller than the half-value width Δθ 2 of the strongest peak appearing in the range of 2θ = 34.5-36.5 ° . 請求項1に記載したアルカリ蓄電池用水素吸蔵合金において、合金の結晶構造がCaCu5型格子とラーベス型のAB2格子とが規則的に配列された構造であることを特徴とするアルカリ電池用水素吸蔵合金。 2. The hydrogen storage alloy for alkaline storage batteries according to claim 1, wherein the crystal structure of the alloy is a structure in which CaCu 5 lattice and Laves AB 2 lattice are regularly arranged. Occlusion alloy. 請求項1又は請求項2に記載したアルカリ蓄電池用水素吸蔵合金において、合金の結晶構造がCe2Ni7型構造又はこれに類似した構造であることを特徴とするアルカリ電池用水素吸蔵合金。 According to claim 1 or claim 2 for alkaline storage battery hydrogen storage alloy described in, for alkaline batteries hydrogen-absorbing alloy which is a structure in which the crystal structure is similar to this or Ce 2 Ni 7 type structure of the alloy. 正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極に前記の請求項1〜請求項3の何れか1項に記載したアルカリ蓄電池用水素吸蔵合金を用いたことを特徴とするアルカリ蓄電池。   An alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, wherein the negative electrode is a hydrogen storage alloy for an alkaline storage battery according to any one of claims 1 to 3. An alkaline storage battery characterized by using.
JP2006074761A 2006-03-17 2006-03-17 Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery Pending JP2007250439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074761A JP2007250439A (en) 2006-03-17 2006-03-17 Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074761A JP2007250439A (en) 2006-03-17 2006-03-17 Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2007250439A true JP2007250439A (en) 2007-09-27

Family

ID=38594488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074761A Pending JP2007250439A (en) 2006-03-17 2006-03-17 Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2007250439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045855A1 (en) * 2007-09-28 2009-04-08 Sanyo Electric Co., Ltd. Alkaline storage battery system
JP2009163986A (en) * 2008-01-07 2009-07-23 Gs Yuasa Corporation Nickel metal hydride storage battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
CN109155404A (en) * 2016-05-18 2019-01-04 新日铁住金株式会社 Negative electrode active material material, cathode and battery
CN112501475A (en) * 2020-11-17 2021-03-16 扬州大学 (La, Nd,) -Mg-Ni biphase superlattice hydrogen storage alloy and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045855A1 (en) * 2007-09-28 2009-04-08 Sanyo Electric Co., Ltd. Alkaline storage battery system
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system
CN101425603B (en) * 2007-09-28 2013-12-11 三洋电机株式会社 Alkaline storage battery system
JP2009163986A (en) * 2008-01-07 2009-07-23 Gs Yuasa Corporation Nickel metal hydride storage battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
CN109155404A (en) * 2016-05-18 2019-01-04 新日铁住金株式会社 Negative electrode active material material, cathode and battery
CN112501475A (en) * 2020-11-17 2021-03-16 扬州大学 (La, Nd,) -Mg-Ni biphase superlattice hydrogen storage alloy and preparation method thereof
CN112501475B (en) * 2020-11-17 2021-10-08 扬州大学 A (La,Nd,)-Mg-Ni dual-phase superlattice hydrogen storage alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US7700237B2 (en) Hydrogen storage alloy and alkaline secondary battery using the same
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4566025B2 (en) Alkaline storage battery
JP2011127177A (en) Hydrogen storage alloy, method for producing the same, and alkali storage battery
JP2007250439A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP5178013B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP2009076430A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP5219338B2 (en) Method for producing alkaline storage battery
JP2008210554A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP5556142B2 (en) Alkaline storage battery
JP4290023B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP5283435B2 (en) Alkaline storage battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP2009228096A (en) Hydrogen storage alloy
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2005142146A (en) Nickel hydrogen storage battery
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2008059818A (en) Alkaline storage battery
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP2004273261A (en) Alkaline storage battery
JP4989033B2 (en) Hydrogen storage alloys and nickel / hydrogen storage batteries for alkaline storage batteries